
DECchip 21071 and DECchip 21072
Core Logic Chipsets
Data Sheet

Order Number: EC–QAEMB–TE

Revision/Update Information: This document supersedes the
DECchip 21071 and DECchip 21072
Core Logic Chipsets Data Sheet,
(EC–QAEMA–TE).

Digital Equipment Corporation
Maynard, Massachusetts



January 1996

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1993, 1994, 1996. All Rights Reserved. AlphaGeneration,
Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the AlphaGeneration design
mark, and the DIGITAL logo are trademarks of Digital Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

Intel is a trademark of Intel Corporation.
RamDAC is a trademark of Brooktree Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.



21071 and 21072 Features:

Data Sheet

21071-CA (Cache/memory controller) - 208 PQFP
21071-DA (PCI interface) - 208 PQFP

21071-BA (Data path) - 208 PQFP

Supports the entire family of DECchip 
21064 Alpha AXP microprocessors

DECchip 21071: 128-bit cache/64-bit 
memory

DECchip 21072: 128-bit cache/128-bit 
memory

System clock frequency up to 33 MHz

Bcache/memory controller
- Write-back cache
- Bcache size from 128 KB to 16 MB 
- Bcache SRAMs, 17 ns and faster
- 32-bit parity/32-bit ECC on Bcache
  (DECchip 21072 only)
- 8 MB to 4 GB of memory supported

- 267 MB/s CPU write bandwidth,
  107 MB/s CPU read bandwidth
- 32-bit parity/32-bit ECC on memory
  data (DECchip 21072 only)
- RAS/CAS memory bus to industry-
  standard SIMMs
- DRAM controller with fully 
  programmable timing with 15 ns 
  granularity

High-performance PCI bridge
120 MB/s DMA write bandwidth, 70

  MB/s DMA read bandwidth, 82 MB/s
  programmed I/O write bandwidth, 22
  MB/s programmed I/O read bandwidth

Graphics support

DECchip 21071 and DECchip 21072

The DECchip 21071 and DECchip 21072 core logic chipsets provide a cost-effective solution
for designing uniprocessor systems using the DECchip 21064 family of Alpha AXP micro-
processors. The chipsets include a secondary cache and memory controller, PCI interface,
and corresponding data path functions. The chipsets provide ample flexibility to the system 
designer in building the memory and I/O subsystem, and they require minimal discrete logic 
on the module. The 21071 and 21072 chipsets contain three unique gate arrays: 

Core Logic Chipsets

iii





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 DECchip 21071 and DECchip 21072 Core Logic Chipset
Overview

1.1 DECchip 21071 and DECchip 21072 Core Logic Chipset
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1

1.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.2.1 Alpha 21064 Microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.2 Bcache Data and Tag RAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.3 Bcache Control PALs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.4 Cache Address Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.2.5 DECchip 21071-BA Features . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.2.6 DECchip 21071-CA Features . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
1.2.7 DECchip 21071-DA Features . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.2.8 System Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1.2.9 Serial ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1.2.10 Interrupt Control/CPU Configuration PAL . . . . . . . . . . . . . . . 1–9
1.2.11 Memory SIMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1.2.12 PCI Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.2.13 PCI Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.2.14 PCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.2.15 System ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10

Part I

v



2 DECchip 21071-CA Pin Descriptions

2.1 DECchip 21071-CA Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.2 DECchip 21071-CA Signal Descriptions . . . . . . . . . . . . . . . . . . . . 2–5
2.2.1 CPU/Bcache Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.1.1 sysData<15:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.1.2 sysAdr<33:5> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.1.3 tagAdr<31:17> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.1.4 tagAdrP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.2.1.5 tagCtlV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.2.1.6 tagCtlD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.2.1.7 tagCtlP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.2.1.8 cpuCWMask<7:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.2.1.9 cpuCReq<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.2.1.10 cpuCAck<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.2.1.11 cpuDRAck<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.2.1.12 cpuDWSel<1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.2.1.13 cpuDInvReq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.2.1.14 cpuHoldReq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.2.1.15 cpuHoldAck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.2.2 Bcache/PAL Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.2.2.1 sysEarlyOEEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.2.2.2 sysTagOEEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2.2.2.3 sysDataOEEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2.2.2.4 sysDataALEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2.2.2.5 sysDataAHEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.2.2.6 sysTagWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.2.2.7 sysDataWEEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.2.2.8 sysDataLongWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.2.9 sysDOE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.3 PCI Bridge Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.3.1 ioRequest<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.3.2 ioGrant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2.2.3.3 ioCmd<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
2.2.3.4 ioCAck<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
2.2.3.5 ioDataRdy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
2.2.4 Data Path Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.2.4.1 drvSysData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.2.4.2 drvSysCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.2.4.3 drvMemData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.2.4.4 sysIORead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20
2.2.4.5 sysReadOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20
2.2.4.6 subCmdA<1:0>, subCmdB<1:0>, subCmdCommon . . . . . 2–20

vi



2.2.4.7 sysCmd<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–21
2.2.4.8 memCmd<3:1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–24
2.2.5 Memory Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
2.2.5.1 memAdr<11:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
2.2.5.2 memRAS_l<8:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
2.2.5.3 memRASB_l<8:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
2.2.5.4 memCAS_l<3:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
2.2.5.5 memWE_l<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
2.2.5.6 memPDClk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
2.2.5.7 memPDLoad_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
2.2.5.8 memPDDIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28
2.2.6 Video Support Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28
2.2.6.1 vFrame_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28
2.2.6.2 vRefresh_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28
2.2.6.3 memDTOE_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29
2.2.6.4 memDSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29
2.2.7 Miscellaneous/Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . 2–29
2.2.7.1 wideMem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29
2.2.7.2 clk1x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30
2.2.7.3 clk2ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30
2.2.7.4 reset_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30
2.2.7.5 testMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30
2.2.7.6 scanEnable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
2.2.7.7 tristate_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
2.2.7.8 pTestout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
2.3 DECchip 21071-CA Pin Assignment . . . . . . . . . . . . . . . . . . . . . . 2–32
2.3.1 DECchip 21071-CA Alphabetical Pin Assignment List . . . . . . 2–34
2.3.2 DECchip 21071-CA Numerical Pin Assignment List . . . . . . . 2–38
2.4 DECchip 21071-CA Mechanical Specifications . . . . . . . . . . . . . . . 2–41

3 DECchip 21071-CA Architecture Overview

3.1 sysBus Interface Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.1 sysBus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.1.1 Arbitration CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.1.2 DECchip 21071-DA Requests . . . . . . . . . . . . . . . . . . . . . . 3–3
3.1.1.3 Arbitration Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3.1.1.4 Grant Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
3.1.1.5 Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6

vii



3.1.2 Bcache Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
3.1.2.1 Bcache Width, Size, and Speed . . . . . . . . . . . . . . . . . . . . 3–7
3.1.2.2 Bcache Allocation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
3.1.2.3 Bcache Write Granularity . . . . . . . . . . . . . . . . . . . . . . . . 3–8
3.1.2.4 CPU-Initiated Bcache Operations . . . . . . . . . . . . . . . . . . 3–8
3.1.2.5 DMA-Initiated Bcache Operations . . . . . . . . . . . . . . . . . . 3–9
3.1.2.6 External Logic Requirement . . . . . . . . . . . . . . . . . . . . . . 3–9
3.1.2.7 Tag Compare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
3.1.2.8 CPU Primary Cache Invalidates . . . . . . . . . . . . . . . . . . . 3–10
3.1.3 sysBus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
3.1.3.1 Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
3.1.4 Address Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
3.1.4.1 Cacheable Memory Space . . . . . . . . . . . . . . . . . . . . . . . . 3–12
3.1.4.2 Noncacheable Memory Space . . . . . . . . . . . . . . . . . . . . . 3–12
3.1.4.3 21071-CA CSR Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12
3.1.5 Lock Address Register and Lock Bit . . . . . . . . . . . . . . . . . . . 3–13
3.1.6 Memory Write Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13
3.1.6.1 Write Buffer Address Comparison . . . . . . . . . . . . . . . . . . 3–14
3.1.6.2 Write Buffer Flushing . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14
3.1.6.3 Write Buffer Full Condition . . . . . . . . . . . . . . . . . . . . . . . 3–14
3.1.7 Read/Merge Buffer Control . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14
3.1.8 sysBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
3.1.8.1 CPU Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
3.1.8.2 DMA Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
3.1.9 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
3.2 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20
3.2.1 DRAM and SIMM Requirements . . . . . . . . . . . . . . . . . . . . . . 3–20
3.2.2 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20
3.2.2.1 Memory Bankset Characteristics . . . . . . . . . . . . . . . . . . . 3–21
3.2.2.2 Bankset0..Bankset7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–22
3.2.2.3 Bankset8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–23
3.2.2.4 Supported Memory SIMMs . . . . . . . . . . . . . . . . . . . . . . . 3–23
3.2.3 Memory Address Generation . . . . . . . . . . . . . . . . . . . . . . . . . 3–23
3.2.4 Performance Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 3–25
3.2.4.1 Memory Page Mode Support . . . . . . . . . . . . . . . . . . . . . . 3–25
3.2.4.2 Read Latency Minimization . . . . . . . . . . . . . . . . . . . . . . . 3–26
3.2.5 Transaction Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–26
3.2.6 Programmable Memory Timing . . . . . . . . . . . . . . . . . . . . . . . 3–27
3.2.7 Presence Detect Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–28
3.2.8 Video Support Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–30

viii



4 DECchip 21071-CA Programmer’s Reference

4.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
4.2 General Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4.2.1 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4.2.2 Error and Diagnostic Status Register . . . . . . . . . . . . . . . . . . 4–5
4.2.3 Tag Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.2.4 Error Low Address Register . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4.2.5 Error High Address Register . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4.2.6 LDx_L Low Address Register . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4.2.7 LDx_L High Address Register . . . . . . . . . . . . . . . . . . . . . . . . 4–11
4.3 Memory Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
4.3.1 Video Frame Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . 4–12
4.3.2 Presence Detect Low Data Register . . . . . . . . . . . . . . . . . . . 4–13
4.3.3 Presence Detect High Data Register . . . . . . . . . . . . . . . . . . . 4–14
4.3.4 Base Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14
4.3.5 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15
4.3.6 Bankset Timing Registers A and B . . . . . . . . . . . . . . . . . . . . 4–19
4.3.7 Global Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24
4.3.8 Refresh Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25
4.4 Programming Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28
4.5 Configuring Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32
4.5.1 Using the 21071-CA Presence Detect Registers to Configure

Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32
4.5.2 Polling Memory to Configure Memory . . . . . . . . . . . . . . . . . . 4–33
4.6 Bcache Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35
4.6.1 Primary Method to Initialize the Bcache . . . . . . . . . . . . . . . . 4–35
4.6.2 Alternative Method to Initialize the Bcache . . . . . . . . . . . . . . 4–36

5 DECchip 21071-CA Transactions and Timing Diagrams

5.1 sysBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.1.1 CPU Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.1.1.1 Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.1.1.2 Read Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5.1.1.2.1 Cacheable With Victim . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5.1.1.2.2 Cacheable Without Victim . . . . . . . . . . . . . . . . . . . . . 5–6
5.1.1.2.3 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6
5.1.1.2.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9
5.1.1.3 Write Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–12
5.1.1.3.1 Cacheable Allocate With Victim . . . . . . . . . . . . . . . . . 5–12
5.1.1.3.2 Cacheable Allocate Without Victim . . . . . . . . . . . . . . 5–16
5.1.1.3.3 Cacheable No Allocate . . . . . . . . . . . . . . . . . . . . . . . . 5–19

ix



5.1.1.3.4 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–21
5.1.1.3.5 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–21
5.1.1.4 LDx_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–23
5.1.1.4.1 Cacheable Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–23
5.1.1.4.2 Cacheable Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
5.1.1.4.3 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
5.1.1.4.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
5.1.1.5 STx_C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
5.1.1.5.1 Cacheable Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
5.1.1.5.2 Cacheable Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–30
5.1.1.5.3 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–33
5.1.1.5.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–33
5.1.1.5.5 Fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–33
5.1.1.6 Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–35
5.1.1.7 Fetch, FetchM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–37
5.1.2 DMA Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–37
5.1.2.1 DMA Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–37
5.1.2.2 DMA Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–38
5.1.2.2.1 Cacheable Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–38
5.1.2.2.2 Cacheable Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–40
5.1.2.2.3 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–43
5.1.2.2.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–43
5.1.2.3 DMA Read Wrapped . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–45
5.1.2.4 DMA Read Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–45
5.1.2.5 DMA Read Wrapped Burst . . . . . . . . . . . . . . . . . . . . . . . . 5–45
5.1.2.6 DMA Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–45
5.1.2.6.1 Cacheable Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–46
5.1.2.6.2 Cacheable Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–48
5.1.2.6.3 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–50
5.1.2.6.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–50
5.1.2.7 DMA Write Masked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–50
5.1.2.7.1 Cacheable Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–51
5.1.2.7.2 Cacheable Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–53
5.1.2.7.3 Noncacheable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–53
5.1.2.7.4 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–53
5.1.2.8 DMA Flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–53
5.1.3 Arbitration Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–55
5.1.3.1 Back-to-Back Transactions . . . . . . . . . . . . . . . . . . . . . . . . 5–55
5.1.3.1.1 CPU-to-CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–55
5.1.3.1.2 DMA-to-DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–57
5.1.3.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–60
5.1.3.2.1 CPU-to-DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–60
5.1.3.2.2 DMA to CPU, Cache Not Released . . . . . . . . . . . . . . . 5–62

x



5.1.3.2.3 DMA to CPU, Cache Previously Released . . . . . . . . . 5–66
5.1.3.2.4 DMA to DMA, Cache Previously Released . . . . . . . . . 5–66
5.1.3.3 Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–69
5.1.3.3.1 I/O Write Preempted for DMA Write . . . . . . . . . . . . . 5–69
5.1.4 Write Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–73
5.2 Memory Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–75
5.2.1 Memory Read Followed by a Page Mode Memory Read . . . . . 5–75
5.2.2 Memory Read Followed by a Non-Page Mode Memory

Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–78
5.2.3 Memory Write Followed by a Page Mode Memory Write . . . . 5–80
5.2.4 Memory Write Followed by a Non-Page Mode Memory

Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–82
5.2.5 Memory Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–84

6 DECchip 21071-CA Electrical Data

6.1 DC Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
6.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
6.2 AC Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2.1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6

7 DECchip 21071-CA Power-Up and Initialization

7.1 Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
7.2 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
7.3 State of Pins on Reset Assertion . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
7.4 Configuration after Reset Deassertion . . . . . . . . . . . . . . . . . . . . . 7–2

Part II

8 DECchip 21071-DA Pin Descriptions

8.1 DECchip 21071-DA Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
8.2 DECchip 21071-DA Signal Descriptions . . . . . . . . . . . . . . . . . . . . 8–6
8.2.1 sysBus Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
8.2.1.1 sysAdr<33:5> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
8.2.1.2 cpuCReq<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
8.2.1.3 cpuCWMask<7:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
8.2.1.4 cpuHoldAck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
8.2.1.5 ioCmd<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
8.2.1.6 ioCAck<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8

xi



8.2.1.7 ioDataRdy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
8.2.1.8 ioLineSel<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
8.2.1.9 ioRequest<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–10
8.2.1.10 ioGrant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–10
8.2.2 PCI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–11
8.2.2.1 AD<31:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–11
8.2.2.2 CBE_l<3:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–12
8.2.2.3 FrameL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–12
8.2.2.4 TrdyL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–12
8.2.2.5 IrdyL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–13
8.2.2.6 StopL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–13
8.2.2.7 LockL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–13
8.2.2.8 DevselL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–13
8.2.2.9 Par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–14
8.2.2.10 PerrL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–14
8.2.2.11 ReqL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–14
8.2.2.12 GntL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–14
8.2.2.13 pClk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
8.2.3 PCI Sideband Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
8.2.3.1 MemReql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
8.2.3.2 MemAckl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
8.2.4 epiBus Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
8.2.4.1 epiData<31:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
8.2.4.2 epiBEnErr<3:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16
8.2.4.3 epiAdr Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16
8.2.4.3.1 epiOWSel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
8.2.4.3.2 epiLineSel<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
8.2.4.3.3 epiSelDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
8.2.4.3.4 epiFromIOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
8.2.4.3.5 epiEnable<3:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
8.2.4.3.6 epiLineInval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
8.2.4.4 Miscellaneous/Clock Signals . . . . . . . . . . . . . . . . . . . . . . 8–19
8.2.4.4.1 intHw0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
8.2.4.4.2 resetL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–20
8.2.4.4.3 clk1x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–20
8.2.4.4.4 clk2ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–20
8.2.4.5 Test Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–20
8.2.4.5.1 testMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–20
8.2.4.5.2 scanEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
8.2.4.5.3 tristate_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
8.2.4.5.4 pTestout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
8.3 DECchip 21071-DA Pin Assignment . . . . . . . . . . . . . . . . . . . . . . 8–21
8.3.1 DECchip 21071-DA Alphabetical Pin Assignment List . . . . . 8–23

xii



8.3.2 Numerical DECchip 21071-DA Pin Assignment List . . . . . . . 8–27
8.4 DECchip 21071-DA Mechanical Specifications . . . . . . . . . . . . . . . 8–30

9 DECchip 21071-DA Architecture Overview

9.1 sysBus Interface Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2
9.1.1 Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–2
9.1.2 Buffering for I/O Write Transactions . . . . . . . . . . . . . . . . . . . 9–3
9.1.3 Buffering for I/O Read Data . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
9.1.4 Wrapping for I/O Transactions . . . . . . . . . . . . . . . . . . . . . . . . 9–4
9.2 PCI Interface Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4
9.2.1 DMA Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4
9.2.2 DMA Write Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5
9.2.3 DMA Read Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–6
9.2.4 PCI Burst Length and Prefetching . . . . . . . . . . . . . . . . . . . . . 9–6
9.2.5 PCI Burst Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8
9.2.6 PCI Parity Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8
9.2.7 PCI Exclusive Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8
9.2.8 PCI Bus Parking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9
9.2.9 PCI Retry Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9
9.2.10 PCI Master Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9
9.2.11 Address Stepping in Configuration Cycles . . . . . . . . . . . . . . . 9–10
9.3 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
9.3.1 sysBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
9.3.1.1 CPU-Initiated Transactions . . . . . . . . . . . . . . . . . . . . . . . 9–10
9.3.1.2 PCI-Initiated Transactions . . . . . . . . . . . . . . . . . . . . . . . . 9–12
9.3.2 PCI Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13
9.4 Miscellaneous Architectural Issues . . . . . . . . . . . . . . . . . . . . . . . 9–14
9.4.1 Data Coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14
9.4.2 Deadlock Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15
9.4.3 Guaranteed Access Time Mode Support for Intel 82375EB

and 82378IB ISA/EISA Bridges . . . . . . . . . . . . . . . . . . . . . . 9–16
9.4.3.1 DECchip 21071-DA GAT Mode Operation . . . . . . . . . . . . 9–17
9.4.3.2 GAT Mode System Requirements . . . . . . . . . . . . . . . . . . . 9–18
9.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20
9.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20
9.6.1 CPU-Initiated Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20
9.6.1.1 No Device Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21
9.6.1.2 Target Abort Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22
9.6.1.3 Address Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22
9.6.1.4 Read Data Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . 9–22
9.6.1.5 Write Data Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . 9–23
9.6.1.6 Retry Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23

xiii



9.6.2 DMA Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23
9.6.2.1 Address Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–24
9.6.2.2 Read Data Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . 9–24
9.6.2.3 Write Data Parity Errors . . . . . . . . . . . . . . . . . . . . . . . . . 9–24
9.6.2.4 Memory Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–25
9.6.2.5 Read Correctable Data Error . . . . . . . . . . . . . . . . . . . . . . 9–25
9.6.2.6 Read Uncorrectable Data Error . . . . . . . . . . . . . . . . . . . . 9–26
9.6.2.7 Scatter/Gather Entry Invalid Errors . . . . . . . . . . . . . . . . 9–26
9.6.2.8 Write Correctable and Uncorrectable Data Errors . . . . . . 9–27
9.6.2.9 Scatter/Gather Correctable Data Error . . . . . . . . . . . . . . 9–27
9.6.2.10 Scatter/Gather Uncorrectable Data Error . . . . . . . . . . . . 9–28
9.6.2.11 Scatter/Gather Memory Errors . . . . . . . . . . . . . . . . . . . . 9–28

10 DECchip 21071-DA Programmer’s Reference

10.1 Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1
10.1.1 CPU Address Mapping to PCI Space . . . . . . . . . . . . . . . . . . . 10–1
10.1.1.1 PCI Sparse Memory Space . . . . . . . . . . . . . . . . . . . . . . . 10–4
10.1.1.2 PCI Dense Memory Space . . . . . . . . . . . . . . . . . . . . . . . . 10–7
10.1.1.3 PCI Sparse I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–8
10.1.1.4 DECchip 21071-DA CSR Space . . . . . . . . . . . . . . . . . . . . 10–10
10.1.1.5 PCI Interrupt Acknowledge/Special Cycle Space . . . . . . . 10–11
10.1.1.6 PCI Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . 10–11
10.1.1.6.1 PCI Configuration Cycles to Primary Bus Targets . . . 10–12
10.1.1.6.2 PCI Configuration Cycles to Secondary Bus

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–14
10.1.2 PCI To Physical Memory Addressing . . . . . . . . . . . . . . . . . . . 10–14
10.2 DECchip 21071-DA Internal Registers . . . . . . . . . . . . . . . . . . . . . 10–21
10.2.1 Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–21
10.2.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–22
10.2.2.1 Dummy Registers 1–3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–22
10.2.2.2 Diagnostic Control and Status Register (DCSR) . . . . . . . 10–22
10.2.2.3 PCI Error Address Register . . . . . . . . . . . . . . . . . . . . . . 10–29
10.2.2.4 sysBus Error Address Register . . . . . . . . . . . . . . . . . . . . 10–30
10.2.2.5 Translated Base Registers 1–2 . . . . . . . . . . . . . . . . . . . . 10–31
10.2.2.6 PCI Base Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . . . 10–32
10.2.2.7 PCI Mask Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . . 10–33
10.2.2.8 Host Address Extension Register 0 (HAXR0) . . . . . . . . . 10–34
10.2.2.9 Host Address Extension Register 1 (HAXR1) . . . . . . . . . 10–34
10.2.2.10 Host Address Extension Register 2 (HAXR2) . . . . . . . . . 10–35
10.2.2.11 PCI Master Latency Timer Register . . . . . . . . . . . . . . . . 10–36
10.2.2.12 TLB Tag Registers 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . 10–37
10.2.2.13 TLB Data Registers 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . 10–38

xiv



10.2.2.14 Translation Buffer Invalidate All (TBIA) . . . . . . . . . . . . 10–38

11 DECchip 21071-DA Transactions

11.1 CPU-Initiated Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
11.1.1 Remote (PCI) Space I/O Read . . . . . . . . . . . . . . . . . . . . . . . . 11–1
11.1.2 Remote (PCI) Space I/O Write . . . . . . . . . . . . . . . . . . . . . . . . 11–3
11.1.3 CSR Space I/O Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11.1.4 CSR Space I/O Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11.1.5 Memory Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11.2 PCI-Initiated Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5
11.2.1 PCI Memory Read, Read Line, and Read Multiple . . . . . . . . . 11–5
11.2.2 PCI Memory Write/Write and Invalidate . . . . . . . . . . . . . . . . 11–7
11.2.3 PCI Exclusive Access to System Memory . . . . . . . . . . . . . . . . 11–8
11.2.4 Scatter/Gather Map Read . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–8
11.3 epiBus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–9

12 DECchip 21071-DA Electrical Data

12.1 DC Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1
12.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1
12.2 AC Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–4
12.2.1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–4
12.2.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–7

13 DECchip 21071-DA Power-Up and Initialization

13.1 Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1
13.2 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1
13.3 State of Pins on Reset Assertion . . . . . . . . . . . . . . . . . . . . . . . . . 13–1
13.4 Configuration after Reset Deassertion . . . . . . . . . . . . . . . . . . . . . 13–2

Part III

14 DECchip 21071-BA Pin Descriptions

14.1 DECchip 21071-BA Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–1
14.2 DECchip 21071-BA Signal Descriptions . . . . . . . . . . . . . . . . . . . . 14–4
14.2.1 CPU/Bcache Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . 14–5
14.2.1.1 sysData<63:0>, sysPar<1:0> . . . . . . . . . . . . . . . . . . . . . . 14–5

xv



14.2.2 Cache/Memory Data Path Control . . . . . . . . . . . . . . . . . . . . . 14–6
14.2.2.1 drvSysData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14.2.2.2 drvSysCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14.2.2.3 drvMemData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14.2.2.4 sysIORead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14.2.2.5 sysReadOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–7
14.2.2.6 subCmd<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–7
14.2.2.7 sysCmd<2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–7
14.2.2.8 memCmd<3:1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–11
14.2.3 epiBus Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–13
14.2.3.1 epiData<31:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–13
14.2.3.2 epiBEnErr<3:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–13
14.2.3.3 epiFromIOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
14.2.3.4 epiSelDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
14.2.3.5 epiEnable<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
14.2.3.6 epiOWSel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–15
14.2.3.7 epiLineSel<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–15
14.2.3.8 ioLineSel<1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–16
14.2.3.9 epiLineInval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–16
14.2.4 Memory Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–16
14.2.4.1 memData<31:0>, memPar<0> . . . . . . . . . . . . . . . . . . . . . 14–16
14.2.5 Miscellaneous/Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
14.2.5.1 clk1x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
14.2.5.2 clk2ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
14.2.5.3 reset_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
14.2.5.4 testMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
14.2.5.5 tristate_l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
14.2.5.6 pTestout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
14.2.5.7 eccMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
14.2.5.8 wideMem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–19
14.3 DECchip 21071-BA Pin Connection Table . . . . . . . . . . . . . . . . . . 14–20
14.4 DECchip 21071-BA Pin Assignment . . . . . . . . . . . . . . . . . . . . . . 14–22
14.4.1 DECchip 21071-BA Alphabetical Pin Assignment List . . . . . . 14–24
14.4.2 DECchip 21071-BA Numerical Pin Assignment List . . . . . . . 14–28
14.5 DECchip 21071-BA Mechanical Specifications . . . . . . . . . . . . . . . 14–31

xvi



15 DECchip 21071-BA Architecture Overview

15.1 Bus Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2
15.1.1 sysData Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2
15.1.2 memData Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2
15.1.3 epiData Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–3
15.2 Description of DECchip 21071-BA Architecture . . . . . . . . . . . . . . 15–3
15.2.1 Memory Read Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–3
15.2.2 I/O Read Buffer and Merge Buffer . . . . . . . . . . . . . . . . . . . . . 15–3
15.2.3 I/O Write Buffer and DMA Read Buffer . . . . . . . . . . . . . . . . . 15–4
15.2.4 DMA Write Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–4
15.2.5 Memory Write Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–4
15.2.6 Error Checking/Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–5
15.3 Data Path Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–5
15.3.1 epiBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–5
15.3.2 sysBus Output Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–5

16 DECchip 21071-BA Transactions and Timing Diagrams

16.1 sysBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–1
16.1.1 CPU Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–1
16.1.2 CPU Memory Read with Victim . . . . . . . . . . . . . . . . . . . . . . . 16–1
16.1.3 CPU Memory Write Allocate . . . . . . . . . . . . . . . . . . . . . . . . . 16–1
16.1.4 CPU Memory Write Noncacheable/Noallocate . . . . . . . . . . . . 16–2
16.1.5 STx_C Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2
16.1.6 STx_C Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2
16.1.7 LDx_L Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2
16.1.8 LDx_L Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2
16.1.9 CPU Read From or Through the DECchip 21071-DA . . . . . . . 16–2
16.1.10 CPU Write To or Through the DECchip 21071-DA . . . . . . . . . 16–2
16.2 PCI and Other I/O Bus Transactions . . . . . . . . . . . . . . . . . . . . . . 16–3
16.2.1 PCI Read from System Memory . . . . . . . . . . . . . . . . . . . . . . . 16–3
16.2.2 PCI Write to System Memory . . . . . . . . . . . . . . . . . . . . . . . . 16–3
16.3 epiBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–4
16.3.1 DMA Read Buffer to the 21071-DA . . . . . . . . . . . . . . . . . . . . 16–4
16.3.2 I/O Write Buffer to 21071-DA . . . . . . . . . . . . . . . . . . . . . . . . 16–7
16.3.3 21071-DA to DMA Write Buffer . . . . . . . . . . . . . . . . . . . . . . . 16–7
16.3.4 21071-DA to I/O Read Buffer . . . . . . . . . . . . . . . . . . . . . . . . . 16–10

xvii



17 DECchip 21071-BA Electrical Data

17.1 DC Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1
17.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1
17.2 AC Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–3
17.2.1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–3
17.2.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–6

18 DECchip 21071-BA Power-Up and Initialization

18.1 Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–1
18.2 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–1
18.3 State of Pins on Reset Assertion . . . . . . . . . . . . . . . . . . . . . . . . . 18–1

A Bcache PAL Equations

B Technical Support and Ordering Information

B.1 Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B.2 Ordering Digital Semiconductor Products . . . . . . . . . . . . . . . . . . B–1
B.3 Ordering Associated Literature . . . . . . . . . . . . . . . . . . . . . . . . . . B–1

Figures

1–1 DECchip 21071 and DECchip 21072 System Block
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3

2–1 DECchip 21071-CA Pinout Diagram . . . . . . . . . . . . . . . . . . . 2–33
2–2 DECchip 21071-CA Package Dimensions . . . . . . . . . . . . . . . . 2–42
3–1 DECchip 21071-CA Block Diagram . . . . . . . . . . . . . . . . . . . . 3–1
3–2 Cache Subsystem for a 512 KB Cache . . . . . . . . . . . . . . . . . . 3–7
3–3 Memory Set Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21
3–4 Presence Detect Logic Operation . . . . . . . . . . . . . . . . . . . . . . 3–29
3–5 Video Subsystem Using a DECchip 21071 Chipset and a

Dumb Frame Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–32
4–1 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4–2 Error and Diagnostic Status Register . . . . . . . . . . . . . . . . . . 4–6
4–3 Tag Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4–4 Error Low Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4–5 Error High Address Register . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4–6 LDx_L Low Address Register . . . . . . . . . . . . . . . . . . . . . . . . . 4–11

xviii



4–7 LDx_L High Address Register . . . . . . . . . . . . . . . . . . . . . . . . 4–11
4–8 Video Frame Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . 4–12
4–9 Presence Detect Low Data Register . . . . . . . . . . . . . . . . . . . . 4–13
4–10 Presence Detect High Data Register . . . . . . . . . . . . . . . . . . . 4–14
4–11 Bankset0 Base Address Register . . . . . . . . . . . . . . . . . . . . . . 4–15
4–12 Bankset 0 Configuration Register . . . . . . . . . . . . . . . . . . . . . 4–15
4–13 Bankset8 Configuration Register . . . . . . . . . . . . . . . . . . . . . . 4–18
4–14 Bankset Timing Register A . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20
4–15 Bankset Timing Register B . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22
4–16 Global Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24
4–17 Refresh Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26
4–18 Memory Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31
4–19 Memory Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32
5–1 Timing of CPU Read Block, Cacheable, Victim . . . . . . . . . . . 5–4
5–2 Timing of CPU Read Block, Noncacheable . . . . . . . . . . . . . . . 5–7
5–3 Timing of CPU Read Block, Remote I/O Space . . . . . . . . . . . . 5–10
5–4 Timing of CPU Write Block, Cacheable, Allocate, Victim . . . . 5–14
5–5 Timing of CPU Write Block, Cacheable, Allocate, No

Victim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–17
5–6 Timing of CPU Write Block, Noncacheable or No Allocate . . . 5–20
5–7 Timing of CPU Write Block, Remote I/O Space . . . . . . . . . . . 5–22
5–8 Timing of CPU LDx_L, Wrapped, Cacheable Hit . . . . . . . . . . 5–24
5–9 Timing of CPU STx_C Succeeds, Hit, Cacheable, Allocate . . . 5–28
5–10 Timing of CPU STx_C Succeeds, Miss, Cacheable, Allocate,

Victim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–31
5–11 Timing of CPU STx_C Fails . . . . . . . . . . . . . . . . . . . . . . . . . . 5–34
5–12 Timing of CPU Barrier or Fetch or FetchM . . . . . . . . . . . . . . 5–36
5–13 Timing of DMA Read, Cacheable, Hit . . . . . . . . . . . . . . . . . . 5–39
5–14 Timing of DMA Read, Cacheable, Miss . . . . . . . . . . . . . . . . . 5–41
5–15 Timing of DMA Read, I/O Space (Error) . . . . . . . . . . . . . . . . 5–44
5–16 Timing of DMA Write, Cacheable, Hit, Followed by DMA

Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–47
5–17 Timing of DMA Write, Cacheable, Miss, Followed by CPU

Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–49
5–18 Timing of DMA Write Masked, Cacheable, Hit . . . . . . . . . . . 5–52
5–19 Timing of DMA Flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–54
5–20 Switch From CPU Read to CPU Write . . . . . . . . . . . . . . . . . . 5–56

xix



5–21 Switch From DMA Read Hit to DMA Write . . . . . . . . . . . . . 5–58
5–22 Switch from DMA Write Hit to DMA Write . . . . . . . . . . . . . . 5–59
5–23 Switch from CPU Read to DMA Write . . . . . . . . . . . . . . . . . . 5–61
5–24 Switch from DMA Write Hit to CPU Write . . . . . . . . . . . . . . 5–64
5–25 Switch from DMA Read to CPU Write . . . . . . . . . . . . . . . . . . 5–65
5–26 Switch from CPU Released to CPU Write . . . . . . . . . . . . . . . 5–67
5–27 Switch from CPU Released to DMA Write . . . . . . . . . . . . . . . 5–68
5–28 Timing of CPU Write Block to I/O Space, Preempted by a

DMA Read Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–71
5–29 Timing of Regular Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–73
5–30 Timing of Long Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–74
5–31 Memory Read Followed by a Page Mode Memory Read . . . . . 5–77
5–32 Memory Read Followed by a Non-Page Mode Memory

Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–79
5–33 Memory Write Followed by a Page Mode Memory Write . . . . 5–82
5–34 Memory Write Followed by a Non-Page Mode Memory

Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–83
5–35 Memory Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–85
6–1 DECchip 21071-CA Clock Skew Requirements . . . . . . . . . . . 6–4
6–2 DECchip 21071-CA Clock Signals . . . . . . . . . . . . . . . . . . . . . 6–5
6–3 DECchip 21071-CA Output Delay Measurement . . . . . . . . . . 6–6
6–4 DECchip 21071-CA Setup and Hold Time Measurement . . . . 6–7
8–1 DECchip 21071-DA Pinout Diagram . . . . . . . . . . . . . . . . . . . 8–22
8–2 DECchip 21071-DA Package Dimensions . . . . . . . . . . . . . . . . 8–31
9–1 DECchip 21071-DA Block Diagram . . . . . . . . . . . . . . . . . . . . 9–2
10–1 PCI Memory Space Address Translation . . . . . . . . . . . . . . . . 10–6
10–2 PCI I/O Space Address Translation . . . . . . . . . . . . . . . . . . . . 10–10
10–3 PCI Target Window Compare . . . . . . . . . . . . . . . . . . . . . . . . . 10–16
10–4 Scatter/Gather Map Page Table Entry in Memory . . . . . . . . . 10–19
10–5 Scatter/Gather Map Translation of PCI to sysBus

Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–20
10–6 Diagnostic Control and Status Register (DCSR) . . . . . . . . . . 10–23
10–7 PCI Error Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . 10–29
10–8 sysBus Error Address Register . . . . . . . . . . . . . . . . . . . . . . . 10–30
10–9 Translated Base Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . 10–31
10–10 PCI Base Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–32
10–11 PCI Mask Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–33

xx



10–12 Host Address Extension Register 1 (HAXR1) . . . . . . . . . . . . . 10–34
10–13 Host Address Extension Register 2 (HAXR2) . . . . . . . . . . . . . 10–35
10–14 PCI Master Latency Timer Register . . . . . . . . . . . . . . . . . . . . 10–36
10–15 TLB Tag Registers 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–37
10–16 TLB Data Registers 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–38
12–1 DECchip 21071-DA Clock Skew Requirements . . . . . . . . . . . 12–5
12–2 DECchip 21071-DA Clock Signals . . . . . . . . . . . . . . . . . . . . . 12–7
12–3 DECchip 21071-DA Output Delay Measurement . . . . . . . . . . 12–8
12–4 DECchip 21071-DA Setup and Hold Time Measurement . . . . 12–8
14–1 DECchip 21071-BA Pinout Diagram . . . . . . . . . . . . . . . . . . . 14–23
14–2 DECchip 21071-BA Package Dimensions . . . . . . . . . . . . . . . . 14–32
15–1 DECchip 21071-BA Block Diagram . . . . . . . . . . . . . . . . . . . . 15–1
16–1 Timing of DMA Read Buffer to the 21071-DA Transfer . . . . . 16–6
16–2 Timing of 21071-DA to DMA Write Buffer Transfer . . . . . . . . 16–9
16–3 Timing of 21071-DA to I/O Read Buffer Transfer . . . . . . . . . . 16–11
17–1 DECchip 21071-BA Clock Skew Requirements . . . . . . . . . . . 17–5
17–2 DECchip 21071-BA Clock Signals . . . . . . . . . . . . . . . . . . . . . 17–6
17–3 DECchip 21071-BA Output Delay Measurement . . . . . . . . . . 17–7
17–4 DECchip 21071-BA Setup and Hold Time Measurement . . . . 17–7

Tables

2–1 DECchip 21071-CA Pin List . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2–2 CPU-Initiated Transaction Encodings . . . . . . . . . . . . . . . . . . 2–9
2–3 cpuCAck Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2–4 cpuDRAck Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2–5 sysEarlyOEEn Effect on bcTagOE_l and bcDataOE_l . . . . . . 2–12
2–6 ioRequest<1:0> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2–7 ioCmd<2:0> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
2–8 ioCAck<1:0> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
2–9 SubCmd Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20
2–10 sysCmd<2:0> and subCmd<1:0> Encodings . . . . . . . . . . . . . 2–21
2–11 memCmd<3:1> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
2–12 DECchip 21071-CA Alphabetical Pin Assignment List . . . . . . 2–34
2–13 DECchip 21071-CA Numerical Pin Assignment List . . . . . . . 2–38
3–1 Arbitration Cycles of CPU Transactions . . . . . . . . . . . . . . . . . 3–4
3–2 sysBus Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11

xxi



3–3 Longword Number to memCAS_l[n] Correspondence . . . . . . . 3–22
3–4 Supported Bankset Sizes and DRAM Configurations for

Different Memory Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–22
3–5 Base Address Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–24
3–6 Row and Column Address Decode for Bankset0..7 . . . . . . . . . 3–24
3–7 Row and Column Address Decode for Bankset8 . . . . . . . . . . . 3–25
3–8 Memory Transaction Scheduling . . . . . . . . . . . . . . . . . . . . . . 3–27
3–9 Supported Presence Detect Shift Registers . . . . . . . . . . . . . . 3–30
4–1 DECchip 21071-CA Register Summary . . . . . . . . . . . . . . . . . 4–1
4–2 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
4–3 Error and Diagnostic Status Register . . . . . . . . . . . . . . . . . . 4–6
4–4 Cache Size Tag Enable Values . . . . . . . . . . . . . . . . . . . . . . . . 4–9
4–5 Maximum Memory Tag Enable Values . . . . . . . . . . . . . . . . . . 4–9
4–6 Video Frame Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . 4–12
4–7 Bankset0 Configuration Register . . . . . . . . . . . . . . . . . . . . . . 4–16
4–8 Bankset 8 Configuration Register . . . . . . . . . . . . . . . . . . . . . 4–18
4–9 BankSet Timing Register A . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20
4–10 Bankset Timing Register B . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23
4–11 Global Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25
4–12 Refresh Timing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26
4–13 Read Timings: Equations for Programmed Values . . . . . . . . . 4–29
4–14 Write Timings: Equations for Programmed Values . . . . . . . . 4–29
4–15 Programming Memory Timings . . . . . . . . . . . . . . . . . . . . . . . 4–30
6–1 DECchip 21071-CA Maximum Ratings . . . . . . . . . . . . . . . . . 6–2
6–2 DC Parametric Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6–3 DECchip 21071-CA Clock AC Characteristics . . . . . . . . . . . . 6–4
6–4 DECchip 21071-CA Clock Skew Limits at clk1x2 Pin . . . . . . 6–5
6–5 DECchip 21071-CA Output Buffer Delays into a 50 pF

Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
6–6 DECchip 21071-CA AC Characteristics (Valid Delay into a 50

pF Load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8
6–7 DECchip 21071-CA AC Characteristics (Setup/Hold

Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10
8–1 DECchip 21071-DA Pin List . . . . . . . . . . . . . . . . . . . . . . . . . 8–2
8–2 CPU-Initiated Transaction Encodings . . . . . . . . . . . . . . . . . . 8–7
8–3 ioCmd<2:0> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
8–4 ioCAck<1:0> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9

xxii



8–5 ioRequest<1:0> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . 8–10
8–6 Translation of 21071-DA Pin Names to PCI Signal

Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–11
8–7 epiBEnErr Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–16
8–8 Longword Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
8–9 21071-BA epiBus Interface Function . . . . . . . . . . . . . . . . . . 8–19
8–10 DECchip 21071-DA Alphabetical Pin Assignment List . . . . . 8–23
8–11 DECchip 21071-DA Numerical Pin Assignment List . . . . . . . 8–27
10–1 sysBus Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2
10–2 PCI Sparse Memory Space Byte Enable Generation . . . . . . . 10–5
10–3 PCI Sparse I/O Space Byte Enable Generation . . . . . . . . . . . 10–9
10–4 PCI Configuration Space Definition . . . . . . . . . . . . . . . . . . . . 10–12
10–5 PCI Address Decoding for Primary Bus Configuration

Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–13
10–6 PCI Target Window Enables . . . . . . . . . . . . . . . . . . . . . . . . . 10–15
10–7 PCI Target Address Translation—Direct Mapped

(Scatter/Gather Mapping Disabled) . . . . . . . . . . . . . . . . . . . . 10–17
10–8 Scatter/Gather Map Address . . . . . . . . . . . . . . . . . . . . . . . . . 10–18
10–9 DECchip 21071-DA Register Summary . . . . . . . . . . . . . . . . . 10–21
10–10 Diagnostic Control and Status Register . . . . . . . . . . . . . . . . . 10–23
10–11 PCI Error Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . 10–29
10–12 sysBus Error Address Register . . . . . . . . . . . . . . . . . . . . . . . 10–30
10–13 Translated Base Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . 10–31
10–14 PCI Base Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–32
10–15 PCI Mask Registers 1–2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–33
10–16 Host Address Extension Register 1 . . . . . . . . . . . . . . . . . . . . 10–34
10–17 Host Address Extension Register 2 . . . . . . . . . . . . . . . . . . . . 10–35
10–18 PCI Master Latency Timer Register . . . . . . . . . . . . . . . . . . . . 10–36
10–19 TLB Tag Registers 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–37
10–20 TLB Data Registers 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–38
11–1 epiBus Arbitration Priority . . . . . . . . . . . . . . . . . . . . . . . . . . 11–9
12–1 DECchip 21071-DA Maximum Ratings . . . . . . . . . . . . . . . . . 12–2
12–2 DC Parametric Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3
12–3 DECchip 21071-DA Clock AC Characteristics . . . . . . . . . . . . 12–5
12–4 DECchip 21071-DA Clock Skew Limits at clk1x2 Pin . . . . . . 12–6
12–5 DECchip 21071-DA Output Buffer Delays into a 50 pF

Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–9

xxiii



12–6 DECchip 21071-DA AC Characteristics (Valid Delay into a 50
pF Load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10

12–7 DECchip 21071-DA AC Characteristics (Setup/Hold
Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–11

14–1 DECchip 21071-BA Pin List . . . . . . . . . . . . . . . . . . . . . . . . . 14–2
14–2 sysCmd<2:0> and subCmd<1:0> Encodings . . . . . . . . . . . . . 14–8
14–3 memCmd<3:1> Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–11
14–4 epiBEnErr Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–13
14–5 21071-BA epiBus Interface Function . . . . . . . . . . . . . . . . . . 14–15
14–6 DECchip 21071-BA Pin Assignments for DECchip 21072

with Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–20
14–7 DECchip Pin Assignments for DECchip 21072 with ECC . . . 14–21
14–8 DECchip 21071-BA Pin Assignments for DECchip 21071

With Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–22
14–9 Alphabetical Pin Assignment List . . . . . . . . . . . . . . . . . . . . . 14–24
14–10 DECchip 21071-BA Numerical Pin Assignment List . . . . . . . 14–28
15–1 sysBus Output Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–6
17–1 DECchip 21071-BA Maximum Ratings . . . . . . . . . . . . . . . . . 17–2
17–2 DC Parametric Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–3
17–3 DECchip 21071-BA Clock AC Characteristics . . . . . . . . . . . . 17–4
17–4 DECchip 21071-BA Clock Skew Limits at clk1x2 Pin . . . . . . 17–5
17–5 DECchip 21071-BA Output Buffer Delays into a 50 pF

Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–8
17–6 DECchip 21071-BA AC Characteristics (Valid Delay into a 50

pF Load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–8
17–7 DECchip 21071-BA AC Characteristics (Setup/Hold

Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–9
A–1 Equations for Cache Data Write Enables . . . . . . . . . . . . . . . . A–2
A–2 Equations for the Tag and Data Output Enables . . . . . . . . . . A–4
A–3 Equations for Bcache and NOR Gates . . . . . . . . . . . . . . . . . . A–5

xxiv



Preface

Purpose and Audience
This document is a support and reference document for engineers who design
uniprocessor systems using an Alpha 21064 microprocessor.

Organization
This document is divided into the following parts:

• An overview of the DECchip 21071 and DECchip 21072 core logic chipsets
precedes Part I.

• Part I contains information about the DECchip 21071-CA chip.

• Part II contains information about the DECchip 21071-DA chip.

• Part III contains information about the DECchip 21071-BA chip.

• Appendix A contains PAL programming equations.

This document contains the following chapters:

• Chapter 1 provides a brief overview of the DECchip 21071 and DECchip
21072 core logic chipset features.

• Chapter 2 describes the DECchip 21071-CA pin signals.

• Chapter 3 describes the DECchip 21071-CA architecture.

• Chapter 4 describes the DECchip 21071-CA control and status registers.

• Chapter 5 describes the transactions supported by the DECchip 21071-CA
chip on the sysBus and memory interface.

• Chapter 6 describes the DECchip 21071-CA electrical requirements.

• Chapter 7 describes the behavior of the DECchip 21071-CA chip during
power-up.

• Chapter 8 describes the DECchip 21071-DA pin signals.

xxv



• Chapter 9 describes the DECchip 21071-DA architecture.

• Chapter 10 describes the the DECchip 21071-DA control and status
registers.

• Chapter 11 describes the transaction flows supported by the DECchip
21071-DA chip.

• Chapter 12 describes the DECchip 21071-DA electrical requirements.

• Chapter 13 describes the behavior of the DECchip 21071-DA chip during
power-up.

• Chapter 14 describes the DECchip 21071-BA pin signals.

• Chapter 15 describes the DECchip 21071-BA architecture.

• Chapter 16 describes the flow of data within the DECchip 21071-BA chip
for various transactions on the sysBus, memory data bus, and PCI bus.

• Chapter 17 describes the DECchip 21071-BA electrical requirements.

• Chapter 18 describes the behavior of the DECchip 21071-BA chip during
power-up.

Conventions Used in this Document
The following conventions are used in this document:

Convention Meaning

Note Provides general information that could be useful.

Caution Provides information to prevent damage to equipment.

Warning Provides information to prevent personal injury.

Numbering All numbers are decimal unless otherwise indicated. Numbers
other than decimal are indicated with the name of the base
following the number in parentheses. For example: FF (hex)

Ranges Ranges are specified by a pair of numbers separated by two
periods (..), and are inclusive. For example, a range of integers
0..4 includes the integers 0, 1, 2, 3 and 4.

Extents Extents are specified by a pair of numbers in angle brackets
separated by a colon (:), and are inclusive. For example, bits
<7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

xxvi



Convention Meaning

Clock edges References to the rising and falling edges of clocks as defined by
specifying the clock name followed by an R or F. For example, the
rising edge of clk1 is referred to as clk1R and the falling edge of
memClk is referred to as memClkF.

Signal edges References to the assertion and deassertion of signals are defined
by using the (^) and (_) characters to indicate signal rising and
falling edges. For example, the deassertion of memRAS_l is
referred to as memRAS_l^.

sysBus Refers to the DECchip 21064 pin bus (data, address, and
controls) and the control signals between and the DECchip
21071-BA, DECchip 21071-CA, and the DECchip 21071-DA (or
any other I/O bridge).

memClk cycle Defined as the time from a memClk rising edge up to the next
memClk rising edge. If a signal transitions in either the rising
or falling edge of cycle N, then the signal is defined as occurring
in cycle N.

GCR Refers to general control register

Bcache Refers to backup cache (secondary cache).

TLB Refers to Translation lookaside buffer.

Byte Contains 8 bits.

Word Contains 16 bits.

Longword Contains 32 bits.

Quadword Contains 64 bits.

Octaword Contains 128 bits.

Hexaword Contains 256 bits (the size of one cache line).

xxvii





1
DECchip 21071 and DECchip 21072 Core

Logic Chipset Overview

1.1 DECchip 21071 and DECchip 21072 Core Logic Chipset
Features

The DECchip 21071 and DECchip 21072 core logic chipsets provide a cost-
competitive solution for designing uniprocessor systems that use the Alpha
21064 microprocessor. The DECchip 21071 chipset provides a 64-bit memory
interface; the DECchip 21072 provides a 128-bit memory interface.

The chipsets include a Bcache (secondary cache) and memory controller,
PCI interface, and corresponding data path functions. They provide ample
flexibility to the system designer in building the memory and I/O subsystem
and require minimal discrete logic on the module. The DECchip 21071 and
DECchip 21072 chipsets contain three unique gate arrays:

• DECchip 21071-CA (cache/memory controller) - 208 PQFP

• DECchip 21071-DA (PCI interface) - 208 PQFP

• DECchip 21071-BA (data path) - 208 PQFP

The following list summarizes the major features of the DECchip 21071 and
the DECchip 21072 chipsets:

• Supports the Alpha 21064 microprocessor

• DECchip 21071 chipset:

Supports 128-bit cache/64-bit memory

Contains two DECchip 21071-BA chips

Contains one DECchip 21071-CA chip

Contains one DECchip 21071-DA chip

DECchip 21071 and DECchip 21072 Core Logic Chipset Overview 1–1



• DECchip 21072 chipset:

Supports 128-bit cache/128-bit memory

Contains four DECchip 21071-BA chips

Contains one DECchip 21071-CA chip

Contains one DECchip 21071-DA chip

• System clock frequency up to 33 MHz

• Bcache (secondary cache)/memory controller:

Write-back cache

Bcache size from 128 KB to 16 MB

Bcache SRAMs, 17 ns and faster

32-bit parity/32-bit ECC on Bcache

8 MB to 4 GB of memory supported

267 MB/s CPU write bandwidth, 107 MB/s CPU read bandwidth

32-bit parity/32-bit ECC on memory data (DECchip 21072 chipset only)

RAS/CAS memory bus to industry-standard SIMMs

DRAM controller with fully programmable timing with 15 ns
granularity

Optional cache allocates for CPU writes

• High-performance PCI bridge:

32-bit multiplexed address/data

Industry standard

No glue logic needed to connect PCI-compliant chips

120 MB/s DMA write bandwidth, 70 MB/s DMA read bandwidth, 82
MB/s programmed I/O write bandwidth, 22 MB/s programmed I/O read
bandwidth

Scatter/gather map support

• Graphics support:

High bandwidth memory data path to video RAM (VRAM)

Provides support for direct connection to VRAM frame buffer

1–2 DECchip 21071 and DECchip 21072 Core Logic Chipset Overview



1.2 System Overview
Figure 1–1 shows a block diagram of a system that is built using the DECchip
21071 and DECchip 21072 chipsets.

Figure 1–1 DECchip 21071 and DECchip 21072 System Block Diagram

L J - 0 3 0 8 1 - T I 0

21071-BA
Data Path

21071-BA
Data Path

DRAM
SIMMs

PCI Bridge

Cache/Memory
Controller

Bcache

21064

PCI

Tag

32

16

32 32

3232

NOTE:

Remove for 64-Bit Memory
Connect for 64-Bit Memory

21071-CA

21071-DA

sysData <127:64>

sysData <63:0>

64

64

memAdr <11:0>

epiData <31:0>

sysAdr <33:5>
29

DECchipDECchip

DECchip

DECchip

DECchip

32 32

memData
<127:0>

Optional

21071-BA
Data Path

Optional

21071-BA
Data Path

DECchip DECchip

The system is built using the following components:

• DECchip 21064 microprocessor

• DECchip 21071-BA chip

• DECchip 21071-CA chip

• DECchip 21071-DA chip

• Bcache data and tag RAMs

• Bcache control PALs

• Cache address buffers

• System clock generator

DECchip 21071 and DECchip 21072 Core Logic Chipset Overview 1–3



• Serial ROM interface

• Interrupt control/CPU configuration PALs

• Memory SIMMs

• PCI interrupt controller

• PCI peripherals

• PCI arbiter

• System ROM

1.2.1 Alpha 21064 Microprocessor
The DECchip 21071 and DECchip 21072 chipsets support the Alpha 21064
microprocessor. The microprocessor can run at cycle times which range
between 3.3 ns and 10 ns.

The Alpha 21064 microprocessor contains two on-chip 8 KB direct-mapped
caches, one for use as an instruction cache (Icache), the other for use as a data
cache (Dcache). For details about the Alpha 21064 microprocessor, refer to the
Alpha 21064 and Alpha 21064A Microprocessors Hardware Reference Manual.

1.2.2 Bcache Data and Tag RAMs
The DECchip 21071 chipset supports an optional write-back Bcache (secondary
cache). System performance improves if the optional write-back Bcache is
included. The size of the Bcache can range from 128 KB to 16 MB and the
cache-line size is fixed at 32 bytes. The Bcache RAM data width is 128 bits.
The speed of the Bcache RAMs generally ranges from 10 ns to 17 ns depending
on cost and performance requirements, module routing delays of the targeted
system, and the system clock cycle time.

The only restriction that the DECchip 21071 and DECchip 21072 chipsets
place on the speed of the Bcache is that a read from the cache RAMs must be
completed in one system clock cycle.

1.2.3 Bcache Control PALs
Systems that use the 21071-CA (cache/memory controller) chip and Bcache
(secondary cache) need to implement two Bcache control PALs; these control
PALs provide the tag and data RAMs with output enables, write enables, and
lower address bits.

1–4 DECchip 21071 and DECchip 21072 Core Logic Chipset Overview



The Bcache control PALs are used to:

• Implement the NOR function between the processor-generated cache
control signals and the system cache control signals.

• Generate timing of system cache control signals, so that the cache access
loop generated by the 21071-CA chip can be better controlled.

• Generate some of the control signals for the processor data bus.

1.2.4 Cache Address Buffer
The cache address buffer is required to distribute the cache address to all the
data and tag cache RAMs.

1.2.5 DECchip 21071-BA Features
The DECchip 21071-BA chip provides a 32-bit data path from the Alpha 21064
microprocessor to main memory and I/O. Depending on the selected width
of the memory interface, two DECchip 21071-BA chips are required for a
64-bit interface, and four DECchip 21071-BA chips are required for a 128-bit
interface.

The DECchip 21071-BA chip contains the cache and memory interface data
path, which includes buffers for victim, noncacheable write, and DMA write
operations. It also contains the I/O subsystem data path which provides
buffering for DMA read and write data, and I/O read and write data.

The DECchip 21071-BA chip interfaces with the cache and CPU using the CPU
sysBus (pin bus). It interfaces with the 21071-DA through the 32-bit epiBus.

The DECchip 21071-BA chip functions as the data path for the cache, memory,
and I/O subsystem, and it contains the following data path functions:

Error Correction/Detection Logic: The DECchip 21071-BA chip supports
longword (32 bits) parity in 64-bit and 128-bit memory mode. ECC mode may
be used with 128-bit wide memory by using some of the unused higher order
CPU data bits as check bits. Error checking/generation is done only on DMA-
initiated transactions; error checking/generation on CPU-initiated transactions
is performed by the CPU.

Memory Write Buffer: The memory write buffer has four entries; each entry
is a cache line (32 bytes). This buffer is spread across the DECchip 21071-BA
chips (two or four chips) in the system. Data stored in this buffer has been
through all the cache coherency checks and is written to memory in the order
it was received on the sysBus.

DECchip 21071 and DECchip 21072 Core Logic Chipset Overview 1–5



Memory Read Buffer: The memory read buffer is a one-cache-line (32 bytes),
temporary holding buffer used to store data read from memory by the CPU or
DMA requests.

Merge and I/O Read Buffer: The merge and I/O read buffer is a one-cache-
line (32 bytes), temporary holding buffer used to store data written by the CPU
on memory writes or to store data read from the PCI bus on CPU reads from
I/O space.

I/O Write Buffer: The I/O write buffer has two entries – one entry acts as a
write buffer for CPU I/O writes to the DECchip 21071-BA chip or PCI bus; the
other acts as a holding buffer.

DMA Read Buffer: The DMA read buffer stores data that is being read from
the memory by a device on the PCI bus. This buffer is two cache lines deep
and is spread across the DECchip 21071-BA chips in the system.

DMA Write Buffer: The DMA write buffer stores four cache lines of PCI
memory write data. Each entry is transferred to the memory write buffer after
the necessary cache coherency checks have been performed.

1.2.6 DECchip 21071-CA Features
The DECchip 21071-CA chip provides the interface from the Alpha 21064
microprocessor to cache and main memory and includes the cache and memory
controller. The DECchip 21017-CA chip controls and moves data to and from
banks of main memory.

The DECchip 21071-CA responds to commands from the CPU and DECchip
21071-DA chip and arbitrates between them. It also provides support for
control of the Bcache RAMs during CPU cache miss and DMA transactions.

The DECchip 21071-CA chip (cache/memory controller) can directly control up
to 16 banks of DRAM memory. Each bank may be composed of either DRAM
parts or SIMMs.

Each DRAM may have 1M, 4M, or 16M addressable locations (1M x 1, 1M x 4,
4M x 1, 4M x 4, and 16M x 1 DRAM sizes are supported). Each location
consists of either a quadword or octaword of data, for 64-bit and 128-bit data
width, respectively. Maximum DRAM memory is 4 GB and minimum DRAM
memory is 8 MB.

The DECchip 21071-CA chip provides support for a single video bankset of
dual-port RAM (VRAM). This bankset can have 128K, 256K, or 512K locations.
Each location consists of quadword data for a 64-bit interface, or octaword data
for a 128-bit interface. VRAM capacity can vary from 1 MB to 8 MB.

1–6 DECchip 21071 and DECchip 21072 Core Logic Chipset Overview



The components of the cache and memory subsystem are distributed between
the 21071-CA and 21071-BA. Together, the chips serve as an interface between
the sysBus and memory subsystem (Figure 1–1).

The CPU, 21071-DA, cache, and memory communicate with each other through
the sysBus. The sysBus is essentially the processor pinbus with additional
signals for DMA transaction control, arbitration, and cache control. The
DECchip 21071-CA chip performs the Bcache and memory control functions.

The following list summarizes the major features of the 21071-CA chip:

• Provides control for filling the Bcache and extracting victims on CPU-
initiated transactions.

• Provides control for probing the Bcache on DMA transactions and
invalidating the Bcache on DMA write hits.

• Provides arbitration between the CPU and the DECchip 21071-DA chip for
control of the sysBus.

• Stores addresses for the four-cache-line memory write buffer.

• Controls the loading of the I/O write buffer and the DMA read buffer.

• Uses fast-page mode on the DRAMs to improve performance on DMA burst
reads and memory writes.

• Supports a frame buffer on the memory data bus.

1.2.7 DECchip 21071-DA Features
The DECchip 21071-DA chip functions as the bridge between the PCI and the
CPU, its Bcache, and memory (Figure 1–1). The DECchip 21071-DA interface
protocol is compliant with the PCI local bus. With the exception of a few
pipeline registers and the parity tree, all the data path functions required to
support the PCI reside in the DECchip 21071-BA chip.

The DECchip 21071-DA chip provides all controls and interfaces to the PCI
and sysBus and contains the following components and functions:

• sysBus interface state machine

• sysBus address decoder and translator

• epiBus arbitration and control

• PCI interface, state machines, and parity generation

• PCI address decoder and translator

DECchip 21071 and DECchip 21072 Core Logic Chipset Overview 1–7



The following list describes the major features of the DECchip 21071-DA chip:

• Scatter/gather mapping from the 32-bit PCI address to the 34-bit physical
address, with on-chip, 8-entry translation lookaside buffer (TLB) for fast
address translations. To reduce cost, the scatter/gather tables are stored in
memory and are automatically read by the DECchip 21071-DA chip (PCI
bridge) when a translation misses in the TLB.

• Supports a maximum PCI burst length of 16 longwords on PCI memory
reads and writes.

• Supports two types of addressing regions on CPU-initiated transactions to
PCI space.

Sparse space for accesses with byte and word granularities, and a
maximum burst length of 2.

Dense space for burst lengths from 1 to 8 longwords on writes and
a burst length of 2 longwords on reads. This region can be used for
memory-like structures such as frame buffers, which require high
bandwidth accesses.

• Stores address information for the DMA write buffer, and controls the
loading of the DMA write buffer and I/O read buffer.

• Stores address information for the I/O write buffer and controls the
unloading of the I/O write buffer and DMA read buffer.

Peripheral chips can be connected to the DECchip 21071-DA chip without any
glue logic; however, logic that is external to the DECchip 21071-DA chip is
required for interrupt arbitration, interrupt vector generation, DMA request
generation, and interval timer implementation.

Note

The DECchip 21071-DA chip is not a PCI peripheral; it is a bridge
between the PCI peripherals and the CPU/system memory. The
DECchip 21071-DA chip implements the functions of a host bridge that
are not sufficient to interface the DECchip 21071-DA chip as a PCI
peripheral component.

1–8 DECchip 21071 and DECchip 21072 Core Logic Chipset Overview



1.2.8 System Clock Generator
Systems that use the DECchip 21071 or DECchip 21072 chipsets are targeted
to run at system cycle times that range from 30 ns to 40 ns. The system clock
generator must provide clk1x2 and clk2ref to each chip in the chipset.

Other system-specific clocks, for example, the PCI clock, must also be generated
by the system clock generator. The system clock generator generates these
clocks from the sysClkOut1_h and sysClkOut2_h signals, which are supplied
by the Alpha 21064 microprocessor.

1.2.9 Serial ROM
The Alpha 21064 microprocessor provides an interface to a serial ROM, which
can be used to initialize the instruction cache (Icache). The details for the
implementation of this function can be found in the DECchip 21064 and
DECchip 21064A Alpha AXP Microprocessors Hardware Reference Manual.

1.2.10 Interrupt Control/CPU Configuration PAL
The interrupt control/CPU configuration PAL provides system configuration
information to the processor and six hardware interrupts. The PAL outputs
connect to signals irq_h<5:0> from the Alpha 21064 microprocessor.

When reset_l is asserted, the PAL provides system clock configuration
information and data bus width information to the processor on irq_h<5:0>.

When reset_l is deasserted, the PAL reflects the value of the system hardware
interrupts to the processor on irq_h<5:0>.

1.2.11 Memory SIMMs
The DECchip 21071-CA chip (cache/memory controller) can directly control up
to 16 banks of DRAM memory. Each bank may be composed of either DRAM
parts or SIMMs.

Each DRAM may have 1M, 4M, or 16M addressable locations (1M x 1, 1M x 4,
4M x 1, 4M x 4, and 16M x 1 DRAM sizes are supported). Each location
consists of either a quadword or octaword of data, for 64-bit and 128-bit data
width, respectively. Maximum DRAM memory is 4 GB and minimum DRAM
memory is 8 MB.

DECchip 21071 and DECchip 21072 Core Logic Chipset Overview 1–9



The DECchip 21071-CA chip provides support for a single video bankset of
dual-port RAM (VRAM). This bankset can have 128K, 256K, or 512K locations.
Each location consists of either a quadword or octaword of data, for 64-bit
or 128-bit data width, respectively. Maximum VRAM memory is 8 MB and
minimum VRAM memory is 1 MB.

1.2.12 PCI Interrupt Controller
An external interrupt controller is required to handle the interrupts posted by
the PCI (and expansion bus) peripherals.

1.2.13 PCI Peripherals
The DECchip 21071 and DECchip 21072 chipsets, specifically the 21071-DA
chip, can operate with any PCI-compliant, 32-bit peripheral.

1.2.14 PCI Arbiter
An external arbiter is required to determine ownership of the PCI bus during
system operations.

1.2.15 System ROM
The system ROM contains all the console code and firmware that the system
requires. The system ROM should be accessible to the DECchip 21071 and
DECchip 21072 chipsets through the PCI bus.

1–10 DECchip 21071 and DECchip 21072 Core Logic Chipset Overview



Part I

Part I contains six chapters that provide information about the DECchip
21071-CA chip. The following table provides a brief description of each
chapter:

Chapter Description

2 Describes the DECchip 21071-CA pin signals.

3 Describes the DECchip 21071-CA architecture.

4 Describes the DECchip 21071-CA control and status registers.

5 Describes the transactions supported by the DECchip 21071-CA chip on
the sysBus and memory interface.

6 Describes the DECchip 21071-CA electrical requirements.

7 Describes the behavior of the DECchip 21071-CA chip during power-up.





2
DECchip 21071-CA Pin Descriptions

This chapter provides a description of the DECchip 21071-CA pin signals.

2.1 DECchip 21071-CA Pin List
Table 2–1 lists the pin signals grouped by function. The information in the
Type column identifies a signal as input (I), output (O), or bidirectional (B).
The Buffer Strength column indicates the buffer drive strength.

All output and bidirectional pins, except pTestout, can be tristated.

Table 2–1 DECchip 21071-CA Pin List

Signal Name Quantity Type
Buffer
Strength Function

CPU/Bcache Signals
(85 Total)

sysData<15:0> 16 B 4 ma Data pins for CSR data
sysAdr<33:5> 29 I – Address bus
tagAdr<31:17> 15 B 4 ma Bcache tag
tagAdrP 1 B 4 ma Bcache tag parity
tagCtlV 1 B 4 ma Bcache valid bit
tagCtlD 1 B 4 ma Bcache dirty bit
tagCtlP 1 B 4 ma Bcache control parity bit
cpuCWMask<7:0> 8 I – Cycle write mask
cpuCReq<2:0> 3 I – Cycle request
cpuCAck<2:0> 3 O 4 ma Command acknowledge
cpuDRAck<2:0> 3 O 4 ma Data read acknowledge
cpuDWSel<1> 1 O 4 ma Data word select
cpuDInvReq 1 O 4 ma Dcache invalidate

request
cpuHoldReq 1 O 4 ma Hold request

(continued on next page)

DECchip 21071-CA Pin Descriptions 2–1



Table 2–1 (Cont.) DECchip 21071-CA Pin List

Signal Name Quantity Type
Buffer
Strength Function

CPU/Bcache Signals
(85 Total)

cpuHoldAck 1 I – Hold acknowledge

Bcache/PAL Control Signals
(9 Total)

sysEarlyOEEn 1 O 8 ma Early output enable
sysTagOEEn 1 O 8 ma Bcache tag output enable
sysDataOEEn 1 O 8 ma Bcache data output

enable
sysDataALEn 1 O 8 ma Bcache address bit

enable low phase
sysDataAHEn 1 O 8 ma Bcache address bit

enable high phase
sysTagWE 1 O 8 ma Bcache tag write enable
sysDataWEEn 1 O 8 ma Bcache data short-write

WE enable
sysDataLongWE 1 O 8 ma Bcache data long-write

write enable
sysDOE 1 O 8 ma PAL CPU data output

enable

PCI Bridge Interface Signals
(9 Total)

ioRequest<1:0> 2 I – 21071-DA sysBus cycle
request

ioGrant 1 O 8 ma 21071-DA sysBus cycle
grant

ioCmd<2:0> 3 I – 21071-DA command
request

ioCAck<1:0> 2 O 8 ma 21071-DA command
acknowledge

ioDataRdy 1 O 8 ma 21071-DA DMA read
data ready

(continued on next page)

2–2 DECchip 21071-CA Pin Descriptions



Table 2–1 (Cont.) DECchip 21071-CA Pin List

Signal Name Quantity Type
Buffer
Strength Function

Data Path Control Signals
(16 Total)

drvSysData 1 O 8 ma Turns on the 21071-BA
sysData<127:16> drivers

drvSysCSR 1 O 4 ma Turns off the 21071-BA
sysData<15:0> drivers

drvMemData 1 O 8 ma Turns on the 21071-BA
memData drivers

sysIORead 1 O 8 ma Selects I/O read buffer to
sysBus

sysReadOW 1 O 8 ma Selects octaword to be
returned on sysBus

subCmdA<1:0> 2 O 4 ma Sub-commands for
sysBus

subCmdB<1:0> 2 O 4 ma Sub-commands for
sysBus

subCmdCommon 1 O 8 ma Sub-command for sysBus
sysCmd<2:0> 3 O 8 ma Commands for sysBus

side of 21071-BA chip
memCmd<3:1> 3 O 8 ma Commands for memory

side of the 21071-BA
chip

(continued on next page)

DECchip 21071-CA Pin Descriptions 2–3



Table 2–1 (Cont.) DECchip 21071-CA Pin List

Signal Name Quantity Type
Buffer
Strength Function

Memory Signals
(39 Total)

memAdr<11:0> 12 O 8 ma Memory address
memRAS_l<8:0> 9 O 8 ma Memory row address

strobe
memRASB_l<8:0> 9 O 8 ma Memory second subset

RAS
memCAS_l<3:0> 4 O 8 ma Memory column address

strobe
memWE_l<1:0> 2 O 8 ma Memory write enable
memPDClk 1 O 4 ma Memory presence detect

clock
memPDLoad_l 1 O 4 ma Memory presence detect

load enable
memPDDIn 1 I 4 ma Memory presence detect

data in

Video Support Signals
(4 Total)

vFrame_l 1 I – Video request for full
serial register load

vRefresh_l 1 I – Video request for split
serial register load

memDTOE_l 1 O 8 ma Dual function data and
output enable for VRAM
bank

memDSF 1 O 8 ma Special function output
for VRAM bank

(continued on next page)

2–4 DECchip 21071-CA Pin Descriptions



Table 2–1 (Cont.) DECchip 21071-CA Pin List

Signal Name Quantity Type
Buffer
Strength Function

Miscellaneous/Clock Signals
(8 Total)

wideMem 1 I – If true, indicates 128-bit
wide memory

clk1x2 1 I – Clock input
clk2ref 1 I – Phase reference for

clk1x2
reset_l 1 I – Reset
testMode 1 I – Test mode select
scanEnable 1 I – Scan enables
tristate_l 1 I – Tristates all output and

bidirectional pins
pTestout 1 O 4 ma Parametric NAND tree

output

Pin Totals

Total input pins:
Total output pins:
Total signal pins:
Total power and ground pins:

Total pins:

56
114
170

36

206

2.2 DECchip 21071-CA Signal Descriptions
This section provides pin signal information, including a description of the
signal, the clock edge on which the signal changes, and rules about signal
usage during various sysBus transactions.

For simplicity, the signal sysclkOut1_h will be treated as clk1R. See
Section 6.2.1 for more information about the clocks on the 21071-CA chip.

Signal descriptions are grouped by function and correspond to the pin list
(Table 2–1).

Note

The Alpha 21064 microprocessor does not use clk1R; rather, it uses
sysClkOut_h to generate and sample signals.

DECchip 21071-CA Pin Descriptions 2–5



2.2.1 CPU/Bcache Signals
This section describes the CPU/Bcache signals.

2.2.1.1 sysData<15:0>

Signal Type: Bidirectional - (21071-BA, CPU, Bcache, 21071-CA)
Input Sampling Clock Edge: clk2F
Output Clock Edge: clk1R

sysData<15:0> is a bidirectional bus that provides data to and from the
DECchip 21071-CA chip and the CPU. The default driver of sysData<15:0>
is the CPU.

sysData<15:0> is used to read and write the CSR data for the 21071-CA chip.
The 21071-CA chip does not support error checking on its CSR transactions,
so corresponding sysCheck signals do not go to the 21071-CA. On a CSR read
transaction, the 21071-CA chip drives sysData<15:0>. The rest of the bits are
driven by the 21071-BA data chips.

2.2.1.2 sysAdr<33:5>

Signal Type: 21071-CA Input, CPU output, 21071-DA bidirectional
Input Sampling Clock Edge: Latch closes on clk1R or clk1F
Output Clock Edge: clk1R

sysAdr<33:5> contains the cache line address of sysBus transactions.
sysAdr<33:32> indicates the address quadrant.

sysAdr<33:5> is driven by the CPU on CPU-initiated transactions and by the
21071-DA chip on DMA transactions.

• On CPU-initiated transactions, the 21071-CA chip latch opens when
cpuCReq<2:0> becomes non-idle and closes on the next clk1R.

• On DMA transactions, the 21071-CA chip latch opens when DMA owns the
sysBus and closes on the clk1F which is 1.5 cycles after the 21071-DA chip
has driven the address.

2.2.1.3 tagAdr<31:17>

Signal Type: Bidirectional (21071-CA, Bcache), CPU input
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1F

tagAdr<31:17> carries Bcache tag information. The only addresses that
are cached are those with sysAdr<33:32> = 00. Bits <33:32> of the tag are
assumed to be 00.

2–6 DECchip 21071-CA Pin Descriptions



The tagAdr<33:32> pins of the DECchip 21064 microprocessor should be tied
to 00, and only bits <31:17> are variable. The number of significant bits of
the tag depends on the depth of the Bcache RAMs and the maximum memory
capacity of the system.

On a Bcache miss transaction, the tag address is driven onto tagAdr<31:17> by
the 21071-CA chip and written into the tag data store.

tagAdr<31:17> is read by the processor during a cache probe. The processor
does not drive these signals at any time.

The Bcache tag store drives tagAdr<31:17> with the assertion of sysEarlyOEEn,
supplied by the 21071-CA chip on CPU read block, CPU write block, CPU,
LDx_L, and CPU STx_C transactions. On DMA transactions, the Bcache tag
store drives tagAdr<31:17> when the 21071-CA chip asserts sysTagOEEn.

Unused tagAdr bits should be pulled down on the module.

2.2.1.4 tagAdrP

Signal Type: Bidirectional (21071-CA, CPU, Bcache)
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1F

tagAdrP is an even parity bit over the significant bits of tagAdr<33:17>. The
number of bits that participate in the parity computation depend on the size of
the Bcache.

2.2.1.5 tagCtlV

Signal Type: Bidirectional (21071-CA, CPU, Bcache)
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1F

tagCtlV indicates that the cache entry is valid. The 21071-CA chip sets this bit
during cache fills and clears this bit during DMA writes that hit in the cache.

2.2.1.6 tagCtlD

Signal Type: Bidirectional (21071-CA, CPU, Bcache)
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1F

tagCtlD indicates that the cache entry is dirty. The 21071-CA chip sets this bit
during write allocate cache fills. The processor sets this bit during CPU writes
that hit in the Bcache.

DECchip 21071-CA Pin Descriptions 2–7



2.2.1.7 tagCtlP

Signal Type: Bidirectional (21071-CA, CPU, Bcache)
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1F

tagCtlP is an even parity bit over tagCtlV and tagCtlD.

2.2.1.8 cpuCWMask<7:0>

Signal Type: 21071-CA Input
Signal Source: CPU
Input Sampling Clock Edge: clk1R and clk1F

cpuCWMask<7:0> is used on CPU-initiated read block and write block
transactions. These signals carry different information on these transactions.

• On CPU write block and STx_C transactions, these signals carry the
longword mask for the whole cache line. An asserted cpuCWMask signal
indicates that the corresponding longword from the cache line is valid and
should be written.

Any combination of mask bits is allowed on cpuCWMask<7:0> during
a CPU write block transaction. CPU STx_C transactions can only have
combinations that correspond to a single quadword or longword.

• On CPU read block and LDx_L transactions, the cpuCWMask<7:0> signals
carry additional information about the read transaction. cpuCWMask<1:0>
carries address bits <4:3>, which indicate the address of the actual
quadword that missed.

This information can be used to implement quadword granularity to I/O
space, as well as to provide wrapping in memory space. cpuCWMask<2>
indicates the type of read reference. cpuCWMask<2> is true if the miss is
a Dstream reference, and it is false if the miss is an Istream reference.
cpuCWMask<6> is ignored, but it contains longword or quadword
information on LDxL transactions in the Alpha 21064 microprocessor.

2.2.1.9 cpuCReq<2:0>

Signal Type: 21071-CA Input
Signal Source: CPU
Input Sampling Clock Edge: clk1F

2–8 DECchip 21071-CA Pin Descriptions



Whenever the processor wants to initiate an external transaction, it puts a
transaction type code onto cpuCReq<2:0>. Table 2–2 lists the encodings for the
different transaction types.

Table 2–2 CPU-Initiated Transaction Encodings

cpuCReq<2:0> Transaction

000 Idle
001 Barrier
010 Fetch
011 FetchM
100 Read block
101 Write block
110 LDx_L
111 STx_C

The transaction types are held on cpuCReq<2:0> until the end of the
transaction; therefore, there is no need to latch these signals.

Transactions on cpuCReq<2:0> are ignored by the 21071-CA and 21071-DA
chips when the bus is granted to the 21071-DA chip for DMA transactions.
cpuCReq<2:0> are ignored from the cycle that cpuHoldReq was asserted by the
21071-CA through the cycle after cpuHoldAck is deasserted at the end of the
DMA transaction.

2.2.1.10 cpuCAck<2:0>

Signal Type: 21071-CA Output
Signal Destination: CPU
Output Clock Edge: clk1R

The 21071-CA chip provides transaction acknowledge information to the
CPU on cpuCAck<2:0>. The 21071-CA chip is the only driver of these
signals. On CPU-initiated transactions addressed to the 21071-DA or the
PCI, the 21071-CA chip receives transaction acknowledge information from the
21071-DA chip on ioCmd<2:0> and forwards it to the CPU on cpuCAck<2:0> in
the following cycle.

Table 2–3 lists the encodings for cpuCAck<2:0>.

DECchip 21071-CA Pin Descriptions 2–9



Table 2–3 cpuCAck Encodings

cpuCAck<2:0> Acknowledge Description

000 Idle —
001 Hard_Error Transaction failed in a catastrophic manner.
010 Soft_Error A failure occurred in the transaction, but was

corrected. (Not used.)
011 STx_C_Fail CPU STx_C transaction failed.
100 OK Transaction completed successfully.

2.2.1.11 cpuDRAck<2:0>

Signal Type: 21071-CA Output
Signal Destination: CPU
Output Clock Edge: clk1R

The 21071-CA chip indicates to the CPU that valid read data is on the sysBus,
indicates whether the data should be cached and indicates whether ECC
checking and correction or parity checking should be performed. Table 2–4 lists
the encodings of cpuDRAck<2:0>.

The 21071-CA chip is the only driver of these signals. On CPU-initiated
transactions addressed to the 21071-DA chip or the PCI, the 21071-CA chip
receives transaction acknowledge information from the 21071-DA chip on
ioCmd<2:0> and forwards it to the CPU on cpuDRAck<2:0> in the following
cycle.

Table 2–4 cpuDRAck Encodings

cpuDRAck<2:0> Acknowledge Description

000 Idle —
100 ok_NCache_NChk Data valid, don’t cache, don’t check.
101 ok_NCache Data valid, don’t cache, check ECC or parity.

(Not used.)
110 ok_NChk Data valid, cache, don’t check. (Not used.)
111 ok Data valid, cache, check ECC or parity.

2.2.1.12 cpuDWSel<1>

Signal Type: 21071-CA Output
Signal Destination: CPU
Output Clock Edge: clk1R

During a CPU write, the 21071-CA chip uses cpuDWSel<1> to indicate to the
processor which data word should be driven on the sysBus.

2–10 DECchip 21071-CA Pin Descriptions



When the CPU owns the sysBus, cpuDWSel<1> is asserted to the CPU as
soon as the 21071-CA chip has decoded a write block or STx_C command on
cpuCReq<2:0>. Once the high octaword of CPU data has been loaded into the
21071-BA chips, cpuDWSel<1> is deasserted.

Note

The 21071-CA chip controls the rate at which CPU write data is
available on the sysBus with cpuDWSel<1>. The 21071-DA chip (I/O
bridge) is always capable of accepting all the data on a CPU-initiated
I/O write transaction on the sysBus. The I/O write can be stalled on the
sysBus by delaying cpuCAck<2:0> after all the data has been latched.

2.2.1.13 cpuDInvReq

Signal Type: 21071-CA Output
Signal Destination: CPU
Output Clock Edge: clk1R

The 21071-CA chip asserts cpuDInvReq when it needs to invalidate an entry
in the CPU internal Dcache. The signal is asserted while the index to the
Dcache is stable on the IAdr<12:5> pins (a buffered or unbuffered version of
sysAdr<12:5>) of the CPU. This signal should be tied to the dInvReq pins of
the CPU.

2.2.1.14 cpuHoldReq

Signal Type: 21071-CA Output
Signal Destination: CPU
Output Clock Edge: clk1R

The 21071-CA chip asserts cpuHoldReq to get ownership of the Bcache
when the 21071-DA chip has won arbitration for the sysBus. If an external
transaction is present on the sysBus, cpuHoldReq is asserted at the end of that
transaction. If the bus is idle or if the 21071-DA chip is requesting preemption,
cpuHoldReq is asserted right away.

DECchip 21071-CA Pin Descriptions 2–11



2.2.1.15 cpuHoldAck

Signal Type: 21071-CA Input
Signal Source: CPU
Input Sampling Clock Edge: clk1F

The processor asserts cpuHoldAck to indicate that it has given up control of
the cache to the 21071-CA chip. The minimum delay from the assertion of
cpuHoldReq to the assertion of cpuHoldAck is two sysBus cycles.

The deassertion of cpuHoldReq causes cpuHoldAck to deassert in one sysBus
cycle. When the processor asserts cpuHoldAck, it will have turned off its
external drivers on or before clk1R. When the processor deasserts cpuHoldAck,
it does not turn on its drivers for two CPU cycles after clk1R.

2.2.2 Bcache/PAL Control Signals
This section describes the Bcache/PAL control signals.

2.2.2.1 sysEarlyOEEn

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk1R

sysEarlyOEEn is asserted during sysBus idle cycles to allow CPU data bus
drivers, as well as data and tag RAM output enables to be asserted from the
PALs as quickly as possible when the CPU asserts cpuCReq<2:0>.

sysEarlyOEEn is asserted on clk1R in the idle cycle where cpuCReq<2:0> may
be asserted. When sysEarlyOEEn is asserted, cpuCReq<2:0> will cause various
outputs to assert, as shown in Table 2–5.

Table 2–5 sysEarlyOEEn Effect on bcTagOE_l and bcDataOE_l

cpuCReq<2:0> Command bcTagOE_l bcDataOE_l cpuDOE_l

000 Idle F F F
001 Barrier T T F
010 Fetch T T F
011 FetchM T T F
100 Read block T T F
101 Write block T F T
110 LDx_L T T F
111 STx_C T F T

2–12 DECchip 21071-CA Pin Descriptions



2.2.2.2 sysTagOEEn

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk1F or clk1R

sysTagOEEn is asserted by the 21071-CA chip during DMA transactions after
the processor has given ownership of the cache by asserting cpuHoldAck.
sysTagOEEn is also asserted during CPU-initiated, non-cacheable transactions
to avoid long tristate times on tagAdr<31:17> and sysTagCtl.

sysTagOEEn is asserted on clk1R in the first cycle of a DMA transaction (the
cycle when ioCmd<2:0> is driven). During all other cycles it is asserted and
deasserted on clk1F.

2.2.2.3 sysDataOEEn

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk1F, clk2F or clk1R

sysDataOEEn is asserted by the 21071-CA chip whenever it needs to read data
from the Bcache. This occurs during a victim read, during an LDx_L or STx_C
transaction that hits in the cache, and during all DMA transactions, because
the data cache is never written during DMA.

sysDataOEEn is asserted on clk1R in the first cycle of a DMA transaction (the
cycle when ioCmd<2:0> is driven).

sysDataOEEn is asserted on clk1F in the cycle before CPU Write Allocate
Victim data is read from the cache. (This makes the access time path from the
SRAM output enable 1¼ cycles.)

In all other cases sysDataOEEn is asserted and deasserted on clk2F.

2.2.2.4 sysDataALEn

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk2R
Input Sampling Clock Edge: clk2F

sysDataALEn and sysDataAHEn are sent to the PAL to generate the lower
address bit for the Bcache data RAMs. The lower address bit must be toggled
to the Bcache during cache fills, victim reads, reads that hit the cache, and
during LDx_L and STx_C hits.

The PAL receives the sysDataALEn signal to enable bcDataA<4> for the period
when clk2 is low.

DECchip 21071-CA Pin Descriptions 2–13



2.2.2.5 sysDataAHEn

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk2F
Input Sampling Clock Edge: clk2R

sysDataALEn and sysDataAHEn are sent to the PAL to generate the lower
address bit for the Bcache data RAMs. The lower address bit must be toggled
to the Bcache during cache fills, victim reads, reads that hit the cache, and
during LDx_L and STx_C hits.

The PAL receives the sysDataAHEn signal to enable bcDataA<4> for the period
when clk2 is high.

2.2.2.6 sysTagWE

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk1R
Input Sampling Clock Edge: RAM WE

This signal is asserted when a write to the tag address and control cache RAMs
is needed. sysTagWE is NORed with the CPU write enable pulse to generate
the tag control write enable. sysTagWE is inverted to generate the tag address
write enable.

2.2.2.7 sysDataWEEn

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk1F

This signal is asserted to the PALs when a write to the data cache RAMs is
needed. sysDataWEEn is used if the system is performing short writes. The
actual write enable pulse is generated by the PAL by ANDing sysDataWEEn
with an inverted clk1 signal. It is then NORed with the CPU write enable
signal to generate the data RAM write enable.

2–14 DECchip 21071-CA Pin Descriptions



2.2.2.8 sysDataLongWE

Signal Type: 21071-CA Output
Signal Destination: Bcache PAL
Output Clock Edge: clk1F
Input Sampling Clock Edge: RAM WE

This signal is asserted to the PALs when a write to the data cache RAMs is
needed. sysDataLongWE is used if the system is doing long writes. The write
enable pulse is NORed with the CPU write enable pulse to generate the data
RAM write enable.

2.2.2.9 sysDOE

Signal Type: 21071-CA Output
Signal Destination: PAL
Output Clock Edge: clk1R
Input Sampling Clock Edge: Flow through

sysDOE enables the processor data output enable during CPU external write
cycles. sysDOE flows through the PAL and causes cpuDOE_l to assert.

2.2.3 PCI Bridge Interface Signals
This section describes the PCI bridge interface signals.

2.2.3.1 ioRequest<1:0>

Signal Type: 21071-CA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

The 21071-DA chip asserts ioRequest<1:0> to request ownership of the sysAdr
lines to perform a DMA transaction. ioRequest<1:0> is acknowledged using
ioGrant.

A request may be asserted for three cycles before the bus is actually required,
because three cycles are required to acquire ownership of the Bcache from the
CPU. When a DMA transaction is started, ioRequest<1:0> should be returned
to idle in the same cycle as ioCmd<2:0> if no further DMA transactions are
required. Table 2–6 lists the encodings for ioRequest<1:0>.

DECchip 21071-CA Pin Descriptions 2–15



Table 2–6 ioRequest<1:0> Encodings

ioRequest<1:0> Function

00 Idle

01 DMA preempt request

10 DMA request

11 DMA atomic request

When the 21071-DA chip uses the DMA request encoding, the bus arbiter
determines who will get the bus based on which node currently has the bus
and programmed priority.

The 21071-DA chip uses the DMA atomic request encoding when it needs
to do multiple DMA transactions on the sysBus without the intervention of
transactions from the CPU. For the first transaction, the 21071-DA chip uses
the DMA request encoding. After that request has been granted, the 21071-DA
chip changes ioRequest<1:0> to the DMA atomic request encoding.

Assertion of a DMA preempt request should be done only during memory
barriers or to avoid deadlocks when the CPU owns the sysBus and is
addressing the 21071-DA chip address space. A preempt request forces the
21071-DA chip to win arbitration and causes the 21071-CA chip to assert
cpuHoldReq in the middle of the CPU transaction. The 21071-DA chip can
keep DMA preempt request asserted for consecutive DMA transactions.
For example, when a CPU request needs to be preempted by a DMA write
transaction to flush the DMA write buffer, the 21071-DA chip should keep a
DMA preempt request asserted through the entire flush of the buffer until all
DMA write transactions have been completed.

2.2.3.2 ioGrant

Signal Type: 21071-CA Output
Signal Destination: 21071-DA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk1F

The 21071-CA chip indicates to the 21071-DA chip that it has won ownership of
the sysBus by asserting ioGrant in response to ioRequest<1:0>. On assertion of
ioGrant, the 21071-DA chip must not begin any new CPU transactions. When
ioGrant and cpuHoldAck are both asserted, the 21071-DA chip may begin a
new DMA transaction. If the 21071-DA chip samples ioGrant as deasserted
in any cycle, its sysAdr drivers must be tristated on the next clk1R. The
21071-DA chip uses the ioGrant in combination with cpuHoldAck to determine
if cpuCReq<2:0> should be ignored.

2–16 DECchip 21071-CA Pin Descriptions



2.2.3.3 ioCmd<2:0>

Signal Type: 21071-CA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

The 21071-DA chip asserts ioCmd<2:0> to request an action by the 21071-CA
chip. When the 21071-DA chip has the sysBus, ioCmd<2:0> is used to request
a bus transaction.

When the CPU has the bus, ioCmd<2:0> is used to request assertion of the
cpuCAck<2:0> and cpuDRAck<2:0> signals.

Note

There is no encoding for cpuDRAck<2:0> ok_NChk. The 21071-DA chip
never returns cacheable, non-checkable read data.

A cpuCAck<2:0> or cpuDRAck<2:0> request must not be sent during DMA, one
cycle after the 21071-CA chip sends ioGrant, or one cycle after the 21071-DA
chip requests a preempt. Table 2–7 lists the encodings for ioCmd<2:0>.

Table 2–7 ioCmd<2:0> Encodings

ioCmd<2:0> CPU Owns sysBus 21071-DA Owns sysBus

000 Idle Idle
001 ClrLock Flush
010 cpuDRAck ok_NCache_NChk Write
011 cpuDRAck ok_NCache Write masked
100 cpuCAck ok Read
101 cpuCAck Hard_Error Read burst
110 cpuCAck Soft_Error Read wrapped
111 cpuCAck STxC_Fail Read burst wrapped

DECchip 21071-CA Pin Descriptions 2–17



2.2.3.4 ioCAck<1:0>

Signal Type: 21071-CA Output
Signal Destination: 21071-DA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

The 21071-CA chip asserts ioCAck<1:0> to acknowledge a DMA transaction.
ioCAck<1:0> indicates that the DMA transaction has been completed. If any
error occurs during the transaction, an error response is sent. Table 2–8 lists
the encodings for ioCAck<1:0>.

Table 2–8 ioCAck<1:0> Encodings

ioCAck<1:0> Function

00 Idle
01 Reserved/unused
10 DMA cycle acknowledge
11 DMA cycle error

2.2.3.5 ioDataRdy

Signal Type: 21071-CA Output
Signal Destination: 21071-DA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

During any DMA read, ioDataRdy is asserted when read data is ready on
the sysBus. ioDataRdy is used by the 21071-DA chip to get an early start
on getting read data from the DMA read buffer without having to wait for
ioCAck<1:0>. When the 21071-DA chip receives ioDataRdy, data will be
available on epiData<31:0> in the next cycle.

Note

The number of ioDataRdy assertions may not correspond to the number
of octawords loaded into the DMA read buffer. The 21071-DA chip
must ignore ioDataRdy if a DMA read is not in progress.

When the 21071-DA chip receives ioCAck<1:0>, the entire cache block is
available in the DMA read buffer. The data may be read out on epiData<31:0>
two cycles after acknowledge of ioCAck<1:0> is received. (See Figure 16–1.)

2–18 DECchip 21071-CA Pin Descriptions



2.2.4 Data Path Control Signals
This section describes the data path control signals.

2.2.4.1 drvSysData

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Output Clock Edge: clk2R assertion, clk2F deassertion
Input Sampling Clock Edge: clk1R assertion, clk1F deassertion.

drvSysData is asserted by the 21071-CA chip to indicate that the 21071-BA
chip should drive sysData and sysCheck on the next clk1R. When deasserted,
drvSysData indicates to the 21071-BA chip that it should tristate the sysBus
on the next clk1F.

2.2.4.2 drvSysCSR

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Output Clock Edge: clk2R
Input Sampling Clock Edge: clk1R

drvSysCSR is asserted by the 21071-CA chip to indicate that the 21071-CA
chip is driving sysData<15:0> on the next clk1R, and that the lower order
21071-BA chip should not drive these lines.

The drvSysCSR signal is normally deasserted, except during CSR reads. When
drvSysData is asserted and drvSysCSR is not asserted, the 21071-BA chips
will drive all sysData<127:0> lines.

On a CSR read to the 21071-CA chip, both drvSysData and drvSysCSR are
asserted. This will result in the 21071-BA chips driving sysData<127:16> and
the 21071-CA chip driving sysData<15:0>.

2.2.4.3 drvMemData

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Input Sampling Clock Edge: Flow through
Output Clock Edge: memClkR

drvMemData is asserted by the 21071-CA chip to indicate that the 21071-BA
chips should drive memData on the next memClkR.

DECchip 21071-CA Pin Descriptions 2–19



2.2.4.4 sysIORead

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

sysIORead is asserted by the 21071-CA chip and drvSysData to indicate that
the contents of the I/O read buffer should be driven onto the sysBus.

2.2.4.5 sysReadOW

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Input Sampling Clock Edge: clk2F
Output Clock Edge: clk1R

sysReadOW is asserted by the 21071-CA chip to indicate to the 21071-BA chips
that the upper octaword of data should be taken from the memory read, merge,
and I/O read buffers.

2.2.4.6 subCmdA<1:0>, subCmdB<1:0>, subCmdCommon

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

The subCmd signals are asserted to further qualify the sysCmd<2:0> signals
(Table 2–10). Table 2–9 describes how to connect the various subCmd pins
from the 21071-CA chip to the 21071-BA chips.

Table 2–9 SubCmd Connections

21071-CA Pin
21071-BA Pin, 64-Bit Memory
DECchip 21071 Configuration

21071-BA Pin, 128-Bit Memory
DECchip 21072 Configuration

subCmdA<0> 21071-BA 0 subCmd<0> 21071-BA 0 subCmd<0>
subCmdA<1> 21071-BA 0 subCmd<1> 21071-BA 2 subCmd<0>
subCmdB<0> 21071-BA 1 subCmd<0> 21071-BA 1 subCmd<0>
subCmdB<1> 21071-BA 1 subCmd<1> 21071-BA 3 subCmd<0>
subCmdCommon Not applicable 21071-BA 0-3 subCmd<1>

2–20 DECchip 21071-CA Pin Descriptions



2.2.4.7 sysCmd<2:0>

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

The sysCmd<2:0> signals, in combination with the subCmd<1:0> signals
indicate to the 21071-BA chip the action to take on the sysData bus. In
general, they echo the actions taking place on the sysBus during the previous
cycle. The bits are decoded into various actions based on the information in the
following table.

Table 2–10 sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

000 0X RESET The merge bits in the merge buffer are cleared.
All sysBus counters are reset. The data in the
pad latches is held (to save power).

000 1X NOP The data in the pad latches is held in the
latches, and new data will not be clocked into
them. Used during reads or to hold the first
transfer of write data when the write buffer is
full.

001 XX LOAD No write action is performed. Sent when
waiting for write data to be ready. Data from
the sysData bus is loaded into the pad flops.

010 XX RDDMAS
WRIO

Data in the sysData pad latches is loaded into
the DMA read buffer, which also serves as the
I/O write buffer. A counter is incremented so
that the next RDDMAS will load data into the
next sub-cache line of the buffer.

011 XX RDDMAM Data in the memory read buffer is loaded into
the DMA read buffer. A counter is incremented
so that the next RDDMAM will load data into
the next sub-cache line of the buffer.

(continued on next page)

DECchip 21071-CA Pin Descriptions 2–21



Table 2–10 (Cont.) sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

100 00 MERGE00 Nothing is loaded into the merge buffer. A
counter is incremented so that the next
MERGEnn will load data into the next sub-
cache line of the buffer.

During STx_C transactions that hit in the
cache, each sub-cache line of the merge buffer
is loaded twice: once with the CPU write
data using MERGE (that is, MERGE01) and
once with the cache data using MERGE with
inverted enables, called an overlay (that is,
OVLY10).

100 01 MERGE01 Same as MERGE00, except longword in
the sysData pad latches is loaded into the
read/merge buffer, and the merge bit that
corresponds to longword 0 is set.

100 10 MERGE10 Same as MERGE00, except longword in
the sysData pad latches is loaded into the
read/merge buffer, and the merge bit that
corresponds to longword 1 is set.

100 11 MERGE11 Same as MERGE00, except longwords 0 and
1 in the sysData pad latches are loaded into
the read/merge buffer, and the merge bits that
correspond to longwords 0 and 1 are set.

101 00 WRSYS0 Data in the sysData pad latches is loaded into
the memory write buffer, which represents
cache line 0. A counter is incremented so that
the next WRSYS0 will load data into the next
sub-cache line of cache line 0.

101 01 WRSYS1 Data in the sysData pad latches is loaded into
the memory write buffer, which represents
cache line 1. A counter is incremented so that
the next WRSYS1 will load data into the next
sub-cache line of cache line 1.

101 10 WRSYS2 Data in the sysData pad latches is loaded into
the memory write buffer, which represents
cache line 2. A counter is incremented so that
the next WRSYS2 will load data into the next
sub-cache line of cache line 2.

(continued on next page)

2–22 DECchip 21071-CA Pin Descriptions



Table 2–10 (Cont.) sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

101 11 WRSYS3 Data in the sysData pad latches is loaded into
the memory write buffer, which represents
cache line 3. A counter is incremented so that
the next WRSYS3 will load data into the next
sub-cache line of cache line 3.

110 00 WRDMAS0 Data in the sysData pad latches is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 0. A counter is incremented so that the
next WRDMAS0 will load data into the next
sub-cache line of cache line 0.

110 01 WRDMAS1 Data in the sysData pad latches is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 1. A counter is incremented so that the
next WRDMAS1 will load data into the next
sub-cache line of cache line 1.

110 10 WRDMAS2 Data in the sysData pad latches is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 2. A counter is incremented so that the
next WRDMAS2 will load data into the next
sub-cache line of cache line 2.

110 11 WRDMAS3 Data in the sysData pad latches is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 3. A counter is incremented so that the
next WRDMAS3 will load data into the next
sub-cache line of cache line 3.

111 00 WRDMAM0 Data in the memory read buffer is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 0. A counter is incremented so that the
next WRDMAM0 will load data into the next
sub-cache line of cache line 0.

(continued on next page)

DECchip 21071-CA Pin Descriptions 2–23



Table 2–10 (Cont.) sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

111 01 WRDMAM1 Data in the memory read buffer is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 1. A counter is incremented so that the
next WRDMAM1 will load data into the next
sub-cache line of cache line 1.

111 10 WRDMAM2 Data in the memory read buffer is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 2. A counter is incremented so that the
next WRDMAM2 will load data into the next
sub-cache line of cache line 2.

111 11 WRDMAM3 Data in the memory read buffer is merged with
the DMA write buffers and loaded into the
memory write buffer, which represents cache
line 3. A counter is incremented so that the
next WRDMAM3 will load data into the next
sub-cache line of cache line 3.

2.2.4.8 memCmd<3:1>

Signal Type: 21071-CA Output
Signal Destination: 21071-BA
Output Clock Edge: clk2R
Input Sampling Clock Edge: clk1R

The memCmd<3:1> signals indicate to the 21071-BA chips the action to take
on the memData bus. memCmd<3:1> is driven by the 21071-CA chip on clk2R
and latched by the 21071-BA chip on clk1R.

The bits are decoded into various actions. Table 2–11 provides a complete
description of the memCmd<3:1> encodings.

2–24 DECchip 21071-CA Pin Descriptions



Table 2–11 memCmd<3:1> Encodings

memCmd Mnemonic Function

010 NOP No operation.

011 RESET All memory pointers in the 21071-BA chip are
reset.

000 RDIMM Read data is loaded into the read/merge
buffer on the next memClkR. A counter is
incremented so that the next RDxxx will load
data into the next available sub-cache line of
the read buffer.

001 RDDLY Read data is loaded into the read/merge buffer
on the memClkR after the next memClkR. A
counter is incremented so that the next RDxxx
will load data into the next available sub-cache
line of the read buffer.

100 WRIMM Data from the memory write buffer is driven
to memory on the next memClkR. A counter is
incremented so that the next WRxxx will drive
the next sub-cache line to memory.

101 WRDLY Data from the memory write buffer is driven
to memory on the memClkR after the next
memClkR. A counter is incremented so that the
next WRxxx will drive the next sub-cache line
to memory.

110 WRIMML Data from the memory write buffer is driven
to memory on the next memClkR. After the
write, the quadword pointer is reset to 0, and
the cache line pointer is incremented so that
the next WRxxx will drive the first sub-cache
line of the next cache line to memory.

111 WRDLYL Data from the memory write buffer is driven
to memory on the memClkR after the next
memClkR. After the write, the quadword
pointer is reset to 0, and the cache line pointer
is incremented so that the next WRxxx will
drive the first sub-cache line of the next line to
memory.

DECchip 21071-CA Pin Descriptions 2–25



2.2.5 Memory Signals
This section describes the memory signals.

2.2.5.1 memAdr<11:0>

Signal Type: 21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR

memAdr<11:0> is the time multiplexed address bus that provides the row and
column addresses to the memory.

2.2.5.2 memRAS_l<8:0>

Signal Type: 21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR (Programmable)

memRAS_l<8:0> is asserted on memory read or write transactions and
video serial register loads to indicate the presence of a valid row address
on memAdr<11:0>. Each memRAS_l<8:0> signal corresponds to one of the nine
banksets as determined by the memory address decode logic. memRAS_l<8:0>
is asserted on memory reads and writes only if the subbank number is 0, or
if subbanks for that bank are disabled (Bx_SUBENA=0). On memory refresh
transactions, memRAS_l<8:0> is asserted.

2.2.5.3 memRASB_l<8:0>

Signal Type: 21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR (Programmable)

memRASB_l<8:0> functions similarly to the memRAS_l<8:0> signals, except
that memRASB_l<8:0> is asserted on memory reads and writes only if the
subbank number is 1. If subbanks for that bank are disabled (Bx_SUBENA=0),
the memRASB_l line of that bank will assert only for refreshes.

2.2.5.4 memCAS_l<3:0>

Signal Type:21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR (Programmable)

2–26 DECchip 21071-CA Pin Descriptions



memCAS_l<3:0> signals are used during memory reads and writes to indicate
that a valid column address is on memAdr<11:0>. During memory writes,
memCAS_l<3:0> asserts if the respective memory longwords are being written.
On memory reads, all memCAS_l bits are asserted. memCAS_l<3:0> is also
asserted during refreshes and video serial register loads.

2.2.5.5 memWE_l<1:0>

Signal Type: 21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR (Programmable)

memWE_l<1:0> signals are asserted on a memory write transaction to indicate
that valid write data is present on the memData outputs. memWE_l<0> and
memWE_l<1> are identical copies provided to reduce loading.

2.2.5.6 memPDClk

Signal Type: 21071-CA Output
Signal Destination: Presence Detect Shift Register
Output Clock Edge: clk2R

memPDClk provides a clock at one-fourth the clk1 frequency. This clock
is connected to the presence detect shift registers. memPDLoad_l and the
sampling of memPDDIn are referenced to memPDClk. memPDClk starts as
soon as reset_l is deasserted, and discontinues after all data has been shifted
into the presence detect Control Status Registers (CSRs).

2.2.5.7 memPDLoad_l

Signal Type: 21071-CA Output
Signal Destination: Presence Detect Shift Register
Output Clock Edge: clk2R

memPDLoad_l asserts to indicate that the presence detect pins should be
loaded into the presence detect shift register. When memPDLoad_l is asserted,
at least one memPDClk will occur. This enables the use of either asynchronous
or synchronous loading shift registers.

DECchip 21071-CA Pin Descriptions 2–27



2.2.5.8 memPDDIn

Signal Type: 21071-CA Input
Signal Source: Presence Detect Shift Register
Input Clock Edge: clk2R

The memPDDIn signal contains the data from the presence detect shift
register. The value of memPDDIn is shifted into the 21071-CA chip presence
detect registers one sysClock after memPDClk deasserts (which is three
sysClocks after memPDClk asserts). The data is loaded Most Significant
Bit (MSB) first into the registers (a shift right).

2.2.6 Video Support Signals
This section describes the video support signals.

2.2.6.1 vFrame_l

Signal Type: 21071-CA Input
Signal Source: External logic
Input Clock Edge: Asynchronous

Assertion of vFrame_l causes the video display pointer to be loaded with the
contents of the video frame pointer register which is located in the 21071-CA
chip. A full serial register load to the video bank is requested at the video
display pointer address.

The vFrame_l signal is edge sensitive and asynchronous with the 21071-CA
chip clocks. Assertion of vFrame_l is detected and synchronized with memClk
before being used.

vFrame_l has a weak internal pull-up to support systems that do not use the
video support functionality provided by the 21071-CA chip.

2.2.6.2 vRefresh_l

Signal Type: 21071-CA Input
Signal Source: External logic
Input Clock Edge: Asynchronous

Assertion of vRefresh_l causes the incremented value of the video display
pointer to be latched into the video display pointer. A split serial register load
cycle to the video bank is requested at the video display pointer address.

The vRefresh_l signal is edge sensitive and asynchronous with the 21071-CA
chip clocks. Assertion of vRefresh_l is detected and synchronized with memClk
before being used.

2–28 DECchip 21071-CA Pin Descriptions



VRefresh_l has a weak internal pull-up to support systems that do not use the
video support functionality provided by the 21071-CA chip.

2.2.6.3 memDTOE_l

Signal Type: 21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR

The memDTOE_l signal has two functions and is intended to be used only by
the single video bank. During random access reads and writes, memDTOE_l is
held deasserted before asserting memRAS_l. For random reads, memDTOE_
l is asserted with the first column address. During a serial register load,
memDTOE_l is asserted with the row address. This signal, along with
memDSF, is used at memRAS_l<8> or memRASB_l<8> assertion by the
VRAMs to perform full or split register loads.

2.2.6.4 memDSF

Signal Type: 21071-CA Output
Signal Destination: Memory
Output Clock Edge: memClkR

The memDSF signal is used at memRAS_l<8> assertion by the single video
bank to choose between full and split serial register loads. memDSF is driven
with the row address in order to set up memRAS_l<8> or memRASB_l<8>.

2.2.7 Miscellaneous/Clock Signals
This section describes the miscellaneous and clock signals.

2.2.7.1 wideMem

Signal Type: 21071-CA Input
Signal Source: Static
Input Clock Edge: Static

The wideMem signal, an input to the 21071-CA and 21071-BA chips, indicates
the size of the memory data bus. wideMem is tied high to indicate a 128-bit
wide memory data bus (four 21071-BA chips). wideMem is tied low to indicate
a 64-bit wide memory data bus (two 21071-BA chips).

wideMem has a weak internal pull down and a Schmitt trigger input.

DECchip 21071-CA Pin Descriptions 2–29



2.2.7.2 clk1x2

Signal Type: 21071-CA Input
Signal Source: Clock Generator

clk1x2 is a clock input which supplies a clock at twice the frequency of the
DECchip 21064 sysClkOut1 signal, with a minimum period of 15 ns and a 50
percent duty cycle.

2.2.7.3 clk2ref

Signal Type: 21071-CA Input
Signal Source: Clock Generator

clk2ref is a signal input which is low when the assertion of clk1x2 corresponds
to the assertion of sysClkOut1. The received signal must be set up to the
assertion of clk1x2.

2.2.7.4 reset_l

Signal Type: 21071-CA Input
Signal Source: External Logic
Input Clock Edge: Asynchronous on assertion, clk1R on deassertion

Assertion of reset_l sets all internal logic and state machines to their initialized
states. During reset, the memory data bus is driven, and the sysBus data
and tag buses are tristated. All signals that are sent to the Alpha 21064
microprocessor are guaranteed to be tristated or held low, to prevent more than
3.0 volts from entering the Alpha 21064 microprocessor during reset.

2.2.7.5 testMode

Signal Type: 21071-CA Input
Signal Source: Test logic
Input Clock Edge: Asynchronous

Assertion of testMode places the chip into a mode for chip testing. testMode
is intended to be used only during chip testing and must be tied low during
normal system operation.

testMode has a weak internal pull down and a Schmitt trigger input.

2–30 DECchip 21071-CA Pin Descriptions



2.2.7.6 scanEnable

Signal Type: 21071-CA Input
Signal Source: Test logic

Assertion of scanEnable places all internal flops in their scan state.
scanEnable is intended to be used only during chip testing and must be tied
low during normal system operation.

scanEnable has a weak internal pull down and a Schmitt trigger input.

2.2.7.7 tristate_l

Signal Type: 21071-CA Input
Signal Source: External logic
Input Clock Edge: Asynchronous

Assertion of this signal tristates all output and bidirectional drivers. tristate_l
is intended for use only during chip testing and power-up.

tristate_l has a weak internal pull-up and a Schmitt trigger input.

2.2.7.8 pTestout

Signal Type: 21071-CA Output
Signal Destination: Test logic
Output Clock Edge: Flow through

The pTestout signal contains the output from the parametric NAND tree, as
required for testing. The tristated signal must be asserted for pTestout to be
valid. pTestout is intended for use only during chip or module testing.

DECchip 21071-CA Pin Descriptions 2–31



2.3 DECchip 21071-CA Pin Assignment
The DECchip 21071-CA is a 208-pin plastic quad flat pack (PQFP). Figure 2–1
shows the signal assignments. Sections 2.3.1 and 2.3.2 provide alphabetical
and numerical pin listings.

2–32 DECchip 21071-CA Pin Descriptions



Figure 2–1 DECchip 21071-CA Pinout Diagram

LJ-03444-TI0

inpVSS
inpVDD
tagAdr<22>
tagAdr<21>
tagAdr<20>
tagAdr<19>
tagAdr<18>
tagAdr<17>
tagAdrP
tagCtlP
tagCtlD  
tagCtlV
sysAdr<33>
sysAdr<32>
sysAdr<31>
outVSS
sysAdr<30>
sysAdr<29>
sysAdr<28>
sysAdr<27>
inpVSS
clk1x2
testMode
tristate_l
clk2ref
outVDD
scanEnable
sysAdr<26>
sysAdr<25>
sysAdr<24>
sysAdr<23>
sysAdr<22>
sysAdr<21>
sysAdr<20>
sysAdr<19>
sysAdr<18>
outVSS
sysAdr<17>
sysAdr<16>
sysAdr<15>
sysAdr<14>
sysAdr<13>
sysAdr<12>
sysAdr<11>
sysAdr<10>
sysAdr<9>
sysAdr<8>
sysAdr<7>
sysAdr<6>
sysAdr<5>
outVDD
outVSS

outVSS
outVDD

memRASB_l<0>
memRASB_l<1>
memRASB_l<2>
memRASB_l<3>
memRASB_l<4>
memRASB_l<5>
memRASB_l<6>
memRASB_l<7>
memRASB_l<8>

outVSS
memCAS_l<0>
memCAS_l<1>
memCAS_l<2>

outVSS
outVDD

memCAS_l<3>
outVDD

sysDataWEEn
sysDataLongWE

outVSS

memRAS_l<1>
memRAS_l<2>

outVSS
outVDD

memRAS_l<3>
memRAS_l<4>
memRAS_l<5>
memRAS_l<6>
memRAS_l<7>
memRAS_l<8>
memWE_l<0>
memWE_l<1>

memAdr<0>
outVSS
outVDD

memAdr<1>
memAdr<2>
memAdr<3>
memAdr<4>
memAdr<5>
memAdr<6>
memAdr<7>
memAdr<8>
memAdr<9>

memAdr<10>

outVSS
inpVDD

memAdr<11>

inpVSS

o
u

tV
S

S
o

u
tV

D
D

m
e

m
D

T
O

E
_

l
m

e
m

D
S

F
m

e
m

P
D

D
in

m
e

m
P

D
C

L
k

m
e

m
P

D
L

o
a

d
_

l
su

b
C

m
d

B
<

0
>

su
b

C
m

d
B

<
1

>
su

b
C

m
d

A
<

0
>

su
b

C
m

d
A

<
1

>
d

rv
M

e
m

D
a

ta
m

e
m

C
m

d
<

1
>

m
e

m
C

m
d

<
2

>
m

e
m

C
m

d
<

3
>

sy
sC

m
d

<
0

>
sy

sC
m

d
<

1
>

sy
sC

m
d

<
2

>
sy

sR
e

a
d

O
w

d
rv

S
ys

D
a

ta
d

rv
S

ys
C

S
R

su
b

C
m

d
C

o
m

m
o

n
sy

sI
/O

R
e

a
d

sy
sD

a
ta

A
L

E
n

N
C

o
u

tV
D

D
sy

sD
a

ta
A

H
E

n
sy

sT
a

g
W

E
sy

sT
a

g
O

E
E

n
sy

sE
a

rl
yO

E
E

n
sy

sD
a

ta
O

E
E

n
sy

sD
O

E
sy

sD
a

ta
<

1
5

>
sy

sD
a

ta
<

1
4

>

sy
sD

a
ta

<
0

>
in

p
V

D
D

in
p

V
S

S

208 PQFP

1

in
p

V
S

S
in

p
V

D
D

re
se

t_
l

vR
e

fr
e

sh
_

l
vF

ra
m

e
_

l
p

T
e

st
o

u
t

w
id

e
M

e
m

io
C

m
d

<
2

>
io

C
m

d
<

1
>

io
C

m
d

<
0

>
io

D
a

ta
R

d
y

io
C

A
ck

<
1

>
io

C
A

ck
<

0
>

io
R

e
q

u
e

st
<

1
>

io
R

e
q

u
e

st
<

0
>

o
u

tV
S

S
io

G
ra

n
t

cp
u

D
R

A
ck

<
2

>
cp

u
D

R
A

ck
<

1
>

cp
u

D
R

A
ck

<
0

>
N

C
cp

u
D

W
S

e
l<

1
>

cp
u

C
R

e
q

<
2

>
cp

u
C

R
e

q
<

1
>

cp
u

C
R

e
q

<
0

>
o

u
tV

D
D

cp
u

C
A

ck
<

2
>

cp
u

C
A

ck
<

1
>

cp
u

C
A

ck
<

0
>

cp
u

H
o

ld
A

ck
cp

u
H

o
ld

R
e

q
cp

u
D

In
vR

e
q

cp
u

C
W

M
a

sk
<

7
>

cp
u

C
W

M
a

sk
<

6
>

cp
u

C
W

M
a

sk
<

5
>

cp
u

C
W

M
a

sk
<

4
>

o
u

tV
S

S
cp

u
C

W
M

a
sk

<
3

>
cp

u
C

W
M

a
sk

<
2

>
cp

u
C

W
M

a
sk

<
1

>
cp

u
C

W
M

a
sk

<
0

>
ta

g
A

d
r<

3
1

>
ta

g
A

d
r<

3
0

>
ta

g
A

d
r<

2
9

>
ta

g
A

d
r<

2
8

>
ta

g
A

d
r<

2
7

>
ta

g
A

d
r<

2
6

>
ta

g
A

d
r<

2
5

>
ta

g
A

d
r<

2
4

>
ta

g
A

d
r<

2
3

>
o

u
tV

D
D

o
u

tV
S

S

5

10

15

20

25

30

35

40

45

50

5
5

6
0

6
5

7
0

7
5 8
0

8
5 9
0

9
5

1
0

0

155

150

145

140

135

130

125

120

115

110

105

2
0

5

2
0

0

1
9

5

1
9

0

1
8

5

1
8

0

1
7

5

1
7

0

1
6

5

1
6

0

2
0

8

memRAS_l<0>

o
u

tV
S

S

sy
sD

a
ta

<
1

3
>

o
u

tV
S

S
sy

sD
a

ta
<

1
2

>
sy

sD
a

ta
<

1
1

>
sy

sD
a

ta
<

1
0

>
sy

sD
a

ta
<

9
>

sy
sD

a
ta

<
8

>
sy

sD
a

ta
<

7
>

sy
sD

a
ta

<
6

>
sy

sD
a

ta
<

5
>

sy
sD

a
ta

<
4

>
sy

sD
a

ta
<

3
>

sy
sD

a
ta

<
2

>
sy

sD
a

ta
<

1
>

d
rv

S
ys

D
a

ta

DECchip 21071-CA Pin Descriptions 2–33



2.3.1 DECchip 21071-CA Alphabetical Pin Assignment List
Table 2–12 lists the DECchip 21071-CA pins in alphabetical order. The
following abbreviations are used in the Type column of the table:

• B = Bidirectional

• I = Input

• P = Power

• O = Output

Table 2–12 DECchip 21071-CA Alphabetical Pin Assignment List

Pin Name Pin Type Pin Name Pin Type

clk1x2 135 I InpVdd 155 P
clk2ref 132 I InpVdd 207 P
cpuCAck<0> 180 O InpVdd 103 P
cpuCAck<1> 181 O InpVdd 51 P
cpuCAck<2> 182 O InpVss 104 P
cpuCReq<0> 184 I InpVss 156 P
cpuCReq<1> 185 I InpVss 136 P
cpuCReq<2> 186 I InpVss 52 P
cpuCWMask<0> 168 I InpVss 208 P
cpuCWMask<1> 169 I ioCack<0> 196 O
cpuCWMask<2> 170 I ioCack<1> 197 O
cpuCWMask<3> 171 I ioCmd<0> 199 I
cpuCWMask<4> 173 I ioCmd<1> 200 I
cpuCWMask<5> 174 I ioCmd<2> 201 I
cpuCWMask<6> 175 I ioDataRdy 198 O
cpuCWMask<7> 176 I ioGrant 192 O
cpuDinvReq 177 O ioRequest<0> 194 I
cpuDRack<0> 189 O ioRequest<1> 195 I
cpuDRack<1> 190 O memAdr<0> 36 O
cpuDRack<2> 191 O memAdr<1> 39 O
cpuDWSel<1> 187 O memAdr<2> 40 O
cpuHoldAck 179 I memAdr<3> 41 O
cpuHoldReq 178 O memAdr<4> 42 O
drvMemData 64 O memAdr<5> 43 O
drvSysCSR 74 O memAdr<6> 44 O
drvSysData 73 O memAdr<7> 45 O

2–34 DECchip 21071-CA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

memAdr<8> 46 O memRAS_l<1> 24 O
memAdr<9> 47 O memRAS_l<2> 25 O
memAdr<10> 48 O memRAS_l<3> 28 O
memAdr<11> 49 O memRAS_l<4> 29 O
memCAS_l<0> 13 O memRAS_l<5> 30 O
memCAS_l<1> 14 O memRAS_l<6> 31 O
memCAS_l<2> 15 O memRAS_l<7> 32 O
memCAS_l<3> 18 O memRAS_l<8> 33 O
memCmd<1> 65 O memWE_l<0> 34 O
memCmd<2> 66 O memWE_l<1> 35 O
memCmd<3> 67 O nc� 188 —
memDSF 56 O nc� 78 —
memDTOE_l 55 O outVdd 19 P
memPDClk 58 O outVdd 27 P
memPDDin 57 I outVdd 79 P
memPDLoad_l 59 O outVdd 183 P
memRASB_l<0> 3 O outVdd 17 P
memRASB_l<1> 4 O outVdd 38 P
memRASB_l<2> 5 O outVdd 54 P
memRASB_l<3> 6 O outVdd 158 P
memRASB_l<4> 7 O outVdd 106 P
memRASB_l<5> 8 O outVdd 131 P
memRASB_l<6> 9 O outVdd 2 P
memRASB_l<7> 10 O outVss 1 P
memRASB_l<8> 11 O outVss 37 P
memRAS_l<0> 23 O outVss 120 P

�nc—Do not connect these pins on board.

DECchip 21071-CA Pin Descriptions 2–35



Pin Name Pin Type Pin Name Pin Type

outVss 16 P sysAdr<19> 122 I
outVss 68 P sysAdr<20> 123 I
outVss 22 P sysAdr<21> 124 I
outVss 50 P sysAdr<22> 125 I
outVss 12 P sysAdr<23> 126 I
outVss 172 P sysAdr<24> 127 I
outVss 105 P sysAdr<25> 128 I
outVss 89 P sysAdr<26> 129 I
outVss 157 P sysAdr<27> 137 I
outVss 141 P sysAdr<28> 138 I
outVss 26 P sysAdr<29> 139 I
outVss 193 P sysAdr<30> 140 I
outVss 53 P sysAdr<31> 142 I
pTestout 203 O sysAdr<32> 143 I
reset_l 206 I sysAdr<33> 144 I
scanEnable 130 I sysAdr<5> 107 I
subCmdA<0> 62 O sysAdr<6> 108 I
subCmdA<1> 63 O sysAdr<7> 109 I
subCmdB<0> 60 O sysAdr<8> 110 I
subCmdB<1> 61 O sysAdr<9> 111 I
subCmdCommon 75 O sysCmd<0> 69 O
sysAdr<10> 112 I sysCmd<1> 70 O
sysAdr<11> 113 I sysCmd<2> 71 O
sysAdr<12> 114 I sysDataAHEn 80 O
sysAdr<13> 115 I sysDataALEn 77 O
sysAdr<14> 116 I sysDataLongWE 21 O
sysAdr<15> 117 I sysDataOEEn 84 O
sysAdr<16> 118 I sysDataWEEn 20 O
sysAdr<17> 119 I sysData<0> 102 B
sysAdr<18> 121 I sysData<1> 101 B

2–36 DECchip 21071-CA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

sysData<10> 92 B tagAdr<18> 150 B
sysData<11> 91 B tagAdr<19> 151 B
sysData<12> 90 B tagAdr<20> 152 B
sysData<13> 88 B tagAdr<21> 153 B
sysData<14> 87 B tagAdr<22> 154 B
sysData<15> 86 B tagAdr<23> 159 B
sysData<2> 100 B tagAdr<24> 160 B
sysData<3> 99 B tagAdr<25> 161 B
sysData<4> 98 B tagAdr<26> 162 B
sysData<5> 97 B tagAdr<27> 163 B
sysData<6> 96 B tagAdr<28> 164 B
sysData<7> 95 B tagAdr<29> 165 B
sysData<8> 94 B tagAdr<30> 166 B
sysData<9> 93 B tagAdr<31> 167 B
sysDOE 85 O tagCtlD 146 B
sysEarlyOEEn 83 O tagCtlP 147 B
sysIORead 76 O tagCtlV 145 B
sysReadOW 72 O testMode 134 I
sysTagOEEn 82 O triState_l 133 I
sysTagWE 81 O vFrame_l 204 I
tagAdrP 148 B vRefresh_l 205 I
tagAdr<17> 149 B wideMem 202 I

DECchip 21071-CA Pin Descriptions 2–37



2.3.2 DECchip 21071-CA Numerical Pin Assignment List
Table 2–13 lists the DECchip 21071-CA pins in numerical order. The following
abbreviations are used in the Type column of the table:

• B = Bidirectional

• I = Input

• P = Power

• O = Output

Table 2–13 DECchip 21071-CA Numerical Pin Assignment List

Pin Name Pin Type Pin Name Pin Type

outVss 1 P outVss 26 P
outVdd 2 P outVdd 27 P
memRASB_l<0> 3 O memRAS_l<3> 28 O
memRASB_l<1> 4 O memRAS_l<4> 29 O
memRASB_l<2> 5 O memRAS_l<5> 30 O
memRASB_l<3> 6 O memRAS_l<6> 31 O
memRASB_l<4> 7 O memRAS_l<7> 32 O
memRASB_l<5> 8 O memRAS_l<8> 33 O
memRASB_l<6> 9 O memWE_l<0> 34 O
memRASB_l<7> 10 O memWE_l<1> 35 O
memRASB_l<8> 11 O memAdr<0> 36 O
outVss 12 P outVss 37 O
memCAS_l<0> 13 O outVdd 38 P
memCAS_l<1> 14 O memAdr<1> 39 O
memCAS_l<2> 15 O memAdr<2> 40 O
outVss 16 P memAdr<3> 41 O
outVdd 17 P memAdr<4> 42 O
memCAS_l<3> 18 O memAdr<5> 43 O
outVdd 19 O memAdr<6> 44 O
sysDataWEEn 20 O memAdr<7> 45 O
sysDataLongWE 21 O memAdr<8> 46 O
outVss 22 P memAdr<9> 47 O
memRAS_l<0> 23 O memAdr<10> 48 O
memRAS_l<1> 24 O memAdr<11> 49 O
memRAS_l<2> 25 O outVss 50 P

2–38 DECchip 21071-CA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

inpVdd 51 P outVdd 79 P
inpVss 52 P sysDataAHEn 80 O
outVss 53 P sysTagWE 81 O
outVdd 54 P sysTagOEEn 82 O
memDTOE_l 55 O sysEarlyOEEn 83 O
memDSF 56 O sysDataOEEn 84 O
memPDDIn 57 O sysDOE 85 O
memPDClk 58 O sysData<15> 86 B
memPDLoad_l 59 O sysData<14> 87 B
subCmdB<0> 60 O sysData<13> 88 B
subCmdB<1> 61 O outVss 89 P
subCmdA<0> 62 O sysData<12> 90 B
subCmdA<1> 63 O sysData<11> 91 B
drvMemData 64 O sysData<10> 92 B
memCmd<1> 65 O sysData<9> 93 B
memCmd<2> 66 O sysData<8> 94 B
memCmd<3> 67 O sysData<7> 95 B
outVss 68 P sysData<6> 96 B
sysCmd<0> 69 O sysData<5> 97 B
sysCmd<1> 70 O sysData<4> 98 B
sysCmd<2> 71 O sysData<3> 99 B
sysReadOW 72 O sysData<2> 100 B
drvSysData 73 O sysData<1> 101 B
drvSysCSR 74 O sysData<0> 102 B
subCmdCommon 75 O inpVdd 103 P
sysIORead 76 O inpVss 104 P
sysDataALEn 77 O outVss 105 P
nc� 78 – outVdd 106 P

�nc—Do not connect these pins on board.

DECchip 21071-CA Pin Descriptions 2–39



Pin Name Pin Type Pin Name Pin Type

sysAdr<5> 107 I sysAdr<28> 138 I
sysAdr<6> 108 I sysAdr<29> 139 I
sysAdr<7> 109 I sysAdr<30> 140 I
sysAdr<8> 110 I outVss 141 P
sysAdr<9> 111 I sysAdr<31> 142 I
sysAdr<10> 112 I sysAdr<32> 143 I
sysAdr<11> 113 I sysAdr<33> 144 I
sysAdr<12> 114 I tagCtlV 145 B
sysAdr<13> 115 I tagCtlD 146 B
sysAdr<14> 116 I tagCtlP 147 B
sysAdr<15> 117 I tagAdrP 148 B
sysAdr<16> 118 I tagAdr<17> 149 B
sysAdr<17> 119 I tagAdr<18> 150 B
outVss 120 P tagAdr<19> 151 B
sysAdr<18> 121 I tagAdr<20> 152 B
sysAdr<19> 122 I tagAdr<21> 153 B
sysAdr<20> 123 I tagAdr<22> 154 B
sysAdr<21> 124 I inpVdd 155 P
sysAdr<22> 125 I inpVss 156 P
sysAdr<23> 126 I outVss 157 P
sysAdr<24> 127 I outVdd 158 P
sysAdr<25> 128 I tagAdr<23> 159 B
sysAdr<26> 129 I tagAdr<24> 160 B
scanEnable 130 I tagAdr<25> 161 B
outVdd 131 P tagAdr<26> 162 B
clk2Ref 132 I tagAdr<27> 163 B
tristate_l 133 I tagAdr<28> 164 B
testMode 134 I tagAdr<29> 165 B
clk1x2 135 I tagAdr<30> 166 B
inpVss 136 P tagAdr<31> 167 B
sysAdr<27> 137 I cpuCWMask<0> 168 I

2–40 DECchip 21071-CA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

cpuCWMask<1> 169 I ioCAck<0> 196 O
cpuCWMask<2> 170 I ioCAck<1> 197 O
cpuCWMask<3> 171 I ioDataRdy 198 O
outVss 172 P ioCmd<0> 199 I
cpuCWMask<4> 173 I ioCmd<1> 200 I
cpuCWMask<5> 174 I ioCmd<2> 201 I
cpuCWMask<6> 175 I wideMem 202 I
cpuCWMask<7> 176 I pTestout 203 I
cpuDInvReq 177 O vFrame_l 204 I
cpuHoldReq 178 O vRefresh_l 205 I
cpuHoldAck 179 I reset_l 206 I
cpuCAck<0> 180 O inpVdd 207 P
cpuCAck<1> 181 O inpVss 208 P
cpuCAck<2> 182 O
outVdd 183 P
cpuCReq<0> 184 I
cpuCReq<1> 185 I
cpuCReq<2> 186 I
cpuDWSel<1> 187 O
nc� 188 —
cpuDRAck<0> 189 O
cpuDRAck<1> 190 O
cpuDRAck<2> 191 O
ioGrant 192 O
outVss 193 P
ioRequest<0> 194 I
ioRequest<1> 195 I

�nc—Do not connect these pins on board.

2.4 DECchip 21071-CA Mechanical Specifications
Figure 2–2 shows the DECchip 21071-CA package dimensions.

DECchip 21071-CA Pin Descriptions 2–41



Figure 2–2 DECchip 21071-CA Package Dimensions

Millimeters Inches

MIN MAX
DIM

A

B

C

D

G

H

J

K

L

M

R

S

30.50

27.90

30.50

27.90

0.23

.500 BSC

0.45

3.45

0.13

0.25

25.5 REF

25.5 REF

30.77

28.10

30.77

28.10

0.33

0.62

3.85

0.23

0.35

1.201

1.098

1.201

1.098

0.009

0.0197 BSC

0.018

0.136

0.005

0.010

1.004 REF

1.004 REF

1.211

1.106

1.211

1.106

0.013

0.024

0.152

0.009

0.012

MIN MAX

K

L

M

J

H

R

A

B

DC

S

LJ-03666-TI0

P
IN

 1

G208 PQFP

2–42 DECchip 21071-CA Pin Descriptions



3
DECchip 21071-CA Architecture Overview

This chapter describes the DECchip 21071-CA architecture. The 21071-CA
chip provides both second-level cache and memory control functions. The
21071-CA chip also controls the cache/memory data path located on the
21071-BA chip. Figure 3–1 shows a block diagram of the 21071-CA chip.

Figure 3–1 DECchip 21071-CA Block Diagram

Tag
Compare
and
Address 
Generation

sysBus/
Bcache
Control

sysTag <31:17>

sysAdr <33:5>

sysBus Control

Bcache Control

Data Path Control

Write Adr

Read Adr

Write Buffer
Address

Memory
Bank
Generation

Read Bank

Write Bank Memory
Control

Row &
Column

Generation

Row

Col

memAdr <11:0>

memRasl ,memCasl, memWel

Video
Address

LJ-03351-TI0

DECchip 21071-CA Architecture Overview 3–1



3.1 sysBus Interface Architecture
The CPU, 21071-DA chip, 21071-BA chips, cache, and 21071-CA chip
communicate with each other over the sysBus. The sysBus is essentially
the processor pinbus with additional signals for DMA transaction control,
arbitration, and cache control.

The sysBus interface contains:

• sysBus arbiter

• Bcache controller

• Write buffer address and control

• Read/merge buffer control

• Lock register

3.1.1 sysBus Arbitration
The 21071-CA chip arbitrates between the CPU and 21071-DA chip, which
request use of the sysBus and the Bcache when they have a transaction to
perform. The CPU node has default ownership of the sysBus so that it can
access the Bcache whenever the 21071-DA chip is not requesting the bus.

3.1.1.1 Arbitration CSRs
The arbitration policy of the 21071-CA chip can be programmed by setting up
the DMA_ARB CSR field to select whether the CPU or the 21071-DA chip has
highest priority. There are three possible priority encodings:

• CPU priority

When the CPU and DMA are simultaneously requesting the sysBus, the
CPU is given the priority.

• DMA priority

DMA is given priority over the CPU, and the bus is released to the cache
on DMA cache misses or noncacheable DMA transactions.

• DMA strong priority

DMA is given priority over the CPU. If another ioRequest<1:0> is pending,
the bus is not released to the cache on DMA cache misses or noncacheable
DMA transactions.

3–2 DECchip 21071-CA Architecture Overview



3.1.1.2 DECchip 21071-DA Requests
The 21071-CA arbiter monitors requests for the sysBus by decoding the
cpuCReq<2:0> and ioRequest<1:0> fields. cpuCReq<2:0> is not a bus request;
it is a cycle command that indicates that the CPU has started a transaction on
the sysBus.

When the 21071-CA arbiter detects the assertion of ioRequest<1:0> and when
DMA has won arbitration, it makes a request to the CPU for control of the
Bcache by asserting cpuHoldReq to the CPU.

The 21071-DA chip can make three types of requests for the sysBus:

• Atomic Request

This request is used if the 21071-DA chip wants to do multiple transactions
without interruption from the CPU. When the 21071-DA chip already
has a DMA transaction in progress, the assertion of atomic request will
override programmed priority. If the 21071-DA chip does not already have
a transaction in progress, the assertion of atomic request is equivalent to
sending a plain DMA request.

Note

To guarantee atomicity, the 21071-DA chip must assert an atomic
request in the cycle that it drives the command on the ioCmd<2:0>
lines for the first transaction.

• Preempt Request

This request should be used by the 21071-DA chip for deadlock prevention.
A preempt request causes the arbiter to request the CPU to suspend a
transaction in progress. If the 21071-DA chip must do multiple DMA
transactions for deadlock prevention, it must keep preempt request or
atomic asserted until all deadlocked transactions have completed.

When the 21071-DA chip changes ioRequest<1:0> from preempt to idle or
plain DMA request, the arbiter will allow the suspended CPU transaction
to resume.

DECchip 21071-CA Architecture Overview 3–3



A preempt request must be used only on CPU transactions addressed to
the 21071-DA chip; that is, I/O reads, I/O writes, fetch, fetchM to 21071-DA
space, and barriers. Preempt must not be asserted when the sysBus is idle
or on any transactions not addressed to the 21071-DA chip.

Note

Because a preempt request suspends the CPU transaction in progress,
it should be used only if that transaction cannot complete without the
completion of the requesting DMA transaction.

• DMA Request

This is the ordinary DMA request. No special priority is given to DMA
request unless the arbiter is so programmed.

3.1.1.3 Arbitration Cycles
The cycle in which arbitration occurs depends on whether the CPU or the
21071-DA chip has control of the bus. Arbitration will occur at the following
times:

• When a CPU transaction is in progress, arbitration will occur up to two
cycles before the assertion of cpuCAck<2:0> to the CPU. Table 3–1 shows
the arbitration cycles of CPU transactions.

If the arbiter receives ioRequest<1:0> at this time, the 21071-DA is granted
(independent of programmed priority), and cpuHoldReq is asserted to get
control of the Bcache.

Table 3–1 Arbitration Cycles of CPU Transactions

Two Cycles Before cpuCAck One Cycle Before cpuCAck

CPU read block, CSR or memory CPU read block, I/O space
CPU write block, CSR or memory CPU write block, I/O space
CPU fetch, CSR or memory CPU fetch, I/O space
CPU STx_C hit CPU STx_C fail
CPU LDx_L hit dirty CPU memory barrier
— Any error

3–4 DECchip 21071-CA Architecture Overview



• When a DMA transaction is in progress, arbitration will occur one cycle
before ioCAck<1:0> is sent to the 21071-DA chip. The result of arbitration
depends on programmed priority if both the CPU and the 21071-DA chip
are requesting the bus.

• When the sysBus is idle, arbitration occurs every cycle. When a sysBus idle
cycle is followed by requests from both the CPU and the 21071-DA chip, the
CPU will be granted (independent of programmed priority or the ioRequest
field). This is because the CPU has already started the transaction on
the sysBus, and the 21071-DA chip cannot stall write data transfers soon
enough.

3.1.1.4 Grant Mechanism
After the 21071-DA chip has made a request, and the arbiter has determined
that the 21071-DA chip should be granted the bus, the 21071-CA chip asserts
ioGrant to the 21071-DA chip and cpuHoldReq to the CPU in the same cycle.
After cpuHoldReq has been asserted, the 21071-CA and 21071-DA chips must
ignore cpuCReq<2:0> until the transaction is complete (ioCAck<1:0> has been
returned) and cpuHoldAck has been deasserted.

After the 21071-DA chip detects that both ioGrant and cpuHoldAck have been
asserted, it will drive its command address and data lines as appropriate.

Note

The ioCmd<2:0> encodings change as soon as the 21071-DA chip has
the bus.

After the 21071-DA chip has received cpuHoldAck, it is expected to take
away ioRequest<1:0> in the cycle it drives ioCmd<2:0>, unless it has another
transaction to do. The 21071-DA chip may choose to withdraw ioRequest<1:0>
without doing a transaction; in this case it should drive IDLE on the
ioCmd<2:0> pins, until it removes ioRequest<1:0>. If the 21071-DA chip
withdraws ioRequest<1:0> for one or more cycles after receiving cpuHoldAck,
performance may be affected, but no other adverse behavior will occur.

During DMA transactions, the 21071-DA chip will drive the DMA address on
the sysAdr lines until the 21071-CA chip has completed the Bcache probe and
latched the DMA address. After the address is latched by the 21071-CA chip,
the arbiter may decide that it wants to release the cache back to the CPU by
deasserting cpuHoldReq.

DECchip 21071-CA Architecture Overview 3–5



When this release decision has been made, ioGrant will be deasserted,
indicating to the 21071-DA chip that it needs to tristate its address lines. The
arbiter releases the cache on either DMA read or masked write transactions
that don’t use the cache or DMA full write transactions if the memory write
buffer is full. The release will not occur if the programmed arbitration priority
is DMA strong and the ioRequest<1:0> lines are non-idle or if the 21071-DA
chips ioRequest<1:0> lines are driving DMA atomic or DMA preempt.

3.1.1.5 Releases
When the cache has been released (during a DMA transaction in progress),
arbitration occurs one cycle before ioCAck<1:0> is sent to the 21071-DA chip.
It could also occur up to one cycle after ioCack<1:0>, if ioCack<1:0> occurred
while the sysBus was being released. The result of arbitration depends on
programmed priority if both the CPU and 21071-DA chip are requesting the
bus.

3.1.2 Bcache Control
The Bcache controller provides control for the secondary cache on CPU-
initiated memory read/write transactions that miss and on all CPU-initiated
memory LDx_L and STx_C transactions (hits and misses). On DMA initiated
transactions, the Bcache controller provides control for probing the cache and
extracting or invalidating the cache line when required. The 21071-CA chip
supports only a write-back cache.

Figure 3–2 shows the implementation of a cache subsystem with a 512 KB
cache.

3–6 DECchip 21071-CA Architecture Overview



Figure 3–2 Cache Subsystem for a 512 KB Cache

L J - 0 3 4 2 8 - T I 0

Interface

21064

PCI

Address

DECchip

2(4) x Data Path

2 x 5 ns PALs

TAG Control TAG RAMs Data RAMs

Memory Control
Cache/

5 x AS805

A AC C CD DAD

Data

128

29

15

Tag, Tag V,D,P

Tag, Tag V,D,P

Cache Index

Cache Control

CPU Cache Control

System
Cache
Control

21071-CA

21071-DA

21071-BA

DECchip

DECchip

DECchip

The following sections describe the salient features of the Bcache controller.

3.1.2.1 Bcache Width, Size, and Speed
The 21071-CA chip supports only a secondary cache width of 128 bits. A 64-bit
wide cache is not supported.

The Bcache controller can support Bcache sizes from 128 KB to 16 MB. The
controller needs to know the Bcache size to perform a Tag compare on the
appropriate bits. The 21071-CA chip uses a register to enable the appropriate
bits of the tag address. Software is required to program this register based on
the size of the cache. Refer to Section 4.2.3 for additional information.

DECchip 21071-CA Architecture Overview 3–7



The only restriction that the Bcache controller places on the speed of the
Bcache is that a 21071-CA initiated read from the cache RAMs be completed in
one sysClk cycle. Bcache writes can be programmed to take one or two sysClk
cycles.

3.1.2.2 Bcache Allocation Policy
The 21071-CA chip supports a write-back Bcache (secondary cache). The
Bcache is allocated on CPU memory read misses. The 21071-CA chip supports
an optional allocation policy on writes. Allocation on CPU memory writes can
be turned off by setting a bit in a register. Refer to Section 4.2.1 for additional
information.

3.1.2.3 Bcache Write Granularity
The Bcache controller in the 21071-CA chip supports octaword write
granularity to the Bcache. This has implications in the way STx_C hit
transactions are handled. STx_C transactions are either quadword or longword
in length. Since less than an octaword cannot be written into the cache, the
21071-CA chip has to perform a read-modify-write transaction on the Bcache
when an STx_C hits in the cache.

On partial writes or STx_C transactions that miss in the cache, the 21071-CA
chip has to merge the write data with data from memory and write it into the
cache if allocation is enabled. If allocation is disabled, the write is sent directly
to memory through the memory write buffer.

3.1.2.4 CPU-Initiated Bcache Operations
For CPU requests, the 21071-CA chip performs the following operations on the
Bcache data and tag RAMs:

• Extracts victim blocks from the Bcache into the write buffer when the
Bcache has to be allocated.

• Writes the Bcache with fill data in parallel with returning it to the CPU
during a read block to cacheable memory space.

• Writes the Bcache with the updated block of data during a write block to
cacheable memory space when write allocate mode is enabled.

• Performs a tag probe and compare for LDx_L and STx_C requests.

• Provides data from the Bcache to the CPU on LDx_L transactions that hit
in the cache.

• Writes the Bcache tag store with the appropriate address and control bits
during the previously listed operations.

3–8 DECchip 21071-CA Architecture Overview



3.1.2.5 DMA-Initiated Bcache Operations
During DMA requests, after the 21071-CA chip—using the
cpuHoldReq/cpuHoldAck mechanism—has received ownership of the Bcache,
the chip performs the following operations:

• Performs a tag probe to determine if the DMA block is in the Bcache.

• Reads a block of data from the Bcache and loads it into the DMA read
buffer if a DMA read hits in the Bcache.

• Reads a block of data from the Bcache, merges it with DMA write buffer
data, and loads it into the memory write buffer if a DMA write mask
transaction hits in the Bcache.

• Invalidates the cache block if a DMA write hits in the Bcache.

3.1.2.6 External Logic Requirement
The 21071-CA chip requires external logic (PALs) to generate the controls for
the cache RAMs. It supplies cache control signals to external PALs which NOR
them with the CPU cache control signals. The Bcache PALs clock the system
cache control signals according to the specific timing requirements of that
system before NORing with the CPU signals. The 21071-CA chip sends data
and tag RAM output enables, write enables, and lower address bit signals to
the Bcache PAL logic.

3.1.2.7 Tag Compare Logic
As part of its function to support a system with a backup cache, the 21071-CA
chip is responsible for comparing the upper bits of sysAdr<33:5> with address
bits stored in the tag RAMs. The 21071-CA chip does this tag comparison
during LDx_L and STx_C CPU requests and during DMA transactions to
cacheable memory space. The number of bits that are used in the address
comparison and the parity check is controlled by the tag enable register in the
21071-CA chip. In the case of a system that implements the smallest cache
size of 128 KB Bcache, the 21071-CA chip compares sysAdr<31:17> to the
tagAdr<31:17> bits read from the tag RAMs. In the other extreme of a 16 MB
Bcache, the 21071-CA chip performs the comparison only on bits<31:24>.

DECchip 21071-CA Architecture Overview 3–9



3.1.2.8 CPU Primary Cache Invalidates
The 21071-CA chip Bcache controller is responsible for ensuring that the
CPU Dcache is always a subset of the external Bcache. Maintaining system
cache coherency is accomplished by asserting cpuDInvReq to the CPU at the
following times:

• When a valid Bcache block is replaced during a fill of the Bcache with CPU
Istream read data.

• When a valid Bcache block is replaced during a fill of the Bcache with write
allocate data.

• During a Bcache invalidate that is due to a DMA write or write masked
transaction that hits in the cache.

• During all DMA writes when the Bcache is disabled or when no Bcache is
present in the system.

The 21071-CA chip assumes that sysAdr<12:5> are logically connected (either
directly or indirectly) to the CPU cpuInvAdr<12:5> pins so that the correct
Dcache block is invalidated.

3.1.3 sysBus Controller
The sysBus controller consists of a sequencer that receives CPU and DMA
command fields for decode, results from the sysBus arbiter logic, and status
from the memory controller logic. The sequencer supplies state that is used to
generate Bcache control and read requests to the memory controller. The state
controls the loading of data from the sysBus into the read/merge buffer and
write buffer, and it acknowledges cycles to the CPU and 21071-DA chip.

3.1.3.1 Wrapping
The sysBus controller supports wrapping on the sysBus. On read transactions,
the requested octaword is returned to the CPU or the 21071-DA chip.

Note

Wrapping is not optional in the sysBus controller. The processor must
be configured with wrapping enabled.

3–10 DECchip 21071-CA Architecture Overview



3.1.4 Address Decoding
The 21071-CA sysBus interface logic decodes the sysBus address for both CPU
and DMA requests in order to determine what action needs to be taken. It
supports cacheable and noncacheable memory accesses, as well as accesses to
its CSR space.

Table 3–2 provides an exact mapping of this address space.

Table 3–2 sysBus Address Map

sysAdr<33:32> sysAdr<31:29> Address Space Notes

00 XXX Cacheable memory space Accessed by the CPU
instruction stream
(Istream) or data
stream (Dstream).
Accessed by DMA.

01 0XX Noncacheable memory space Accessed by the CPU
(Istream/Dstream).
Accessed by DMA; can
be used for a frame
buffer on the DRAM
bus.

01 100 21071-CA CSRs The 21071-CA chip
will respond to all
addresses in this
space. Dstream access
only.

01 101 Reserved for 21071-DA The 21071-CA expects
the 21071-DA to
respond to addresses
in this range. CPU
Dstream access only.

01 11X Reserved for 21071-DA The 21071-CA expects
the 21071-DA to
respond to addresses
in this range. CPU
Dstream access only.

(continued on next page)

DECchip 21071-CA Architecture Overview 3–11



Table 3–2 (Cont.) sysBus Address Map

sysAdr<33:32> sysAdr<31:29> Address Space Notes

10 XXX Reserved for 21071-DA The 21071-CA expects
the 21071-DA to
respond to addresses
in this range. CPU
Dstream access only.

11 XXX Reserved for 21071-DA The 21071-CA expects
the 21071-DA to
respond to addresses
in this range. CPU
Dstream access only.

3.1.4.1 Cacheable Memory Space
0 0000 0000 .. 0 FFFF FFFF
The 21071-CA chip recognizes the 4 GB of quadrant 0 (corresponding to sysBus
address<33:32> = 00) to be cacheable memory space. The 21071-CA chip
responds to all read/write accesses in this space. If the Bcache is enabled,
cache probes, allocates, deallocates, and invalidates happen according to
the protocols described in Chapter 5. Some or all of main memory can be
programmed to be in this cacheable space.

3.1.4.2 Noncacheable Memory Space
1 0000 0000 .. 1 7FFF FFFF
The 21071-CA chip recognizes the lower 2 GB of quadrant 1 (corresponding to
sysBus address<33:32> = 01) to be noncacheable memory space. The 21071-CA
chip responds to all read/write accesses in this space. The Bcache is bypassed
by the 21071-DA chip on accesses to this space. Some or all of main memory
can be programmed to be in this noncacheable space. If a frame buffer is
supported in system memory, it should be addressed in this region.

3.1.4.3 21071-CA CSR Space
1 8000 0000 .. 1 9FFF FFFF
The 21071-CA must respond to all accesses in this space. Exact CSR addresses
are defined in Chapter 4.

3–12 DECchip 21071-CA Architecture Overview



3.1.5 Lock Address Register and Lock Bit
The 21071-CA chip implements the lock address register and lock bit as
required by the Alpha architecture. The lock register contains sysAdr<32:5>
and gets loaded with the sysAdr during all LDx_L transactions. The 21071-CA
chip locks 32 bytes of data at a time. All LDx_L transactions also set the lock
bit associated with the address register.

The following conditions clear the lock bit:

• Chip reset

• A DMA write address matches the lock address

• Any STx_C command

• A CPU write to any I/O address (to allow PALcode to reset the lock flag)

• The assertion of the ioClrLock command from the 21071-DA

This command is used by the 21071-DA to keep the lock flag clear as long
as memory is locked by a device on the PCI.

Note

The state of the lock bit is unpredictable after STx_C and LDx_L
transactions that have tag parity or non-existent memory errors.

3.1.6 Memory Write Buffer
The 21071-CA chip has a memory writer buffer that supports buffering of up to
four memory write transactions. This write buffer is used to buffer data on its
way to memory for the following types of transactions:

• DMA writes

• Victim data from the Bcache

• CPU noncacheable memory write data (which includes all CPU writes
when allocate mode is disabled)

The 21071-CA chip stores the cache line address, longword masks, memory
bankset bank numbers, and a cache line valid bit per entry of the memory
buffer.

DECchip 21071-CA Architecture Overview 3–13



3.1.6.1 Write Buffer Address Comparison
The 21071-CA chip architecture allows memory read requests to bypass writes
as long as the read address does not match an address in the memory write
buffer. The 21071-CA chip compares the incoming memory read address
against the addresses of the valid entries of the memory write buffer.

If there is a match, then the memory controller will continue to dump the
contents of the write buffer to memory, one cache line at a time, until the write
buffer hit condition no longer exists. The memory controller is then free to
start the original memory read transaction, which resulted from the CPU or
DMA request.

If there is no match, then the memory read is allowed to proceed ahead of
the buffered writes. The memory read transaction may be initiated by a CPU
or DMA read from memory, a DMA masked write transaction, or a partial
cacheable write transaction from the CPU.

3.1.6.2 Write Buffer Flushing
The 21071-CA chip allows the 21071-DA chip to flush the memory write buffer
with a special DMA command.

3.1.6.3 Write Buffer Full Condition
If the memory write buffer is full, then the 21071-CA chip accepts the first data
from the sysBus and stores it in a temporary latch until one write transaction
has been retired to memory. The second data is stalled on the bus until
then. The write buffer full condition can happen on CPU memory writes
(noncacheable or nonallocate), DMA writes, and victim reads from the cache.

3.1.7 Read/Merge Buffer Control
The 21071-CA chip controls the read/merge buffer from the 21071-BA chip.
The read/merge buffer is a cache line buffer which is used for four main
purposes:

• Buffering read data from memory until the sysBus is ready to receive it.

• Supporting Bcache write allocation by providing a mechanism to merge
CPU partial writes to the cache with the rest of the cache line from
memory.

• Supporting STx_C transactions that hit in the cache.

• Supporting LDx_L transactions that hit in the cache.

3–14 DECchip 21071-CA Architecture Overview



The read/merge buffer consists of two cache line buffers— the read buffer and
the merge buffer. The read buffer is used to store memory read data, and the
merge buffer is used to store write data from the CPU or data read from the
cache.

During a CPU read block or DMA read transaction, memory data is loaded
into the read buffer before being sent out to the sysBus or DMA read buffer.
The read buffer acts as a timing stage to phase align the memory timing to the
sysBus timing. After the memory controller has loaded an entry of memory
data into the read buffer, it sets that entry’s valid bit to indicate to the sysBus
controller logic that data is ready to be returned to the sysBus. During these
memory read transactions, the buffer is also used for storage, because the
sysBus could be busy transferring victim data from the cache.

During a cacheable write block transaction with allocate mode enabled, the
valid longwords of CPU data are loaded into the merge buffer while the
memory controller is fetching the rest of the cache line. Because data could
return from memory before all of the CPU data has been loaded, the read and
merge buffers can be loaded simultaneously.

During the special case of an STx_C transaction that hits in the Bcache, the
merge buffer is used to merge the valid longwords of CPU write data with the
rest of the cache line read from the Bcache. After the data has been merged in
the buffer, the entire block is then written back to the Bcache.

During an LDx_L transaction that hits in the Bcache, the 21071-CA reads the
data from the cache into the merge buffer, and then drives the requested data
on the sysBus.

3.1.8 sysBus Transactions
This section describes the sysBus transactions.

3.1.8.1 CPU Transactions
This section describes the CPU transactions.

• Read Block From Memory

A read block from memory can be from cacheable or noncacheable memory
space. Data is read from memory and returned to the CPU. On a cacheable
read transaction, a victim, if any, is extracted from the cache, and then the
cache is filled with the memory data. Only one octaword is transferred on
noncacheable reads. The Dcache is invalidated on Istream reads.

DECchip 21071-CA Architecture Overview 3–15



• Read Block to I/O Space

A read block from I/O space may be directed to the 21071-CA CSR or to
the 21071-DA chip. On a read block from the 21071-CA CSR, the data is
returned by the 21071-CA chip.

A read block that does not fall within the 21071-CA CSR address range is
assumed to belong to the 21071-DA chip.

The 21071-DA chip is expected to receive the command request, take
appropriate action, and notify the 21071-CA chip when data is ready to be
returned to the CPU. The 21071-CA chip then provides cpuDRack<2:0>
and cpuCAck<2:0> to the CPU, and the transaction is terminated.

Note

The 21071-DA chip cannot directly respond to the CPU with
cpuDRack<2:0> and cpuCAck<2:0>. It must respond through the
21071-CA chip.

An I/O read addressed to the 21071-DA chip can be preempted by the
21071-DA chip for deadlock resolution.

• Write Block to Memory

If allocates are turned on and the transaction is to cacheable space, a
cache fill is performed at the end of the write. The cache is filled with
data received from the CPU if the whole cache line is being written. In the
case of a partial write, CPU write data is merged with memory data before
writing in the cache. In either case, a victim (if there is one) is extracted
before the fill.

If allocates are turned off, or if the write is noncacheable, the write data
from the CPU is loaded into the write buffer from where it gets written to
memory.

• Write Block to I/O Space

A write block to I/O space may be directed to a 21071-CA CSR or the
21071-DA chip. On a write block to a 21071-CA CSR, data is written to the
CSR, and the transaction is completed.

An I/O write block that does not fall within the 21071-CA CSR address
range is assumed to belong to the 21071-DA chip. The 21071-DA chip
is expected to notify the 21071-CA chip when the transaction has to be
terminated and the 21071-CA chip asserts cpuCAck<2:0> to the CPU.
An I/O write addressed to the 21071-DA chip can be preempted by it for
deadlock resolution.

3–16 DECchip 21071-CA Architecture Overview



• LDx_L

The Bcache controller performs a cache probe. If the address is a miss,
then the behavior is exactly the same as that of a memory read block,
except that the cache line address is stored in the lock register and the lock
flag is set. The same is true of a noncacheable address.

If the address is a hit, data is read from the cache into the merge buffer
and is then returned to the CPU. As in the miss case, the lock address is
captured, and the lock flag is set.

An LDx_L to I/O space is handled as a read block to I/O space.

• STx_C

The 21071-CA chip responds only to STx_C transactions that are addressed
to memory space or to its CSR space. On an STx_C transaction in memory
space, the state of the lock flag is checked. If the lock flag is clear, the
STx_C fails, and the transaction is terminated with an STx_C fail CACK. If
the lock flag is set, the transaction proceeds as outlined below.

A cache probe is done to detect a hit or a miss. If it hits in the cache,
the write data is loaded into the merge buffer, and a read of the cache
is performed. The read data is merged with the write data and is then
written to the cache. This is necessary because an STx_C transaction is
always less than an octaword, and the write granularity of the Bcache is
an octaword.

If the cache probe failed, the remainder of the flow looks like a write block.
As in the write block flow, the write data enters the merge buffer if Bcache
write allocate is enabled, otherwise it is stored in the memory write buffer.

An STx_C to the 21071-CA chip CSR space is handled as a write block.
Error checking takes precedence over checking the lock flag.

• Barrier

A barrier transaction has no effect on the 21071-CA chip. However, instead
of terminating the transaction right away, the 21071-CA chip allows the
21071-DA chip to respond to a barrier. Therefore, the 21071-DA chip has
to notify the 21071-CA chip when it wants the barrier terminated.

Note

The 21071-CA chip requires the 21071-DA chip to respond to a barrier
instruction using ioCAck<1:0>. Failure to comply with this condition
will cause the transaction to hang.

DECchip 21071-CA Architecture Overview 3–17



• Fetch, FetchM

A fetch, fetchM transaction has no effect on the 21071-CA chip. If a fetch or
a fetchM is within memory or the 21071-CA CSR space, the transaction is
simply acknowledged as OK. The 21071-DA chip must decode and request
acknowledgment of fetch and fetchM transactions if they are within the
21071-DA chip address space.

3.1.8.2 DMA Transactions
After DMA wins arbitration, it may request a transaction with the 21071-CA
chip. Unlike the CPU transactions, the only unit of transfer for DMA
transactions is a cache line.

• DMA Read

A DMA read command is sent by the 21071-DA chip to indicate that
it wants the lower octaword of the cache line first, followed by the
upper octaword. The whole cache line is always returned. A DMA read
transaction to cacheable space causes the Bcache controller to do a cache
probe. If the address hits in the cache, data is read from the cache and
returned to the 21071-DA chip. If the address is noncacheable or if the
address misses in the cache, the data is read from memory.

• DMA Read Wrapped

The only difference between a DMA read and DMA read wrapped
transaction is that the requested data in the DMA read wrapped
transaction is the upper octaword in the cache line, which should be
returned first.

• DMA Read Burst

The DMA read burst command is similar to the DMA read command. It is
used by the 21071-DA chip to give a page mode hint to the 21071-CA chip,
and it may cause the memory controller to remain in page mode at the end
of this read transaction.

• DMA Read Wrapped Burst

The DMA read wrapped burst command is similar to the DMA read
wrapped command. It is used by the 21071-DA chip to give a page mode
hint to the 21071-CA chip, and it will cause the memory controller to
remain in page mode at the end of this read transaction.

3–18 DECchip 21071-CA Architecture Overview



• DMA Write Full

This command indicates that the whole cache line has to be written to
memory. If the address is in cacheable space, the cache is probed. If there
is a cache hit, the corresponding location is invalidated in the Bcache and
Dcache. The write data is loaded into the write buffer from where it is
written to memory. Except for the cache invalidate, the operation is the
same on noncacheable writes or cache miss writes.

If the Bcache is disabled (bc_En clear) or not present on the system, every
DMA write will cause a CPU data cache (Dcache) invalidate.

• DMA Write Masked

The 21071-DA chip requests a DMA write masked transaction when only
a subset of the bytes in a cache line are to be written. The 21071-CA chip
begins the transaction by performing a DMA read. As the read data is
received from the Bcache or memory, it is merged with DMA write data
and loaded into the memory write buffer. If the cache was hit, the cache is
invalidated.

If the Bcache is disabled (bc_En clear) or not present on the system, every
DMA write will cause a CPU Dcache invalidate.

• DMA Flush

This command should be used by the 21071-DA chip when it wants to
flush the memory write buffer. The 21071-CA chip will acknowledge the
transaction after all buffered writes have been written to memory.

3.1.9 Error Handling
During CPU and DMA transactions, the 21071-CA chip detects the following
errors:

• Bcache tag address parity error

• Bcache tag control parity error

• Non-existent memory error

When one or more errors are detected on a transaction, the 21071-CA
chip signals the errors to the CPU or the 21071-DA chip at the end of the
transaction by acknowledging hard error on the cpuCAck<2:0> or ioCAck<1:0>
field. The current sysAdr<33:5> is logged in the error address register and
error status is logged in the error and diagnostics status register. These CSRs
are locked until the CPU clears all the error status bits by writing the CSR.
Refer to Chapter 4 for additional information.

DECchip 21071-CA Architecture Overview 3–19



If errors occur on a transaction while the error address and status are locked,
the transaction is acknowledged with hard error on the cpuCAck<2:0> or
ioCAck<1:0> command fields. The LostErr bit in the error and diagnostics
status Register is set, and neither the error address nor the error status of the
lost error are recorded.

The hard error indication overrides STx_C fail. The lock bit is unpredictable
after LDx_L transactions that have errors.

3.2 Memory Controller
This section describes memory organization and memory controller features.

3.2.1 DRAM and SIMM Requirements
The I/O pins for all the SIMMs or RAMs must be TTL compatible. DRAM
output drivers are controlled by using only the memCAS_l and memWE_l
pins. The VRAM drivers use memDTOE_l and memDSF pins in addition to
the memCAS_l and memWE_l pins. The OE_l pins on the DRAMs should be
grounded. A separate CAS per longword must be used at the RAMs. CAS-
before-RAS refresh must be supported. The expected RAS-access time is 50 ns
to 100 ns, with page mode CAS-access time between 10 ns and 50 ns.

3.2.2 Memory Organization
The 21071-CA chip supports between 8 MB and 4 GB of dynamic random-
access memory (DRAM) and an additional 1 MB to 8 MB of dual port random-
access memory (VRAM).

Memory can be accessed in two widths—64 bits and 128 bits. The actual
number of bits required is higher depending on the mode of error detection.
Longword parity requires 66 or 132 bits, and longword ECC requires 78 or 156
bits corresponding to 64-bit and 128-bit wide memory respectively.

The 21071-CA chip supports up to 8 banksets of DRAM and 1 bankset of
VRAM. Each bankset can be made up of one or two banks. A bank of memory
refers to one width of DRAMs. It may be implemented using SIMMs or by
directly soldering DRAMs on the module. A SIMM implementation requires
more than one SIMM to form one memory bank. For instance, four 33-, 36-,
or 40-bit SIMMs would be required to form a bank width of 128. The two
banks in a bankset should be identical in configuration, size, and speed. The
21071-CA chip has a pair of RAS signals that corresponding to a bankset—
memRAS_l and memRASB_l. Each bank in a bankset should be connected to
one of these RAS pins. If the bankset has only one bank of RAMs, memRAS_l
should be used, and memRASB_l should be left unconnected.

3–20 DECchip 21071-CA Architecture Overview



Figure 3–3 shows the memory set organization.

Figure 3–3 Memory Set Organization

memCAS_l<i> pin that corresponds logically
to longword<j>, depends on width of bankset.

 

memCAS_l<1>
 
memCAS_l<0>
Longword CASes
 
memRAS_l<0>
All longwords are RASed 
together by memRASl
 

memRAS_l<n> 

memRASB_l<n>

 

memRAS_l<8>

 

memDTOE, memDSF

 

Bankset 0
(1 Bank in Bankset)
 

Bankset n
(2 Banks in Bankset)

Bank 0

Bank 1

Bankset 8, VRAM only

lw 0 lw 1 lw 2 lw 3

LJ-03289-TI0

2) With 64-bit memory, only memCAS_l<1:0> are used.

With 128-bit memory, memCAS_l<3:0> are used.

3) memAdr and memWEL are shared by all sets and subsets.

1) Each Bankset has a pair of RASes, memRAS_l<8:0> and memRASB_l<8:0>.

3.2.2.1 Memory Bankset Characteristics
Each memory bankset must conform to the following characteristics:

• Width: All the banksets in a system must have the same memory width.

• Banks: The banks in a bankset should be identical in DRAM size and
speed.

• Longword writes: Each bankset must support longword write capability.
The 21071-CA chip generates longword CASes for writes. For banksets
implemented using 33-, 36- or 40-bit SIMMs, each SIMM should receive a
unique memCAS_l pin. Table 3–3 shows the CAS connections.

• Address Range: Each bankset has a programmable base address and
size. The base address of a bankset must be aligned to the natural size
boundary. For example, an 8 MB bankset must start on an 8 MB boundary.

DECchip 21071-CA Architecture Overview 3–21



Table 3–3 Longword Number to memCAS_l[n] Correspondence

Memory memCAS_l

Width <0> <1> <2> <3>

64 LW0 LW1 Unused Unused
LW2 LW3 Unused Unused
LW4 LW5 Unused Unused
LW6 LW7 Unused Unused

128 LW0 LW1 LW2 LW3
LW4 LW5 LW6 LW7

A detailed description of the banksets is given in the following sections.

3.2.2.2 Bankset0..Bankset7
Bankset0 through bankset7 are intended for DRAMs; they have the same
features.

• DRAM Type: 1M x 1, 1M x 4, 4M x 1, 4M x 4 and 16M x 1 DRAMs are
supported. Both symmetrical (11,11) and asymmetrical (12,10) addressing
for 16 MB DRAMs are supported. Typical expected RAS access time is
50 to 100 ns. CAS-before-RAS refresh is used to refresh all banksets
simultaneously.

• Bankset Size (MB): A bankset may be made up of 1 or 2 banks, giving a
total of 1M, 2M, 4M, 8M, 16M or 32M addressable locations depending on
the depth of the DRAMs used. Each location consists of 8 bytes for 64-bit
memory or 16 bytes for 128-bit memory. Table 3–4 lists supported bankset
sizes and the possible DRAM configurations that can be used to get these
sizes.

Table 3–4 Supported Bankset Sizes and DRAM Configurations for Different
Memory Widths

Locations Bankset Size Number of DRAM

in Bankset 64-Bit 128-Bit Subbanks Configurations

1M 8 MB 16 MB 1 1M x 1 / 1M x 4
2M 16 MB 32 MB 2 1M x 1 / 1M x 4
4M 32 MB 64 MB 1 4M x 1 / 4M x 4
8M 64 MB 128 MB 2 4M x 1 / 4M x 4

16M 128 MB 256 MB 1 16M x 1
32M 256 MB 512 MB 2 16M x 1

3–22 DECchip 21071-CA Architecture Overview



3.2.2.3 Bankset8
A single, fixed bankset location for VRAMs simplifies the support logic and
reduces CSR bits. As bankset8 provides from 1 MB to 8 MB of VRAM, more
than one VRAM bankset is not required.

• VRAM Type: 128K x 4, 128K x 8, 256K x 4, and 256K x 8 VRAMs are
supported. The number of rows in the VRAM must be 512. This is required
for the video display pointer logic to increment correctly. Typical expected
RAS-access-time to the RAM port of the VRAM is 50 ns to 100 ns. CAS-
before-RAS refresh is used.

• Bankset8 Size: Bankset8 can have 1 or 2 banks giving a total of 128K,
256K or 512K addressable locations. This provides 1 MB, 2 MB, or 4 MB of
VRAM for 64-bit memory; and 2 MB, 4 MB, or 8 MB for 128-bit memory.

3.2.2.4 Supported Memory SIMMs
The 21071-CA chip supports industry-standard 33-, 36-, and 40-bit SIMMs. 33-
and 36-bit SIMMs are used when longword parity is the error detection mode,
and 40-bit SIMMs are used when longword ECC is used. Table 3–4 lists the
DRAM sizes and widths that are supported. Split RAS SIMMs are supported
by the 21071-CA chip. Split RAS SIMMs have two banks of RAMs, one on
each side. A split RAS SIMM can therefore be considered as a bankset with
two banks, and the corresponding memRAS_l and memRASB_l can be used to
select between either side of the SIMM.

3.2.3 Memory Address Generation
Note

The programmable base address of a bankset must be aligned to the
natural size boundary. For example, an 8 MB bankset must start on an
8 MB boundary. The hardware allows for holes in memory with badly
programmed addresses.

This section describes the generation of row and column addresses from the
address originating on the sysBus, that is, the physical address PA<33:5>. The
21071-CA chip sysBus interface decodes accesses to memory space and the
21071-CA chip I/O space. The physical addresses received by the 21071-CA
chip memory control logic are always in memory space.

For memory reads, the address comes directly from sysAdr<33:5>. For memory
writes, the write buffer provides the initial value of PA<33:4>. For video serial
register loads, the address is derived internally.

DECchip 21071-CA Architecture Overview 3–23



Each bankset has a programmable base address and size. The incoming
physical address is compared in parallel with the memory ranges of all
banksets present. Depending on the size of the bankset, a variable number of
PA and base address bits from the CSR are compared. Table 3–5 describes the
base address bits and the subbank bit for the allowed bankset sizes.

Table 3–5 Base Address Comparison

Bankset Size Compared Subbank

512 MB PA<33:29> PA<28>
256 MB PA<33:28> PA<27>
128 MB PA<33:27> PA<26>
64 MB PA<33:26> PA<25>
32 MB PA<33:25> PA<24>
16 MB PA<33:24> PA<23>
8 MB PA<33:23> PA<22>
4 MB PA<33:22> PA<21>
2 MB PA<33:21> PA<20>
1 MB PA<33:20> PA<19>

Note

Bankset0 through bankset7 have a minimum size of 8 MB. VRAM
bankset8 has a maximum size of 8 MB.

The memory address depends on the width of memory and the number of row
and column bits per bankset. Program Sn_ColSel according to Table 3–6 and
Table 3–7.

Table 3–6 Row and Column Address Decode for Bankset0..7

Sn_ColSel
Memory
Width

Row,Column
Bits Row Address Column Address <11:0>

000 64 12,12 PA<24:13> PA<26,25,12:3>
001 64 12,10 or

11,11
PA<24:13> PA<x,24,12:3>

011 64 10,10 PA<xx,22:13> PA<xx,12:3>

000 128 12,12 PA<25,24,22:13> PA<27,26,23,12:4>
001 128 12,10 or

11,11
PA<25,24,22:13> PA<x,25,23,12:4>

011 128 10,10 PA<xx,22:13> PA<xx,23,12:4>

3–24 DECchip 21071-CA Architecture Overview



Table 3–7 Row and Column Address Decode for Bankset8

S8_ColSel
Memory
Width Row,Id Bits

Row
Address<11:0> Column Address<11:0>

100 64 9,9 xxx,<20:12> xxx,<11:3>
101 64 9,8 xxx,<19:11> xxxx,<10:3>

100 128 9,9 xxx,<21:13> xxx,<12:4>
101 128 9,8 xxx,<20:12> xxxx,<11:4>

Note

BankSet0 through bankset7 cannot have less than 10 column bits as
the smallest DRAM size supported is 1M x 1. Bankset8 cannot have
more than 9 column bits as the largest VRAM supported is 256K x 8.

3.2.4 Performance Optimizations
The following sections describe performance optimizations.

3.2.4.1 Memory Page Mode Support
The 21071-CA chip supports page mode within CPU read transactions. Page
mode between transactions is supported on DMA read burst transactions and
on memory write transactions.

The following page mode features are supported by the 21071-CA chip:

• A refresh transaction never starts in page mode. If any memRAS_l is
asserted when the refresh transaction is selected, the controller waits for
the duration of the RAS precharge before doing the refresh.

• A video transaction never starts in page mode. If memRAS_l<8> or
memRASB_l<8> are asserted when the video transaction is selected,
the controller waits for the duration of the RAS precharge before doing the
transaction.

• A memory read transaction will start in page mode if the preceding
transaction was a memory read initiated by a DMA read burst command
on the sysBus, and the row address, bankset, and subbank of the current
transaction are the same as that of the previous transaction. Furthermore,
a memory read initiated by a CPU transaction (read or partial write) will
never start in page mode. This is because the sysBus controller notifies
the memory controller to deassert RAS if the sysBus has been given to the
CPU after a DMA read burst.

DECchip 21071-CA Architecture Overview 3–25



• A memory write transaction starts in page mode, only if the previous
transaction was a write, and the row address, bankset, and subbank of the
current write are the same as that of the previous transaction.

In all of the previous cases, the transaction will not start in page mode if the
maximum RAS width counter has overflowed. The RAS has to be precharged
even if there is a page hit.

A transaction that does not start in page mode may or may not have the extra
latency of RAS precharge. If the current transaction is to a different bankset
than the previous one, the RAS for the previous transaction is deasserted, and
at the same time, the RAS for the current one is asserted.

3.2.4.2 Read Latency Minimization
In order to minimize the read latency seen by devices on the sysBus, the
memory controller performs certain optimizations in the way transactions are
selected. In general, because writes can go into a deep write buffer, reads
are given priority over writes, to the extent that in some cases the memory
controller waits for a read to happen even if there are writes queued up in the
write buffer. These situations are described here:

Following a memory read initiated by a CPU or DMA transaction on the
sysBus (CPU read or a partial write), the 21071-CA chip does not service a
write from the write buffer for 12 memClk cycles after the last read data has
latched, unless the write buffer is full. The reason for doing this is that there
is a delay between the completion of the read by the memory controller and
the initiation of another read on the sysBus. Servicing a write from the write
buffer would add latency to the following read. This will definitely happen on
reads that have Bcache victims, because every read will be accompanied by a
write. The write will add latency to the next read, and the effect of the victim
buffer will be minimal. This condition is called Wait After Read (WAR). Waiting
after a DMA read also helps in the case of a scatter/gather read performed in
guaranteed-access-time (GAT) mode. See Section 9.4.3 for more details about
GAT mode.

The writes are held off only if the write buffer is not full.

3.2.5 Transaction Scheduler
The memory interface does memory refresh, cache line reads, cache line writes
and shift register loads to VRAM bankset8. The memory controller has a
scheduler that prioritizes transactions and selects one of them to be serviced.
If the selected transaction is waiting for RAS precharge, and in the meantime
another higher priority transaction comes along, the scheduler deselects the
previously chosen transaction and selects the higher priority one.

3–26 DECchip 21071-CA Architecture Overview



Table 3–8 describes the priority scheme.

Table 3–8 Memory Transaction Scheduling

Refresh
Request

Read
Request

WBuf
Hit 2

Write
Request

WBuf
Full 3

Video
Request RB 4 WAR5 Select

1 X1 X X X X X X Refresh
0 X X X X 1 X X Video
0 1 0 X X 0 X X Read
0 1 1 X X 0 X X Write
0 0 X X 1 0 0 X Write
0 0 X 1 0 0 X 0 Write
0 0 X X X 0 1 X None
0 0 X X 0 0 X 1 None

1X : Don’t care
2WBuf Hit: Read address matches buffered write.
3WBuf Full: Write buffer full.
4RB: Read burst. Hint to stay in read page mode.
5WAR: Wait after read. Internal stall signal.

3.2.6 Programmable Memory Timing
The memory control state machine sequences through all the memory
transactions. On memory read and write transactions, it has to communicate
with the 21071-BA chips so that data may be latched from the memData bus or
driven onto the memData bus respectively. All memory signals are generated
on memClkR. However commands from the 21071-CA chip to the 21071-BA
chip are sent on sysClocks (clk2R). Because the sysClock cycle time is twice
that of the memClk, the 21071-BA chips have to be informed which memClk
the data has to be latched on. This is done by sending immediate and delayed
commands. Immediate commands require that data is latched (or driven) on
the next memClk rising edge, and the delayed commands require that data be
latched (or driven) on the second memClkR.

The memory control state machine is actually made up of two separate state
machines — one is the master, which does all the RAS and CAS assertion, and
controls when the other state machines start; the second is the read/write state
machine, which does all the sequencing for generating the memCmds to read
or write memory data. The read/write state machine is started by the master,
and then it sequences independently. Each state machine uses some of the
programmed timing parameters to generate the corresponding memory control
signals.

DECchip 21071-CA Architecture Overview 3–27



Note

While programming the memory timing, ensure that the parameters
used for the address, RAS, and CAS are compatible with the ones used
for data; otherwise, operation on the memory interface will be incorrect.

Because memCmds have to be sent to the 21071-BA chips on clk2R, the
memory controller synchronizes the start of all transactions to clk2R. This
way, the memory control signals track the memory data according to the
programmed values. This synchronization may add an extra delay of one
memClk on memory transactions. When the memory controller is idle, sysBus
reads or writes do not have the extra delay, because the corresponding requests
are generated synchronous to sysClock.

3.2.7 Presence Detect Logic
The 21071-CA chip supports loading the status of 32 presence pins into a
register after reset. The 32 bits are loaded into a shift register on the module
and then shifted one bit at a time into the 21071-CA chip.

As soon as the internal synchronized version of reset deasserts, the loading
process begins. First, the data is loaded into the shift register by asserting
memPDLoad_l and pulsing memPDClk. Then a bit is loaded by toggling
memPDLoad_l. Either edge of memPDClk may be used to shift memPDDIn, as
memPDDIn is sampled when memPDClk is stable. Once all 32 bits have been
loaded, memPDClk stops and the presence detect registers may be read. See
Figure 3–4, which shows the operation of the presence detect logic.

3–28 DECchip 21071-CA Architecture Overview



Figure 3–4 Presence Detect Logic Operation

memPDClk

Clk2R

memPDLoad_l

int_reset_l

Load Bit 31 Load Bit 30

LJ-03564-TI0

Load Bit 0Load Bit 28Load Bit 29

memPDClk

Clk2R

memPDLoad_l

int_reset_l

DECchip 21071-CA Architecture Overview 3–29



Table 3–9 shows the presence detect shift registers that are supported.

Table 3–9 Supported Presence Detect Shift Registers

Part Bits 1 /Load 2 clk 3 Din4 Dout 5 Vcc6 Gnd7

74F166 8 /PE CP DS Q7 — /CE
74F194 4 *S1 CP DSR Q3 /MR,S0 —
74F195 4 /PE CP J,/K Q3 /MR —
74F199 8 /PE CP J,/K Q7 /MR /CE
74F299 8 *S1 CP DSR Q0 /MR,/OE —
74F322 8 S/P CP D0 Q7 /MR,/SE /RE,S
74F323 8 *S1 CP DSR Q0 /SR /OE
74F395 4 *PE /CP DS QS /MR /OE
74F674 16 R/W /CP NotSup Q15 M /CS
74F676 16 *M /CP SI SO — /CS

1Number of presence detect pins supported.
2Pins to tie to memPDLoad_l. Asterisk (*) indicates that signals must be inverted on module.
3Pins to tie to memPDClk.
4Pins to daisy chain data into.
5Pins to daisy chain to next shift register or to memPDDIn.
6Pins to be tied high.
7Pins to be tied low.

3.2.8 Video Support Logic
The 21071-CA chip provides the logic and control to perform full and split
serial register loads to the VRAM bankset8. The 21071-CA chip does regular
CPU/DMA accesses to the random port of bankset8 if the address matches
the bank’s base address, just like for any other bankset. In addition, the
21071-CA chip does serial register loads in response to vframe_l or vRefresh_l
pin assertions. When the 21071-CA chip does a serial register load, the VRAM
latches the data in the accessed row into its serial register. Other external
logic then shifts out the serial register through the VRAM’s serial port. The
21071-CA chip does not provide any support for unloading the serial port of
the VRAM. Figure 3–5 shows an implementation of a video subsystem using a
dumb frame buffer in bankset8.

In a full serial register load, the entire RAM row specified by the row address
is latched into the serial register. In a split serial register load, only half the
row is latched into the serial register. The MSB of the column address specifies
whether the upper or lower half of the row will be latched.

3–30 DECchip 21071-CA Architecture Overview



In terms of timing, a serial register load is identical to a memory read
to bankset8, with the exception of memDTOE and memDSF. The data on
memData<31:0> is ignored during serial register loads.

The 21071-CA chip provides the logic and control to perform full and split
serial register loads to the VRAM bankset8. The Video Frame Pointer (VFP)
CSR provides the start address of the video frame buffer in memory. An
internal set of latches, called the Video Display Pointer (VDP), contains the
subset, row, and column addresses for video shift register loads.

Following a vFrame_l assertion, the Video Frame Pointer is latched into the
VDP. A full serial register load is performed at the subbank and row address
indicated in the VDP, with an all-zero column address. At the end of the load,
the row address in the VDP is incremented (mod 512) to point to the next
row. In case of overflow, the subbank bit in the VDP is toggled if subbanks are
enabled for bankset 8. The column MSB in the VDP is toggled.

Following a vRefresh_l assertion, a split serial register load is performed at the
subbank and row address indicated in the VDP. The column MSB in the VDP
is toggled. If the new column MSB equals 0, the row address in the VDP is
incremented. If the row address overflows (mod 512), the subbank bit in the
VDP is toggled if the subbank is enabled.

The memory controller can take up to 135 sysClk cycles to complete a serial
register load after the assertion of vFrame_l or vRefresh_l. If a request is
reasserted before the previous request has been completed, the second request
may either override the first request or it may be ignored.

Simultaneous assertion of vFrame_l and vRefresh_l can cause one of the
requests to be serviced while the other is lost.

Figure 3–5 shows a video subsystem using a DECchip 21071 chipset and a
dumb frame buffer.

DECchip 21071-CA Architecture Overview 3–31



Figure 3–5 Video Subsystem Using a DECchip 21071 Chipset and a Dumb Frame
Buffer

L J - 0 3 4 2 7 - T I 0

Controller
Video

ISA

MUX Control

Serial Data

32

Cursor/
Timing
Control

Generator

DRAM

Interface

BCache

21064

RamDAC is a trademark of Brooktree Corp.

PCI

Memory Data

Address

DECchip

Memory Control
Cache/

2 x Data PathData

128 64

VRAM
Memory Address

Bridge
ISA

ClockPCI

Shift ControlVideo Refresh Control

R

G

B
RamDAC *

*

21071-DA

21071-CA

21071-BA

DECchip

DECchip

DECchip

3–32 DECchip 21071-CA Architecture Overview



4
DECchip 21071-CA Programmer’s

Reference

This chapter describes the 21071-CA control and status registers (CSRs). It
also provides information about how to program memory timing, configure
memory, and initialize the Bcache.

4.1 Register Descriptions
This section describes the 21071-CA control and status registers (CSRs).
These CSRs are 16 bits wide and addressed on cache-line boundaries only.
Writes to read-only registers could result in unpredictable behavior. Reads are
nondestructive. Only zeros should be written to unspecified bits within a CSR.
Only bits <15:0> of each CSR are defined. Other bits are undefined. CSRs are
initialized as specified in the register descriptions.

Table 4–1 shows the base address and name of all the control and status
registers.

Table 4–1 DECchip 21071-CA Register Summary

Address Name

1 8000 0000 General control register
1 8000 0020 Reserved
1 8000 0040 Error and diagnostic status register
1 8000 0060 Tag enable register
1 8000 0080 Error low address register
1 8000 00A0 Error high address register
1 8000 00C0 LDx_L low address register
1 8000 00E0 LDx_L high address register

(continued on next page)

DECchip 21071-CA Programmer’s Reference 4–1



Table 4–1 (Cont.) DECchip 21071-CA Register Summary

Address Name

1 8000 0200 Global timing register
1 8000 0220 Refresh timing register
1 8000 0240 Video frame pointer register
1 8000 0260 Presence detect low data register
1 8000 0280 Presence detect high data register

1 8000 0800 Bank 0 base address register
1 8000 0820 Bank 1 base address register
1 8000 0840 Bank 2 base address register
1 8000 0860 Bank 3 base address register
1 8000 0880 Bank 4 base address register
1 8000 08A0 Bank 5 base address register
1 8000 08C0 Bank 6 base address register
1 8000 08E0 Bank 7 base address register
1 8000 0900 Bank 8 base address register

1 8000 0A00 Bank 0 configuration register
1 8000 0A20 Bank 1 configuration register
1 8000 0A40 Bank 2 configuration register
1 8000 0A60 Bank 3 configuration register
1 8000 0A80 Bank 4 configuration register
1 8000 0AA0 Bank 5 configuration register
1 8000 0AC0 Bank 6 configuration register
1 8000 0AE0 Bank 7 configuration register
1 8000 0B00 Bank 8 configuration register

1 8000 0C00 Bank 0 timing register A
1 8000 0C20 Bank 1 timing register A
1 8000 0C40 Bank 2 timing register A
1 8000 0C60 Bank 3 timing register A
1 8000 0C80 Bank 4 timing register A
1 8000 0CA0 Bank 5 timing register A
1 8000 0CC0 Bank 6 timing register A
1 8000 0CE0 Bank 7 timing register A
1 8000 0D00 Bank 8 timing register A

1 8000 0E00 Bank 0 timing register B
1 8000 0E20 Bank 1 timing register B

(continued on next page)

4–2 DECchip 21071-CA Programmer’s Reference



Table 4–1 (Cont.) DECchip 21071-CA Register Summary

Address Name

1 8000 0E40 Bank 2 timing register B
1 8000 0E60 Bank 3 timing register B
1 8000 0E80 Bank 4 timing register B
1 8000 0EA0 Bank 5 timing register B
1 8000 0EC0 Bank 6 timing register B
1 8000 0EE0 Bank 7 timing register B
1 8000 0F00 Bank 8 timing register B

4.2 General Registers
This section describes the 21071-CA general registers. These registers control
the sysBus state machine and associated logic.

4.2.1 General Control Register
The general control register contains status information that affects the major
operational modes of the entire 21071-CA chip. Figure 4–1 shows the register
bit assignments, and Table 4–2 provides the bit descriptions for the general
control register.

Figure 4–1 General Control Register

00010203040506070809101112131415

0

LJ-03094-TI0

sysArb

wideMem
bc_EN
bc_NoAlloc
bc_LongWr
bc_IgnTag
bc_FrcTag
bc_FrcD
bc_FrcV
bc_FrcP

1  8000  00000 00

bc_BadAP
Reserved
Reserved

Reserved

Reserved

DECchip 21071-CA Programmer’s Reference 4–3



Table 4–2 General Control Register

Field Bits
Type,
Reset Description

Reserved <0> MBZ —

sysArb <2:1> RW,0 DMA arbitration mode. Determines arbi-
tration scheme for sysBus transactions.

Value Meaning

0X CPU priority
10 DMA priority
11 DMA strong priority

See Section 3.1.1 for a detailed description
of these fields.

Reserved <3> MBZ —

wideMem <4> RO,– Memory size. Reads the status of the
wideMem input pin. Returns 1 if the
memory is 128 bits wide, or 0 if 64 bits
wide.

bc_En <5> RW,0 Bcache enable. When clear, the Bcache is
disabled and the cache state machine will
not probe the cache.

bc_NoAlloc <6> RW,0 Bcache no allocate mode. When set, CPU
writes to cacheable memory space will not
be allocated into the cache.

bc_LongWr <7> RW,0 Bcache long writes. When set, two sysBus
cycles are required to write to the cache
data RAMs. See Section 5.1.4.

bc_IgnTag <8> RW,0 Bcache ignore tag. When set, Bcache
probes will act as if the valid bit was
invalid. All tag results will be ignored, and
any victims will be lost. Tag and address
parity will be ignored. May be used to fill
the cache with valid data.

(continued on next page)

4–4 DECchip 21071-CA Programmer’s Reference



Table 4–2 (Cont.) General Control Register

Field Bits
Type,
Reset Description

bc_FrcTag <9> RW,0 Bcache force tag. When set, the Bcache
will be probed for victims, and the line
will be invalidated using the values in the
bc_FrcD, bc_FrcV, and bc_FrcP. CSRs will
be used as the tag controls. Although the
line is invalidated (assuming bc_FrcV
is reset), the data is loaded into the
cache and will be returned to the CPU
as cacheable. Used for diagnostic testing
of the cache RAM, and for flushing the
cache by setting this bit, clearing bc_FrcV,
and cycling through the address range
present in the cache.

bc_FrcD <10> RW,0 Bcache force dirty. When set, the dirty bit
will be set on the next cache fill.

bc_FrcV <11> RW,0 Bcache force valid. When set, the valid bit
will be set on the next cache fill.

bc_FrcP <12> RW,0 Bcache force parity. When set, the parity
bit will be set on the next cache fill.

bc_BadAP <13> RW,0 Bcache force bad address Parity. When
set, the tag address parity will be loaded
as bad. This bit is independent of the
bc_FrcTag bit.

Reserved <15:14> MBZ —

4.2.2 Error and Diagnostic Status Register
The error and diagnostic status register contains status information for
diagnostics and for error analysis. The occurrence of an error sets one or
more error bits (bc_TAPErr, bc_TCPErr, nxMErr) and locks the address of the
error. After the address is locked, any additional error will set lostErr and will
not affect the address or other error bits (bc_TAPErr, bc_TCPErr, nxMErr).
Clearing all of the error bits (not the lostErr bit) unlocks the address.

Figure 4–2 shows the register bit assignments, and Table 4–3 provides the bit
descriptions for the error and diagnostic status register.

DECchip 21071-CA Programmer’s Reference 4–5



Figure 4–2 Error and Diagnostic Status Register

00010203040506070809101112131415

0

LJ-03095-TI0

lostErr
bc_TAPErr
bc_TCPErr
nxMErr
dmaCause
vicCause
cReqCause

ldxlLock
wrPend

1  8000  00400 0 0

pass2
Reserved

Table 4–3 Error and Diagnostic Status Register

Field Bits
Type,
Reset Description

lostErr <0> RW1C,0 Multiple errors. When set, indicates that
additional errors occurred when an error
address was already locked. No address or
cause information is latched for the error.
Cleared by writing a 1 to lostErr.

bc_TAPErr <1> RW1C,0 Bcache tag address parity error. When set,
indicates that a tag probe encountered bad
parity in the tag address RAM. Set only
when address is unlocked.

bc_TCPErr <2> RW1C,0 Bcache tag control parity error. When set,
indicates that a tag probe encountered bad
parity in the tag control RAM. Set only
when address is unlocked.

nxMErr <3> RW1C,0 Nonexistent memory error. When set,
indicates that a read or write occurred to
an invalid address that does not map to
any memory bank, CSR, or I/O quadrant.
Set only when address is unlocked.

(continued on next page)

4–6 DECchip 21071-CA Programmer’s Reference



Table 4–3 (Cont.) Error and Diagnostic Status Register

Field Bits
Type,
Reset Description

dmaCause <4> RO,– DMA transaction caused error. When
set, indicates that the bc_TAPErr,
bc_TCPErr, or nxMErr was caused by
a DMA transaction. Locked with the error
address. Only valid when an error is
indicated on bc_TAPErr, bc_TCPErr, or
memErr.

vicCause <5> RO,– Victim write caused error. When set,
indicates that an NXM error was caused
by a victim write transaction. Undefined
for other types of errors. Locked with the
error address. Only valid when an error
is indicated on bc_TAPErr, bc_TCPErr, or
memErr.

cReqCause <8:6> RO,– Cycle request that caused error. Indicates
the DMA or CPU cycle request type that
caused the error. Copy of either the
cpuCReq or ioCmd lines depending on
the DmaCause CSR. Locked with the
error address. Only valid when a error
is indicated on bc_TAPErr, bc_TCPErr, or
memErr.

Reserved <12:9> MBZ —

pass2 <13> RO,1 Chip version reads low on pass1 and high
on pass2.

ldxlLock <14> RO,– LDx_L locked. When set, indicates that
the lock bit for LDx_L is set, and that the
next STx_C may succeed. Writing to any
CSR or I/O space location clears this lock
bit.

wrPend <15> RO,0 Write pending. When set, indicates that
valid write data is stored in the write
buffer.

DECchip 21071-CA Programmer’s Reference 4–7



4.2.3 Tag Enable Register
The tag enable register is a read/write register. This register indicates which
bits of the cache tag are to be compared with sysAdr<33:5>. If a bit is 1, the
corresponding bits in sysAdr<33:5> and tagAdr<31:17> are compared. If a
bit is 0, there is no comparison for those bits, and the tagAdr bit is assumed
to be tied low on the module (through a resistor). Bits <15:1> in the register
represent tagAdr<31:17>. This register is not initialized.

There is no requirement that the upper bits of tagEn be set. An
implementation that does not allow the full 4 GB of cacheable memory to
be installed may mask off upper bits of TagEn, and save having to store a bit
in the tag address in the tag address RAM.

To construct the tagEn bits, see Tables 4–4 and 4–5. The value shown in
Table 4–4 (based on the cache size) is ANDed with the value in Table 4–5
(based on the maximum cacheable system memory).

The following example shows how to program a system with a 16 MB cache
and a maximum of 1 GB of cacheable memory:

1111 1111 0000 000X (ANDed with (16 MB, Table 4-4))
0011 1111 1111 111X (gives (1 GB, Table 4-5))

0011 1111 0000 000X (value is put into tag enable register)

Figure 4–3 shows the register bit assignments for the tag enable register,
Table 4–4 provides the cache size tag enable values, and Table 4–5 provides
the maximum memory tag enable values.

Figure 4–3 Tag Enable Register

00010203040506070809101112131415

LJ-03096-TI0

1  8000  0060TagEn <31:17> 0

Reserved

4–8 DECchip 21071-CA Programmer’s Reference



Table 4–4 Cache Size Tag Enable Values

tagEn<15:0> Compared Cache Size

0000 0000 0000 000X None 4 GB
1000 0000 0000 000X <31:31> 2 GB
1100 0000 0000 000X <31:30> 1 GB
1110 0000 0000 000X <31:29> 512 MB
1111 0000 0000 000X <31:28> 256 MB
1111 1000 0000 000X <31:27> 128 MB
1111 1100 0000 000X <31:26> 64 MB
1111 1110 0000 000X <31:25> 32 MB
1111 1111 0000 000X <31:24> 16 MB
1111 1111 1000 000X <31:23> 8 MB
1111 1111 1100 000X <31:22> 4 MB
1111 1111 1110 000X <31:21> 2 MB
1111 1111 1111 000X <31:20> 1 MB
1111 1111 1111 100X <31:19> 512 KB
1111 1111 1111 110X <31:18> 256 KB
1111 1111 1111 111X <31:17> 128 KB

Table 4–5 Maximum Memory Tag Enable Values

tagEn<15:0> Compared Memory Size

1111 1111 1111 111X <31:17> 4 GB
0111 1111 1111 111X <30:17> 2 GB
0011 1111 1111 111X <29:17> 1 GB
0001 1111 1111 111X <28:17> 512 MB
0000 1111 1111 111X <27:17> 256 MB
0000 0111 1111 111X <26:17> 128 MB
0000 0011 1111 111X <25:17> 64 MB
0000 0001 1111 111X <24:17> 32 MB
0000 0000 1111 111X <23:17> 16 MB
0000 0000 0111 111X <22:17> 8 MB
0000 0000 0011 111X <21:17> 4 MB
0000 0000 0001 111X <20:17> 2 MB
0000 0000 0000 111X <19:17> 1 MB
0000 0000 0000 011X <18:17> 512 KB
0000 0000 0000 001X <17:17> 256 KB
0000 0000 0000 000X None 128 KB

DECchip 21071-CA Programmer’s Reference 4–9



4.2.4 Error Low Address Register
The error low address register locks the low order bits of the sysBus address
that caused the error that set the bc_TAPErr, bc_TCPErr, or nxMErr bit in
the error and diagnostic status register. If a victim read caused the error,
then the victim address is not latched; rather, the address of the transaction is
latched. Bits <15:0> represent sysAdr<20:5>. This register is read-only. It is
not initialized and is only valid when an error is indicated.

Figure 4–4 shows the register bit assignments for the error low address
register.

Figure 4–4 Error Low Address Register

00010203040506070809101112131415

LJ-03097-TI0

1  8000  0080err_LAdr <20:5>

4.2.5 Error High Address Register
The error high address register locks the high order bits of the sysBus address.
Bits <12:0> represent sysAdr<33:21>. This register is read-only. It is not
initialized and is only valid when an error is indicated.

Figure 4–5 shows the register bit assignments for the error high address
register.

Figure 4–5 Error High Address Register

00010203040506070809101112131415

LJ-03098-TI0

1  8000  00A0000 err_Hadr <33:21>

Reserved

4.2.6 LDx_L Low Address Register
The LDx_L low address register stores the low order bits of the last locked
address. Bits <15:0> in the register represent sysAdr<20:5>. This register is
read-only, and it is not initialized.

4–10 DECchip 21071-CA Programmer’s Reference



Figure 4–6 shows the register bit assignments for the LDx_L low address
register.

Figure 4–6 LD x_L Low Address Register

00010203040506070809101112131415

LJ-03099-TI0

1  8000  00C0ldxl_LAdr <20:5>

4.2.7 LDx_L High Address Register
The LDx_L high address register stores the high order bits of the locked
address. Bits <12:0> in the register represent sysAdr<33:21>. This register is
read-only, and it is not initialized.

Figure 4–7 shows the register bit assignments for the LDx_L high address
register.

Figure 4–7 LD x_L High Address Register

00010203040506070809101112131415

LJ-03100-TI0

1  8000  00E0000 ldxl_HAdr <33:21>

Reserved

4.3 Memory Registers
The following registers on the 21071-CA chip control memory configuration and
timing. Each bankset of memory has one configuration register and two timing
registers. The global timing register and refresh timing register apply to all
banksets. The video frame pointer is used for video transactions to bankset8.

DECchip 21071-CA Programmer’s Reference 4–11



4.3.1 Video Frame Pointer Register
The video frame pointer register contains address information that points to
the beginning of the video frame buffer. The video frame pointer is loaded
into the video display pointer at the beginning of each full serial transfer to
bankset8. This register is not initialized.

Figure 4–8 shows the register bit assignments, and Table 4–6 provides the bit
descriptions for the video frame pointer register.

Figure 4–8 Video Frame Pointer Register

00010203040506070809101112131415

LJ-03101-TI0

vfp_Col  
vfp_Row  
vfp_SubBank

1  8000  02400

Reserved

Table 4–6 Video Frame Pointer Register

Field Bits
Type,
Reset Description

vfp_Col<4:0> <4:0> RW,– Video frame column address pointer.
vfp_Col<4:0> are used as column
address <6:2> for all serial register
loads.

vfp_Row<8:0> <13:5> RW,– Video frame row address pointer.
Row address of the start of the
frame buffer.

(continued on next page)

4–12 DECchip 21071-CA Programmer’s Reference



Table 4–6 (Cont.) Video Frame Pointer Register

Field Bits
Type,
Reset Description

vfp_SubBank <14> RW,– Video frame subbank pointer.
Subbank for the start of the
frame buffer. If the subbank is
enabled by setting s8_SubEna
in the bankset8 configuration
register, setting the vfp_SubBank
bit causes the 21071-CA chip to
assert memRASB_l<8> instead of
memRAS_l<8> on full serial register
loads. vfp_SubBank is ignored if
s8_SubEna is cleared.

Reserved <15> MBZ —

4.3.2 Presence Detect Low Data Register
The presence detect low data register stores the low order bits of the presence
detect information that was shifted in after reset. Bits <15:0> in the register
represent data bits <15:0> that were shifted in.

Note

After deassertion of reset, it takes 148 system clock cycles for presence
detect data to become valid.

Figure 4–9 shows the register bit assignments for the presence detect low data
register.

Figure 4–9 Presence Detect Low Data Register

00010203040506070809101112131415

LJ-03102-TI0

1  8000  0260pres_Det <15:0>

DECchip 21071-CA Programmer’s Reference 4–13



4.3.3 Presence Detect High Data Register
The presence detect high data register stores the high order bits of the
presence detect information that was shifted in after reset. Bits <15:0> in the
register represent data bits <31:16> that were shifted in.

Note

After deassertion of reset, it takes 148 system clock cycles for presence
detect data to become valid.

Figure 4–10 shows the register bit assignments for the presence detect high
data register.

Figure 4–10 Presence Detect High Data Register

00010203040506070809101112131415

LJ-03103-TI0

1  8000  0280pres_Det <31:16>

4.3.4 Base Address Registers
Each memory bankset has a corresponding base address register. The bits in
this register are compared with the incoming sysAdr to determine the bankset
being addressed. The contents of this register are validated by setting the
valid bit in the configuration register of that bankset.

The base address of each bankset must begin on a naturally aligned boundary.
(So, for a bankset with 2n addresses, the n least significant bits must be zero.)

Note

Software could require contiguous memory. Because banksets must
be naturally aligned, the programmer should ensure that the largest
bankset is placed at the lowest base address, the next largest bankset
is placed at a base address following the end of the largest bankset,
and so on, to create contiguous memory.

Bankset8 must be placed on an aligned 8 MB boundary for bank sizes less
than or equal to 8 MB.

4–14 DECchip 21071-CA Programmer’s Reference



If bankset8 has parity or ECC checking disabled (s8_Check bit clear), then
bankset8 must be mapped into noncacheable space (S8_BaseAdr<32> set).

Figure 4–11 shows the register bit assignments for the bankset0 base address
register.

Figure 4–11 Bankset0 Base Address Register

00010203040506070809101112131415

LJ-03104-TI0

1  8000  0800s0_BaseAdr <33:23> 0 0000

Reserved

4.3.5 Configuration Registers
Each memory bankset has a corresponding configuration register. This register
contains mode bits and bits for memory address generation, as well as bankset
decoding. Banksets 0 through 7 have the same limits on bankset size and
type of DRAMs used. The format of the configuration register is the same
for banksets 0 through 7. Bankset8 is the VRAM bank. It supports different
minimum DRAM sizes and configurations; therefore, its configuration register
is different.

With the exception of the valid bit, this register is not initialized.

Figure 4–12 shows the register bit assignments, and Table 4–7 provides the bit
descriptions for the bankset 0 through 7 configuration registers.

Figure 4–12 Bankset 0 Configuration Register

00010203040506070809101112131415

LJ-03105-TI0

s0_Valid
s0_Size
s0_SubEna  

1  8000  0A000

s0_ColSel

0 0 0 0 00

Reserved

DECchip 21071-CA Programmer’s Reference 4–15



Table 4–7 Bankset0 Configuration Register

Field Bits
Type,
Reset Description

s0_Valid <0> RW,0 Bankset0 valid. If set, all timing and
configuration parameters for bankset0 are
valid, and access to bankset0 is allowed. If
cleared, access to bankset0 is not allowed.

s0_Size<3:0> <4:1> RW,– Bankset0 size in MB. Indicates the size of
the bankset in order to determine which
bits are used to compare the bankset base
address with the physical address (PA)
and to generate the subset. Corresponds
to the total size of the bankset, including
subbanks, if present. s0_Size<3> must be
set to 0.

S0_
Size<3:0> Compared Subset Set Size

0000 — — Reserved
0001 PA<33:29> PA<28> 512 MB
0010 PA<33:28> PA<27> 256 MB
0011 PA<33:27> PA<26> 128 MB
0100 PA<33:26> PA<25> 64 MB
0101 PA<33:25> PA<24> 32 MB
0110 PA<33:24> PA<23> 16 MB
0111 PA<33:23> PA<22> 8 MB
1XXX — — Reserved

s0_SubEna <5> RW,0 Enable subbanks. When set, subbanks are
enabled and determined according to the
previous table. When clear, subbanks are
disabled, and the memRASB_l pins will be
asserted only during refreshes.

(continued on next page)

4–16 DECchip 21071-CA Programmer’s Reference



Table 4–7 (Cont.) Bankset0 Configuration Register

Field Bits
Type,
Reset Description

s0_ColSel<2:0> <8:6> RW,– Column address selection. Indicates the
number of valid column bits expected at
the DRAMs. Used along with memory
width information to generate row or
column addresses. Memory width is
determined by the wideMem pin. See
Table 3–6 for more information.

S0_ColSel<2:0> Row,Column Bits

000 12,12
001 12,10 or 11,11
010 Reserved
011 10,10
1XX Reserved

Reserved <15:9> MBZ —

DECchip 21071-CA Programmer’s Reference 4–17



Figure 4–13 shows the register bit assignments, and Table 4–8 provides the bit
descriptions for the bankset8 configuration register.

Figure 4–13 Bankset8 Configuration Register
00010203040506070809101112131415

s8_Valid
s8_Size
s8_SubEna

1  8000  0B000

s8_ColSel

0 0 0 00 1

s8_Check

LJ-03106-TI0

Reserved

Table 4–8 Bankset 8 Configuration Register

Field Bits
Type,
Reset Description

s8_Valid <0> RW,0 Valid. If set, all parameters are valid, and
access to bankset8 is allowed. If cleared,
no accesses to bankset8 are allowed.

s8_Size<3:0> <4:1> RW,0 Size. Indicates the size of the bankset in
order to determine which bits are used
to compare the base address with the
physical address and to select the subset
(if s8_SubEna is set). Corresponds to the
total size of bankset8, including subbanks,
if present.

s8_
Size<3:0> Compared Subbank

Bankset
Size

0XXX — — Reserved
1000 — — Reserved
1001 PA<33:23> PA<22> 8 MB
1010 PA<33:22> PA<21> 4 MB
1011 PA<33:21> PA<20> 2 MB
1100 PA<33:20> PA<19> 1 MB
1101 — — Reserved
1110 — — Reserved
1111 — — Reserved

(continued on next page)

4–18 DECchip 21071-CA Programmer’s Reference



Table 4–8 (Cont.) Bankset 8 Configuration Register

Field Bits
Type,
Reset Description

s8_SubEna <5> RW,0 Enable subbanks. When set, subbanks are
enabled and determined according to the
previous table. When clear, subbanks are
disabled, and the memRASB_l pins will
only be asserted during refresh.

s8_ColSel<2:0> <8:6> RW,– Column address selection. Indicates the
number of valid column bits expected at
the DRAMs. Used along with memory
width information to generate column
row or column addresses. Memory width
is determined by the wideMem pin. See
Table 3–7 for more information.

S8_ColSel Row, Column Bits

0XX Reserved
100 9, 9
101 9, 8
11X Reserved

s8_Check <9> RW,0 Enable ECC/parity checking. When set,
accesses to bankset8, like other banksets,
will have their parity or ECC checked.
When clear, parity or ECC will not be
checked. When clear, bankset8 must be
mapped into noncacheable space. Only
bankset8 has this feature.

DMA accesses to this bank should not be
performed when error checking is disabled.

Reserved <15:10>MBZ —

4.3.6 Bankset Timing Registers A and B
Each bankset has two timing registers associated with it. These registers
contain the timing parameters required to perform memory read and write
transactions. The format of the timing registers is identical for all 9 banksets.

On reset, all the parameters are set to the maximum value. This may cause
improper operation of the memory interface. The timing registers should be
programmed by software before setting the corresponding bankset valid bit in
the configuration register.

DECchip 21071-CA Programmer’s Reference 4–19



All the timing parameters are in multiples of memClk cycles. Most of the
timing parameters in timing registers A and B have a minimum value that is
added to the programmed value. The programmer should be careful to subtract
this value from the desired value before programming it into the register. The
parameter descriptions in this section also indicate the corresponding DRAM
parameter.

See Section 4.4 to determine how the timing register should be programmed
for particular memory transactions.

Figure 4–14 shows the register bit assignments, and Table 4–9 provides the bit
descriptions for the bankset timing register A.

Figure 4–14 Bankset Timing Register A

00010203040506070809101112131415

LJ-03107-TI0

S8_RowSetUp
S8_RowHold
S8_ColSetUp

1  8000  0D00

S8_ColHold
S8_RDlyRow

Reserved
S8_RDlyCol

0

Table 4–9 BankSet Timing Register A

Field Bits
Type,
Reset Description

s8_RowSetup<1:0> <1:0> RW,1s Row address setup (tASR). Used to
generate memRAS_l assertion from row
address.
Programmed_Value = Desired_Value –1

s8_RowHold<1:0> <3:2> RW,1s Row address hold (tRAH). Used to
switch memAdr from row to column
after memRAS_l assertion.
Programmed_Value = Desired_Value –1

(continued on next page)

4–20 DECchip 21071-CA Programmer’s Reference



Table 4–9 (Cont.) BankSet Timing Register A

Field Bits
Type,
Reset Description

s8_ColSetup<2:0> <6:4> RW,1s Column address setup (tASC) to first
CAS assertion and write enable setup
(tCWL) to CAS assertion. Used to
determine first memCAS_l assertion
after column address and memCAS_l
assertion after memWE_l. The
maximum of the two setup values
should be programmed. A programmed
value of 7 is illegal.
Programmed_Value = Desired_Value –1

s8_ColHold<1:0> <8:7> RW,1s Column hold (tCAH) from memCAS_l
assertion. Used to determine when the
current column address can be changed
to the next column or row address.
Programmed_Value = Desired_Value –1

s8_RDlyRow<2:0> <11:9> RW,1s Read delay from row address. Delay
from row address to latching first valid
read data.
Programmed_Value = Desired_Value –4

s8_RDlyCol<2:0> <14:12> RW,1s Read delay from column address. Used
only when starting in page mode.
Delay from column address to latching
first valid read data.
Programmed_Value = Desired_Value –2

Reserved <15> MBZ —

DECchip 21071-CA Programmer’s Reference 4–21



Figure 4–15 shows the register bit assignments, and Table 4–10 provides the
bit descriptions for the bankset timing register B.

Figure 4–15 Bankset Timing Register B

00010203040506070809101112131415

LJ-03108-TI0

s8_RTCas
s8_WTCas
s8_TCP

1  8000  0F00

s8_WHold0Row

0

s8_WHold0Col
Reserved

0

4–22 DECchip 21071-CA Programmer’s Reference



Table 4–10 Bankset Timing Register B

Field Bits
Type,
Reset Description

s8_RTCas<2:0> <2:0> RW,1s Read CAS width (tCAS). Used on reads
to generate the memCAS_l deassertion
from the assertion of memCAS_l. Note:
RTCas and TCP should be programmed
so that their sum is � 5.
Programmed_Value = Desired_Value –2

s8_WTCas<2:0> <5:3> RW,1s Write CAS width (tCAS). Used on writes
to generate the memCAS_l deassertion
from the assertion of memCAS_l.
Note: WTCas and TCP should be
programmed so that their sum is � 5.
Programmed_Value = Desired_Value –2

s8_TCP<1:0> <7:6> RW,1s CAS precharge (tCP). Delay from
memCAS_l deassertion to the next
assertion of memCAS_l in page mode.
Programmed_Value = Desired_Value –1

s8_WHold0Row<2:0> <10:8> RW,1s Write hold time from row address. Hold
time of first write data from first row
address. The first write data is valid
with the row address and is held valid
s8_WHold0Row + 2 cycles after the
row address. Used when not starting
in page mode. A programmed value of
zero is illegal.
Programmed_Value = Desired_Value –2

s8_WHold0Col<2:0> <13:11> RW,1 Write hold time from column address
is used only for the first data when
starting in page mode. Write data is
valid with the column address and is
held valid S8_WHold0Col + 2 cycles
after the column address.
Programmed_Value = Desired_Value –2

Reserved <15:14> MBZ —

DECchip 21071-CA Programmer’s Reference 4–23



4.3.7 Global Timing Register
The global timing register contains parameters that are common to all memory
banksets. Each parameter counts memClk cycles. All pins on the memory
interface are referenced to memClk rising.

Note

The 21071-CA chip requires the RAS precharge interval to be smaller
than the length of a complete memory transaction. For values of
gtr_RP less than or equal to 4 (which gives a 6 memClk precharge),
there are no restrictions. For RAS precharge greater than 6 memClk
cycles, each valid bankset must satisfy the following conditions:

gtr_RP � RowHold + ColSetup + WTCas + 4
gtr_RP � RowHold + ColSetup + RTCas + 4

Figure 4–16 shows the register bit assignments, and Table 4–11 provides the
bit descriptions for the global timing register.

Figure 4–16 Global Timing Register

00010203040506070809101112131415

gtr_RP
gtr_Max_Ras_Width

1  8000  02000 0 0 0 0 00 0 0 0

LJ-03109-TI0

Reserved

4–24 DECchip 21071-CA Programmer’s Reference



Table 4–11 Global Timing Register

Field Bits
Type,
Reset Description

gtr_RP<2:0> <2:0> RW,1s Minimum number of
RAS precharge cycles.
memRAS_l deassertion
to next assertion of the
same memRAS_l pin.
Corresponds to DRAM
parameter tRP.
Programmed_Value =
Desired_Value –2

gtr_Max_Ras_Width<2:0> <5:3> RW,1s Maximum RAS assertion
width as a multiple of 128
memClk cycles. When
this count is reached, the
asserted memRAS_l is
deasserted at the end of
the ongoing transaction.
This value should be
programmed with sufficient
margin to allow for the
timer overflowing during a
transaction. Corresponds to
DRAM parameter tRAS.

When programmed to a
0, page mode between
transactions will be
disabled.

Reserved <15:6> MBZ —

4.3.8 Refresh Timing Register
The refresh timing register contains refresh timing information used to
simultaneously refresh all banksets using CAS-before-RAS refresh. Therefore,
these parameters should be programmed to the most conservative value across
all banksets.

The observed refresh interval may be greater than the value programmed in
ref_interval by the number of memClk cycles required to perform a read or
write plus a RAS precharge interval. The programmer must account for this
behavior when choosing the value of ref_interval.

DECchip 21071-CA Programmer’s Reference 4–25



All the timing parameters are in multiples of memClk cycles. The parameters
have a minimum value that is added to the programmed value. The
programmer should be careful to subtract this value from the desired value
before programming it to the register.

Figure 4–17 shows the register bit assignments, and Table 4–12 provides the
bit descriptions for the refresh timing register.

Figure 4–17 Refresh Timing Register
00010203040506070809101112131415

LJ-03110-TI0

disRef
ref_Cas2Ras
ref_RasWidth

1  8000  0220

ref_Interval

00

Reserved
force_Ref

Table 4–12 Refresh Timing Register

Field Bits
Type,
Reset Description

disRef <0> RW,0 Disable refresh. Refresh
operations will not be performed
when disRef is set.

ref_Cas2Ras<2:0> <3:1> RW,1s Refresh CAS assertion to RAS
assertion cycles. Corresponds
to DRAM parameter tCSR.
Programmed_Value = Desired_
Value –2

ref_RasWidth<2:0> <6:4> RW,1s Refresh RAS assertion
width, from memRAS_l
assertion to memRAS_l
deassertion. memCAS_l is
deasserted with memRAS_l
for refresh. Corresponds
to DRAM parameter tRAS.
Programmed_Value = Desired_
Value –3

(continued on next page)

4–26 DECchip 21071-CA Programmer’s Reference



Table 4–12 (Cont.) Refresh Timing Register

Field Bits
Type,
Reset Description

ref_Interval<5:0> <12:7> RW,000001 Refresh interval. Multiplied
by 64 to generate number of
memClk cycles between refresh
requests. A programmed value
of zero is illegal.

Reserved <14:13> MBZ —

force_Ref <15> WO,– Force refresh. Writing a 1 to
this bit causes a single memory
refresh. Reads as 0. Resets the
internal refresh interval counter.

The other timings in this register
should not be changed while
setting this bit. Force refresh
overrides disable refresh.

DECchip 21071-CA Programmer’s Reference 4–27



4.4 Programming Memory Timing
This section describes how a system designer should program the memory
timings for a particular memory configuration, DRAM speed, and sysClk cycle
time. The system designer should:

1. Develop a timing diagram for memory reads, writes, refreshes, page mode
reads, and page mode writes for the chosen memory configuration and
sysClk cycle time.

2. Count the number of cycles required for a particular parameter. This
is the desired value that is referred to in the description of the various
parameters. For each parameter there is an equation to generate the
programmed value from the desired value (generally by subtracting a
constant from the desired value).

Warning

The memData driving and latching state machines run independently
from the state machine that controls memRas_l, memCas_l, memAdr,
and the other controls. The two machines start at the same time, and
then use the programmed timing to cycle through the transaction.
Arbitrarily programming RDlyRow, RDlyCol, WHold0Row, and
WHold0Col could result in illegal memory transactions.

4–28 DECchip 21071-CA Programmer’s Reference



Tables 4–13 and 4–14 provide equations that must be applied while
programming the memory timings.

Table 4–13 Read Timings: Equations for Programmed Values

RDlyROW = RowSetUp + RowHold + ColSetUp + Taccess1 –1

RDlyCol = ColSetUp + Taccess –1

RTCas � Taccess –2

RTCas + TCP � 5

1Taccess is the access time in memClks for data from CAS assertions, determined by module signal
integrity and DRAM timing.

Table 4–14 Write Timings: Equations for Programmed Values

WHold0Row = RowSetUp + RowHold + ColSetUp + TDataHold1 + 1

WHold0Col = ColSetUp + TDataHold –1

WTCas � TDataHold –2

WTCas + TCP � 5

1TDataHold is the data hold time, in memClk cycles from CAS assertions, determined by module
signal integrity and DRAM timing.

DECchip 21071-CA Programmer’s Reference 4–29



Figures 4–18 and 4–19 show the timing for a memory write and memory read,
respectively. Assume that the two timing diagrams shown are for the same
bankset. The programming for these transactions is shown in Table 4–15.

Table 4–15 Programming Memory Timings

Parameter
Desired
Value

Programmed
Value Timing Diagram

RowSetUp 2 1 Read, Write

RowHold 2 1 Read, Write

ColSetUp 2 1 Read, Write

ColHold 2 1 Read, Write

RTCas 3 1 Read

TCP 1 0 Read, Write

RDlyRow 9 5 Read

WTCas 2 0 Write

WHold0Row 8 6 Write

gtr_RP 4 2 Read, Write

4–30 DECchip 21071-CA Programmer’s Reference



Figure 4–18 Memory Write Timing

CY0 CY1 CY2 CY3 CY4 CY5 CY6 CY7

CY8 CY9 CY10 CY11 CY12 CY13 CY14 CY15

LJ-03269-TI0

memClk

memAdr

memRAS_L<0>

memCAS_L<0>

memWE_l

memData

Row Col

Col

D0

D1 next D0 next D0

RowSetUp RowHold ColHold

gtr_RP

ColSetUp WTCas

TCP

ColSetUp

WHold0Row

WTCas+TCP

memClk

memAdr

memRAS_L<0>

memCAS_L<0>

memWE_l

memData

DECchip 21071-CA Programmer’s Reference 4–31



Figure 4–19 Memory Read Timing

CY0 CY1 CY2 CY3 CY4 CY5 CY6 CY7 CY8

CY9 CY10 CY11 CY12 CY13

LJ-03171-TI0

memClk

memAdr

memRAS_L<0>

memData

D0 D1

RowSetUp RowHold ColHold

ColSetUp

TCP

memCAS_L<3>

latched_data

memClk

memAdr

memRAS_L<0>

memData

memCAS_L<3>

latched_data

Row Address Column 0

Column 1

RTCas

D0

D1

RDlyRow

RTCas+TCP

4.5 Configuring Memory
The 21071-CA memory configuration and timing registers must be set up
before memory can be read and written by the CPU. Firmware must determine
the number of memory banksets in the system and the speed and size of the
memory SIMMs used.

The 21071-CA provides two methods for determining memory configuration.

4.5.1 Using the 21071-CA Presence Detect Registers to Configure
Memory

The system designer could use the presence detect registers in the 21071-CA to
load in the value of the presence detect pins of the memory SIMMs following
the deassertion of reset. See Section 3.2.7 for the details of this operation.

4–32 DECchip 21071-CA Programmer’s Reference



4.5.2 Polling Memory to Configure Memory
This method can be used if the presence detect pins are not accessible via the
21071-CA presence detect registers. The following algorithm can be used by
the firmware to determine memory configuration.

1. Configure all banksets invalid by writing 0 to the 21071-CA bankset
configuration registers.

2. Read the general control register to determine whether memory is 128 bits
wide or 64 bits wide.

The procedure for determining the configuration is the same in both cases,
except that the sizes in MB mentioned in the following steps should be
halved for 64-bit wide memory. Start with bankset0.

3. Configure bankset as valid with a base address = 0, bankset size = 512 MB,
ColSel = 000 (12,12 DRAMs), and subEna = 1 (subbanks enabled).

4. Configure the bankset timing registers for slow memory. For example,
Timing Register A = 4F99#16 and Timing Register B = 17D2#16.

5. Write 11111111#16 to address 0.

6. Write 22222222#16 to address 10#16.

7. Read address 0; if the data is not 11111111#16, bankset has no memory.
Store this information; configure the bankset as invalid. Go back to step 3
and start with the next bankset. If the data read is 11111111#16, bankset
has memory; go to the next step.

8. Write 33333333#16 to address 128 MB.

9. Write 44444444#16 to address 0.

10. Read address 128 MB. If the data returned is 44444444#16, the bankset
has wrapped back to address 0; the bankset under investigation is not a
12,12 bankset. Go to step 11. If the data is not 44444444#16, the bankset
is a 12,12 bankset. Determine whether it has subbanks:

• Write address 256 MB with 55555555#16; this attempts to write the
upper subbank.

• Write address 0 with 66666666#16.

• Read address 256 MB. If the data is 55555555#16, the subbank exists;
if not, this bankset does not have subbanks.

• At this point, all the information for this bankset is known. Store this
information and configure the bankset as invalid. Go to step 3 and
start with the next bankset.

DECchip 21071-CA Programmer’s Reference 4–33



11. Write 77777777#16 to address 16 MB.

12. Write 88888888#16 to address 0.

13. Read address 16 MB. If data returned is 88888888#16, the bankset is not
a 12,10 or 11,11 bankset; the bankset under investigation is not a 12,10 or
11,11 bankset. Go to step 15. If the data is not 88888888#16, the bankset
is a 12,10 or 11,11 bankset. Determine whether it has subbanks:

• Configure the bankset size to 128 MB with subEna = 1 (subbanks
enabled). The ColSel and base address should remain unchanged.

• Write address 64 MB with 99999999#16; this attempts to write the
upper subbank.

• Write address 0 with AAAAAAAA#16.

• Read address 64 MB. If the data is 99999999#16, the subbank exists; if
not, this bankset does not have subbanks.

• At this point, all the information for this bankset is known. Store this
information and configure the bankset as invalid. Go to step 3 and
start with the next bankset.

14. Write BBBBBBBB#16 to address 8 MB.

15. Write CCCCCCCC#16 to address 0.

16. Read address 8 MB. If the data returned is CCCCCCCC#16, the bankset
is not a 10,10 bankset. An illegal bankset has been inserted. If the data
returned is not CCCCCCCC#16, the bankset is a 10,10 bankset. Determine
whether it has subbanks:

• Configure bankset size to 32 MB with subEna = 1 (subbanks enabled).
The ColSel and base address should remain unchanged.

• Write address 16 MB with DDDDDDDD#16; this attempts to write the
upper subbank.

• Write address 0 with EEEEEEEE#16.

4–34 DECchip 21071-CA Programmer’s Reference



• Read address 16 MB. If the data is DDDDDDDD#16, the subbank
exists; if not, this bankset does not have subbanks.

• At this point, all the information for this bankset is known. Store this
information and configure the bankset as invalid. Go to step 3 and
start with the next bankset.

17. When the configurations of all the banksets are known, set up the base
addresses of each bankset. The largest bankset should be mapped to the
lowest base address.

4.6 Bcache Initialization
Firmware has to initialize the Bcache and memory before booting the operating
system. The following sections describe the two methods used to initialize the
Bcache and memory.

4.6.1 Primary Method to Initialize the Bcache

1. Disable the Bcache—BIU_CTL<bc_En>=0 and 21071-CA GCR<bc_En>=0,
GCR<bc_IgnTag>=0.

2. Disable machine checks ABOX_CTL<MCHK_EN>=0.

3. Write something to all locations throughout the available memory. This
will put good data parity/ECC in the memory SIMMs.

4. Enable Bcache in 21071-CA only—21071-CA GCR<bc_En>=1,
GCR<bc_IgnTag>=1.

5. Clear all bits of the 21071-CA Tag Enable Register.

6. Read all cache locations between location zero and (cache_size — 1 byte).
Because bc_IgnTag is set, the DECchip 21071-CA will fetch data from
memory and put it in the cache as a clean block with correct tag parity.

Warning

Reading an area of memory other than between location zero and
(cache_size —1 byte) will result in leaving the Bcache and main
memory in an incoherent state.

7. Set the 21071-CA Tag Enable Register to the appropriate value based on
system cache and memory size.

DECchip 21071-CA Programmer’s Reference 4–35



8. Clear the DECchip 21071-CA bc_IgnTag—GCR<bc_IgnTag>= 0.

9. Enable Bcache in the Alpha 21064 microprocessor— BIU_CTL<bc_En>=1.

10. Enable machine checks (if desired) ABOX_CTL<MCHK_EN>=1.

4.6.2 Alternative Method to Initialize the Bcache

1. Enable the Bcache—BIU_CTL<BC_EN>=1 and 21071-CA GCR<bc_En>=1,
GCR<bc_IgnTag>=1, GCR<bc_NoAlloc>=1.

2. Disable machine checks ABOX_CTL<MCHK_EN>=0.

3. Clear all bits of the 21071-CA Tag Enable Register.

4. Read all cache locations between location zero and (cache_size — 1 byte).
(Due to random initialization of the Bcache Ram bits some of these reads
will rarely hit in the Bcache.)

5. Set the 21071-CA Tag Enable Register to the appropriate value based on
system cache and memory size.

6. Read all cache locations between location cache_size and
((2 x cache_size) — 1 byte). All of these reads will result in a Bcache miss,
and the 21071-CA chip will read uninitialized data from memory and put it
in the cache as a clean block with correct tag parity.

7. Clear 21071-CA bcIgn_Tag—GCR<bcIgn_Tag>= 0.

8. Write something to all locations throughout the available memory. This
will result in all of memory having correct data parity/ECC.

9. Enable machine checks (if desired) ABOX_CTL<MCHK_EN>=1.

Note

BIU_CTL and ABOX_CTL are registers in the Alpha 21064
microprocessor.

4–36 DECchip 21071-CA Programmer’s Reference



5
DECchip 21071-CA Transactions and

Timing Diagrams

This chapter describes the transactions that are supported by the 21071-CA
chip on the sysBus interface and the memory interface. When a topic is
discussed, refer to the associated timing diagram.

5.1 sysBus Transactions
The following sections describe the CPU, DMA, arbitration, and write speed
transactions.

5.1.1 CPU Transactions
This section describes the CPU transactions.

5.1.1.1 Idle
When the CPU is idle, the 21071-CA chip prepares for the next CPU
transaction. The cache controls, with the exception of sysEarlyOEEn, are
disabled. This will enable the cache tags on a CPU read or write, and enable
the cache data on a read.

DECchip 21071-CA Transactions and Timing Diagrams 5–1



5.1.1.2 Read Block
This section describes the read block transactions.

5.1.1.2.1 Cacheable With Victim The following table describes the cycles for
a CPU read block transaction in cacheable space with a victim, as shown in
Figure 5–1.

Cycle Description

0 A read block begins during the idle cycle. The address is becoming valid
because the CPU is doing a probe of the Bcache.

1 The CPU requests a read block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcDataOE and bcTagOE.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. Also, the cache tag is available and indicates a victim must be
processed. The first octaword of victim data is already on sysData<127:0>.
To prepare for the rest of the victim, sysDataALEn is asserted, followed one-
half cycle later by sysDataAHEn. These will produce a one cycle pulse on
bcDataA4 beginning on clk2F. To maintain the data output from the cache,
sysEarlyOEEn is left asserted and sysDataOEEn is asserted.

3 The second octaword of the victim is received. The 21071-CA chip prepares
to drive the bus by deasserting the cache controls sysEarlyOEEn and
sysDataOEEn.

4 The read of the victim is complete. The cache tags are driven by the
21071-CA chip with the tag information for the fill data (valid and clean). If
the CPU requested a wrapped read, bcDataA<4> would be asserted for the
first time. Figure 5–8 shows a wrapped LDx_L read.

If the read is in the instruction stream, as indicated by cpuCWMask<2>
being false, and the cache line was previously valid, the CPU internal
Dcache is invalidated using cpuDInvReq.

5 The system may stall for any number of cycles waiting for the read data
to be available, although in this example the read data is ready now. The
read data is driven onto the data bus. Using cpuDRAck<2:0>, the data is
acknowledged as OK.

sysTagWE is asserted, which generates bcTagCtlWE and bcTagAdrWE to
write the tags into the cache.

SysDataWEEn is asserted, in turn generating bcDataWE, which writes the
data into the cache. To prepare to write, the second octaword bcDataA<4>
is asserted. Figure 5–1 shows a single write pulse of half the system clock
width. The 21071-CA chip also supports a write pulse of twice that duration.
(See Section 5.1.4.)

5–2 DECchip 21071-CA Transactions and Timing Diagrams



Cycle Description

6 The second octaword is written with sysDataWEEn, and again acknowledged
as OK using cpuDRAck<2:0>. bcDataA<4> is deasserted once we are done
with the write. The arbiter could decide that DMA will be granted the bus,
as indicated by the unknown (X’s) on cpuHoldReq and ioGrant. For more
information about arbitration, see Section 5.1.3.

7 The cycle is acknowledged with cpuCAck<2:0>, and the data drivers and
cache controls are returned to their default state. It is not possible to assert
cpuCAck<2:0> sooner, because the CPU data bus drivers could have created
a bus contention with the memory output buffers.

8 The transaction is complete and the next transaction is ready to begin. If
the CPU won arbitration, sysEarlyOEEn will be asserted in the next cycle in
preparation for the next transaction. If the 21071-DA chip won arbitration,
this cycle is used for bus turnaround.

DECchip 21071-CA Transactions and Timing Diagrams 5–3



Figure 5–1 Timing of CPU Read Block, Cacheable, Victim

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

sysDataALEn

bcDataA<4>

sysDataWEEn

bcDataWE_l

idle

idle idle

idle

read block

i stream, not wrapped

read cac address

vd0 vd1

V,D

sysTagWE

bcTagCtlWE_l

sysCmd

Idle Start Trans Tag Probe Victim Read 1

LJ-03134-TI0

Cache Fill
and ARBVictim Read 0

BUS
Turnaround

reset load wrsys wrsys nop

fd0

OK

V,nD

Note:
ioRequest is not important during this transaction.

sysDataAHEn

5–4 DECchip 21071-CA Transactions and Timing Diagrams



CY6 CY7 CY8

Cache Fill Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

LJ-03135-TI0

idle

idle

fd1

OK

V,nD

OK

reset resetnop

Note:
ioRequest is not important during this transaction.

sysDataALEn

bcDataA<4>

sysDataWEEn

bcDataWE_l

sysTagWE

bcTagCtlWE_l

sysCmd

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–5



5.1.1.2.2 Cacheable Without Victim A read without a victim is similar
to Figure 5–1. When the tag results are clean or invalid in cycle 2, the
information read out of the cache is discarded. The transaction has the same
length and control signals as the victim case described in Section 5.1.1.2.1.

5.1.1.2.3 Noncacheable The following table describes the cycles for a CPU
read block transaction in noncacheable space, as shown in Figure 5–2.

Cycle Description

0 In read block to noncacheable space, the address is placed on the bus one
CPU cycle (as little as 3 ns) before clk1R.

1 The CPU requests a read block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcDataOE and bcTagOE.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it is in noncacheable
memory space. The 21071-CA chip prepares to drive the bus so sysEarlyOEEn
is deasserted, which deasserts bcDataOE and bcTagOE.

3 SysTagOE is asserted to prevent the cache tags from floating. The 21071-CA
chip waits for the cache data to tristate.

4 The read data is ready and is driven onto the data bus. Using cpu-
DRAck<2:0>, the data is acknowledged as noncacheable. CpuDInvReq
does not assert in noncacheable space. The CPU does not require more than
an octaword of data; therefore, only one data transfer is required.

5 The cycle is acknowledged with cpuCAck<2:0> and the data drivers are
returned to their default state.

6 The transaction is complete, and the next transaction is ready to begin.

Note

A read block with the cache disabled is similar to a noncacheable
read. However, a full hexaword is returned, and OK will be sent on
cpuDRack<2:0> so that the CPU will place the data in its Dcache or
Icache.

5–6 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–2 Timing of CPU Read Block, Noncacheable

CY0 CY1 CY2 CY3

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle Start Trans Cache Turn Off

idle

idle

idle

read block

not wrapped

read nocac address

reset nop nop

BUS
Turnaround

LJ-03160-TI0
Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

DECchip 21071-CA Transactions and Timing Diagrams 5–7



CY4 CY5 CY6

Return Data
and ARB

Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

LJ-03161-TI0

idle

idle

idle

fd1

OK

resetnop

OK

reset

Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

5–8 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.2.4 I/O Space The following table describes the cycles for a CPU read
block transaction in remote I/O space, as shown in Figure 5–3.

Cycle Description

0 As I/O space is noncacheable, the address is placed on the bus one CPU cycle
(as little as 3 ns) before clk1R.

1 The CPU requests a read block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcDataOE and bcTagOE.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in I/O space. To get
the cache off the bus, while preventing the tag from floating, sysEarlyOEEn
is deasserted and sysTagOEEn is asserted.

3 The 21071-CA chip waits for the cache data to tristate. The 21071-DA chip
processes the I/O read.

4 The 21071-CA chip could return data in this cycle, but the data is not ready
for two more cycles.

5 The 21071-DA chip loads the merge and I/O read buffer on the 21071-BA
chip using the epiBus. It indicates that the read data is loaded and can be
sent to the CPU in the next cycle, so it requests a cpuDRAck<2:0> using
ioCmd<2:0>. If more than one longword is being read, multiple epiData
transfers are required; the last epiData transfer has the cpuDRack request.

6 The read data is ready and is driven onto the data bus. The 21071-CA
chip receives the cpuDRAck<2:0> request on ioCmd<2:0> and asserts
cpuDRAck<2:0> as noncacheable. A CPU cycle acknowledge is requested
using ioCmd<2:0>.

7 The 21071-CA chip receives ioCmd<2:0>, tristates its data drivers, and
acknowledges the cycle with cpuCAck<2:0>. The cache is turned off by
deasserting sysTagOEEn.

8 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–9



Figure 5–3 Timing of CPU Read Block, Remote I/O Space

CY0 CY1 CY2 CY3 CY4

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

idle

idle

idle

read block

not wrapped

read io address

reset nop nop nop

epidata

Idle Start Trans Cache Turn Off Wait RDR
BUS
Turnaround

LJ-03158-TI0

not preempt

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–10 DECchip 21071-CA Transactions and Timing Diagrams



CY5 CY6 CY7 CY8

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

cackcpu

idle

rd0

OK

nop resetnop

OK

reset

idledackcpu

Data over EPI
DACK Request

Read Data RET Terminate Next Trans

epiData

LJ-03159-TI0

rd0

CACK Request

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–11



5.1.1.3 Write Block
This section describes the write block transactions.

5.1.1.3.1 Cacheable Allocate With Victim The following table describes the
cycles for a CPU write block transaction in cacheable space with a victim and
with write allocation enabled, as shown in Figure 5–4.

Cycle Description

0 A write block begins during the idle cycle. The address is becoming valid
due to the CPU doing a probe of the Bcache. Systems may rely on cacheable
address being set up for the time it takes the CPU to do a probe (a minimum
of 10 ns).

1 The CPU requests a write block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. The CPU sees the assertion of cpuDOE_l; the first octaword of write
data is placed on the cpuData bus and is latched by the 21071-BA chip. The
21071-CA chip asserts sysDOE to ensure that cpuDOE_l will not deassert
too soon. The 21071-CA chip asserts sysTagOEEn to prevent the tag bus
from floating. The 21071-CA chip also asserts cpuDWSel to get the second
octaword of write data. The cache tag indicates that a victim must be
processed.

3 The CPU sees the assertion of cpuDWSel and places the second octaword of
write data on the cpuData bus. The 21071-CA chip deasserts sysEarlyOEEn.
The data is latched by the 21071-BA chip. The 21071-CA chip deasserts
sysDOE and cpuDWSel.

4 The sysData bus is tristated by the CPU. The 21071-CA chip as-
serts sysDataOEEn causing the cache to begin driving the data bus.
sysDataOEEn is asserted on clk1F, rather than on the normal clk2F, to
allow additional cache output enable access time.

5 The first octaword of victim data is on sysData<127:0> and is latched by
the 21071-BA chip. To prepare for the rest of the victim, bcDataA<4> is
asserted.

6 The second octaword of the victim is received. The 21071-CA chip prepares
to drive the bus so that sysTagOEEn and sysDataOEEn are deasserted.

7 The read of the victim is complete. The cache tags are driven by the
21071-CA chip with the tag information for the fill data (valid and dirty).
sysDataWEEn and sysTagWE are asserted to write the cycle data tags.

5–12 DECchip 21071-CA Transactions and Timing Diagrams



Cycle Description

8 The fill data is ready and is driven on sysData<127:0>. If the CPU wrote a
full cache line, the fill data is simply the same as the data written in cycle 2.
Otherwise, the 21071-CA chip reads a line from memory and merges it with
the write data to create an updated line of data. The CPU internal Dcache
is invalidated using cpuDInvReq. To prepare to write the second octaword,
bcDataA<4> will change on clk2R because write timing is being used.

9 The second octaword is written with sysDataWEEn. bcDataA<4> is
deasserted after the write is done.

10 The cycle is acknowledged with cpuCAck<2:0>, and the cache controls are
returned to their default state.

11 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–13



Figure 5–4 Timing of CPU Write Block, Cacheable, Allocate, Victim

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle
CPU Write

CPU Write CPU Write Q0
Tag Probe

CPU Write Q1 BUS
Turnaround

Victim Read 0

LJ-03140-TI0

idle

idle idle

idle

write block

write mask

write cac address

wd0 wd1 vd0

V,D

reset load merge load load

Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–14 DECchip 21071-CA Transactions and Timing Diagrams



CY6 CY7 CY8 CY9 CY10 CY11

Victim Read 1 BUS
Turnaround

Cache Fill
and ARB

Cache Fill Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

LJ-03141-TI0

idle

idle

idle

vd1 fd0 fd1

OK

V,D

wrsys wrsys nop reset resetnop

Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–15



5.1.1.3.2 Cacheable Allocate Without Victim The following table describes
the cycles for a CPU write block transaction in cacheable space without a
victim and with write allocation enabled, as shown in Figure 5–5.

Cycle Description

0 A write block begins during the idle cycle. The address is becoming valid
due to the CPU doing a probe of the Bcache. Systems may rely on cacheable
address being set up for the time it takes the CPU to do a probe (a minimum
of 10 ns).

1 The CPU requests a write block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. The CPU sees the assertion of cpuDOE_l; the first octaword of write
data is placed on the cpuData bus and latched by the 21071-BA chip. The
21071-CA chip asserts sysDOE. The 21071-CA chip asserts sysTagOEEn to
prevent the tag bus from floating. The 21071-CA chip also asserts cpuDWSel
to get the second octaword of write data. The cache tag indicates no victim.

3 The CPU sees the assertion of cpuDWSel and places the second octaword of
write data on the cpuData bus. The 21071-CA chip deasserts sysEarlyOEEn.
The data is latched by the 21071-BA chip. The 21071-CA chip deasserts
sysDOE and cpuDWSel. The 21071-CA chip prepares to drive the bus so
that sysTagOEEn is deasserted.

4 The sysData bus is tristated by the CPU. The cache tags are driven by the
21071-CA chip with the tag information for the fill data (valid and dirty).

5 The fill data is ready and is driven on sysData<127:0>. If the CPU wrote a
full cache line, the fill data is simply the same as the data written in cycle
2. Otherwise, the 21071-CA chip reads a line from memory and merges
it with the write data to create an updated line of data. If the old cache
line was valid, the CPU internal Dcache is invalidated using cpuDInvReq.
sysDataWEEn and sysTagWE are asserted, in turn generating bcDataWE
and bcTagWE, which write the data and tags into the cache. To prepare to
write the second octaword bcDataA<4> is asserted.

6 The second octaword is written with sysDataWEEn.

7 The cycle is acknowledged with cpuCAck<2:0> and the data drivers are
returned to their default state. cpuDOE_l is reasserted because the
21071-CA chip is finished with the data bus.

8 The transaction is complete, and the next transaction is ready to begin.

5–16 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–5 Timing of CPU Write Block, Cacheable, Allocate, No Victim

CY0 CY1 CY2 CY3 CY4

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle CPU Write CPU Write Q0
Tag Probe

CPU Write Q1 BUS
Turnaround

LJ-03165-TI0

idle

idle

idle

write block

write mask

write cac address

wd0 wd1

reset load merge

Note:
ioRequest is not important during this transaction.

nD

merge

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

DECchip 21071-CA Transactions and Timing Diagrams 5–17



CY6CY5 CY7 CY8

Cache Fill
and ARB

Cache Fill Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

LJ-03166-TI0

idle

idle

fd0 fd1

OK

nop reset resetnop

Note:
ioRequest is not important during this transaction.

V,nD

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

5–18 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.3.3 Cacheable No Allocate The following table describes the cycles
for a CPU write block transaction with write allocation disabled, as shown in
Figure 5–6.

Cycle Description

0 A write block begins during the idle cycle. The address is becoming valid.
This transaction does not discriminate between cacheable and noncacheable,
so the address is set up for only 4 ns.

1 The CPU requests a write block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. The CPU sees the assertion of cpuDOE_l; the first octaword of write
data is placed on the cpuData bus and is latched by the 21071-BA chip.
The 21071-CA asserts sysDOE. The 21071-CA chip asserts sysTagOEEn to
prevent the tag bus from floating. The 21071-CA chip also asserts cpuDWSel
to get the second octaword of write data.

3 The CPU sees the assertion of cpuDWSel and places the second octaword of
write data on the cpuData bus. The 21071-CA chip deasserts sysEarlyOEEn.
The data is latched by the 21071-BA chip. The 21071-CA chip deasserts
sysDOE and cpuDWSel. The cache is disabled by deasserting sysTagOEEn.
The cycle is acknowledged with cpuCAck<2:0>.

4 The sysData bus is tristated by the CPU.

DECchip 21071-CA Transactions and Timing Diagrams 5–19



Figure 5–6 Timing of CPU Write Block, Noncacheable or No Allocate

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

LJ-03170-TI0

idle

idle

idle

Note:

OK

Terminate Idle

ioRequest is not important during this transaction.

cpuCWMask

CY0 CY1 CY2 CY3 CY4

idlewrite block

write mask

write address

wd0 wd1

load wrsys wrsys

CPU Write CPU Write 0
and ARB

CPU Write 1

reset

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–20 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.3.4 Noncacheable A write block transaction to noncacheable space is
identical to a write block with write allocation disabled. See Section 5.1.1.3.3
for a description of the transaction.

5.1.1.3.5 I/O Space The following table describes the cycles for a CPU write
block transaction in remote I/O space, as shown in Figure 5–7.

Cycle Description

0 During the entire time that the CPU has ownership of the bus, the 21071-DA
chip, using ioLineSel<1:0>, provides a pointer to a free cache line buffer in
the DMA read and I/O write buffer.

1 The CPU requests a write block with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. The CPU sees the assertion of cpuDOE_l, and the first octaword
of write data is placed on the cpuData bus. The 21071-BA chip loads
the data into the DMA read and I/O write buffer at the line selected by
ioLineSel<1:0>. The 21071-CA chip asserts sysDOE. The 21071-CA chip
asserts sysTagOEEn to prevent the tag bus from floating. The 21071-CA
chip also asserts cpuDWSel to get the second octaword of write data.

3 The CPU sees the assertion of cpuDWSel and places the second octaword
of write data on the cpuData bus. The data is latched by the 21071-BA
chip. The 21071-CA chip deasserts sysDOE and cpuDWSel. The 21071-DA
chip, using ioCmd<2:0>, is ready to end the transaction in the next cycle, so
cpuCAck is requested.

4 The 21071-CA chip receives ioCmd<2:0> and acknowledges the cycle with
cpuCAck<2:0>. The cache is turned off by deasserting sysTagOEEn. The
21071-DA chip is free to unload the data using the epiBus.

If the 21071-DA chip did not request a cpuCAck by this cycle, then
sysDataOEEn will be asserted to prevent sysData<127:0> from floating.

5 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–21



Figure 5–7 Timing of CPU Write Block, Remote I/O Space

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioLineSel

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

LJ-03167-TI0

idle

idle

I/O Write Buffer Line

reset

OK

Terminate Idle

cpuCWMask

CY0 CY1 CY2 CY3 CY5CY4

idlewrite block

write mask

wd0 wd1

load

CPU Write CPU Write 0

reset

ioRequest

sysCmd

epiData

cackcpu idle

write I/O address

iowriowr

wd0

CPU Write 1
CACK Request

Next TRANS
WD0 on EPI

not preempt

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

ioCAck idle

5–22 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.4 LDx_L
In general an LDx_L transaction looks like a read block. There are two major
differences. The first is that the architecturally defined lock bit and lock
address are set. The second is that in contrast to the read block transaction,
the cache must be probed. (The Alpha 21064 microprocessor does not probe on
LDx_L or STx_C.)

5.1.1.4.1 Cacheable Hit Figure 5–8 shows an LDx_L transaction in cacheable
space that hits. Data is not returned directly from the cache, to avoid an
address-to-data race through the cache RAMs. Although the CPU should not
issue one, a read block that hits in the cache will be treated as an LDx_L hit
without the lock bit being set.

The following table describes the cycles for an LDx_L transaction in cacheable
space that hits, as shown in Figure 5–8.

Cycle Description

0 An LDx_L begins during the idle cycle. The address is becoming valid one
CPU cycle before clk1F, because the CPU did not probe the cache.

1 The CPU requests an LDx_L with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcDataOE and bcTagOE.
Wrapped return data is requested by asserting cpuCWMask<1>.

2 The LDx_L locked bit is set, and the LDx_L locked address is loaded from
sysAdr<33:5>. If the 21071-DA chip is sending ClrLock on ioCmd<2:0>, then
the lock bit is not set, and it is forced to remain clear for as long as the
ClrLock is being sent.

The cache tag indicates a hit. SysDataAEn is asserted as the data must be
returned in wrapped order. If the cache line is clean, data will be wrapped
from the memory, as in a regular wrapped read operation.

3 Data from the cache is loaded into the 21071-BA chip merge buffer. To
prepare to read the first octaword (since it is wrapped), bcDataA<4>
is deasserted. The 21071-CA chip prepares to drive the bus so that
sysEarlyOEEn is deasserted.

4 The second octaword is loaded into the 21071-BA chip merge buffer.

5 The 21071-CA chip waits for the cache data to tristate.

6 The merge buffer data is driven on sysData<127:0> and acknowledged with
cpuDRack<2:0>.

7 The second octaword is driven and acknowledged.

8 The cycle is acknowledged with cpuCAck<2:0> and the data drivers are
returned to their state.

9 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–23



Figure 5–8 Timing of CPU LD x_L, Wrapped, Cacheable Hit

CY0 CY1 CY2 CY3 CY4

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

cpuDOE_l

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle Probe Wait Tag Probe Cache Read 0 Cache Read 1

idle

idle idle

idle

ldx_l

D stream, wrapped

ldx_l address

cd0 cd1 cd0

hit

reset load merge1

LJ-03138-TI0
Note:
ioRequest, sysDOE, and cpuDWSel are not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

load

5–24 DECchip 21071-CA Transactions and Timing Diagrams



CY5 CY6 CY7 CY8 CY9

BUS
Turnaround

Data Return 0
and ARB

Data Return 1 Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

cpuDOE_l

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

idle

idle

idle

cd1 cd0

OK

hit

merge1 nop nop nop

OK OK

nop

LJ-03139-TI0
Note:
ioRequest, sysDOE, and cpuDWSel are not important during this transaction.

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–25



5.1.1.4.2 Cacheable Miss An LDx_L transaction that misses in cacheable
space is similar to Figure 5–1. Also see the description in Section 5.1.1.2.2.

5.1.1.4.3 Noncacheable An LDx_L transaction to noncacheable space is
identical to a read block to noncacheable space (Section 5.1.1.2.3), except that
the lock bit and lock address must be set.

5.1.1.4.4 I/O Space An LDx_L transaction to I/O space is treated by the
21071-CA chip as a regular read to I/O space (although the lock bit is set). An
implementation may treat the LDx_L as a regular read block in I/O space, flag
an error, or implement the LDx_L.

5.1.1.5 STx_C
In general, an STx_C transaction looks like a write block. Also, the transaction
may be aborted by the lock bit being cleared. The 21071-DA chip may
ensure that STx_C to memory always fails by using the ClrLock command
on ioCmd<2:0>. For ClrLock to affect a CPU STx_C transaction, the ClrLock
command must be asserted in or before the first cycle of the STxC transaction
flow. For example, a DMA read miss transaction that needs to clear the lock
flag must do so before one cycle after the ioCAck<1:0> for the DMA read.
This is because an STx_C transaction may potentially start in the cycle after
ioCAck<1:0>.
5.1.1.5.1 Cacheable Hit The following table describes the cycles for an STx_C
transaction to cacheable space that hits in the cache, as shown in Figure 5–9.

Cycle Description

0 An STx_C begins during the idle cycle. An address is placed on the bus one
CPU cycle before clk1F.

1 The CPU requests an STx_C with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The CPU sees the assertion of cpuDOE_l; the first octaword of write data is
placed on the cpuData bus and is latched by the 21071-BA chip. The 21071-
CA chip recognizes the transaction and tests the LDx_L lock bit, which is set
(success). The cache tag indicates a cache hit. The 21071-CA chip asserts
sysDOE. The 21071-CA chip asserts sysTagOEEn to prevent the tag bus
from floating. The 21071-CA chip also asserts cpuDWSel to get the second
octaword of write data.

3 The CPU sees the assertion of cpuDWSel and places the second octaword
of write data on the cpuData bus. The data is latched. The 21071-CA chip
deasserts sysDOE, cpuDWSel, and sysEarlyOEEn.

5–26 DECchip 21071-CA Transactions and Timing Diagrams



Cycle Description

4 The sysData bus is tristated by the CPU. The 21071-CA chip asserts
sysDataOEEn, causing the cache to begin driving the data bus.

5 The first octaword of cache data is on sysData<127:0> and is latched by the
21071-BA chip. To prepare for the rest of the data, bcDataA<4> is asserted.

6 The second octaword of cache data is received. The 21071-CA chip prepares
to drive the bus by deasserting sysEarlyOEEn and sysDataOEEn.

7 The cache read is complete. The cache tags are driven by the 21071-CA chip
with the tag information for the fill data (valid and dirty).

8 The fill data is ready and is driven on sysData<127:0>. The fill data is a
merge of the data read from the cache, overlaid by the quadword or longword
written by the STx_C. The CPU internal Dcache is not invalidated, as the
CPU handles this case itself. sysDataWEEn and sysTagWE are asserted, in
turn generating bcDataWE and bcTagWE, which writes the data and tags
into the cache. To prepare to write the second octaword, bcDataA<4> is
asserted.

9 The second octaword is written with sysDataWEEn.

10 The cycle is acknowledged with cpuCAck<2:0>, and the data drivers are
returned to their default state.

11 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–27



Figure 5–9 Timing of CPU ST x_C Succeeds, Hit, Cacheable, Allocate

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle STx_C Write Write Data 0
Tag Probe

Write Data 1 BUS
Turnaround

Cache Read 0

idle

idle idle

idle

STx_C

write mask

wd0 wd1 cd0

hit

reset load merge merge load

STx_C cac Address

LJ-03130-TI0
Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–28 DECchip 21071-CA Transactions and Timing Diagrams



CY6 CY7 CY8 CY9 CY10 CY11

Cache Read 1 BUS
Turnaround

Cache Fill
and ARB

Cache Fill Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

idle

idle

idle

fd0 fd1

OK

V,nD

ovly ovly nop reset reset

cd1

nop

LJ-03131-TI0
Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–29



5.1.1.5.2 Cacheable Miss Figure 5–10 shows an STx_C transaction to
cacheable space that misses the cache. The figure shows only a write allocation
and victim. See Figure 5–5 and Figure 5–6 for examples of no victim and no
write allocation.

The following table describes the cycles for a CPU STx_C transaction to
cacheable space that hits in the cache, as shown in Figure 5–10.

Cycle Description

0 An STx_C begins during the idle cycle. An address is placed on the bus one
CPU cycle before clk1F.

1 The CPU requests an STx_C with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The CPU sees the assertion of cpuDOE_l; the first octaword of write data is
placed on the cpuData bus and is latched by the 21071-BA. The 21071-CA
chip recognizes the transaction and tests the LDx_L lock bit, which is
set (success). The cache tag indicates a cache miss. This cycle and the
remaining cycles of the STx_C miss transaction are the same as write block
cycles 2 and onward of Sections 5.1.1.3.1 (victim), 5.1.1.3.2 (no victim), and
5.1.1.3.3 (write allocation disabled).

5–30 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–10 Timing of CPU ST x_C Succeeds, Miss, Cacheable, Allocate, Victim

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle STx_C Write Write Data 0 Write Data 1 BUS
Turnaround

Cache Read 0

LJ-03128-TI0

idle

idle idle

idle

STx_C

write mask

STx_C cac address

wd0 wd1 vd0

V,D

reset nop merge merge load

Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

DECchip 21071-CA Transactions and Timing Diagrams 5–31



CY6 CY7 CY8 CY9 CY10 CY11

Cache Read 1 BUS
Turnaround

Cache Fill
and ARB

Cache Fill Terminate Next Trans

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

LJ-03129-TI0

idle

idle

idle

vd1 fd0 fd1

OK

V,nD

wrsys wrsys nop reset resetnop

Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

5–32 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.5.3 Noncacheable The following table describes the cycles for a CPU
STx_C transaction to noncacheable space. This transaction looks the same as
the noncacheable write block transaction shown in Figure 5–6.

Cycle Description

0 An STx_C begins during the idle cycle. An address is placed on the bus one
CPU cycle before clk1F.

1 The CPU requests an STx_C with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The 21071-CA chip recognizes the transaction and tests the LDx_L
lock bit, which is set (success). It decodes sysAdr<33:5> and finds it in
cacheable memory space. This cycle and the remaining cycles of the STx_C
noncacheable transaction are the same as noncacheable write block cycles 2
and onward, which are described in Section 5.1.1.3.3.

5.1.1.5.4 I/O Space Similar to LDx_L, an STx_C transaction to I/O space is
treated by the 21071-CA chip as a write block to I/O space. An implementation
may perform the STx_C or flag an error.

5.1.1.5.5 Fail If the LDx_L lock bit is not set, or if the 21071-DA chip is
sending ClrLock on ioCmd<2:0> (forcing the lock bit to remain clear), an STx_
C instruction will fail.

The following table describes the cycles for a CPU STx_C fail transaction, as
shown in Figure 5–11.

Cycle Description

0 An STx_C begins during the idle cycle. An address is placed on the bus one
CPU cycle before clk1F, as the CPU did not probe the cache.

1 The CPU requests the transaction with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers the assertion of bcTagOE and cpuDOE_l.

2 The first octaword of data is received. The 21071-CA chip asserts sysDOE,
cpuDWSel, and sysTagOEEn.

3 The 21071-CA chip recognizes the transaction and tests the LDx_L lock bit,
which is clear (fail). The latched write data is discarded. The 21071-CA chip
deasserts sysEarlyOEEn and acknowledges the cycle with cpuCAck<2:0>.

4 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–33



Figure 5–11 Timing of CPU ST x_C Fails

CY0 CY1 CY2 CY3 CY4

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

Idle STx_C Write Write Data 0 Write Data 1 BUS
Turnaround

LJ-03720-TI0

idle

idle

idle

STx_C

write mask

STx_C cac address

wd0 wd1

V,D

reset nop merge merge

Note:
ioRequest is not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

fail

idle

5–34 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.6 Barrier
The following table describes the cycles for a memory barrier transaction, as
shown in Figure 5–12.

Cycle Description

0 A barrier begins during the idle cycle. An address is placed on the bus one
CPU cycle before clk1F, but is ignored.

1 The CPU requests the transaction with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers bcDataOE and bcTagOE to turn on. (This is done
to avoid having the data and tag buses float, because the CPU does not drive
the data or tags during these transactions.)

2 The 21071-DA chip recognizes the transaction and requests that an OK be
sent using cpuCAck<2:0> in the next cycle. The 21071-DA chip could also
preempt the barrier at this point. The 21071-CA chip asserts sysDataOEEn
and sysTagOEEn.

3 The 21071-CA chip receives the request on ioCmd<2:0>, deasserts
sysTagOEEn, sysDataOEEn, and sysEarlyOEEn, and acknowledges the
cycle with cpuCAck<2:0>.

4 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–35



Figure 5–12 Timing of CPU Barrier or Fetch or FetchM

CY0 CY1 CY2 CY3 CY4

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

LJ-03144-TI0

idle

idle

idle

reset

Note:

cackcpu idle

idlebarrier

random address

OK

nop nop nop

Start TRANS CACK Request Terminate Next TRANSIdle

ioRequest and cpuCWMask are not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–36 DECchip 21071-CA Transactions and Timing Diagrams



5.1.1.7 Fetch, FetchM
These CPU transactions, similar to those shown in Figure 5–12, may
be supported as desired by a particular implementation. The simplest
implementation looks like an STx_C fail.

The following table describes the cycles for a fetch or fetchM transaction.

Cycle Description

0 A fetch or fetchM begins during the idle cycle. An address is placed on the
bus one CPU cycle before clk1F, but is ignored.

1 The CPU requests the transaction with cpuCReq<2:0>. Because sysEarlyOEEn
was asserted, this triggers bcDataOE and bcTagOE to turn on. (This is done
to avoid having the data and tag buses float, because the CPU does not drive
the data or tags during these transactions.)

2 A wait state is performed.

3 The 21071-CA chip recognizes the transaction, deasserts sysEarlyOEEn, and
acknowledges the cycle with cpuCAck<2:0>.

5.1.2 DMA Transactions
After DMA wins arbitration, it may initiate a transaction with the 21071-CA
chip. Unlike the CPU transactions, the only unit of transfer for DMA
transactions is a cache line.

5.1.2.1 DMA Idle
When DMA has the bus, the CPU is isolated by holding cpuDWSel, and
sysEarlyOEEn is deasserted. The cache is prepared for a probe by the
21071-CA chip asserting sysDataOEEn and sysTagOEEn in the first cycle
that a DMA transaction may begin. The cache also drives the data bus in case
a DMA read or write hits the cache.

DECchip 21071-CA Transactions and Timing Diagrams 5–37



5.1.2.2 DMA Read
This section describes the DMA read transactions.

5.1.2.2.1 Cacheable Hit The following table describes the cycles for a DMA
read transaction in cacheable space that hits, as shown in Figure 5–13.

Cycle Description

0 The transaction begins with DMA owning the bus, as indicated by the
assertion of ioGrant.

1 The 21071-DA chip requests a DMA read with ioCmd<2:0>, places the
address on sysAdr<33:5>, and points to a line to be loaded in the DMA read
and I/O write buffer with ioLineSel<1:0>.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. The 21071-CA chip waits for the cache probe, which indicates a cache
hit. The first octaword of data is already on the data bus, so it is loaded into
the DMA read buffer. (If the read was wrapped, the data would be invalid
and would have to be loaded in the next cycle.) To prepare for reading the
second octaword, bcDataA<4> is asserted.

3 The 21071-CA chip loads the second octaword of read data into the DMA
read buffer and indicates data ready with ioDataRdy. The transaction is
acknowledged with ioCAck<1:0>. If the 21071-DA chip won arbitration,
it may start a new read transaction in the next cycle. If the CPU won
arbitration, this cycle is used for bus turnaround.

4 The transaction is complete, and the next transaction is ready to begin.

5–38 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–13 Timing of DMA Read, Cacheable, Hit

CY0 CY1 CY2 CY3 CY4

clk1

clk2

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

LJ-03147-TI0

idle

Note:
cpuCReq and cpuCWMask are not important during this transaction.

ioRequest

sysCmd

REQ or ATOMREQ

DMA Read

DMA cac address

cd0 cd1

OK idle

hit

load rddmas rddmas

DMA has Cache DMA Address Tag Probe
Cache Read 0

Cache Read 1 Next Trans
epi Data Valid

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

Next Cycle

ioLineSel DMA Read Buffer Line

DECchip 21071-CA Transactions and Timing Diagrams 5–39



5.1.2.2.2 Cacheable Miss The following table describes the cycles for a DMA
read transaction in cacheable space that misses, as shown in Figure 5–14.

Cycle Description

0 The transaction begins with DMA owning the bus, as indicated by the
assertion of ioGrant.

1 The 21071-DA chip requests a DMA read with ioCmd<2:0>, places the
address on sysAdr<33:5>, and points to a line to be loaded in the DMA read
and I/O write buffer with ioLineSel<1:0>.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. Also, the cache tag, available this cycle, indicates a cache miss.

3 The read data could be returned to the 21071-DA chip in this cycle, although
it is shown to take until cycle 5. If the arbitration allows a release, and
the 21071-CA chip is not in the middle of a preemption, the CPU may be
released to use the cache. If so, the 21071-CA chip deasserts cpuHoldReq,
sysTagOEEn, and sysDataOEEn. Section 5.1.3.2.4 describes returning from
a released CPU to a DMA transaction.

4 The 21071-CA chip waits for read data to return. SysEarlyOEEn is asserted
so that if the CPU starts an external transaction, the tag and sysData buses
will not float.

5 The first octaword of read data is loaded into the DMA read and I/O write
buffer. The 21071-CA chip indicates the transfer by asserting ioDataRdy.

6 The 21071-CA chip waits for the second quadword of read data to return.

7 The second octaword is loaded into the DMA read and I/O write buffer and
is acknowledged with ioDataRdy. The transaction is acknowledged with
ioCAck<1:0>.

8 The transaction is complete, and the next transaction is ready to begin.

5–40 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–14 Timing of DMA Read, Cacheable, Miss

CY0 CY1 CY2 CY3 CY4

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuDRAck

cpuCAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

epiData

REQ or ATOMREQ

DMA Read

DMA cac address

idle

miss

reset nop rddmam rddmam

DMA has Cache DMA Address Tag Probe CPU Release Wait RDR

LJ-03142-TI0
Note:
cpuCReq,cpuCWMask are not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

ioLineSel DMA Read Buffer Line

DECchip 21071-CA Transactions and Timing Diagrams 5–41



CY5 CY6 CY7 CY8

OK idle

rddmam nop

rd0 rd1

Read Data RET Wait RDR
RD0 on EPI

Read Data RET Next Trans
RD1 on EPI

idle

LJ-03143-TI0
Note:
cpuCReq and cpuCWMask are not important during this transaction.

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuDRAck

cpuCAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

epiData

DMA Read

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

ioLineSel DMA Read Buffer Line

rddmam rddmam

5–42 DECchip 21071-CA Transactions and Timing Diagrams



5.1.2.2.3 Noncacheable A DMA read transaction to noncacheable space is
similar to the cacheable miss shown in Figure 5–14. Due to internal timing
issues, the probe cycle still exists, but the probe results are ignored.

5.1.2.2.4 I/O Space DMA transactions are not supported to I/O space; they
should be responded to as an error using ioCAck<1:0> (Figure 5–15).

The following table describes the cycles for a DMA read, I/O space transaction,
as shown in Figure 5–15.

Cycle Description

0 The transaction begins with DMA owning the bus, as indicated by the
assertion of ioGrant.

1 The 21071-DA chip requests a DMA read with ioCmd<2:0>, places the
address on sysAdr<33:5>, and points to a line to be loaded in the DMA read
and I/O write buffer with ioLineSel<1:0>.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it is in I/O space. The
21071-CA chip turns on its sysData drivers for this one cycle to prevent a
floating bus.

3 The cycle is acknowledged as an error with ioCAck<1:0>.

4 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–43



Figure 5–15 Timing of DMA Read, I/O Space (Error)

CY0 CY1 CY2 CY3 CY4

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

idle

sysCmd

DMA has Cache DMA Read Error Wait Next Trans

LJ-03148-TI0

reset reset nop nop

req or atomreq  

DMA Read

Error Return
and ARBIO Space

DMA I/O address

Note:
cpuCReq and cpuCWMask are not important during this transaction.

error

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

idle

ioLineSel DMA Read Buffer Line

5–44 DECchip 21071-CA Transactions and Timing Diagrams



5.1.2.3 DMA Read Wrapped
The transaction for DMA read wrapped is the same as that of DMA read. The
return read data is returned with octaword 1, followed by octaword 0. This is
done by asserting sysDataAEn for the first octaword and deasserting it for the
second.

5.1.2.4 DMA Read Burst
The transaction for DMA read burst is the same as that of DMA read, except
that the transaction includes a hint that the next transaction will be to the
next cache line address.

5.1.2.5 DMA Read Wrapped Burst
The transaction for DMA read wrapped burst is the same as that of DMA read,
except that it contains the next line hint in DMA read burst and includes the
wrapping in DMA read wrapped.

5.1.2.6 DMA Write
A DMA write releases the cache when the memory write buffer is full and the
write does not hit in the cache.

DECchip 21071-CA Transactions and Timing Diagrams 5–45



5.1.2.6.1 Cacheable Hit The following table describes the cycles for a DMA
write transaction in cacheable space that hits, as shown in Figure 5–16. The
cache is invalidated rather than updated.

Cycle Description

0 The transaction begins with DMA owning the bus, as indicated by the
assertion of ioGrant.

1 The 21071-DA chip requests a DMA write with ioCmd<2:0>, places the
address on sysAdr<33:5>, and points to the DMA write buffer cache line
with write data using ioLineSel<1:0>.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. Also, the cache tag indicates a cache hit. The 21071-BA chips
internally transfer the first octaword of DMA write data to the memory
write buffer. To prepare to invalidate the cache, sysTagOEEn is deasserted.

3 The cache tags are driven by the 21071-CA chip as invalid. The second
octaword is transferred.

4 The tags are written by asserting sysTagWE for one cycle. The cache data is
not written. bc_LongWR does not affect this transaction.

5 The 21071-CA chip tristates the tags. The transaction is acknowledged with
ioCAck<1:0>. (The acknowledgment could not be done in cycle 4 because the
address was still required to do the invalidate.)

6 The transaction is complete, and the next transaction is ready to begin.

5–46 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–16 Timing of DMA Write, Cacheable, Hit, Followed by DMA Read

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

idle

DMA Has Cache DMA Address Tag Probe Tag Turnaround

LJ-03153-TI0

DMA TerminateTag Invalidate

CY6

Next TRANS

DMA Write

OK

cpuCReq and cpuCWMask are not important during this transaction.

cpuAdr DMA cac_address

sysCmd load wrdmas wrdmas reset

Note:

reset

and ARB

req or atomreq

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

ioLineSel DMA Write Buffer Line to Mem Write Buffer

hit nV

DECchip 21071-CA Transactions and Timing Diagrams 5–47



5.1.2.6.2 Cacheable Miss The following table describes the cycles for a DMA
write transaction in cacheable space, as shown in Figure 5–17.

Cycle Description

0 The transaction begins with DMA owning the bus, as indicated by the
assertion of ioGrant.

1 The 21071-DA chip requests a DMA write with ioCmd<2:0>, places the
address on sysAdr<33:5>, and points to the DMA write buffer cache line
with write data using ioLineSel<1:0>.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. Also, the cache tag indicates a cache miss. The 21071-BA chips
internally transfer the first octaword of DMA write data to the memory write
buffer.

If the cache is disabled (bc_EN =0), the tag probe results are ignored
(assumes a miss), and the CPU internal Dcache is invalidated with
cpuDinvReq.

If the memory write buffer was full, the probe is completed and the write
data is not transferred. If the probe missed, the arbitration may release the
cache, and the transaction will continue when the memory write buffer is no
longer full.

3 The transaction is acknowledged with ioCAck<1:0>. (The acknowledgment
could not be done in cycle 2 because the tag results were not available yet.)

4 The transaction is complete, and the next transaction is ready to begin.

5–48 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–17 Timing of DMA Write, Cacheable, Miss, Followed by CPU Write

CY0 CY1 CY2 CY3 CY4

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

idle

DMA Write

OK

cpuAdr DMA cac_address

bcDataA<4>

bcDataWE_l

DMA Has Cache DMA Address Tag Probe

LJ-03155-TI0

DMA Terminate Next TRANS

cpuCReq, cpuCWMask and cpuAdr are not important during this transaction.

sysCmd wrdmas wrdmam reset

Note:

reset

and ARB

miss

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

req or atomreq

ioLineSel DMA Write Buffer Line

DECchip 21071-CA Transactions and Timing Diagrams 5–49



5.1.2.6.3 Noncacheable A DMA write transaction in noncacheable space is
similar to a DMA write miss, as shown in Figure 5–17. Although the tag probe
results do not matter, the timing of internal transfers and the acknowledgment
are the same. The acknowledgment cannot be done in cycle 2 because of the
time required to determine whether the transaction is to a valid memory
location.

5.1.2.6.4 I/O Space DMA transactions are not supported to I/O space; they
should be responded to as an error using ioCAck<1:0>. This is shown in
Figure 5–15 and is described in Section 5.1.2.2.4.

5.1.2.7 DMA Write Masked
A DMA write masked transaction is a combination of the DMA read and
DMA write transactions. In a DMA write masked transaction, the cache or
memory is read as it is in a DMA read transaction. The results of the read are
combined with the DMA write buffer and are loaded into the memory write
buffer.

5–50 DECchip 21071-CA Transactions and Timing Diagrams



5.1.2.7.1 Cacheable Hit The following table describes the cycles for a
DMA write masked transaction in cacheable space that hits, as shown in
Figure 5–18.

Cycle Description

0 The transaction begins with DMA owning the bus, as indicated by the
assertion of ioGrant.

1 The 21071-DA chip requests a DMA write masked with ioCmd<2:0>, places
the address on sysAdr<33:5>, and points to the DMA write buffer cache line
with write data using ioLineSel<1:0>.

2 The 21071-CA chip decodes sysAdr<33:5> and finds it in cacheable memory
space. The 21071-CA chip waits for the cache probe, which indicates a
cache hit. The first octaword of data is already on the data bus. The data is
merged (based on the byte enables) with the DMA write buffer and is loaded
into the memory write buffer. To prepare for reading the second octaword,
bcDataA<4> is asserted.

3 The cache tags are driven by the 21071-CA chip as invalid. The 21071-CA
chip reads the second octaword of cache data, merges it, and places it into
the memory write buffer.

4 The tags are written by asserting sysTagWE for one cycle.

5 The 21071-CA chip tristates the tags. The transaction is acknowledged with
ioCAck<1:0>. (The acknowledgment could not be done in cycle 4 because the
address was still required in order to do the invalidate.)

6 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–51



Figure 5–18 Timing of DMA Write Masked, Cacheable, Hit

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

idle

CY6

REQ or ATOMREQ

DMA Write

OK

cpuAdr DMA cac_adress

cd0 cd1

bcDataA<4>

bcDataWE_l

DMA has Cache DMA Address Tag Probe Tag Turnaround

LJ-03154-TI0

DMA TerminateTag Invalidate Next Trans

cpuCReq, cpuCWMask, and cpuAdr are not important during this transaction.

sysCmd load wrdmas wrdmas reset

Note:

reset

  ARB

nVhit

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

ioLineSel DMA Write Buffer Line to Mem Write Buffer

5–52 DECchip 21071-CA Transactions and Timing Diagrams



5.1.2.7.2 Cacheable Miss A DMA write masked transaction that misses the
cache looks externally identical to a DMA read that misses the cache. This is
described in Section 5.1.2.2.2. (The internal merge and transfer to the memory
write buffer is invisible.) The cache may be released.

5.1.2.7.3 Noncacheable A DMA write masked transaction to noncacheable
space looks externally identical to a regular noncacheable DMA read. This is
described in Section 5.1.2.2.3.

5.1.2.7.4 I/O Space Any DMA transaction to I/O space is an error and is
described in Section 5.1.2.2.4.

5.1.2.8 DMA Flush
A DMA flush transaction is used to ensure that the 21071-CA chip write buffer
is empty. This may be required to guarantee the limited memory access time
required by ISA and EISA devices.

The following table describes the cycles involved for a DMA flush transaction,
as shown in Figure 5–19.

Cycle Description

0 The transaction begins DMA owning the bus, as indicated by the assertion of
ioGrant.

1 The 21071-DA chip requests a DMA flush with ioCmd<2:0> and places an
arbitrary address on sysAdr<33:5>.

2 The 21071-CA chip checks to see if its write buffer is empty. In this figure, it
is not emptied for two cycles, so the 21071-CA chip waits.

3 If the write buffer was empty, ioCAck<1:0> would be in this cycle. It is not,
so the 21071-CA chip continues to wait.

4 The 21071-CA chip continues to wait.

5 The 21071-CA chip determines that its write buffer is empty, and the
transaction is acknowledged with ioCAck<1:0>.

6 The transaction is complete, and the next transaction is ready to begin.

DECchip 21071-CA Transactions and Timing Diagrams 5–53



Figure 5–19 Timing of DMA Flush

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

idle

sysCmd

DMA Has Cache DMA Request Flush Waiting Flush Waiting

LJ-03132-TI0

DMA TerminateFlush Waiting

reset reset reset reset reset

CY6

Next TRANS

DMA Flush

OK

reset

Note:
cpuCReq, cpuCWMask, and cpuAdr are not important during this transaction.

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

req or atomreq

5–54 DECchip 21071-CA Transactions and Timing Diagrams



5.1.3 Arbitration Transactions
This section describes the arbitration transactions.

5.1.3.1 Back-to-Back Transactions
This section describes the CPU-to-CPU and DMA-to-DMA transactions.

5.1.3.1.1 CPU-to-CPU Figure 5–20 shows the actions between two back-to-
back CPU transactions. It shows a CPU cacheable read followed by a CPU
write, although this description is applicable to any transaction.

The following table describes the cycles for back-to-back transactions, as shown
in Figure 5–20.

Cycle Description

0 A cacheable read block transaction is in progress, as described in cycle 6 of
Section 5.1.1.2.1.

1 In the cycle that cpuCAck<2:0> is sent, the cache controls are set inactive,
with sysEarlyOEEn, sysTagOEEn, and sysDataOEEn all deasserted.

2 The previous transaction is done. To prepare for the next CPU transaction,
sysEarlyOEEn is asserted.

3 cpuDOE_l is asserted. A CPU write transaction is next, as described in
cycle 1 of Section 5.1.1.3.1.

DECchip 21071-CA Transactions and Timing Diagrams 5–55



Figure 5–20 Switch From CPU Read to CPU Write

CY0 CY1 CY2 CY3

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

TD 200  tim_sys_CPURD_TO_CPUWR Switch from CPU read to CPU write

idle

LJ-03145-TI0

idle

idle

cpu read idle

cpu mask

addr

write

wr

sysCmd

Read Block Read Block Idle

nop nop reset

Write Block

nop

fd1

OK

OK

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–56 DECchip 21071-CA Transactions and Timing Diagrams



5.1.3.1.2 DMA-to-DMA The actions between two back-to-back DMA
transactions are shown in Figures 5–21 and 5–22. Figure 5–21 shows a DMA
read hit followed by a DMA write, and Figure 5–22 shows a DMA write hit
followed by a second DMA write. This description applies to any back-to-back
DMA transaction.

The following table describes the cycles for back-to-back DMA transactions
shown in Figure 5–21.

Cycle Description

0 A DMA read miss transaction is in progress, as described in cycle 5 of
Section 5.1.2.2.2. If not already in the proper state, sysDataOEEn and
bcDataA<4> are deasserted.

1 The DMA read miss transaction is finished with ioCAck<1:0> being sent.

2 A DMA write transaction is next, as described in cycle 1 of Section 5.1.2.6.2.

The following table describes the cycles for back-to-back transactions shown in
Figure 5–22.

Cycle Description

0 A DMA write hit transaction is in progress, as described in cycle 3 of
Section 5.1.2.6.1.

1 The DMA write hit transaction is still in progress.

2 The DMA write hit transaction is finished. ioCAck<1:0> = OK is sent.

3 A DMA write transaction is next, as described in cycle 1 of Section 5.1.2.6.2.

DECchip 21071-CA Transactions and Timing Diagrams 5–57



Figure 5–21 Switch From DMA Read Hit to DMA Write

CY0 CY1 CY2

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

OK

DMA Read DMA Read DMA Write

LJ-03151-TI0

req or atomreq  

DMA Read

Hit

DMA address

DMA Wr

Note:
cpuCReq and cpuCWMask are not important during this transaction.

DMA   

cd0 cd1

idleidle

sysCmd nop resetnop

Hit

RD CY2 RD CY3/WR CY0 WR CY1

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

5–58 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–22 Switch from DMA Write Hit to DMA Write

CY0 CY1 CY2 CY3

OK

Tag Turnaround Tag Inval
BUS Turnaround

LJ-03152-TI0

req or atomreq  

DMA Write

DMA WriteWait for ACK

DMA write address DMA Ad

idleidle

nop nop resetnop

DMA CY3 DMA CY4 WR CY1DMA CY5

nV

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

Note:
cpuCReq and cpuCWMask are not important during this transaction.

sysCmd

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–59



5.1.3.2 Transitions
This section describes the transition transactions.

5.1.3.2.1 CPU-to-DMA Figure 5–23 shows when the arbiter decides that the
sysBus will be granted to DMA and several signals must change their default
states in preparation for the DMA transaction.

The following table describes the cycles for a CPU read to DMA write
transactions, as shown in Figure 5–23.

Cycle Description

0 A CPU read block cacheable with victim transaction is in progress, as
described in cycle 5 of Section 5.1.1.2.1. The 21071-CA chip samples the
ioRequest<1:0> signals for a request in this cycle. (This figure represents the
earliest possible sampling, two cycles before a transaction is acknowledged
on ioCAck<1:0> or cpuCAck<2:0>.)

1 The arbiter decides that the 21071-DA chip will be granted the bus. While
the read is finishing, cpuHoldReq and ioGrant are asserted.

2 The 21071-DA chip detects the assertion of ioGrant, ignores any CPU
transaction to its space, and waits for cpuHoldAck to assert.

3 The 21071-CA and 21071-DA chips wait for cpuHoldAck to assert. In the
fastest case, cpuHoldAck asserts this cycle.

4 In this cycle, the CPU issues cpuHoldAck and tristates its buses.

5 The cache tags and data are enabled with sysTagOEEn and sysDataOEEn.
The 21071-DA chip drives sysAdr<33:5> and places a DMA command request
on ioCmd<2:0>. The details of the DMA write transaction are described in
cycle 1 of Section 5.1.2.6.2. The 21071-CA chip receives the command and
processes it.

5–60 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–23 Switch from CPU Read to DMA Write

CY0 CY1 CY2 CY3 CY4 CY5

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

idle

sysCmd

CPU Read CPU Read CPU Ignored CPU Ignored

LJ-03146-TI0

CPU Write

nop nop nop nop reset

req or atomreq  

idle

CPU Ignored
Wait for ACKWait for ACK

DMA Wr

I stream, not wrapped idle

read block

read address DMA   

fd0 fd1

OK

OK

OK

V,nD

nop

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

DECchip 21071-CA Transactions and Timing Diagrams 5–61



5.1.3.2.2 DMA to CPU, Cache Not Released When the 21071-DA chip owns
the sysBus and cache, and the arbiter is ready to grant the bus back to the
CPU, the cache and CPU controls must switch back to their CPU defaults.

The descriptions in the following tables apply to any back-to-back DMA
transaction.

The following table describes the cycles for a DMA write hit followed by a CPU
write, as shown in Figure 5–24.

Cycle Description

0 A DMA write hit transaction is in progress, as described in cycle 4 of
Section 5.1.2.6.1. The 21071-DA chip indicates that it does not have
additional DMA transactions to complete by sending idle on ioRequest<1:0>.
(Or the CPU has priority and is requesting a cycle on cpuCReq<2:0>.)

1 One cycle before the cycle ioCAck<1:0> asserts, the 21071-CA chip deasserts
ioGrant and sysDataOEEn.

2 The 21071-CA chip deasserts cpuHoldReq and sysTagOEEn. (In the figure,
sysTagOEEn was already deasserted for the invalidate.) The 21071-DA chip
detects the deassertion of ioGrant, tristates its address buffers, and waits for
cpuHoldAck to deassert.

3 CpuHoldAck deasserts in this cycle.

4 The 21071-CA chip asserts sysEarlyOEEn and may begin processing the
CPU transaction.

5 The CPU write appears on sysData.

5–62 DECchip 21071-CA Transactions and Timing Diagrams



The following table describes the cycles for a DMA read hit followed by a CPU
write, as shown in Figure 5–25.

Cycle Description

0 A DMA read hit transaction is in progress, as described in cycle 2 of
Section 5.1.2.2.1.

1 One cycle before the cycle ioCAck<1:0> asserts, the 21071-CA chip deasserts
ioGrant and sysDataOEEn.

2 The 21071-CA chip deasserts cpuHoldReq and sysTagOEEn. (In the figure,
sysTagOEEn was already deasserted for the invalidate.) The 21071-DA chip
detects the deassertion of ioGrant, tristates its address buffers, and waits for
cpuHoldAck to deassert.

3 CpuHoldAck deasserts in this cycle.

4 The 21071-CA chip asserts sysEarlyOEEn and may begin processing the
CPU transaction.

DECchip 21071-CA Transactions and Timing Diagrams 5–63



Figure 5–24 Switch from DMA Write Hit to CPU Write

DMA CY3 DMA CY4 DMA CY5 CPU CY0 CPU CY1

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

idle

LJ-03149-TI0

idle

idle

write block

read block

DMA write address CPU write address

CY0 CY1 CY2 CY3 CY4

DMA Write Buffer Line to Mem Write Buffer

idleOK

nV

sysCmd

TAG Turnaround TAG Inval Wait for ACK CPU WriteCPU Adr Late

DMA write

wd0

DMA Terminate
Bus Turnaround

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

CPU CY2
CY5

CPU Write

nop nop nop resetnop load

5–64 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–25 Switch from DMA Read to CPU Write

RD CY3 RD CY4 CPU CY0 CPU CY1

idle

LJ-03150-TI0

idle

idle

write block

read block

DMA   address CPU write address

CY0 CY1 CY2 CY3 CY4

idleOK

DMA Read DMA Read BUS CPU Write

nop nop nop reset

CPU ADR Late

nop

cd0 cd1

TurnaroundHitHit

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

sysCmd

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–65



5.1.3.2.3 DMA to CPU, Cache Previously Released If the arbitration allows
cache releases, the 21071-CA chip may have released the cache to the CPU
after a DMA read or write. This is indicated by ioGrant and cpuHoldReq
being deasserted during a DMA transaction. To grant the sysBus to the CPU,
additional signals must be changed. This is shown in Figure 5–26 and is
described in the following table.

Cycle Description

0 A DMA read miss transaction is in progress, as described in cycle 6 of
Section 5.1.2.2.2. One cycle before ioCAck<1:0> asserts, the 21071-CA chip
decides that the CPU has won arbitration.

1 After the cycle ioCAck<1:0> asserts, the 21071-CA chip may begin processing
the CPU transaction.

2 The CPU transaction begins.

3 The CPU transaction continues.

5.1.3.2.4 DMA to DMA, Cache Previously Released To grant the cache back
to the 21071-DA chip after a release, the CPU must be forced off the cache.
This is shown in Figure 5–27 and is described in the following table.

Cycle Description

0 A DMA read miss transaction is in progress, as described in cycle 6 of
Section 5.1.2.2.2. The 21071-CA chip decides that the 21071-DA chip has
won arbitration and asserts cpuHoldReq and ioGrant.

1 The 21071-DA chip sees ioGrant asserted and waits for cpuHoldAck.

2 The 21071-CA and 21071-DA chips wait for cpuHoldAck. In the fastest case,
cpuHoldAck asserts in this cycle.

3 The 21071-CA chip asserts sysDataOEEn and sysTagOEEn. The 21071-DA
chip sees cpuHoldAck asserted and begins the DMA write. The 21071-CA
chip may start the cache probe for the DMA write.

4 The DMA transaction continues.

5–66 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–26 Switch from CPU Released to CPU Write

DMA CY6/CPU CY0 CPU CY1 CPU CY2 CPU CY3

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

DMA read

idle

write block

write mask

CPU write address

wd0 wd1

nD

idle

idle

OK

sysCmd

DMA Read CPU Write
Tag Probe

reset wrsys wrsys

LJ-03162-TI0
Note:
ioRequest is not important during this transaction.

reset

CPU Write

CY0 CY1 CY2 CY3

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

DECchip 21071-CA Transactions and Timing Diagrams 5–67



Figure 5–27 Switch from CPU Released to DMA Write

WR CY3

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuCReq

cpuCWMask

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_1

cpuDWSel

cpuCAck

cpuDRAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_1

sysTagVDP

sysDataOEEn

bcDataCEOE_1

cpuDinvReq

bcDataA<4>

bcDataWE_1

DMA read

OK

DMA address

tags

idle DMA write

idle

sysCmd

DMA Read
Holdreq to CPU

DMA Write
Cache Grant

DMA Terminate

LJ-03163-TI0

nop reset wrsys wrsys

DMA Write

RD CY6
WR CY0 WR CY1
RD CY7/ RD CY8/ WR CY2

CY4CY0 CY1 CY2 CY3

DMA Read

nop

req or atomreq

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

5–68 DECchip 21071-CA Transactions and Timing Diagrams



5.1.3.3 Preemption
Reads and writes to I/O space, and all barriers may be preempted by the
21071-DA chip. A preemption causes the current CPU transaction to be
suspended and causes DMA transactions to be performed. After the DMA
transactions are complete, the suspended CPU transaction is resumed.

5.1.3.3.1 I/O Write Preempted for DMA Write The following table describes
the cycles for a write block transaction to remote I/O space that requires
preemption, as shown in Figure 5–28.

This section describes the details of the preemption. For details about the
write block to I/O space, see Section 5.1.1.3.5; for details about the DMA read,
see Figure 5–13.

Cycle Description

0 The bus is idle and is owned by the CPU.

1 The CPU requests a read block to I/O space with cpuCReq<2:0>.

2 The 21071-DA chip determines that the I/O read creates a deadlock condition
and requests a preempt using ioRequest<1:0>.

Note

Preempt cannot be requested during an I/O write
until the CPU data has been latched, otherwise that
data will be lost.

3 The 21071-CA chip receives the preempt and asserts cpuHoldReq and
ioGrant.

4 The 21071-DA chip receives ioGrant and waits for cpuHoldAck.

5 The CPU happens to assert cpuHoldAck this cycle.

6 The 21071-CA chip receives cpuHoldAck and turns the cache on with
sysDataOEEn and sysTagOEEn. The 21071-DA chip places its transaction
on the bus. It also determines that another DMA transaction will not
be required inside the preempt, and it returns ioRequest<1:0> to idle (or
request if a regular DMA is desired after the I/O write).

7 The 21071-CA chip detects a cache hit and loads the DMA read and I/O
write buffer with the data.

DECchip 21071-CA Transactions and Timing Diagrams 5–69



Cycle Description

8 The 21071-CA chip loads the second octaword of data and acknowledges the
DMA transaction on ioCAck<1:0>. It samples ioRequest<1:0> and finds that
the preempt no longer exists, and it deasserts ioGrant, sysTagOEEn, and
sysDataOEEn.

9 The 21071-DA chip sees the deassertion of ioGrant and tristates its drivers.
It also sees ioCAck<1:0> and knows that the DMA transaction is complete.
The 21071-CA chip deasserts cpuHoldAck.

The 21071-DA chip sees that the DMA transaction was complete last cycle,
and no more preemption is required, so it may request a cpuCAck on
ioCmd<2:0> in this cycle. As the sysData drivers have not been enabled
yet, a cpuDRAck<2:0> request on ioCmd<2:0> may not be sent until the next
cycle.

10 CpuHoldAck deasserts, and the 21071-CA chip sees cpuHoldAck deasserted.

The 21071-CA chip enables its data bus drivers if an I/O read was
preempted. The 21071-DA chip detects ioGrant and cpuHoldAck both
deasserted and continues the preempted CPU transaction. The remaining
cycles are the same as the regular non-preempted transaction, resuming
where the preempt interrupted it.

5–70 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–28 Timing of CPU Write Block to I/O Space, Preempted by a DMA Read Hit

CY0 CY1 CY2 CY3 CY5

clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuDRAck

cpuCAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

idle

reset

LJ-03168-TI0

cpuCReq

cpuCWMask

sysCmd

CY4

idle

write block

write mask

write to address

wd0 wd1

resetload rddmas rddmas

Idle CPU Write CPU Write
Preempt ARB

Request Cache
Issue Grant

Wait for ACK DMA has Cache

not preempt preempt

sysDataALEn

sysDataWEEn

sysDataAHEn

bcTagCtlWE_l

sysTagWE

DECchip 21071-CA Transactions and Timing Diagrams 5–71



clk1

clk2

ioRequest

cpuHoldReq

cpuHoldAck

ioGrant

ioCmd

cpuAdr

cpuData

drvSysData

sysDOE

cpuDOE_l

cpuDWSel

cpuDRAck

cpuCAck

ioDataRdy

ioCAck

sysEarlyOEEn

sysTagOEEn

bcTagCEOE_l

sysTagVDP

sysDataOEEn

bcDataCEOE_l

cpuDinvReq

bcDataA<4>

bcDataWE_l

LJ-03169-TI0

cpuCReq

cpuCWMask

sysCmd

DMA Read cack cpu idle

write block

write mask

DMA cac address

cd0 cd1

cpu adr

idle OK idle

hit

reset load rddmas noprddmas

DMA Address Tag Result
Cache Read

DMA Read Hit BUS Turnaround CPU ADR Late
CPU CY0

CY6 CY7 CY8 CY9 CY10

idle (only one dma)

sysDataALEn

sysDataWEEn

bcTagCtlWE_l

sysTagWE

sysDataAHEn

OK

5–72 DECchip 21071-CA Transactions and Timing Diagrams



5.1.4 Write Speed
The 21071-CA chip supports two different speeds for writing the cache. A
system must determine which speed is required based on the RAM setup, hold,
and pulse width constraints.

Note

Different PAL equations are required for each mode.

The normal speed allows one octaword of data to be written each cycle. It
is the default and is indicated by the bc_LongWr bit in the general control
register being clear. Figure 5–29 shows the timing of two back-to-back writes.
This mode is also used as the base for all of the transaction timing diagrams in
this chapter.

Figure 5–29 Timing of Regular Writes

LJ-03287-TI0

clk1

clk2

cpuData

sysDataALEn

bcDataA<4>

sysDataWEEn

bcDataWE_l

fd0 fd1

sysDataAHEn

DECchip 21071-CA Transactions and Timing Diagrams 5–73



Long writes allow one octaword of data to be written in two cycles. It is
indicated by the bc_LongWr bit in the general control register being set.
Figure 5–30 shows the timing of two back-to-back writes. All transactions that
are limited by the write speed and not by memory or I/O read throughput will
be two cycles longer (except for DMA write invalidate, which is not affected by
bc_LongWr). bcDataA<4> will be stable for both cycles. SysDataLongWE will
pulse for one cycle and may be delayed to generate the write pulse.

Figure 5–30 Timing of Long Writes

LJ-03288-TI0

clk1

clk2

cpuData

bcDataA<4>

sysDataLongWE

bcDataWE_l

fd0 fd1

sysDataALEn

sysDataAHEn

5–74 DECchip 21071-CA Transactions and Timing Diagrams



5.2 Memory Transactions
This section describes the transaction timing on the memory interface.

5.2.1 Memory Read Followed by a Page Mode Memory Read
The following table describes a memory read followed by a page mode read, as
shown in Figure 5–31.

Cycle Description

0 The transaction starts when memclkR coincides with clk2R. The 21071-CA
has started driving the row address on the memAdr<11:0> pins, one-quarter
cycle earlier.

1 The 20171-CA asserts the appropriate memRAS_l<8:0> or memRASB_l<8:0>
lines after waiting for the row address setup time. This example uses a
ROWSETUP value of 0.

The memData drivers are turned off in cycle 1 because the current
transaction is a read.

2 The 20171-CA waits for the row address hold time to be satisfied.

3 The 20171-CA commences driving the column address after waiting for the
row address hold time. This example uses a ROWHOLD value of 1.

4 The 20171-CA asserts memCAS_l<3:0> after waiting for the column address
setup time. This example uses a COLSETUP value of 0.

The 21071-CA changes the memCmd<3:1> from NOP to RDIMM, indicating
to the 21071-BA chips that memory data should be latched on the rising
edge of memClk in cycle 6. This example uses a RDlyRow value of 2.

The 21071-CA will change the column address to point to the next column
after the column address hold time has been satisfied. This example uses a
ColHold value of 1, causing the next column address to be driven in cycle 6.

5 The memCAS_l<3:0> pins remain asserted.

6 The 20171-CA deasserts memCAS_l<3:0>, because the value of RTCAS
is 0 in this example. Data is latched into the 21071-BA chips due to the
command driven by the 21071-CA chip in cycle 4.

7 The memCAS_l<3:0> pins remain deasserted until the CAS precharge time
is satisfied. This example uses a TCP value of 1.

DECchip 21071-CA Transactions and Timing Diagrams 5–75



Cycle Description

8 The 21071-CA chip asserts memCAS_l<8:0> because the CAS precharge time
has been satisfied.

The 21071-CA changes the memCmd<3:1> from NOP to RDIMM, indicating
to the 21071-BA chips that memory data should be latched on the rising
edge of memClk of cycle 10. The delay between latching successive read data
is internally calculated from other programmed parameters.

The 21071-CA will change the column address to point to the next column
after the Column address hold time has been satisfied. This example uses a
ColHold value of 1.

9 This cycle is similar to cycle 5.

10 The 20171-CA deasserts memCAS_l<3:0>. Data is latched into the 21071-BA
chips due to the command driven by the 21071-CA chip in cycle 8.

The 21071-CA keeps memRAS_l asserted because it decides to perform the
next read in page mode. If the 20171-CA chip were to decide not to remain
in page mode, it would deassert memRAS_l in this cycle.

The 20171-CA begins driving the next row address on memAdr<11:0>
because the read transfers have ended.

The 21071-CA drives the memCmd<3:1> to RESET, indicating to the
21071-BA chips that their internal counters and pointers should be reset.

11 The state machine is in idle, but clk2 is low in this cycle. The state machine
waits until the next cycle to begin, where clk2 is high. This is required to
synchronize two state machines inside the 21071-CA chip.

12 The next transaction is begun and is confirmed to be a page mode read.

The 21071-CA switches the drvMemData pin to its default asserted value,
causing the 21071-BA chips to turn on their memData drivers.

13 The memData drivers are turned off in this cycle because the current
transaction is a read. The 21071-CA begins to drive the first column address.
This is a wait cycle for the state machine in the 21071-CA.

14 The column setup time counter is started in this cycle and the 21071-CA
waits to assert memCAS_l<3:0>.

15 This cycle is similar to cycle 4.

5–76 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–31 Memory Read Followed by a Page Mode Memory Read

CY0 CY1 CY2 CY3 CY4 CY5 CY6 CY7

CY8 CY9 CY10 CY11 CY12 CY13 CY14 CY15

clk2

memClk

idle

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

wfcol wfcolwfcaslo wfcashi wfcp

wfcashiwfcashi wfidle idle wait0 wfcaslo wfcashi

Note:

All signals except memData are drawn at DECchip 21071-CA driver pin with zero delay.
LJ-03172-TI0

memWE_L

ca_drvmd

memData

ca_memcmd

latched_data

wfcol wfcp

idle

Row address 1

Row

Col0

Col

00001111

1111 11111111

0000

0000

nop rd_imm

reset

D0 D0

D1

D0

D1

Nonpage Memory Read to Bank 0 is followed by page mode Read to Bank 0

nop

stay in idle until clk2r

nopnop

clk2

memClk

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

memWE_L

ca_drvmd

memData

ca_memcmd

latched_data

rd_imm

Col1

Col1

D0

DECchip 21071-CA Transactions and Timing Diagrams 5–77



5.2.2 Memory Read Followed by a Non-Page Mode Memory Write
Cycles 0 through 5 are the same as in Section 5.2.1. In cycle 6, memCmd<3:1>
is RDDly, because the read data must be latched after 3 memClk cycles.

Figure 5–32 shows a memory read followed by a non-page mode memory
write.

5–78 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–32 Memory Read Followed by a Non-Page Mode Memory Write

CY0 CY1 CY2 CY3 CY4 CY5 CY6

CY7 CY8

clk2

memClk

idle

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

latched_data

memWE_L

ca_drvmd

ca_memcmd

memData

wfcol wfcol wfcaslo wfcashi wfcashi wfcp

wfcashi idle wfras

Row Address 1 Col

Write Row

1111 1111

nop rd_dlynop rd_imm

1000 1111

reset

D1

Note:

All signals except memData are drawn at DECchip 21071-CA driver pin with zero delay.
Non page Memory Read to Bank 0 is followed by Write to Bank 1. LJ-03173-TI0

nop

clk2

memClk

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

latched_data

memWE_L

ca_drvmd

ca_memcmd

memData

0000

jnk D0

D0

CY9 CY10 CY11 CY12 CY13

wfcashi wfidle

WData 0D1

idle

nop

wait0

DECchip 21071-CA Transactions and Timing Diagrams 5–79



5.2.3 Memory Write Followed by a Page Mode Memory Write
The following table describes the cycles for a memory write followed by a page
mode memory write transaction, as shown in Figure 5–33.

Cycle Description

0 The 21071-CA decides to begin a non-page-mode write in this cycle.

1 The 21071-CA switches the address on memAdr<11:0> from the default of
read row address to write row address. The 21071-BA chips are already
driving the first write data on the memData pins. The 21071-CA waits in
this cycle to retrieve programmed information to do the write.

2 The 21071-CA waits for the address setup time to memRAS_l<8:0> (or
memRASB_l<8:0>) to be satisfied.

3 The 21071-CA asserts the appropriate memRAS_l<8:0> (or memRASB_l<8:0>)
after waiting for the row address setup time. This example uses a RowSetUp
value of 0.

4 The 20171-CA waits for row address hold time to be satisfied.

5 The 20171-CA commences driving the column address after waiting for the
row address hold time. This example uses a ROWHOLD value of 1.

The 21071-CA asserts memWE_l<1:0> in the same cycle as switching from
row to column address. memWE_l<1:0> is held asserted until the end of the
transaction.

6 The 20171-CA asserts memCAS_l<3:0> after waiting for the column address
setup time. This example uses a COLSETUP value of 0.

The 21071-CA changes the memCmd<3:1> from NOP to WRIMM, indicating
to the 21071-BA chips that the next memory data should be driven on the
rising edge of memClk of cycle 8. This example uses a WHold0Row value of
4.

The 21071-CA will change the column address to point to the next column
after the column address hold time has been satisfied. This example uses a
ColHold value of 1, causing the next column address to be driven in cycle 8.

7 The memCAS_l<3:0> pins remain asserted.

8 The 20171-CA deasserts memCAS_l<3:0> after waiting for the CAS assertion
time. This example uses a WTCAS value of 0.

The 21071-CA changes memCmd<3:1> to WRDLY_LAST, indicating to
the 21071-BA chips that this is the last memData transfer and that the
21071-BA should increment its write buffer cache line pointer after 3 cycles.

9 The 20171-CA asserts memCAS_l<3:0> after waiting for CAS precharge
time. This example uses a TCP value of 0.

10 This cycle is similar to cycle 7.

5–80 DECchip 21071-CA Transactions and Timing Diagrams



Cycle Description

11 The 20171-CA deasserts memCAS_l<3:0>.

The 21071-CA keeps memRAS_l asserted because it decides to do the next
write in page mode. If the 20171-CA chip were to decide not to remain in
page mode, it would deassert memRAS_l (or memRASB_l) in this cycle.

The 20171-CA begins driving the default read row address on memAdr<11:0>
because the write transfers have ended.

The 21071-CA deasserts memWE_l<1:0> in this cycle.

12 A page mode write is selected in this cycle.

13 The 21071-CA switches the address on memAdr<11:0> from the default of
read row address to write column address. The 21071-BA chips are already
driving the first write data on the memData pins. The 21071-CA waits in
this cycle to retrieve programmed information to do the write.

The 21071-CA asserts memWE_l<1:0> in this cycle.

14 The 21071-CA waits for the address setup time to memCAS_l to be satisfied.

15 This cycle is similar to cycle 6.

DECchip 21071-CA Transactions and Timing Diagrams 5–81



Figure 5–33 Memory Write Followed by a Page Mode Memory Write

CY0 CY1 CY2 CY3 CY4 CY5 CY6 CY7

CY8 CY9 CY10 CY11 CY12 CY13 CY14 CY15

clk2

memClk

idle

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

memCAS_L<0>

memWE_L

ca_drvmd

ca_memcmd

memData

wait0 wfras wfcol wfcol wfcaslo wfcashi

wfcp wfcashi

wfcashi

wfcashi wfidle idle wait0 wfcaslo wfcashi

clk2

memClk

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

memCAS_L<0>

memWE_L

ca_drvmd

ca_memcmd

memData

Read Write Row Col

Write ColReadCol

1111 0000

nop wr_immnop nop

1111 1000 00001111

nopwr_dly_last

D1 next D0

D0

next D0

Note:

All signals except memData are drawn at DECchip 21071-CA driver pin with zero delay.
Non page Memory Write to Bank 0 with LW7 masked is followed by a page hit write. LJ-03176-TI0

nop nop

5.2.4 Memory Write Followed by a Non-Page Mode Memory Read
The write portion of the transaction is the same as in Section 5.2.3. The
difference is in cycle 12 when the write is completed. Because the default
address sent out on memAdr<11:0> is the read address, no extra cycles are
required to switch the address multiplexer (mux), when a read is selected.

5–82 DECchip 21071-CA Transactions and Timing Diagrams



The memRAS_l<8:0> for the read can assert as early as cycle 13. Figure 5–34
shows a memory write followed by a non-page mode memory read.

Figure 5–34 Memory Write Followed by a Non-Page Mode Memory Read

CY0 CY1 CY2 CY3 CY4 CY5 CY6

CY7 CY8

clk2

memClk

idle

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

ca_drvmd

memCAS_L<0>

memWE_L

ca_memcmd

memData

wait0 wfras wfcol wfcol wfcaslo wfcashi

wfcp wfcashi idle wfcol

Read Col

1111

nop wr_immnop nop

1111 0001

wr_dly_last

D1

Note:

All signals except mem Data are drawn at DECchip 21071-CA driver pin with zero delay.
LJ-03175-TI0

nop nop

0000

D0

CY9 CY10 CY11 CY12 CY13

wfcashi wfcashi wfidle

clk2

memClk

memAdr

memRAS_L<0>

memRAS_L<1>

memCAS_L

memCAS_L<3>

ca_drvmd

memCAS_L<0>

memWE_L

ca_memcmd

memData

Col

1111

next D0

Write Row

Read Row

Non Page Memory Write to Bank 0 with LW4 masked is followed by a Read.

DECchip 21071-CA Transactions and Timing Diagrams 5–83



5.2.5 Memory Refresh
The following table describes the cycles for a memory refresh transaction, as
shown in Figure 5–35.

Cycle Description

0 The 21071-CA decides to do a CAS-before-RAS refresh. The address is a
don’t-care during the refresh and continues to point to the default read row
address.

1 The 21071-CA asserts all memCAS_l<3:0> signals.

2 The 21071-CA waits to assert memRAS_l and memRASB_l. This example
uses a Ref_Cas2Ras value of 1.

3 The 21071-CA asserts all memRAS_l<8:0> and memRASB_l<8:0> signals.

4 The 21071-CA waits to deassert memRAS_l and memRASB_l. This example
uses a Ref_RasWidth value of 1.

5 This cycle is the same as cycle 4.

6 The 21071-CA deasserts all memRAS_L and memRASB_l signals. This
example uses a Ref_RasWidth value of 1. The RAS precharge count starts in
this cycle. This example uses a RAS precharge value (gtr_rp) of 3.

7 The 21071-CA deasserts memCAS_l<3:0> signals in this cycle.

8–10 The 21071-CA waits for the RAS precharge count (in this example, 3) to
complete.

11 The 21071-CA asserts RAS for the next transaction.

5–84 DECchip 21071-CA Transactions and Timing Diagrams



Figure 5–35 Memory Refresh

CY0 CY1 CY2 CY3 CY4 CY5

CY6

clk2

memClk

idle

memAdr<11:0>

memRAS_L<8:0>

memRASB_L<8:0>

memCAS_L<3:0>

memWE_L

drvmemData

wait0 wfras wfcol wfcol wfcaslo

invalid
Address not relevant for CAS-RAS refresh

Row next transaction

1111

invalid data

1111

all 1

Note:

All signals except memData are drawn at DECchip 21071-CA driver pin with zero delay.
LJ-03174-TI0

0000

Row

1111

memData

CY7 CY8 CY9 CY10 CY11

clk2

memClk

memAdr<11:0>

memRAS_L<8:0>

memRASB_L<8:0>

memCAS_L<3:0>

memWE_L

drvmemData

memData

all 1

all 0

all 0

some RASall 1all 1

all 1 all 1

DECchip 21071-CA Transactions and Timing Diagrams 5–85





6
DECchip 21071-CA Electrical Data

This chapter includes the following information about the DECchip 21071-CA
chip:

• DC Electrical Data

• AC Electrical Data

6.1 DC Electrical Data
This section describes the dc characteristics of the DECchip 21071-CA chip.

6.1.1 Absolute Maximum Ratings
Table 6–1 lists the maximum ratings of the DECchip 21071-CA chip.

DECchip 21071-CA Electrical Data 6–1



Table 6–1 DECchip 21071-CA Maximum Ratings

Characteristics Minimum Maximum

Storage temperature –55°C (–67°F) 125°C (257°F)

Operating ambient temperature 0°C (32°F) 40°C (104°F)

Air flow 0 lfpm1 —

Junction temperature 25°C (77°F) 85°C (185°F)

Supply voltage with respect to Vss,
with reset_l asserted

–0.5 V +6.5 V

Supply voltage with respect to Vss,
with reset_l deasserted

4.75 V 5.25 V

Voltage on any pin with respect to Vss –0.5 V Vdd + 0.5 V

Maximum power:

@Vdd = 5.25 V
@Cycle = 30 ns

1 W

1lfpm = linear feet per minute

6–2 DECchip 21071-CA Electrical Data



Table 6–2 lists the dc parametric values of the DECchip 21071-CA chip.

Table 6–2 DC Parametric Values

Symbol Description Minimum Maximum Units Test Conditions

Vih Input high voltage 2.0 – V –
Vil Input low voltage – 0.8 V –
Voh Output high voltage 2.4 – V –
Vol Output low voltage – 0.4 V –
Iil Input leakage current1 –5 5 µA 0V < Vin < Vdd
Iilpu Input leakage current2 –15 –100 µA 0V < Vin < Vdd
Iilpd Input leakage current3 15 100 µA 0V < Vin < Vdd
Iol Output leakage current

(tristated)
–10 10 µA 0V < Vin < Vdd

1Excluding memPDDIn, scanEnable, vFrame, vRefresh, wideMem, testMode and tristateL.
2For tristateL, vFrame, and vRefresh.
3For memPDDIn, scanEnable, testMode, and wideMem.

6.2 AC Electrical Data
This section describes the ac characteristics of the DECchip 21071-CA chip.

6.2.1 Clocks
The DECchip 21071-CA uses one clock (running at twice the nominal system
frequency) plus a synchronous phase reference signal to generate five internal
clock edges. See Figures 6–1 and 6–2, and Tables 6–3 and 6–4 for details
about DECchip 21071-CA external clock requirements and internal clock phase
relationships.

A clock system must meet the requirements in Figure 6–1 and Table 6–4
to guarantee the proper behavior of the 21071-CA chip’s internal logic. The
21071-CA chip does not specify the maximum skew allowed for external
transfers to or from the CPU, Bcache PALs, Bcache, 21071-BA chips, or
21071-DA chip because these skew limits are dependent on module placement
and routing. A system designer must examine external transfers to determine
the maximum clock skews allowed between chips.

DECchip 21071-CA Electrical Data 6–3



The skew numbers shown in Figure 6–1 and Table 6–4 are given for a 30.0
ns cycle time. At a longer cycle time, the allowable skew may be increased,
as long as the given minimum times between clock edges are not violated.
These skew limits assume that the 21071-CA chip adds another 0.1 ns of
uncertainty between rising and falling edges due to non-ideal input buffer
switching thresholds.

Table 6–3 DECchip 21071-CA Clock AC Characteristics

Parameter Minimum Maximum Unit Note

System cycle time 30 — ns c in Figure 6–1

clk1x2 period 15 — ns —

clk1x2 frequency — 66 MHz —

clk1x2 rise time — 1 ns —

clk1x2 fall time — 1 ns —

clk2ref setup to clk1x2 rising 0.43 — ns Tsu in Figure 6–1

clk2ref hold from clk1x2 rising 2.32 — ns Th in Figure 6–1

Figure 6–1 DECchip 21071-CA Clock Skew Requirements

.5*c - 1.25 ns min

.5*c + 1.25 ns max

.75*c - 1.60 ns min

.75*c + 1.60 ns max

.5*c - 0.50 ns min

.5*c + 0.50 ns max

Tsu Th

clk1R clk2R clk1F clk2F clk1R clk2R

sysClkOut1

clk1

clk2ref

Internal edges:

clk1x2

LJ-03719-TI0

Internal memClk: memClkR memClkRmemClkR

6–4 DECchip 21071-CA Electrical Data



Table 6–4 DECchip 21071-CA Clock Skew Limits at clk1x2 Pin

Parameter Example Transfers Maximum Unit Note

clk1x2 rising edge to rising edge clk1R to clk1R, clk1R to clk1F,
clk1F to clk1R, clk1F to clk1F

0.50 ns @ Cycle =
30 ns

clk1x2 falling edge to falling
edge

clk2R to clk2R, clk2R to clk2F,
clk2F to clk2R, clk2F to clk2F

1.25 ns @ Cycle =
30 ns

clk1x2 rising edge to falling edge clk1R to clk2R, clk1R to clk2F,
clk1F to clk2R, clk1F to clk2F

1.60 ns @ Cycle =
30 ns

clk1x2 falling edge to rising edge clk2R to clk1R, clk2R to clk1F,
clk2F to clk1R, clk2F to clk1F

1.60 ns @ Cycle =
30 ns

Figure 6–2 DECchip 21071-CA Clock Signals

LJ-03455-TI0

clk1x2

clk2ref

*clk1R

*clk2R

*clk2F

*memClkR

sysClkOut1

*clk1F

* Internally generated clocks.

The 21071-CA imposes no requirements on clk1 or sysClkOut1. Skew on
clk1 will be constrained by limits imposed by external paths to or from the
Bcache control PALs. The phase error between sysClkOut1 and clk1x2 will be
constrained by limits imposed by external paths to or from the CPU chip.

DECchip 21071-CA Electrical Data 6–5



6.2.2 Signals
Figures 6–3 and 6–4 demonstrate the timing measurements specified in Tables
6–6 and 6–7.

Figure 6–3 DECchip 21071-CA Output Delay Measurement

1.5 V

Delay_B

0.8 V

LJ-03561-TI0

2.0 V

Delay_A

Output 2

Output 1

Input

6–6 DECchip 21071-CA Electrical Data



Figure 6–4 DECchip 21071-CA Setup and Hold Time Measurement

LJ-03562-TI0

Set-up Hold

Valid Signal

1.5 V1.5 V

1.5 V

The following ac electrical data is specified with respect to the appropriate edge
at the clk1x2 pin. Both the output delay table and the setup/hold time table
assume a 1 ns edge rate at the clk1x2 pin.

All outputs drive a 50 pF load. When estimating module delays, you may
need to replace the 50 pF load delay with a simulated (or calculated) delay.
The delays for 4 mA and 8 mA drivers driving a 50 pF load are provided in
Table 6–5. See Table 2–1 for information about the buffer size of every output
pin.

Table 6–5 DECchip 21071-CA Output Buffer Delays into a 50 pF Load

Type Minimum Maximum Unit

4 mA 3.5 7.6 ns

8 mA 2.3 5.0 ns

DECchip 21071-CA Electrical Data 6–7



Table 6–6 DECchip 21071-CA AC Characteristics (Valid Delay into a 50 pF
Load)

Signal Minimum Maximum Unit Reference Edge

sysData<15:0>1 5.9 19.1 ns clk1R

tagAdr<31:17>,
tagAdr P,
tagCtlVDP

6.0 21.3 ns clk1F

cpuCAck<2:0>,
cpuDRAck<2:0>,
cpuDWSel<1>,
cpuDInvReq,
cpuHoldReq

4.8 14.6 ns clk1R

sysDOE,
sysEarlyOEEn

4.5 11.6 ns clk1R

sysTagOEEn2 4.8 11.5 ns clk1F

sysTagOEEn2 4.9 11.7 ns clk1R

sysDataOEEn3 4.9 12.3 ns clk2F

sysDataOEEn3 4.9 12.0 ns clk1F

sysDataOEEn3 4.9 11.8 ns clk1R

sysTagWE,
sysDataWEEn

4.3 11.6 ns clk1R

sysDataLongWE 4.5 11.6 ns clk1F

sysDataALEn 4.6 12.0 ns clk2R

sysDataAHEn 4.7 12.0 ns clk2F

ioGrant,
ioCAck<1:0>,
ioDataRdy

3.3 12.1 ns clk1R

1 Two cycles are allocated for returning CSR read data.
2 See Section 2.2.2.2 to determine which measurement is relevant.
3 See Section 2.2.2.3 to determine which measurement is relevant.

(continued on next page)

6–8 DECchip 21071-CA Electrical Data



Table 6–6 (Cont.) DECchip 21071-CA AC Characteristics (Valid Delay into a
50 pF Load)

Signal Minimum Maximum Unit Reference Edge

memAdr<11:0>4 7.4 16.1 ns clk1R

memAdr<11:0>5 9.1 24.3 ns clk1R

memAdr<11:0>6 5.4 12.3 ns memClkR

memAdr<11:0>7 5.4 13.7 ns memClkR

memRAS_l<8:0>8,
memRASB_l<8:0>8

4.7 11.8 ns memClkR

memRAS_l<8:0>9,
memRASB_l<8:0>9

4.0 10.3 ns memClkR

memCAS_l<3:0>8 4.9 12.5 ns memClkR

memCAS_l<3:0>9 4.1 12.5 ns memClkR

memCAS_l<3:0>10 15.0 — ns memClkR

memWE_l<1:0> 4.9 11.9 ns memClkR

memPDClk,
memPDLoad_l

5.1 15.3 ns clk2R

memDTOE_l 4.8 11.7 ns memClkR

memDSF 5.0 12.5 ns memClkR

sysCmd<2:0> 3.3 11.7 ns clk1R

4 Delay to valid row address for banksets 0 through 7. Row addresses transition on clk1R,
one quarter-cycle before memClkR. Subtract (system cycle / 4) from the numbers in this row to
calculate the row address delay from memClkR.
5 Delay to valid row address for bankset 8. Row addresses transition on clk1R, one quarter-cycle
before memClkR. Subtract (system cycle / 4) from the numbers in this row to calculate the row
address delay from memClkR.
6 Delay on transition from row address to column address.
7 Delay on transition from column address to subsequent column address.
8 Delay for falling edge of signal.
9 Delay for rising edge of signal.
10 Pulse width from rising to falling edge of signal.

(continued on next page)

DECchip 21071-CA Electrical Data 6–9



Table 6–6 (Cont.) DECchip 21071-CA AC Characteristics (Valid Delay into a
50 pF Load)

Signal Minimum Maximum Unit Reference Edge

subCmdA<1:0>,
subCmdB<1:0>

3.3 14.1 ns clk1R

subCmdCommon 3.3 11.8 ns clk1R

sysIORead 3.3 12.0 ns clk1R

sysReadOW 3.3 12.6 ns clk1R

drvSysData9 3.3 13.4 ns clk2R

drvSysData8 3.3 13.4 ns clk2F

drvSysCSR 3.3 14.3 ns clk2R

drvMemData 4.8 11.7 ns memClkR

memCmd<3:1> 3.3 12.4 ns clk2R

8 Delay for falling edge of signal.
9 Delay for rising edge of signal.

Table 6–7 DECchip 21071-CA AC Characteristics (Setup/Hold Time)

Signal Setup Hold Unit Reference Edge

sysData<15:0> 0.4 4.4 ns clk2F

sysAdr<33:5>1 12.2 4.3 ns clk1R

sysAdr<33:5>2 9.7 4.3 ns clk1F

tagAdr<31:17>,
tagAdrP,
tagCtlVDP

–0.4 4.4 ns clk1F

cpuCWMask<7:0> 7.7
—

—
2.2

ns
ns

clk1R
clk1F

1 For CPU transactions only.
2 For DMA transactions only.

(continued on next page)

6–10 DECchip 21071-CA Electrical Data



Table 6–7 (Cont.) DECchip 21071-CA AC Characteristics (Setup/Hold Time)

Signal Setup Hold Unit Reference Edge

cpuCReq<2:0> 1.8 3.4 ns clk1F

cpuCReq<2:0>3 12.0 — ns clk1R

cpuHoldAck –0.8 3.9 ns clk1F

ioRequest<1:0>,
ioCmd<2:0>

–0.1 3.4 ns clk1F

memPDDIn –0.8 4.4 ns clk2R

3 In initial cycle of transaction; referenced to the clk1R which receives sysAdr.

DECchip 21071-CA Electrical Data 6–11





7
DECchip 21071-CA Power-Up and

Initialization

This chapter describes the behavior of the DECchip 21071-CA chip on power-up
and assertion of reset_l. It also describes the system level requirements and
the various registers that have to be initialized after reset_l is deasserted.

7.1 Power-Up
On power-up, the reset_l input of the DECchip 21071-CA chip should be
asserted. It should be kept asserted until the system clocks are up and
running for 20 cycles.

7.2 Internal Reset
The assertion and deassertion of the reset_l pin on the module is asynchronous
to the DECchip 21071-CA. An internal reset signal is generated from reset_l
which asserts asynchronously as soon as reset_l is asserted, but deasserts
synchronously. Due to the synchronous deassertion of the internal reset, the
DECchip 21071-CA requires that no external transaction should start until 10
system clock cycles after the deassertion of reset_l.

7.3 State of Pins on Reset Assertion
The following are general rules and requirements for the behavior of the
DECchip 21071-CA chip pins during reset:

• All input only control signals (except the clocks and reset_l) must be in the
deasserted state as long as reset is asserted.

• All output only signals are deasserted.

• All bidirectional signals are tristated.

DECchip 21071-CA Power-Up and Initialization 7–1



The exceptions to these rules are as follows:

• sysDataOEEn and sysTagOEEn are asserted synchronously after the
assertion of reset_l and are deasserted as soon as reset_l deasserts (without
waiting for the deassertion of synchronous internal reset). These signals
keep sysData<127:0>, sysCheck<7:0>, tagAdr<32:17>, and the tag control
signals driven during reset.

• The presence detect logic activates on the deassertion of internal reset. For
details of the operation, refer to Section 3.2.7.

• drvMemData is asserted by the DECchip 21071-CA so that
memData<127:0> are driven by the 21071-BA during reset.

Note

In all cases, the assertion of tristate_l will override the assertion of
reset_l. That is, if tristate_l is asserted during reset, all the outputs of
the DECchip 21071-CA go to their High-Z state.

If reset_l is still asserted when tristate_l deasserts, the signals return
to the normal reset state described previously.

7.4 Configuration after Reset Deassertion
Software must initialize the following registers in the DECchip 21071-CA after
the deassertion of reset_l:

• General control register

• Tag enable register

• Bankset configuration registers

To determine memory configuration, see Section 4.5.

• Bankset base address registers

• Bankset timing registers A and B

To determine the programmed values of these registers, see Section 4.6.

• Global timing register

• Refresh timing register

7–2 DECchip 21071-CA Power-Up and Initialization



The deassertion of internal reset causes the DECchip 21071-CA to commence
doing refreshes. Most DRAMs require that they be refreshed 8 times before
any write or read transactions are addressed to them. The DECchip 21071-CA
does not guarantee this. Software has to ensure that memory reads and writes
are not performed until the eight refreshes are completed. The refresh rate can
be increased using two mechanisms:

1. Software can use the force_Ref bit in the refresh timing register to generate
back-to-back refreshes. In this case, software has to write the force_Ref
bit, wait 10 cycles for it to be cleared (indicating that one refresh has been
completed), and then set it again for the next refresh.

2. Software can also choose to set ref_Interval in the refresh timing register
at its minimum value of 64 memClk cycles (ref_Interval = 1). This will
cause refreshes to happen every 32 system clock cycles.

After initialization of the registers, the Bcache and memory must be written
with good parity or ECC, otherwise errors may prevent correct operation.

DECchip 21071-CA Power-Up and Initialization 7–3





Part II

Part II contains six chapters that provide information about the DECchip
21071-DA chip. The following table provides a brief description of each
chapter:

Chapter Description

8 Describes the DECchip 21071-DA pin signals.

9 Describes the DECchip 21071-DA architecture.

10 Describes the DECchip 21071-DA control and status registers.

11 Describes the transaction flows for the 21071-DA chip.

12 Describes the DECchip 21071-DA electrical requirements.

13 Describes the behavior of the DECchip 21071-DA chip during power-up.





8
DECchip 21071-DA Pin Descriptions

This section provides a listing and description of pin signals for the DECchip
21071-DA chip.

The 21071-DA chip has three major bus interfaces:

• sysBus

• Peripheral Component Interconnect (PCI)

• epiBus interface

8.1 DECchip 21071-DA Pin List
Table 8–1 lists the pin signals grouped by function. The information in the
Type column identifies a signal as input (I), output (O), or bidirectional (B).
The Buffer Strength column indicates the buffer drive strength.

All output and bidirectional pins, except pTestout, can be tristated.

DECchip 21071-DA Pin Descriptions 8–1



Table 8–1 DECchip 21071-DA Pin List

Signal Name Quantity Type
Buffer
Strength Function

sysBus Signals
(52 Total)

sysAdr<33:5> 29 B 4 ma Address bus

cpuCReq<2:0> 3 I — Cycle request

cpuCWMask<7:0> 8 I — Cycle write mask

cpuHoldAck 1 I — Hold acknowledge

ioCmd<2:0> 3 O 8 ma Command for DMA
transactions; ac-
knowledgment for I/O
transactions.

ioCAck<1:0> 2 I — Acknowledgment from
the 21071-CA chip on
DMA transactions

ioDataRdy 1 I — Indicates that the
requested data is loaded
into the 21071-BA chips
and can be extracted

ioLineSel<1:0> 2 O 4 ma Selects which cache line
should be read/written
from the sysBus

ioRequest<1:0> 2 O 8 ma Request for DMA
transactions on sysBus

ioGrant 1 I — Indicates that the sysBus
has been granted to the
21071-DA chip

(continued on next page)

8–2 DECchip 21071-DA Pin Descriptions



Table 8–1 (Cont.) DECchip 21071-DA Pin List

Signal Name Quantity Type
Buffer
Strength Function

PCI Signals
(47 Total)

AD<31:0> 32 B 12/16 ma PCI data and address
lines

CBE_l<3:0> 4 B 12/16 ma Bus command and byte
enable

FrameL 1 B 12/16 ma Cycle frame

TrdyL 1 B 12/16 ma Target ready

IrdyL 1 B 12/16 ma Initiator ready

StopL 1 B 12/16 ma Stop the current
transaction

LockL 1 I — Indicates an atomic
operation that may take
multiple transactions to
complete

DevselL 1 B 12/16 ma Device select

Par 1 B 12/16 ma Parity bit

PerrL 1 B 12/16 ma Parity error

ReqL 1 O 12/16 ma Bus request

GntL 1 I — Bus grant

pClk 1 I — PCI clock

PCI Sideband Signals
(2 Total)

MemReql 1 I — Clears path from PCI to
memory

MemAckl 1 O 12/16 ma Acknowledgment that
path for PCI to memory
has been cleared by the
21071-DA chip

(continued on next page)

DECchip 21071-DA Pin Descriptions 8–3



Table 8–1 (Cont.) DECchip 21071-DA Pin List

Signal Name Quantity Type
Buffer
Strength Function

epiBus Signals
(46 Total)

epiData<31:0> 32 B 4 ma Interchip data for both
DMA and I/O operations

epiBEnErr<3:0> 4 B 4 ma epiData byte enable

epiOWSel 1 O 4 ma Selects which octaword
of the cache line will
be transferred on the
epiData bus

epiLineSel<1:0> 2 O 4 ma Selects which cache line
will be transferred on
the epiData bus

epiSelDMA 1 O 4 ma Selects which buffer
(I/O or DMA) will
be transferred on the
epiData bus

epiFromIOB 1 O 4 ma Selects the next epiData
transfer from the
21071-DA chip to the
21071-BA chips

epiEnable<3:0> 4 O 4 ma Qualifies epiData control
signals and enables
output drivers

epiLineInval 1 O 4 ma Clears all byte valid bits
in the current line of the
DMA write buffer

(continued on next page)

8–4 DECchip 21071-DA Pin Descriptions



Table 8–1 (Cont.) DECchip 21071-DA Pin List

Signal Name Quantity Type
Buffer
Strength Function

Miscellaneous/Clock Signals
(4 Total)

intHw0 1 O 4 ma Interrupt to the DECchip
21064 microprocessor
indicating that the
21071-DA chip has
detected an abnormal
condition

resetL 1 I — 21071-DA chip reset

clk1x2 1 I — Clock input

clk2ref 1 I — Phase reference for
clk1x2

Test Signals
(4 Total)

testMode 1 I — Test mode select

scanEn 1 I — Scan Enable for chip
testing

tristate_l 1 I — Tristates all output and
bidirectional pins for
chip and module testing

pTestout 1 O 4 ma Parametric NAND tree
output

Pin Totals

Total signal pins:
Total power and ground pins:

Total pins:

155
53

208

DECchip 21071-DA Pin Descriptions 8–5



8.2 DECchip 21071-DA Signal Descriptions
This section provides pin signal information, including a description of the
signal, the clock edge on which the signal changes, and rules about signal
usage during various sysBus transactions.

Signal descriptions are grouped by function and correspond to the pin list
(Table 8–1).

8.2.1 sysBus Signals
This section describes the sysBus signals.

8.2.1.1 sysAdr<33:5>

Signal Type: 21071-CA Input, CPU output, 21071-DA bidirectional
Input Sampling Clock Edge: clk1R
Output Clock Edge: clk1R

sysAdr<33:5> signals contain the cache line address of sysBus transactions;
sysAdr<33:32> indicates the address quadrant.

sysAdr<33:5> are driven by the CPU on CPU-initiated transactions and by the
21071-DA chip on DMA transactions.

• On CPU-initiated transactions, the cache line address is expected to be held
on the bus from the command cycle through the terminate/acknowledge
cycle.

• On DMA transactions, the 21071-DA chip drives the address from the
time cpuHoldAck and ioGrant are asserted until ioGrant or cpuHoldAck is
deasserted. sysAdr<33:5> are valid when ioCmd<1:0> carry a valid DMA
command.

8.2.1.2 cpuCReq<2:0>

Signal Type: 21071-DA Input
Signal Source: CPU
Output Clock Edge: clk1F

Whenever the DECchip 21064 microprocessor wants to initiate an external
transaction, it puts a transaction type code onto cpuCReq<2:0>. Table 8–2 lists
the encodings for the different transaction types.

8–6 DECchip 21071-DA Pin Descriptions



Table 8–2 CPU-Initiated Transaction Encodings

cpuCReq<2:0> Transaction

000 Idle
001 Barrier
010 Fetch
011 FetchM
100 Read block
101 Write block
110 LDx_L
111 STx_C

The transaction types must be held on cpuCReq<2:0> until the end of the
transaction. The 21071-DA chip does not latch these signals.

Transactions on cpuCReq<2:0> are ignored by the 21071-DA chip when the
bus is granted to 21071-DA chip. That is, from the cycle following ioGrant
assertion to the cycle after cpuHoldAck and ioGrant deassertion at the end of
the DMA transaction.

8.2.1.3 cpuCWMask<7:0>

Signal Type: 21071-DA Input
Signal Source: CPU
Input Sampling Clock Edge: clk1F

cpuCWMask<7:0> signals are used on CPU-initiated read block and write block
transactions. These signals carry different information on both read and write
block transactions.

On CPU write block and CPU STx_C transactions, cpuCWMask<7:0> carry
the longword mask for the whole cache line. An asserted cpuCWMask signal
indicates that the corresponding longword from the cache line is valid and
should be written.

On CPU read block and CPU LDx_L transactions, the cpuCWMask<7:0> sig-
nals carry additional information about the read transaction. cpuCWMask<1:0>
carry address bits <4:3>, thereby indicating the address of the actual quadword
to be returned. This information is used to implement quadword granularity to
I/O space.

DECchip 21071-DA Pin Descriptions 8–7



8.2.1.4 cpuHoldAck

Signal Type: 21071-DA Input
Signal Source: CPU
Input Sampling Clock Edge: clk1F

When cpuHoldAck is asserted in conjunction with ioGrant, the 21071-DA chip
drives sysAdr<33:5> in the following cycle and may send out a valid DMA
command on ioCmd<2:0>.

8.2.1.5 ioCmd<2:0>

Signal Type: 21071-DA Output
Signal Destination: 21071-CA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

The 21071-DA chip asserts ioCmd<2:0> to request an action by the 21071-CA
chip. When the 21071-DA chip owns the sysBus, ioCmd<2:0> signals are used
to request a DMA transaction. When the CPU owns the bus, ioCmd<2:0> is
used to request assertion of the cpuCAck and cpuDRAck signals. Table 8–3
lists the encodings for ioCmd<2:0>.

Table 8–3 ioCmd<2:0> Encodings

ioCmd<2:0> CPU Owns sysBus 21071-DA Chip Owns sysBus

000 Idle Idle
001 ClrLock Flush
010 cpuDRAck OK_NCACHE_NCHK Write
011 cpuDRAck OK_NCACHE Write masked
100 cpuCAck OK Read
101 cpuCAck HARD_ERROR Read burst
110 cpuCAck SOFT_ERROR Read wrapped
111 cpuCAck STxC_FAIL Read burst wrapped

8.2.1.6 ioCAck<1:0>

Signal Type: 21071-DA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

8–8 DECchip 21071-DA Pin Descriptions



The 21071-CA chip asserts ioCAck<1:0> to acknowledge a DMA transaction.
ioCAck<1:0> indicates that the DMA transaction has been completed. If any
error occurs during the transaction, an error response is sent. Table 8–4 lists
the encodings for ioCAck<1:0>.

Table 8–4 ioCAck<1:0> Encodings

ioCAck<1:0> Function

00 Idle
01 Reserved/unused
10 DMA cycle acknowledge
11 DMA cycle error

8.2.1.7 ioDataRdy

Signal Type: 21071-DA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

When ioDataRdy is sampled asserted, the 21071-DA chip assumes that read
data is available on epiData<31:7> in the following cycle.

If the 21071-DA chip samples ioCAck<1:0> = DMA cycle acknowledge without
a prior assertion of ioDataRdy, it assumes that all the data will be available
in the 21071-BA chips on the second subsequent cycle, and it does not wait for
ioDataRdy to assert.

8.2.1.8 ioLineSel<1:0>

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

ioLineSel<1:0> is driven by the 21071-DA chip to the 21071-BA chips. During
DMA read transactions, ioLineSel<1:0> indicates the DMA read buffer line that
should be loaded. During DMA write transactions, ioLineSel<1:0> indicates
the DMA write buffer line that has to be written to memory.

When the 21071-DA chip does not own the sysBus, the 21071-DA chip uses
ioLineSel<1:0> to select the cache line of the I/O write buffer that should be
loaded with CPU I/O write data.

DECchip 21071-DA Pin Descriptions 8–9



8.2.1.9 ioRequest<1:0>

Signal Type: 21071-DA Output
Signal Destination: 21071-CA
Input Sampling Clock Edge: clk1F
Output Clock Edge: clk1R

The 21071-DA chip asserts ioRequest<1:0> to request ownership of
sysAdr<33:5> to perform a DMA transaction. ioRequest<1:0> is acknowledged
by the 21071-CA, using ioGrant. When a DMA transaction is started,
ioRequest<1:0> is returned to idle in the cycle after ioCmd, if no further
DMA transactions are required.

The 21071-DA chip uses the DMA request encoding on most DMA read and
write transactions except in the following situations:

• The 21071-DA uses an atomic request to perform a DMA read prefetch.

• The 21071-DA uses an atomic request to perform a DMA read or write
transaction following a scatter/gather map read.

• The 21071-DA chip uses the preempt request in order to flush the DMA
write buffer on memory barriers.

• The 21071-DA chip uses the preempt request to prevent deadlock situations
when an I/O transaction is stalled on the sysBus and a memory read
targeted to the 21071-DA happens on the PCI, or when the write buffer is
full.

Table 8–5 lists the encodings for ioRequest<1:0>.

Table 8–5 ioRequest<1:0> Encodings

ioRequest<1:0> Function

00 Idle

01 DMA preempt request

10 DMA request

11 DMA atomic request

8.2.1.10 ioGrant

Signal Type: 21071-DA Input
Signal Source: 21071-CA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk1F

8–10 DECchip 21071-DA Pin Descriptions



The assertion of ioGrant indicates to the 21071-DA chip that it has won
ownership of the sysBus. The 21071-DA chip does not begin any new CPU
transactions unless both ioGrant and cpuHoldAck are asserted. If the
21071-DA chip samples ioGrant deasserted in any cycle, it turns off its sysAdr
drivers in the next clk1R.

The 21071-DA chip uses the ioGrant in combination with cpuHoldAck to
determine if cpuCReq<2:0> should be ignored.

8.2.2 PCI Signals
For a detailed description of PCI interface pins, see the PCI Local Bus
Specification 2.0. Table 8–6 provides a translation between the 21071-DA chip
pin names and PCI specification signal names.

Table 8–6 Translation of 21071-DA Pin Names to PCI Signal Names

21071-DA Pin Name PCI Signal Name

AD<31:0> AD <31:0>

CBE_l<3:0> C/BE#<3:0>

FrameL FRAME#

TrdyL TRDY#

IrdyL IRDY#

StopL STOP#

LockL LOCK#

DevselL DEVSEL#

Par PAR

PerrL PERR#

ReqL REQ#

GntL GNT#

pClk CLK

8.2.2.1 AD<31:0>

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

This signal indicates multiplexed PCI address and data bus. During an
address phase of a transaction, AD<31:0> contains a physical byte address.
During subsequent data phases, AD<31:0> contains data.

DECchip 21071-DA Pin Descriptions 8–11



A PCI bus transaction consists of one or two address phases followed by one or
more data phases. The 21071-DA chip supports reads and writes and may act
as initiator or target of a transaction on the bus.

8.2.2.2 CBE_l<3:0>

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

This signal communicates multiplexed bus command and byte enables. During
an address phase of a transaction, CBE_l<3:0> contains the bus command that
defines the type of PCI transaction. During data phases, CBE_l<3:0> contains
byte enables dictating which byte lanes carry valid data. CBE_l<0> applies to
byte 0, CBE_l<3> applies to byte 3.

8.2.2.3 FrameL

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

FrameL is driven by the initiator of the transaction to indicate the beginning
and duration of an access on the PCI bus. FrameL assertion indicates the
beginning of an access. While FrameL is asserted, data transfers continue.
FrameL deassertion indicates the final data phase. The 21071-DA chip samples
FrameL as an input and also drives FrameL when acting as the initiator of a
transaction on the PCI bus.

8.2.2.4 TrdyL

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

This signal indicates the target agent’s ability to complete the current data
phase of a transaction on the PCI bus. The 21071-DA chip drives TrdyL
when acting as a target on the PCI bus and samples TrdyL when acting as an
initiator on the PCI bus.

8–12 DECchip 21071-DA Pin Descriptions



8.2.2.5 IrdyL

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

This signal indicates the initiator’s ability to complete the current data phase
of a transaction on the PCI bus. The 21071-DA chip drives IrdyL when acting
as an initiator on the PCI bus and samples IrdyL when acting as a target on
the PCI bus.

8.2.2.6 StopL

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

This signal indicates that the current target is requesting the bus initiator to
stop the current transaction on the PCI bus. The 21071-DA chip may drive
StopL when acting as a target on the PCI bus, and it samples StopL when
acting as an initiator on the PCI bus.

8.2.2.7 LockL

Signal Type: 21071-DA Input
Signal Source: PCI Devices
Input Sampling Clock Edge: pClkR

LockL indicates an atomic operation that may require multiple transactions
to complete. The 21071-DA may be locked, but it will never request a lock.
The 21071-DA treats the entirety of system memory as a single resource for
the purposes of PCI exclusive access. The 21071-DA chip samples LockL when
acting as a target on the PCI bus.

8.2.2.8 DevselL

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

The 21071-DA chip asserts DevselL through positive decoding of the address
on AD<31:0>. The 21071-DA chip asserts DevselL when it is accepting a
transaction for system memory. The 21071-DA chip samples DevselL when
it is acting as an initiator on the PCI bus, and it expects DevselL to be
asserted within five cycles of FrameL assertion. Otherwise, the transaction
is terminated with an initiator abort.

DECchip 21071-DA Pin Descriptions 8–13



8.2.2.9 Par

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

The Par signal is even parity, calculated on 36 bits comprised of AD<31:0> and
CBE_l<3:0>. The Par signal is generated for all address and data phases and
is valid one clock cycle after valid data or address is driven on AD<31:0>. The
Par signal is driven and tristated identically to AD<31:0>, except that it is
delayed one clock cycle. The Par signal is driven by the 21071-DA chip when
acting as an initiator during address phases and write data phases. The Par
signal is driven by the 21071-DA chip when acting as a target during read data
phases. The Par signal is sampled as an input during all address phases and
when acting as a target during write data phases.

8.2.2.10 PerrL

Signal Type: Bidirectional (21071-DA, PCI devices)
Input Sampling Clock Edge: pClkR
Output Clock Edge: pClkR

The PerrL signal is asserted when a data parity error is detected, and it
corresponds to Par driven one clock cycle earlier. The 21071-DA chip may
assert PerrL when it detects a write data parity error when acting as a target,
or when it detects a read data parity error when acting as an initiator.

8.2.2.11 ReqL

Signal Type: 21071-DA Output
Signal Destination: PCI Arbiter
Output Clock Edge: pClkR

The 21071-DA chip asserts ReqL to indicate to the bus arbiter that it wants to
use the PCI bus.

8.2.2.12 GntL

Signal Type: 21071-DA Input
Signal Source: PCI Devices
Input Sampling Clock Edge: pClkR

When GntL is asserted, it indicates to the 21071-DA chip that access to the
PCI bus is granted. The 21071-DA chip may start a transaction as soon as
GntL is asserted and the bus is idle.

8–14 DECchip 21071-DA Pin Descriptions



8.2.2.13 pClk

Signal Type: 21071-DA Input
Signal Source: External Logic

The pClk signal provides timing for all transactions on the PCI bus. All PCI
bus inputs are sampled on the rising edge of pClk, and all PCI bus outputs are
driven from the rising edge of pClk. Frequencies supported by the bridge range
from 0 to 33 megahertz.

8.2.3 PCI Sideband Signals
This section describes the PCI sideband signals.

8.2.3.1 MemReql

Signal Type: 21071-DA Input
Signal Source: ISA/EISA bridge chip
Input Sampling Clock Edge: pClkR

This signal is asserted by ISA/EISA bridge chips to indicate that an ISA/EISA
device requires guaranteed access time (2.1 �s) to main memory. Refer to
Section 9.4.3 for details. This is a PCI sideband signal.

8.2.3.2 MemAckl

Signal Type: 21071-DA Output
Signal Destination: External logic
Input Clock Edge: pClkR

This signal is asserted by the 21071-DA chip to indicate that guaranteed
access time can be achieved on each subsequent PCI transaction directed
toward main memory which is not retried by the 21071-DA chip. This is a PCI
sideband signal.

8.2.4 epiBus Signals
This section describes the epiBus signals.

8.2.4.1 epiData<31:0>

Signal Type: Bidirectional (21071-BA, 21071-DA)
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

epiData<31:0> is a 32-bit bidirectional bus which connects the 21071-DA and
21071-BA chips. epiData<31:0> are driven on clk1R and is tristated on clk2F.

DECchip 21071-DA Pin Descriptions 8–15



8.2.4.2 epiBEnErr<3:0>

Signal Type: Bidirectional (21071-BA, 21071-DA)
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

epiBEnErr<3:0> is timed with epiData<31:0>. During epiBus transfers to the
21071-BA chips, this field indicates which bytes of the longword on the epiData
bus are valid. When an epiBEnErr bit is asserted, the corresponding byte is
valid. The byte enable is used for DMA write transfers and is ignored on I/O
read transfers.

During epiBus transfers from the 21071-BA chip DMA read and I/O write
buffers, epiBEnErr<0> is asserted if the longword being sent on epiData
contains a parity error or uncorrectable ECC error. epiBEnErr<1> is asserted
if the longword being sent on epiData contained a correctable ECC error.
Table 8–7 lists the epiBEnErr functions.

Table 8–7 epiBEnErr Functions

Signal Transfers to 21071-BA Transfers from 21071-BA

epiBEnErr<0> epiData<7:0> byte enable DMA read I/O write uncor-
rectable error (this longword)

epiBEnErr<1> epiData<15:8> byte enable DMA read I/O write corrected
error (this longword)

epiBEnErr<2> epiData<23:16> byte enable Reserved

epiBEnErr<3> epiData<31:24> byte enable Reserved

8.2.4.3 epiAdr Signals
epiOWSel, epiLineSel<1:0>, epiSelDMA, epiFromIOB, epiEnable<3:0>, and
epiLineInval are collectively referred to as the epiAdr bus. All these signals
are set up one cycle prior to each epiData transfer to address a particular
longword within the 21071-BA chip. A detailed description of each signal
follows.

Note

epiEnable<3:0>, epiOWSel, epiLineSel, epiFromIOB, and epiSelDMA
collectively address the contents of the 21071-BA chips. In a
synchronous fashion, these address signals select data to be transferred
in the subsequent cycle.

8–16 DECchip 21071-DA Pin Descriptions



8.2.4.3.1 epiOWSel

Signal Type: 21071-DA Output
Signal Destination: 21071-DA, 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

epiOWSel is driven by the 21071-DA chip to the 21071-BA chips on epiBus
transfers. It is asserted to select the upper octaword within the current
hexaword cache line and is to be read or written using the epiData bus.
Table 8–8 lists the longword selection.

Table 8–8 Longword Selection

Longword
Desired

21071-BA
Chip Number epiOWSel epiEnable<3:0>

LW 0 0 0 0001

LW 1 1 0 0010

LW 2 0(2)1 0 0100

LW 3 1(3)1 0 1000

LW 4 0 1 0001

LW 5 1 1 0010

LW 6 0(2)1 1 0100

LW 7 1(3)1 1 1000

1The number in parenthesis indicates the 21071-BA chip number when four 21071-BA chips are
used in the system.

8.2.4.3.2 epiLineSel<1:0>

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

epiLineSel<1:0> is driven by the 21071-DA chip to the 21071-BA chips. This
field selects which cache line is sent from the DMA read and I/O write buffer
to the 21071-DA chip or from the 21071-DA chip to the DMA write buffer
using the epiData bus. This signal is ignored on 21071-DA to I/O read buffer
transfers.

DECchip 21071-DA Pin Descriptions 8–17



8.2.4.3.3 epiSelDMA

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

The epiSelDMA signal is asserted by the 21071-DA chip to indicate to the
21071-BA chips that the 21071-DA chip is performing a DMA transfer (to the
DMA write buffer). When epiSelDMA is deasserted, the 21071-DA chip is
performing an I/O transfer (to the I/O read buffer). epiSelDMA is used to select
the transfer, as shown in Table 8–9.

8.2.4.3.4 epiFromIOB

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

The epiFromIOB signal is asserted by the 21071-DA chip to the 21071-BA
chips to indicate that the 21071-DA chip is performing a transfer from the
21071-DA chip and to the 21071-BA chips. When epiFromIOB is driven
low, the 21071-DA chip is performing transfer from the 21071-BA chips to
the 21071-DA chip. epiFromIOB is used to select the transfer, as shown in
Table 8–9.

8.2.4.3.5 epiEnable<3:0>

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

The epiEnable<3:0> signals are asserted by the 21071-DA to the 21071-
BA to indicate that the 21071-DA is performing an epiBus transfer. When
epiEnable is driven low, the epiData and epiBus control signals are ignored
by the 21071-BA chips. Each bit of epiEnable<3:0> corresponds to one of four
longwords. Table 8–9 lists the epiBus interface functions.

8–18 DECchip 21071-DA Pin Descriptions



Table 8–9 21071-BA epiBus Interface Function

epiEnable epiFromIOB epiSelDMA Function

0 X X No action except for possible line
invalidate; epiData tristated.

1 0 X The DMA read and I/O write buffer is
driven onto epiData.

1 1 0 epiData is loaded into the I/O read
buffer.

1 1 1 epiData is loaded into the DMA write
buffer.

8.2.4.3.6 epiLineInval

Signal Type: 21071-DA Output
Signal Destination: 21071-BA
Input Sampling Clock Edge: clk2F
Output Clock Edge: clk1R

epiLineInval is asserted during 21071-DA to 21071-BA transfers to indicate
that the cache line being loaded should be invalidated. All byte enables for that
line must be cleared. For the invalidate to take place, epiFromIOB is asserted.
(epiEnable must be ignored.) epiLineInval is asserted by the 21071-DA chip
when the first longword of data is loaded into a new cache line from epiData.

8.2.4.4 Miscellaneous/Clock Signals
This section describes the miscellaneous and clock signals.

8.2.4.4.1 intHw0

Signal Type: 21071-DA Output
Signal Destination: External logic
Output Clock Edge: clk1F

The intHw0 interrupt pin is an output from the 21071-DA chip and is
connected to one of the irq<5:0> pins of the DECchip 21064 microprocessor
through the interrupt control/configuration PAL. This signal is asserted when
the 21071-DA chip detects certain errors in the transactions it processes.
intHw0 is kept asserted until all such error conditions are cleared.

DECchip 21071-DA Pin Descriptions 8–19



8.2.4.4.2 resetL

Signal Type: 21071-DA Input
Signal Source: External logic
Input Clock Edge: Asynchronous on assertion, clk1R on deassertion

Assertion of resetL sets all internal logic and state machines in the 21071-DA
chip to their initialized states.

8.2.4.4.3 clk1x2

Signal Type: 21071-DA Input
Signal Source: Clock generator

clk1x2 is a clock input which supplies a clock at twice the frequency of the
DECchip 21064 sysClkOut1, with a minimum period of 15 ns, and a 50% duty
cycle.

8.2.4.4.4 clk2ref

Signal Type: 21071-DA Input
Signal Source: Clock generator

clk2ref is a signal input which is low when the assertion of clk1x2 corresponds
to the assertion of sysClkOut1. The received signal must be set up to the
assertion of clk1x2.

8.2.4.5 Test Signals
This section describes the test signals.

8.2.4.5.1 testMode

Signal Type: 21071-DA Input
Signal Source: Test logic
Input Clock Edge: Asynchronous

Assertion of testMode places the chip into a mode for chip testing. testMode
is intended to be used only during chip testing and must be tied low during
normal system operation.

testMode has a weak internal pull down and a Schmitt trigger input.

8–20 DECchip 21071-DA Pin Descriptions



8.2.4.5.2 scanEn

Signal Type: 21071-DA Input
Signal Source: Test logic

Assertion of scanEn places all internal flops in their scan state. scanEn is
intended to be used only during chip testing and must be tied low during
normal system operation.

scanEn has a weak internal pull down and a Schmitt trigger input.

8.2.4.5.3 tristate_l

Signal Type: 21071-DA Input
Signal Source: External logic
Input Clock Edge: Asynchronous

Assertion of this signal tristates all output and bidirectional drivers. tristate_l
is intended to be used only during chip testing and power-up.

tristate_l has a weak internal pull up and a Schmitt trigger input.

8.2.4.5.4 pTestout

Signal Type: 21071-DA Output
Signal Source: Test logic
Output Clock Edge: Flow through

The pTestout signal contains the output from the parametric NAND tree, as
required for testability. The testMode signal must be asserted for pTestout to
be valid. pTestout is intended for use only during chip testing.

8.3 DECchip 21071-DA Pin Assignment
The DECchip 21071-DA chip is a 208-pin plastic quad flat pack (PQFP).
Figure 8–1 shows the signal assignments. Sections 8.3.1 and 8.3.2 provide
alphabetical and numerical pin listings.

DECchip 21071-DA Pin Descriptions 8–21



Figure 8–1 DECchip 21071-DA Pinout Diagram

LJ-03445-TI0

inpVSS
inpVDD
ioRequest<1>
ioRequest<0>
outVDD
cpuCReq<2>
cpuCReq<1>
cpuCReq<0>
ioDataRdy
ioCAck<1>
ioCAck<0>
ioGrant
sysAdr<33>
sysAdr<32>
sysAdr<31>
outVSS
sysAdr<30>
sysAdr<29>
sysAdr<28>
sysAdr<27>
scan_En
clk2ref
tristate_l
testMode
clk1x2
outVDD
outVSS
sysAdr<26>
sysAdr<25>
sysAdr<24>
sysAdr<23>
sysAdr<22>
sysAdr<21>
sysAdr<20>
sysAdr<19>
sysAdr<18>
outVSS
sysAdr<17>
sysAdr<16>
sysAdr<15>
sysAdr<14>
sysAdr<13>
sysAdr<12>
sysAdr<11>
sysAdr<10>
sysAdr<9>
sysAdr<8>
sysAdr<7>
sysAdr<6>
sysAdr<5>
outVDD
outVSS

outVSS
outVDD
IrdyL_l

cpuCWMask<3>
cpuCWMask<4>
cpuCWMask<5>
cpuCWMask<6>
cpuCWMask<7>

TrdyL_l
DevselL_l

outVSS
StopL_l
LockL_l
outVDD
PerrL_l
outVSS

Par
CBE_l<1>

AD<15>
outVSS
AD<14>

ioLineSel<1>

ioLineSel<0>
outVSS
AD<12>
outVDD
AD<11>

epiEnable<0>
outVSS
AD<10>

AD<9>
outVSS
AD<8>

epiEnable<1>
CBE_l<0>

outVSS
AD<7>

epiEnable<2>
AD<6>

epiEnable<3>
AD<5>

outVSS
AD<4>

outVDD
epiLineSel<0>

epiSelDMA
epiLineInval

AD<3>
inpVDD

epiFromIOB

inpVSS

o
u

tV
S

S
o

u
tV

D
D

e
p

iL
in

e
S

e
l<

1
>

e
p

iO
W

S
e

l
e

p
iB

E
n

E
rr

<
0

>
e

p
iB

E
n

E
rr

<
1

>
e

p
iB

E
n

E
rr

<
2

>
e

p
iB

E
n

E
rr

<
3

>
e

p
iD

a
ta

<
0

>
e

p
iD

a
ta

<
1

>
e

p
iD

a
ta

<
2

>
A

D
<

2
>

o
u

tV
D

D
e

p
iD

a
ta

<
3

>
A

D
<

1
>

A
D

<
0

>
e

p
iD

a
ta

<
4

>
e

p
iD

a
ta

<
5

>
e

p
iD

a
ta

<
6

>
e

p
iD

a
ta

<
7

>
e

p
iD

a
ta

<
8

>
e

p
iD

a
ta

<
9

>
e

p
iD

a
ta

<
1

0
>

e
p

iD
a

ta
<

1
1

>
e

p
iD

a
ta

<
1

2
>

o
u

tV
D

D
o

u
tV

S
S

e
p

iD
a

ta
<

1
3

>
e

p
iD

a
ta

<
1

4
>

e
p

iD
a

ta
<

1
5

>
e

p
iD

a
ta

<
1

6
>

e
p

iD
a

ta
<

1
7

>
e

p
iD

a
ta

<
1

8
>

e
p

iD
a

ta
<

1
9

>

o
u

tV
S

S
in

p
V

D
D

in
p

V
S

S

1

in
p

V
S

S
in

p
V

D
D

p
C

lk
o

u
tV

S
S

re
se

t_
l

in
tH

w
0

p
T

e
st

o
u

t
cp

u
C

W
M

a
sk

<
2

>
F

ra
m

e
L

_
l

o
u

tV
S

S
C

B
E

_
l<

2
>

o
u

tV
D

D
A

D
<

1
6

>
A

D
<

1
7

>
cp

u
C

W
M

a
sk

<
1

>
o

u
tV

S
S

A
D

<
1

8
>

A
D

<
1

9
>

A
D

<
2

0
>

o
u

tV
D

D
o

u
tV

S
S

A
D

<
2

1
>

o
u

tV
S

S
A

D
<

2
2

>
A

D
<

2
3

>
o

u
tV

D
D

C
B

E
_

l<
3

>
A

D
<

2
4

>
o

u
tV

S
S

A
D

<
2

5
>

cp
u

C
W

M
a

sk
<

0
>

o
u

tV
S

S
A

D
<

2
6

>
o

u
tV

S
S

A
D

<
2

7
>

A
D

<
2

8
>

o
u

tV
S

S
o

u
tV

D
D

A
D

<
2

9
>

A
D

<
3

0
>

o
u

tV
S

S
A

D
<

3
1

>
G

n
tL

_
l

R
e

q
L

_
l

cp
u

H
o

ld
A

ck
m

e
m

R
e

q
l

io
C

m
d

<
2

>
io

C
m

d
<

1
>

io
C

m
d

<
0

>
m

e
m

A
ck

l
o

u
tV

D
D

o
u

tV
S

S

5

10

15

20

25

30

35

40

45

50

5
5

6
0

6
5

7
0

7
5 8
0

8
5 9
0

9
5

1
0

0

155

150

145

140

135

130

125

120

115

110

105

2
0

5

2
0

0

1
9

5

1
9

0

1
8

5

1
8

0

1
7

5

1
7

0

1
6

5

1
6

0

2
0

8

AD<13>

o
u

tV
S

S

e
p

iD
a

ta
<

2
0

>
o

u
tV

S
S

e
p

iD
a

ta
<

2
1

>
e

p
iD

a
ta

<
2

2
>

e
p

iD
a

ta
<

2
3

>
e

p
iD

a
ta

<
2

4
>

e
p

iD
a

ta
<

2
5

>
e

p
iD

a
ta

<
2

6
>

e
p

iD
a

ta
<

2
7

>
e

p
iD

a
ta

<
2

8
>

e
p

iD
a

ta
<

2
9

>
e

p
iD

a
ta

<
3

0
>

e
p

iD
a

ta
<

3
1

>
o

u
tV

D
D

208 PQFP

8–22 DECchip 21071-DA Pin Descriptions



8.3.1 DECchip 21071-DA Alphabetical Pin Assignment List
Table 8–10 lists the DECchip 21071-DA pins in alphabetical order. The
following list describes the abbreviations used in the Type column of the table.

• B = Bidirectional

• I = Input

• P = Power

• O = Output

Table 8–10 DECchip 21071-DA Alphabetical Pin Assignment List

Pin Name Pin Type Pin Name Pin Type

AD<0> 69 B AD<26> 176 B
AD<1> 67 B AD<27> 174 B
AD<2> 64 B AD<28> 173 B
AD<3> 50 B AD<29> 170 B
AD<4> 44 B AD<30> 169 B
AD<5> 42 B AD<31> 167 B
AD<6> 40 B CBE<0> 36 B
AD<7> 38 B CBE<1> 18 B
AD<8> 34 B CBE<2> 198 B
AD<9> 32 B CBE<3> 182 B
AD<10> 31 B clk1x2 132 I
AD<11> 28 B clk2Ref 135 I
AD<12> 26 B cpuCReq<0> 149 I
AD<13> 23 B cpuCReq<1> 150 I
AD<14> 21 B cpuCReq<2> 151 I
AD<15> 19 B cpuCWMask<0> 178 I
AD<16> 196 B cpuCWMask<1> 194 I
AD<17> 195 B cpuCWMask<2> 201 I
AD<18> 192 B cpuCWMask<3> 4 I
AD<19> 191 B cpuCWMask<4> 5 I
AD<20> 190 B cpuCWMask<5> 6 I
AD<21> 187 B cpuCWMask<6> 7 I
AD<22> 185 B cpuCWMask<7> 8 I
AD<23> 184 B cpuHoldAck 164 I
AD<24> 181 B DevselL 10 B
AD<25> 179 B epiBEnErr<0> 57 B

DECchip 21071-DA Pin Descriptions 8–23



Pin Name Pin Type Pin Name Pin Type

epiBEnErr<1> 58 B epiData<26> 95 B
epiBEnErr<2> 59 B epiData<27> 96 B
epiBEnErr<3> 60 B epiData<28> 97 B
epiData<0> 61 B epiData<29> 98 B
epiData<1> 62 B epiData<30> 99 B
epiData<2> 63 B epiData<31> 100 B
epiData<3> 66 B epiEnable<0> 29 O
epiData<4> 70 B epiEnable<1> 35 O
epiData<5> 71 B epiEnable<2> 39 O
epiData<6> 72 B epiEnable<3> 41 O
epiData<7> 73 B epiFromIOB 49 O
epiData<8> 74 B epiLineInval 48 O
epiData<9> 75 B epiLineSel<0> 46 O
epiData<10> 76 B epiLineSel<1> 55 O
epiData<11> 77 B epiOWSel 56 O
epiData<12> 78 B epiSelDMA 47 O
epiData<13> 81 B FrameL 200 B
epiData<14> 82 B Gntl 166 I
epiData<15> 83 B inpVdd 51 P
epiData<16> 84 B inpVdd 103 P
epiData<17> 85 B inpVdd 155 P
epiData<18> 86 B inpVdd 207 P
epiData<19> 87 B inpVss 104 P
epiData<20> 88 B inpVss 52 P
epiData<21> 90 B inpVss 156 P
epiData<22> 91 B inpVss 208 P
epiData<23> 92 B intHw0 203 O
epiData<24> 93 B ioCAck<0> 146 I
epiData<25> 94 B ioCAck<1> 147 I

8–24 DECchip 21071-DA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

ioCmd<0> 160 O outVss 199 P
ioCmd<1> 161 O outVss 180 P
ioCmd<2> 162 O outVss 188 P
ioDataRdy 148 I outVss 11 P
ioGrant 145 I outVss 193 P
ioLineSel<0> 24 O outVss 168 P
ioLineSel<1> 22 O outVss 172 P
ioRequest<0> 153 O outVss 102 P
ioRequest<1> 154 O outVss 43 P
IrdyL 3 B outVss 30 P
LockL 13 B outVss 89 P
MemAckl 159 O outVss 177 P
MemReql 163 I outVss 120 P
outVdd 45 P outVss 186 P
outVdd 183 P outVss 105 P
outVdd 106 P outVss 141 P
outVdd 27 P outVss 53 P
outVdd 171 P outVss 37 P
outVdd 14 P outVss 16 P
outVdd 131 P outVss 1 P
outVdd 79 P outVss 25 P
outVdd 54 P outVss 20 P
outVdd 65 P outVss 68 P
outVdd 158 P outVss 157 P
outVdd 152 P outVss 33 P
outVdd 101 P outVss 175 P
outVdd 2 P outVss 130 P
outVdd 189 P outVss 205 P
outVdd 197 P Par 17 B
outVss 80 P pClk 206 I

DECchip 21071-DA Pin Descriptions 8–25



Pin Name Pin Type Pin Name Pin Type

PerrL 15 B sysAdr<24> 127 B
pTestOut 202 O sysAdr<25> 128 B
ReqL 165 O sysAdr<26> 129 B
resetL 204 I sysAdr<27> 137 B
scanEn 136 I sysAdr<28> 138 B
StopL 12 B sysAdr<29> 139 B
sysAdr<5> 107 B sysAdr<30> 140 B
sysAdr<6> 108 B sysAdr<31> 142 B
sysAdr<7> 109 B sysAdr<32> 143 B
sysAdr<8> 110 B sysAdr<33> 144 B
sysAdr<9> 111 B testMode 133 I
sysAdr<10> 112 B TrdyL 9 B
sysAdr<11> 113 B triState_l 134 I
sysAdr<12> 114 B
sysAdr<13> 115 B
sysAdr<14> 116 B
sysAdr<15> 117 B
sysAdr<16> 118 B
sysAdr<17> 119 B
sysAdr<18> 121 B
sysAdr<18> 121 B
sysAdr<19> 122 B
sysAdr<20> 123 B
sysAdr<21> 124 B
sysAdr<22> 125 B
sysAdr<23> 126 B

8–26 DECchip 21071-DA Pin Descriptions



8.3.2 Numerical DECchip 21071-DA Pin Assignment List
Table 8–11 lists the DECchip 21071-DA pins in numerical order. The following
list describes the abbreviations used in the Type column of the table.

• B = Bidirectional

• I = Input

• P = Power

• O = Output

Table 8–11 DECchip 21071-DA Numerical Pin Assignment List

Pin Name Pin Type Pin Name Pin Type

outVss 1 P AD<12> 26 B
outVdd 2 P outVdd 27 P
IrdyL 3 B AD<11> 28 B
cpuCWMask<3> 4 I epiEnable<0> 29 O
cpuCWMask<4> 5 I outVss 30 P
cpuCWMask<5> 6 I AD<10> 31 B
cpuCWMask<6> 7 I AD<9> 32 B
cpuCWMask<7> 8 I outVss 33 P
TrdyL 9 B AD<8> 34 B
DevSelL 10 B epiEnable<1> 35 O
outVss 11 P CBE<0> 36 B
StopL 12 B outVss 37 P
LockL 13 B AD<7> 38 B
outVdd 14 P epiEnable<2> 39 O
PerrL 15 B AD<6> 40 B
outVss 16 P epiEnable<3> 41 O
Par 17 B AD<5> 42 B
CBE<1> 18 B outVss 43 P
AD<15> 19 B AD<4> 44 B
outVss 20 P outVdd 45 P
AD<14> 21 B epiLineSel<0> 46 O
ioLineSel<1> 22 O epiSelDMA 47 O
AD<13> 23 B epiLineInval 48 O
ioLineSel<0> 24 O epiFromIOB 49 O
outVss 25 P AD<3> 50 B

DECchip 21071-DA Pin Descriptions 8–27



Pin Name Pin Type Pin Name Pin Type

inpVdd 51 P outVdd 79 P
inpVss 52 P outVss 80 P
outVss 53 P epiData<13> 81 B
outVdd 54 P epiData<14> 82 B
epiLineSel<1> 55 O epiData<15> 83 B
epiOWSel 56 O epiData<16> 84 B
epiBEnErr<0> 57 B epiData<17> 85 B
epiBEnErr<1> 58 B epiData<18> 86 B
epiBEnErr<2> 59 B epiData<19> 87 B
epiBEnErr<3> 60 B epiData<20> 88 B
epiData<0> 61 B outVss 89 P
epiData<1> 62 B epiData<21> 90 B
epiData<2> 63 B epiData<22> 91 B
AD<2> 64 B epiData<23> 92 B
outVdd 65 P epiData<24> 93 B
epiData<3> 66 B epiData<25> 94 B
AD<1> 67 B epiData<26> 95 B
outVss 68 P epiData<27> 96 B
AD<0> 69 B epiData<28> 97 B
epiData<4> 70 B epiData<29> 98 B
epiData<5> 71 B epiData<30> 99 B
epiData<6> 72 B epiData<31> 100 B
epiData<7> 73 B outVdd 101 P
epiData<8> 74 B outVss 102 P
epiData<9> 75 B inpVdd 103 P
epiData<10> 76 B inpVss 104 P
epiData<11> 77 B outVss 105 P
epiData<12> 78 B outVdd 106 P

8–28 DECchip 21071-DA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

sysAdr<5> 107 B sysAdr<28> 138 B
sysAdr<6> 108 B sysAdr<29> 139 B
sysAdr<7> 109 B sysAdr<30> 140 B
sysAdr<8> 110 B outVss 141 P
sysAdr<9> 111 B sysAdr<31> 142 B
sysAdr<10> 112 B sysAdr<32> 143 B
sysAdr<11> 113 B sysAdr<33> 144 B
sysAdr<12> 114 B ioGrant 145 I
sysAdr<13> 115 B ioCAck<0> 146 I
sysAdr<14> 116 B ioCAck<1> 147 I
sysAdr<15> 117 B ioDataRdy 148 I
sysAdr<16> 118 B cpuCReq<0> 149 I
sysAdr<17> 119 B cpuCReq<1> 150 I
outVss 120 P cpuCReq<2> 151 I
sysAdr<18> 121 B outVdd 152 P
sysAdr<19> 122 B ioRequest<0> 153 O
sysAdr<20> 123 B ioRequest<1> 154 O
sysAdr<21> 124 B inpVdd 155 P
sysAdr<22> 125 B inpVss 156 P
sysAdr<23> 126 B outVss 157 P
sysAdr<24 127 B outVdd 158 P
sysAdr<25> 128 B MemAckl 159 O
sysAdr<26> 129 B ioCmd<0> 160 O
outVss 130 P ioCmd<1> 161 O
outVdd 131 P ioCmd<2> 162 O
clk1x2 132 I MemReql 163 I
testMode 133 I cpuHoldAck 164 I
tristate_l 134 I ReqL 165 O
clk2Ref 135 I GntL 166 I
scanEn 136 I AD<31> 167 B
sysAdr<27> 137 B outVss 168 P

DECchip 21071-DA Pin Descriptions 8–29



Pin Name Pin Type Pin Name Pin Type

AD<30> 169 B AD<16> 196 B
AD<29> 170 B outVdd 197 P
outVdd 171 P CBE<2> 198 B
outVss 172 P outVss 199 P
AD<28> 173 B FrameL 200 B
AD<27> 174 B cpuCWMask<2> 201 I
outVss 175 P pTestOut 202 O
AD<26> 176 B intHw0 203 O
outVss 177 P resetL 204 I
cpuCWMask<0> 178 I outVss 205 P
AD<25> 179 B pClk 206 I
outVss 180 P inpVdd 207 P
AD<24> 181 B inpVss 208 P
CBE<3> 182 B
outVdd 183 P
AD<23> 184 B
AD<22> 185 B
outVss 186 P
AD<21> 187 B
outVss 188 P
outVdd 189 P
AD<20> 190 B
AD<19> 191 B
AD<18> 192 B
outVss 193 P
cpuCWMask<1> 194 I
AD<17> 195 B

8.4 DECchip 21071-DA Mechanical Specifications
Figure 8–2 shows DECchip 21071-DA package dimensions.

8–30 DECchip 21071-DA Pin Descriptions



Figure 8–2 DECchip 21071-DA Package Dimensions

Millimeters Inches

MIN MAX
DIM

A

B

C

D

G

H

J

K

L

M

R

S

30.50

27.90

30.50

27.90

0.23

.500 BSC

0.45

3.45

0.13

0.25

25.5 REF

25.5 REF

30.77

28.10

30.77

28.10

0.33

0.62

3.85

0.23

0.35

1.201

1.098

1.201

1.098

0.009

0.0197 BSC

0.018

0.136

0.005

0.010

1.004 REF

1.004 REF

1.211

1.106

1.211

1.106

0.013

0.024

0.152

0.009

0.012

MIN MAX

K

L

M

J

H

R

A

B

DC

S

LJ-03666-TI0

P
IN

 1

G208 PQFP

DECchip 21071-DA Pin Descriptions 8–31





9
DECchip 21071-DA Architecture Overview

This chapter describes the 21071-DA architecture. The 21071-DA chip is a
bridge between the PCI local bus and the Alpha 21064 microprocessor, its
Bcache, and memory. The 21071-DA chip contains all the control functions of
the bridge, as well as some data path functions. Other data path functions
reside within the 21071-BA chip.

The 21071-DA chip can be divided into two major sections:

• sysBus (processor, memory) interface

• PCI interface

The following sections provide an overview of the architectural features of the
sysBus and PCI interfaces.

Figure 9–1 shows a block diagram of the DECchip 21071-DA chip.

DECchip 21071-DA Architecture Overview 9–1



Figure 9–1 DECchip 21071-DA Block Diagram

Address
MUX & Merge
Logic

L J - 0 3 0 7 8 - T I 0

3 Longword
DMA Read
I/O Write
Data Buffer

DMA
Write/
I/O Read
Data

CSR
Read
Data

DMA Read/
I/O Write Data

CSRs
and
Error Logging

epiBEnErr <3:0>

8 Entry
TLB

DMA
Write
Address

DMA
Read
Address

4 Entry
DMA Write

PCI_AD <31:0> PCI_PAR

Parity
Check/Gen

PCI
Window Hit
Detection

PCI_CBE <3:0>

Read
Bypass MUX

epiData <31:0>sysAdr <33:5>

I/O 
Address

Address
FIFO

9.1 sysBus Interface Architecture
The sysBus interface includes the sysBus control state machine, the address
decode for CPU-initiated transactions, buffering for CPU-initiated transactions,
and the control and status registers of the 21071-DA chip.

9.1.1 Address Decode
The 21071-DA chip provides logic for translating and extending the DECchip
21064 34-bit physical address space into 32-bit PCI address space and vice
versa. The address decode in the 21071-DA chip uses the address mapping
and translation scheme described in Section 10.1 to generate PCI addresses on
CPU-initiated transactions. All systems using the 21071-DA chip are required
to follow this address mapping scheme.

9–2 DECchip 21071-DA Architecture Overview



9.1.2 Buffering for I/O Write Transactions
The 21071-DA chip supports write-and-run I/O write transactions using a
1-entry deep write buffer. The address and control mechanism are in the
21071-DA chip; the corresponding data is stored in the 21071-BA chip.

As soon as an I/O write transaction is received on the sysBus, the data and
address is loaded in the write buffer and the transaction is acknowledged
on the sysBus. Subsequent I/O transactions to the 21071-DA chip are not
acknowledged until the previous I/O write transaction is completed. The I/O
write could be directed towards the 21071-DA CSRs or the PCI bus.

The 21071-BA chip provides a holding buffer to store write data for one
subsequent write transaction. If the I/O write buffer is occupied, and another
I/O write to the 21071-DA chip appears on the sysBus, the data of that write is
captured from the sysBus and is loaded into the holding buffer. Even though
the data is loaded into the holding buffer, the sysBus transaction is stalled
until the I/O write buffer is free. The holding buffer is required so that all
the write data can be captured before suspending the write transaction for
deadlock resolution. See Section 9.4.2 for details.

The description of the holding buffer and I/O write buffer is a conceptual one.
In the actual implementation there are two data buffers, and they alternate as
I/O write and holding buffers.

9.1.3 Buffering for I/O Read Data
The 21071-DA chip provides data buffering for one I/O read transaction
initiated by the CPU. The I/O read buffer resides in the 21071-BA chip, but
is controlled by the 21071-DA chip. The I/O read buffer is only a temporary
holding buffer, and is invalidated at the end of every I/O read transaction. The
I/O read buffer is loaded with data received from the PCI or the 21071-DA
CSRs depending on whether the transaction is addressed to the PCI or the
CSRs. The I/O read buffer is necessary to make the sysBus interface and PCI
interfaces independent of each other. An I/O read may complete on the PCI,
while the sysBus interface is busy flushing DMA writes to memory. (This is
done by suspending the I/O read transaction using a preempt DMA request to
the sysBus arbiter; see Sections 9.4.2 and 9.4.1 for details.) The I/O read buffer
allows the PCI transaction to terminate without waiting for the read data to be
returned to the CPU.

DECchip 21071-DA Architecture Overview 9–3



9.1.4 Wrapping for I/O Transactions
The CPU must be configured in wrap mode for I/O reads to function correctly.
The requested quadword is the only one that is returned on I/O read
transactions.

9.2 PCI Interface Architecture
The PCI interface of the 21071-DA chip is a fully compliant PCI host bridge.
It behaves as a master on the PCI on CPU-initiated transactions and is a
target on memory space transactions initiated by other PCI masters. The
architectural features of the PCI interface are described in the following
sections.

9.2.1 DMA Address Translation
The PCI interface supports direct and scatter/gather mapping from the 32-bit
PCI address to the 34-bit physical address space. It provides two windows
which can be mapped to regions within the PCI address space. Each address
region can be independently programmed to be direct mapped or scatter/gather
mapped.

If the address region is direct mapped, then the PCI address is directly sent
out on the sysBus. Higher order sysBus address bits have to be obtained from
the PCI base address registers in the 21071-DA chip.

If the address region is scatter/gather mapped, the PCI address indicates the
address of a page table entry, which contains the physical address of that
page. Thus, there is a virtual (PCI address) to physical translation involved.
The actual scatter/gather map is stored in memory. The 21071-DA chip
accesses the map in memory to do all the required translation. To improve
the performance of scatter/gather mapped DMA transactions, the 21071-DA
chip implements an 8-entry translation lookaside buffer (TLB). Incoming
PCI addresses to scatter/gather regions are looked up in the TLB. If there is
a hit, the translation is done within the 21071-DA chip. If there is a miss,
then the 21071-DA chip reads memory (through the sysBus) to obtain the
required page table entry. The entry is then loaded into the TLB; a round-
robin replacement scheme is used. The translation is done by the 21071-DA
chip and the transaction is completed on the sysBus.

For details about the actual mapping scheme and the page table entry format,
see Chapter 10.

9–4 DECchip 21071-DA Architecture Overview



Note

The slave machine of the DECchip 21071-DA PCI interface will not
respond to a CPU-initiated address that has been driven onto the PCI
by the master machine of the PCI interface, even if the address hits the
programmed PCI DMA window. That is, the DECchip 21071-DA chip
does not support loopback mode on the PCI.

9.2.2 DMA Write Buffer
The PCI interface has a write buffer for buffering DMA write data. The
DMA write buffer is made up of four entries; each entry contains a cache
line address, 8 longwords of data, the byte enables corresponding to each
longword, a lock bit, a mask bit, a flush bit, and a valid bit for the entry.
The untranslated PCI address is stored in the DMA write buffer. Address
translation is performed when the particular entry is unloaded from the DMA
write buffer. The address and control bits are stored in the 21071-DA chip, and
corresponding data and byte enables are stored in the 21071-BA chip.

Data is received on the PCI and is transferred to the 21071-BA chip over
the epiData bus. When the transaction is completed on the PCI, the entry
is marked valid and is available for unloading. A subsequent PCI write
transaction to the same cache line will consume a separate write buffer entry.
The 21071-DA chip does not support merging of write transactions.

DMA reads are allowed to bypass the writes in the DMA write buffer,
depending on the state of the dByp<1:0> bits from the DCSR. This improves
average DMA read latency considerably, because most DMA reads are not
expected to match addresses in the write buffer. When the dByp<1:0> mode
indicates full bypass, read address bits <31:6> are compared with those of the
buffered writes. If there is no match, the read is serviced ahead of the writes.
When the dByp<1:0> mode indicates partial bypass, read bypass happens
only if the read page offset does not match the write page offset; only address
bits <12:6> are compared. This mode can be used if comparing virtual (PCI)
addresses between reads and writes is not desirable or could lead to coherency
problems. In the No_Bypass mode, DMA reads are stalled until all the DMA
writes have been flushed out of the write buffer.

DECchip 21071-DA Architecture Overview 9–5



There are two situations when read bypassing is disabled independent of the
programmed value of dByp<1:0>:

• The 21071-DA chip does not allow DMA reads to bypass buffered DMA
writes if any of the buffered writes were locked by a PCI master.

• The DMA write buffer has to be flushed to memory on memory barriers
from the DECchip 21064 microprocessor to ensure data coherency. The
21071-DA chip does not permit DMA reads to bypass buffered DMA writes
while flushing the write buffer. See Section 9.4.1.

If the DMA write buffer is full and a DMA write to memory is initiated on the
PCI, the transaction is disconnected by the 21071-DA PCI interface without
accepting any data. If the buffer is filled during a PCI DMA write transaction,
the transaction is disconnected, and no more data is accepted by the 21071-DA
PCI interface.

9.2.3 DMA Read Buffer
The 21071-DA chip controls the DMA read buffer located in the 21071-BA chip.
The buffer stores up to 16 longwords of data organized as two cache lines. A
valid bit is implemented along with each longword. Data received from the
sysBus (memory or cache) is loaded into the DMA read buffer by the sysBus
interface, and the corresponding valid bit is set. The data is unloaded by the
PCI interface.

The DMA read buffer does not require an address to be stored, because the
contents of the buffer are invalidated at the end of the current PCI read
transaction. There is never any stale data in the DMA read buffer.

9.2.4 PCI Burst Length and Prefetching
The PCI interface supports a maximum burst length of 16 longwords on PCI
write transactions directed toward main memory. If the PCI write transaction
starts on an even cache line boundary with PCI Address<5> = 0 and PCI
Address<4:2> = 0, a full burst of 16 longwords is supported. The transaction
will be terminated using a PCI disconnect after the sixteenth longword
has been received. In all other cases, the actual burst will be less than 16
longwords. These cases are described here:

• When a burst order other than linear incrementing is specified by the
master, the transaction length is kept to one transfer. See Section 9.2.5.

• When the transaction starts on an even cache line boundary, but PCI
address <4:2> are non-zero. In this case the first cache line is a partial
write.

9–6 DECchip 21071-DA Architecture Overview



• When the transaction starts on an odd cache line boundary, PCI address
<5> = 1. The burst length is this case is � 8 longwords.

• If there is only one cache line entry available in the DMA write buffer,
the burst is terminated after � 8 longwords of data have been transferred,
even if the transfer started on an even cache line boundary. This is because
after that cache line has been loaded into the write buffer, the buffer is full.

On DMA read transactions, a maximum burst length of 8 longwords is
supported if DMA prefetching is not enabled in the 21071-DA chip, and a PCI
read multiple command was not used by the requesting device. A maximum
burst length of 16 longwords is supported if DMA prefetching is enabled
in the 21071-DA chip, or a PCI read multiple command was used by the
requesting device. The following describes the various cases of DMA read burst
transactions and indicates the burst length.

• When a burst order other than linear incrementing is specified by the
master, the burst length is kept to 1 longword. See Section 9.2.5.
Prefetching is performed if prefetching is enabled or a read multiple
command is specified on the PCI, and the transaction starts on an even
cache line.

• When prefetching is not enabled and the incoming PCI command is not a
read multiple, and when the PCI transaction starts with PCI address<4:2>
= 0, the PCI interface disconnects the transaction after 8 longwords have
been transferred on the PCI. No prefetching is performed.

• When prefetching is not enabled and the incoming PCI command is not
a read multiple, and when the PCI transaction starts with a non-zero
value on PCI address<4:2>, the PCI interface disconnects the transaction
after � 7 longwords have been transferred on the PCI. No prefetching is
performed.

• When prefetching is enabled or a read multiple command is specified on
the PCI, and the transaction starts on an even cache line boundary with
PCI address<4:2> = 0, the PCI interface disconnects the transaction after
16 longwords have been transferred on the PCI. The odd cache line is
prefetched.

• When prefetching is enabled or a read multiple command is specified on
the PCI, and the transaction starts on an even cache line boundary with
a non-zero value on PCI address<4:2>, the PCI interface disconnects the
transaction after � 15 longwords have been transferred on the PCI. The
odd cache line is prefetched.

DECchip 21071-DA Architecture Overview 9–7



• When prefetching is enabled or a read multiple command is specified on
the PCI, and the transaction starts on an odd cache line boundary, the
PCI interface disconnects the transaction after � 8 longwords have been
transferred on the PCI. No prefetching is performed.

On CPU-initiated read transactions, when the 21071-DA chip is a master on
the PCI, a maximum burst length of 2 is supported.

On CPU-initiated write transactions, when the 21071-DA chip is a master on
the PCI, a maximum burst length of 2 is supported in sparse memory and I/O
spaces, and a maximum burst length of 8 is supported in dense memory space.

9.2.5 PCI Burst Order
Bits <1:0> of the PCI address are used to specify the burst order requested by
the master during memory transactions. When the 21071-DA is a master of
the PCI, it will always indicate a linear incrementing burst order (AD<1:0> =
0) on read and write transactions.

On DMA transactions, the 21071-DA supports burst transfers only when a
linear incrementing burst order is specified. If the master specifies a burst
order other than that (AD<1:0> is non-zero), then the PCI interface disconnects
the transaction after one data transfer.

9.2.6 PCI Parity Support
All PCI devices are required to generate parity across AD<31:0> (data and
address lines) and C/BE#<3:0> (command/byte enables). The 21071-DA chip
complies with this specification.

When it is master of the PCI, it also checks the incoming parity on I/O reads,
interrupt vector reads, and configuration reads during data phases.

When it is a target on the PCI, it checks parity during the address phase, and
during data phases on memory write transactions.

9.2.7 PCI Exclusive Access
The 21071-DA chip supports the PCI Exclusive Access protocol using the
LockL signal. A locked transaction to main memory on the PCI causes the PCI
interface to lock out all non-exclusive main memory accesses initiated by PCI
masters. This is done by disconnecting the PCI transaction without completing
any data transfers. Until the Lock is cleared on the PCI, only the PCI master
that locked main memory is allowed to complete transactions to main memory.
Refer to the PCI Local Bus Specification for details.

9–8 DECchip 21071-DA Architecture Overview



On the sysBus side, the PCI lock causes the system lock flag to be cleared
by using the ioClrLock command encoding on the ioCmd signals. The system
lock flag is held cleared until all locked DMA reads and locked DMA writes to
memory have been completed on the sysBus, and the Lock is cleared on the
PCI.

As a master on the PCI, the 21071-DA chip does not initiate locked
transactions. See Section 11.2.3 for a detailed description of the 21071-DA
response to locked transactions initiated by other master devices.

9.2.8 PCI Bus Parking
When no devices are requesting bus mastership, it is recommended that the
system arbiter grant default bus ownership to the 21071-DA chip by asserting
its GntL signal. This will reduce the latency for CPU-initiated transfers to the
PCI when the bus is idle. Granting the PCI to a device when no requests are
pending is referred to as parking in the PCI Local Bus Specification. If the
21071-DA chip is granted the bus when it is not requesting the PCI, it will
drive the AD<31:0>, CBE_l<3:0>, and PAR signals.

The 21071-DA chip also supports PCI bus parking during reset. If the GntL
signal is asserted by the PCI arbiter (ReqL is always tristated by the 21071-DA
chip during reset), the 21071-DA chip will drive AD<31:0>, BE<3:0>#, and (one
clock cycle later) PAR. When GntL is deasserted, the 21071-DA chip tristates
these signals.

9.2.9 PCI Retry Timeout
The 21071-DA chip implements a timeout mechanism to terminate CPU-
initiated transactions that do not complete on the PCI because of too many
disconnects or retries. When it initiates a CPU transaction on the PCI, the
21071-DA chip counts the number of times it gets retried or disconnected,
and if the number exceeds 224 it flags an error to the CPU and aborts the
transaction. The 21071-DA chip considers losing GntL during address stepping
(for configuration cycles) as a disconnect for the purposes of this timeout
mechanism.

9.2.10 PCI Master Timeout
The PCI protocol specifies a mechanism to limit the duration of a master’s
burst sequence. The mechanism requires a PCI master to implement a latency
timer that counts the number of cycles since the assertion of FRAME#. If the
master latency timer has expired and the master’s grant has been taken away,
the master is required to surrender the bus. This mechanism is intended to
prevent masters from holding bus ownership for extended periods of time,

DECchip 21071-DA Architecture Overview 9–9



trading off high throughput for low latency. The 21071-DA implements a
programmable master latency timer.

9.2.11 Address Stepping in Configuration Cycles
The 21071-DA chip does not have dedicated IDSEL# pins for use in PCI
configuration cycles. Because AD<31:11> are not used during configuration
cycles, they are connected to the IDSEL# pins of the various PCI devices.
These devices can then uniquely be selected during configuration cycles by
using addresses which assert only one bit of AD<31:11> at a time. By doing
this, an added load is presented to those address lines that are connected
to the IDSEL# pins of PCI devices. This load can be reduced by resistively
coupling the line to the pin; however, the time for the signal to become valid at
the IDSEL# pin is then increased.

In order to provide flexibility and reduce design complexity when using
resistive coupling to IDSEL# pins, the 21071-DA chip performs address
stepping on configuration reads and write transactions. For these transactions,
the 21071-DA chip will drive the PCI bus for two clock cycles during the
address phase in order for the IDSEL# pins of all the PCI devices to reach a
valid logic level.

The 21071-DA chip does not perform address or data stepping in any other
case.

9.3 Transactions
This section describes the transactions performed by the 21071-DA chip.

9.3.1 sysBus Transactions
The 21071-DA chip is a master and a slave on the sysBus. When it is a master,
it performs DMA transactions on the sysBus. When it is a slave, it responds to
I/O transactions initiated by the CPU.

9.3.1.1 CPU-Initiated Transactions
When the CPU is master of the sysBus, the sysBus interface monitors the
commands and addresses sent out by the CPU. If the addresses are within
the 21071-DA chip address range, and the command is valid, the 21071-DA
chip responds to the transaction. The 21071-DA chip does not acknowledge the
CPU directly. Acknowledgments are communicated to the CPU through the
21071-CA chip, and data is communicated through the 21071-BA chips.

The following transactions are supported by the 21071-DA sysBus interface:

• Read Block to Remote (PCI) Space

9–10 DECchip 21071-DA Architecture Overview



The 21071-DA chip responds to the transaction by notifying the 21071-CA
chip when data is ready in the I/O read data buffer. The 21071-DA chip
may choose to preempt this transaction if a DMA read transaction is in
progress on the PCI, or if the DMA write buffer is full, and the DMA
transaction needs to get on to the sysBus (deadlock resolution).

The 21071-DA chip supports longword or quadword reads in PCI space.

• Read Block to Local (CSR) Space

This is treated similarly to the read block to remote space. The only
difference is in the conditions for preemption. This transaction is
preempted only if it is stalled on the sysBus and queued behind an I/O
write transaction that cannot be completed until a DMA transaction on the
PCI can access the sysBus (deadlock resolution).

The 21071-DA chip supports only longword reads aligned on cache line
boundaries in CSR space.

• Write Block to Remote or Local Space

The 21071-DA chip acknowledges the transaction when all previous I/O
writes have been completed on the PCI. This transaction is preempted only
if it is stalled on the sysBus and queued behind an I/O write transaction
that cannot be completed until a DMA transaction on the PCI can get onto
the sysBus (deadlock resolution).

The 21071-DA chip supports only longword writes in CSR space, up to
quadword writes in sparse PCI space, and up to 8 longword writes in dense
PCI memory space.

• LDx_L to I/O Space

This is treated just like a read block to I/O space.

• STx_C to I/O Space

This is treated just like a write block to I/O space.

DECchip 21071-DA Architecture Overview 9–11



• Barrier

The 21071-DA chip uses the barrier command to ensure synchronization
between the CPU and DMA devices on the PCI. It does not acknowledge
the command until the I/O write buffer has been flushed, and any writes
that were present in the DMA write buffer when the barrier command was
received have been flushed to memory.

• Fetch, FetchM to 21071-DA Space

The 21071-DA chip does not do anything special on a fetch, fetchM
transaction to its address space. It sends an acknowledgment to the
21071-CA chip as soon as it sees the command on the bus.

9.3.1.2 PCI-Initiated Transactions
Transactions from PCI devices to main memory cause the 21071-DA chip to
arbitrate for the sysBus and perform DMA transactions to memory.

DMA transactions on the sysBus always start with an arbitration cycle where
the 21071-DA chip asserts one of the three possible request codes to the arbiter.
When the grant is received, the address is driven on to the sysAdr bus, which
is common to the CPU, the Bcache, the 21071-CA, and the 21071-DA chips.
Data is transferred between the 21071-BA and the 21071-DA chips using the
epiBus prior to the start of a DMA write or as data is returned on DMA reads.

The sysBus interface uses the atomic request when it has to prefetch read
data or when it needs to perform a scatter/gather lookup. It does at most two
memory read transactions during such a request. It uses the preempt request,
when it has to suspend the current CPU transaction, which is targeted towards
it, in order to let a DMA transaction complete (Section 9.4.2). At all other
times, it uses the normal DMA request.

The following DMA transactions are performed by the 21071-DA chip on the
sysBus:

• PCI DMA Read

On a PCI DMA read transaction, the 21071-DA chip could use one of four
sysBus DMA read commands:

DMA read

DMA read wrapped

DMA read burst

DMA read burst wrapped

9–12 DECchip 21071-DA Architecture Overview



The wrapped qualifier is used to indicate whether the lower octaword of
data from the cache line is requested or the upper octaword is requested.
The wrapped command is used when the upper octaword is requested.

The burst qualifier is a hint to the memory controller that the following
read transaction is likely to be in the same page. The burst command is
used when the 21071-DA chip is likely to prefetch data from memory. The
maximum data that can be prefetched is a cache line; a memory read on
the PCI can be at most 16 longwords (Section 9.2.4). The 21071-DA chip
uses DMA read burst on the first cache line read indicating that it is going
to follow it up with another read. The second read uses the DMA read
command because that cache line is the end of the burst.

• Scatter/Gather Read

21071-DA chip performs a DMA read or DMA read wrapped transaction on
the sysBus when it needs to read the scatter/gather map.

• PCI DMA Write

A PCI DMA write transaction causes a DMA write full or a DMA write
masked command on the sysBus. A DMA write full command is used when
the whole cache line will be written to memory, and a DMA write masked
command is used when the cache line has to be written partially. The byte
masks for the data are transferred to the 21071-BA chip along with the
data.

9.3.2 PCI Transactions
The 21071-DA chip supports the following transactions on the PCI:

• Interrupt acknowledge: PCI master.

• Special cycle: PCI master.

• I/O read: PCI master.

• I/O write: PCI master.

• Memory read: A slave, when the transaction is initiated by another PCI
device accessing system memory. A master, when the CPU is accessing an
address in PCI memory space.

• Memory write: A slave, when the transaction is initiated by another PCI
device accessing system memory. A master, when the CPU is accessing an
address in PCI memory space.

• Configuration read: PCI master.

• Configuration write: PCI master.

DECchip 21071-DA Architecture Overview 9–13



• Memory write and invalidate: PCI slave; treated just like a memory write.

• Memory read line: PCI slave; treated just like a memory read.

• Memory read multiple: PCI slave; cache line read prefetch is performed
irrespective of the state of the prefetch enable bit.

• Dual address cycles: Ignored.

9.4 Miscellaneous Architectural Issues
This section describes the miscellaneous architectural issues, including:

• Data coherency

• Deadlock resolution

• Guaranteed access time mode support

9.4.1 Data Coherency
There are generally two agents in the system whose data transfer actions need
to be synchronized:

• The CPU

• A remote PCI device

The 21071-DA chip maintains data coherency and synchronization between
these two agents using the following mechanisms:

• The 21071-DA chip preserves strict ordering of DMA writes initiated on the
PCI.

• DMA reads can bypass writes that are not to the same address (double
cache line). Strict ordering is maintained between reads and writes to the
same address.

• I/O transfers from the CPU to the PCI or to 21071-DA CSRs are performed
in order. This policy guarantees a coherent view of PCI I/O space from the
CPU viewpoint.

• The 21071-DA chip flushes DMA write data to memory prior to
acknowledging a barrier command from the CPU. Because explicit ordering
commands are absent on the PCI, the software MB instruction is used to
order CPU and DMA accesses.

9–14 DECchip 21071-DA Architecture Overview



• The 21071-DA chip also flushes the I/O write buffer to the PCI before
acknowledging a barrier command. This preserves the order between CPU
I/O accesses and CPU memory accesses.

• The 21071-DA chip clears the system lock flag on PCI exclusive reads and
writes to system memory.

9.4.2 Deadlock Resolution
In a 21071 or 21072 system, two major buses are allocated for use during data
transfers—the sysBus and the PCI. Some data transfers require the use of both
of these buses to complete. In particular, CPU I/O transfers to or from the PCI
require ownership of the sysBus followed by ownership of the PCI. Similarly,
PCI DMA transfers to or from the memory subsystem require ownership of the
PCI followed by ownership of the sysBus.

Because of the non-pended nature of these buses, during read transfers (I/O or
DMA), both buses must be held at the same time for the transfer to complete.
Generally during write transfers (I/O or DMA), because the 21071-DA chip
features write-and-run style buffering, only one bus must be held at a time.
However, when a write buffer is full, both buses must be held at the same
time so that some data from the write buffer can be flushed before new data is
accepted.

For any transfer requiring the use of both buses, the 21071-DA chip is
responsible for acquiring the second level bus on behalf of the initiator.
Deadlocks can occur when the CPU and a remote PCI agent have both
initiated transfers requiring the use of both the sysBus and the PCI bus. If the
CPU has already acquired the sysBus, and the PCI agent has already acquired
the PCI bus, the 21071-DA chip would be unable to complete either transaction
without resolving the deadlock.

The 21071-DA chip resolves deadlock by forcing the CPU to relinquish
ownership of the sysBus thereby giving priority to the PCI agent. By giving
priority to the PCI agent, the 21071-DA chip gives the system designer more
flexibility when choosing PCI devices. In particular, this flexibility allows
designers to choose devices that resort to using PCI disconnect when handling
deadlock situations that arise at their end. The 21071-DA chip forces the CPU
to relinquish the sysBus by using a preempt request while arbitrating for the
sysBus.

DECchip 21071-DA Architecture Overview 9–15



9.4.3 Guaranteed Access Time Mode Support for Intel 82375EB and
82378IB ISA/EISA Bridges

The Intel 82375EB and 82378IB EISA/ISA bridges (EIB) provide three
sideband signals to provide mechanisms for flushing system write buffers and
to allow a guaranteed access time of 2.1 �s to a master on the ISA/EISA bus.
The three signals are:

• FLUSHREQ#

• MEMREQ#

• MEMACK#

The first two are outputs from the EIB, and the last one is an input to the EIB.

• The EIB asserts MEMREQ# and FLUSHREQ# when it requires
guaranteed access from memory. It expects the host bridge to assert
MEMACK# when it has cleared the path to memory. This is accomplished
by flushing any posted writes and disabling the posting of any further
writes, thereby guaranteeing an access time of 2.1 �s on the bus.

• The EIB keeps MEMREQ# deasserted and asserts FLUSHREQ# when it
requires that posted writes from the CPU to the PCI and from the PCI to
the CPU be flushed to prevent deadlocks between a DMA request from an
ISA master and an ISA bus access from the host bridge. In this case too, it
expects to see MEMACK# asserted when the appropriate buffers have been
flushed.

The 21071-DA chip provides its own mechanism for deadlock prevention,
by preempting CPU transactions to allow DMA transactions to complete. It
therefore does not need to support the deadlock prevention mechanism of the
EIB, and it does not implement the FLUSHREQ# protocol.

9–16 DECchip 21071-DA Architecture Overview



Note

Because the 21071-DA chip does not implement FLUSHREQ#, external
logic must force the assertion of MEMACK# to the EIB upon the
assertion of FLUSHREQ#. The equation for MEMACK# going to the
EIB should be as follows:

EIB_MEMACK# = NOT ( (MEMREQ# AND (NOT FLUSHREQ#) ) OR
(NOT DA_MEMACK#))

To meet MEMACK# timing requirements, the output of this equation
may need to be clocked through a flip-flop. The equation and output
flip-flop could both be implemented in a single PAL.

9.4.3.1 DECchip 21071-DA GAT Mode Operation
The 21071-DA chip takes the following action when it sees MemReql asserted:

1. The 21071-DA chip turns down its DMA write-and-run buffering capacity
to a single burst of up to eight longwords. Any PCI write transaction
directed toward the 21071-DA chip will be retried by the 21071-DA chip
unless its DMA write buffer is empty. Read-bypass-write flows remain
enabled.

2. The 21071-DA chip requests the sysBus (ioRequest = regular or preempt).

3. Once granted the sysBus, the 21071-DA chip holds the sysBus grant
(ioRequest = atomic) until MemReql is deasserted.

4. With the sysBus grant, the 21071-DA chip flushes all DMA write buffers
(if non-empty) and then performs a flush transaction (ioCmd = Flush) to
ensure that posted writes in the 21071-CA chip have completed. At the end
of the flush transaction, the 21071-DA chip asserts MemAckl.

5. While MemReql continues to be asserted, the 21071-DA chip will continue
to service PCI transactions with write-and-run buffering capacity set to a
single hexaword. The 21071-DA chip performs a flush transaction on the
sysBus atomically following each DMA write transaction. Read-bypass-
write flows will not be exercised at this point because the 21071-DA chip
is holding the sysBus grant. (DMA writes will always start on the sysBus
before a DMA read is far enough along on the PCI to bypass the DMA
write.)

6. Upon deassertion of MemReql, the 21071-DA chip deasserts MemAckl,
returns DMA write-and-run buffering capacity to four hexawords, releases
the sysBus grant (ioRequest = regular, preempt, or idle), and no longer
performs flush transactions following DMA writes.

DECchip 21071-DA Architecture Overview 9–17



9.4.3.2 GAT Mode System Requirements
Although the 21071 and 21072 chipsets provide the functionality described
here in order to help guarantee access time, the system designer must ensure
that worst case latencies are not excessive. The following system parameters
must be considered:

• DRAM width

• DRAM access time

• sysClk speed

• Scatter/gather mapping of GAT mode devices

• Scatter/gather mapping of all other PCI devices

Analysis shows that 30 ns (PCI cycle time) systems with any one of the
following characteristics will be able to meet GAT mode latency requirements:

• Systems with 128-bit wide memory interfaces.

• Systems that do not scatter/gather map GAT mode devices.

• Systems that do not scatter/gather map any other PCI devices.

• Systems with 64-bit wide memory interfaces that utilize 60 ns DRAMs
with appropriately programmed memory timing (assuming that either the
refresh time does not exceed 180 ns, or the video support feature of the
21071-CA chip is not utilized).

• Systems that implement PCI arbiters that do not allow third-party
scatter/gather-mapped writes to sneak in ahead of the GAT mode read.

Systems that do not conform to any of the above specifications (including
all systems with 40 ns PCI cycle times) will require further analysis to
determine if GAT mode latency requirements can be met. The following
sequence illustrates the worst case scenario and should be used as a guideline
for further analysis.

1. In the time between the 21071-DA chip’s assertion of MemAckl and when
the EISA/ISA bridge (EIB) acquires the PCI bus to perform the GAT
mode read, a third-party PCI device acquires the PCI bus and performs a
scatter/gather-mapped partial write to main memory.

2. The scatter/gather-mapped write is posted to the 21071 (or 21072 ) chipset,
misses in the TLB, and therefore results in a scatter/gather read from
memory followed by a masked write to memory.

9–18 DECchip 21071-DA Architecture Overview



3. As soon as the scatter/gather-mapped write completes on the PCI bus, the
EIB can acquire the PCI bus, grant the EISA/ISA bus to the GAT mode
device, and start the GAT mode read. Our analysis assumes that the
GAT interval begins four PCI cycles (one EISA/ISA cycle) after the PCI
bus is detected as idle following the third-party scatter/gather-mapped
write. The GAT mode read will never bypass the third-party DMA
write inside the 21071-DA because the DMA write starts on the sysBus
immediately after it completes on the PCI (sysBus is held atomically after
MemAckl is asserted). The GAT mode read will start on the PCI while the
scatter/gather read for the third-party DMA write is in progress on the
sysBus.

4. If the read from the GAT mode device is also scatter/gather mapped
(and also misses in the TLB), the total latency from the start of the GAT
interval to the return of requested read data will include the time required
to perform:

1. Part of the scatter/gather read for third-party masked DMA write

2. The third-party masked DMA write

3. The scatter/gather read for the GAT mode DMA read

4. The GAT mode DMA read

Our analysis assumes that the GAT interval ends eight PCI cycles (two
EISA/ISA cycles) after the first requested longword is transferred on the
PCI bus.

The total latency of these four transactions, plus the time required for one
memory refresh transaction, plus the time for a 21071-CA video transaction (if
this feature is in use), plus the eight tail-end cycles, must not exceed the GAT
latency limit of 2.1 µs.

Note that a major portion of the latency can be eliminated if one of the
following occurs:

• The GAT mode device, all other PCI devices, or both, are not scatter/gather
mapped.

• The PCI arbiter prevents third-party writes from sneaking in before the
GAT mode read.

The previous measures allow more systems, including certain 40 ns systems,
to meet the GAT mode latency requirements; however, system designers must
analyze their implementations in order to accurately estimate worst-case
latencies.

DECchip 21071-DA Architecture Overview 9–19



9.5 Interrupts
The 21071-DA chip interrupts the CPU using the intHw0 signal when it
has errors to report. The 21071-DA chip does not distinguish between hard
and soft errors when asserting this interrupt signal. However, the software
can mask the assertion of the interrupt signal on soft (correctable) errors by
disabling error correction reporting using the dCEI bit in the DCSR register.

The 21071-DA chip does not provide an interval timer interrupt. This
functionality is expected to be provided to the CPU by some other device in the
system. In addition, interrupts from other PCI devices or from a PCI interrupt
controller must be sent directly to the CPU.

The 21071-DA chip participates in the interrupt acknowledge process by
responding to CPU read block commands directly to the interrupt acknowledge
address space, which triggers the 21071-DA chip to perform an Interrupt
Acknowledge transaction on the PCI. The interrupt vector returned on the PCI
is returned to the CPU through the sysBus by the 21071-DA chip.

9.6 Error Handling
This section describes how errors are handled by the 21071-DA chip. The
following descriptions assume that the 21071-DA error registers are not
already locked by a previous error condition. If the 21071-DA errors registers
are locked by an earlier error, then additional errors merely set the lost error
bit, and, if appropriate, cause the 21071-DA chip to assert intHw0.

IntHw0 is kept asserted as long as the corresponding error bit is set.

The PCI error address register (PEAR) logs addresses sent out or received on
the PCI. The sysBus error address register (SEAR) logs addresses sent out or
received on the sysBus. The error logging CSRs are described in further detail
in Chapter 10.

9.6.1 CPU-Initiated Transactions
The 21071-DA chip always returns HARD_ERROR on ioCmd<2:0> field on
I/O read transactions that have errors. No interrupt is asserted in this case,
because the microprocessor has been notified that the read had an error.
In no situation does the 21071-DA chip assert SOFT_ERROR on I/O read
transactions because the microprocessor would interpret it as a failure that
occurred during the transaction, but was corrected.

9–20 DECchip 21071-DA Architecture Overview



I/O writes are always acknowledged with OK (100 on cpuCAck<2:0>).
Because of the write-and-run feature for I/O writes in the 21071-DA chip,
the transaction is always acknowledged on the sysBus before it is initiated on
the PCI. An interrupt (intHw0) will assert to notify the microprocessor if an
error occurs on the PCI during the I/O write.

The actions taken on the various errors that can occur on CPU-initiated
transactions are described in the following sections.

9.6.1.1 No Device Error
On an I/O transaction initiated by the 21071-DA chip, if DEVSEL# is not
asserted within 5 cycles, the 21071-DA chip assumes that no PCI device is
going to respond to this transaction. The following action is taken:

• The 21071-DA chip terminates the PCI transaction using the master-abort
protocol.

• The nDev bit is set in the DCSR. The pci_Cmd field is set to the
appropriate value depending upon the transaction.

• The PCI error address register (PEAR) contains the address sent out at the
beginning of the PCI transaction and is locked.

• On writes, intHw0 signal is asserted to interrupt the processor.

• On reads, the 21071-DA chip forces the value 101 (cpuCAck HARD_ERROR)
on ioCmd<2:0> to end the sysBus transaction.

• To clear the error, a logic 1 must be written to the nDev bit in the DCSR.

DECchip 21071-DA Architecture Overview 9–21



9.6.1.2 Target Abort Errors
On an I/O transaction initiated by the 21071-DA chip, if the target device
terminates the PCI transaction using the target-abort protocol, the following
action is taken:

• The 21071-DA chip, as master, terminates the PCI transaction in
accordance with the target-abort protocol.

• The tAbt bit is set in the DCSR, and the pci_Cmd field is set to the
appropriate value depending upon the transaction.

• The PCI error address register (PEAR) contains the address sent out at the
beginning of the PCI transaction and is locked.

• On writes, intHw0 signal is asserted to interrupt the processor.

• On reads, the 21071-DA chip forces the value 101 (cpuCAck HARD_ERROR)
on ioCmd<2:0> to end the sysBus transaction.

• To clear the error, a logic 1 must be written to the tAbt bit in the DCSR.

9.6.1.3 Address Parity Errors
On any I/O transaction there is no way for the 21071-DA chip to determine
that a parity error occurred in the address phase of the transaction because
the 21071-DA chip does not have a SERR# pin. (PERR# is not used to convey
address parity error information.) As a result, the 21071-DA chip can take no
action.

9.6.1.4 Read Data Parity Errors
On an I/O read transaction initiated by the 21071-DA chip, if the parity
generated off the incoming data sampled from the PCI AD lines (data), and the
byte enables driven by the 21071-DA chip are different from the value sampled
from PAR, a read data parity error condition has occurred. The following action
is taken:

• The transaction continues normally.

• The 21071-DA chip asserts PERR# on the PCI.

• The ioPE bit is set in the DCSR, and the pci_Cmd field is set to the
appropriate value depending upon the transaction.

• The PCI error address register (PEAR) contains the address sent out at the
beginning of the PCI transaction and is locked. (Note: If an error occurs on
both longwords of a quadword transaction, then the lost bit will be set.)

9–22 DECchip 21071-DA Architecture Overview



• The 21071-DA chip forces the value 101 (cpuCAck HARD_ERROR) on
ioCmd<2:0> to end the sysBus transaction.

• To clear the error, a logic 1 must be written to ioPE bit in the DCSR.

9.6.1.5 Write Data Parity Errors
On an I/O write transaction initiated by the 21071-DA chip, if PERR# is
asserted by the slave device for any longword of data, a write data parity error
condition has occurred. The following action is taken:

• The transaction completes normally on the PCI.

• The ioPE bit is set in the DCSR, and the pci_Cmd field is set to the
appropriate value depending upon the transaction.

• The PCI error address register (PEAR) contains the address sent out at the
beginning of the PCI transaction and is locked. (Note: If an error occurs on
more than 1 longword of a single write burst the lost bit will be set.)

• intHw0 signal is asserted to interrupt the processor.

• To clear the error, a logic 1 must be written to the ioPE bit in the DCSR.

9.6.1.6 Retry Timeout
On an I/O transaction initiated by the 21071-DA chip, if the retry timeout
counter overflows (this happens when the 21071-DA chip has been retried 224

times by the target), the 21071-DA chip does the following:

• The 21071-DA chip does not retry the transaction on the PCI again.

• The ioRT bit is set in the DCSR and the pci_Cmd field is set to the
appropriate value depending upon the transaction.

• The PCI error address register (PEAR) contains the address sent out at the
beginning of the PCI transaction and is locked.

• intHw0 signal is asserted to interrupt the processor.

• On reads, the 21071-DA chip forces the value 101 (cpuCAck HARD_ERROR)
on ioCmd<2:0> to end the sysBus transaction.

• To clear the error, a logic 1 must be written to the ioRT bit in the DCSR.

9.6.2 DMA Transactions
All DMA transaction errors will be flagged by interrupting the processor
(intHw0 asserted) when the error occurs, except where noted.

DECchip 21071-DA Architecture Overview 9–23



9.6.2.1 Address Parity Errors
On any DMA (PCI-initiated) transaction address phase, if the generated parity
of the incoming address and command sampled from the PCI AD and C/BE#
lines is different from the value sampled from PAR, an address parity error
condition has occurred for that transaction. The following action is taken:

The 21071-DA chip does not respond to the transaction. Due to the parity
error, the 21071-DA chip is not certain if the command was correct (read or
write) and is not sure what the intended address for that transaction was.
(PERR# is not asserted because it is only intended for data parity errors on the
PCI.) intHw0 is not asserted.

9.6.2.2 Read Data Parity Errors
On a DMA read transaction data phase, if there is a parity error it might be
detected by the PCI master device. Even if this device asserts PERR# and the
21071-DA chip takes no action, it is the PCI master’s responsibility to handle
the error condition. intHw0 is not asserted.

9.6.2.3 Write Data Parity Errors
On any DMA write transaction data phase, if the generated parity of the
incoming data and byte enables sampled from the PCI AD and C/BE# lines is
different from the value sampled from PAR, a data parity error condition has
occurred. The following action is taken:

• The 21071-DA chip asserts PERR# pin for one cycle on the PCI two cycles
after the data was transferred on the bus, to indicate the condition.

• The dDPE bit is set in the DCSR.

• The PCI error address register (PEAR) contains the address that came off
the PCI bus at the beginning of the transaction and is locked.

• intHw0 signal is asserted to interrupt the processor.

• The write will continue normally on the PCI.

• That particular cache line entry will not be written to memory.

• To clear the error, a logic 1 must be written to the dDPE bit in the DCSR.

9–24 DECchip 21071-DA Architecture Overview



9.6.2.4 Memory Errors
On a DMA transaction, if the 21071-CA chip detects an error (non-existent
memory address, tag address parity error, or tag control parity error), it will
log the address and the specific error bit, and terminate the sysBus transaction
by driving 11 (DMA cycle error) on ioCAck<1:0>. The following action is taken
if data was going to be transferred on the PCI.

Note

Prefetched cache line data may not be required by the PCI device. If
there is a tag address parity error or tag control parity error on an
unused prefetched cache line, the error will be logged by the 21071-CA
chip, but the CPU will not be interrupted by the 21071-DA chip.

• The mErr bit is set.

• The sysBus error address register (SEAR) contains the address that caused
the memory error and is locked.

• intHw0 signal is asserted to interrupt the processor.

• On reads, the 21071-DA chip terminates the PCI transaction using the
target-abort protocol.

• On writes, the 21071-DA chip dismisses the write buffer entry (single cache
line). Note that if a single PCI write burst crossed a cache line boundary
and therefore filled two write buffer entries (two cache lines), each entry is
handled separately on the sysBus.

• To clear the error, a logic 1 must be written to the mErr bit in the DCSR.

9.6.2.5 Read Correctable Data Error
On a DMA read transaction, if there is a correctable error in memory or Bcache
and the 21071-BA chips are configured in ECC mode, the 21071-BA chips will
correct the longword with the single-bit error before sending it to the 21071-DA
chip.

If and when this longword is sent to the 21071-DA chip, along with the data on
the epiData bus, epiBEnErr<1> will contain information whether or not this
longword had a correctable error. The following action is taken if the longword
was going to be transferred on the PCI.

DECchip 21071-DA Architecture Overview 9–25



• If the Disable Correctable Error Interrupt bit (dCEI) is set, the information
on epiBEnErr<1> is ignored. As a result, intHw0 will not be asserted, the
cMRD bit will not be set, and the error address will not be logged in SEAR.

• intHw0 signal is asserted to interrupt the microprocessor.

• No error occurs on the PCI and the transaction completes normally.

• The cMRD bit is set in the DCSR.

• The sysBus error address register (SEAR) contains the address that caused
the correctable error and is locked.

• To clear the error, a logic 1 must be written to the cMRD bit in the DCSR.

9.6.2.6 Read Uncorrectable Data Error
On a DMA read transaction, if there is an uncorrectable error (parity error or
double-bit ECC error) in memory or Bcache, the 21071-BA chips will inform
the 21071-DA chip when they send the bad data over the epiData bus.

If and when this longword is sent to the 21071-DA chip, along with the data on
the epiData bus, epiBEnErr<0> will contain information whether this longword
had an uncorrectable error or not. The following action is taken if the longword
was going to be transferred on the PCI. (Note: In some cases, not all longwords
of a cache line will be transferred.)

• intHw0 is asserted to interrupt the microprocessor.

• The uMRD bit is set.

• The sysBus error address register (SEAR) contains the address that caused
the uncorrectable error and is locked.

• The 21071-DA chip terminates the PCI transaction using the target-abort
mechanism.

• To clear the error, a logic 1 must be written to the uMRD bit in the DCSR.

9.6.2.7 Scatter/Gather Entry Invalid Errors
On scatter/gather mapped DMA transactions, the scatter/gather entry being
accessed might be invalid. The actual write to or read from memory will not
occur. The following action is taken:

• iPTL bit is set in the DCSR.

• The PCI error address register (PEAR) contains the address that caused
the error and is locked.

• intHw0 signal is asserted to interrupt the processor.

9–26 DECchip 21071-DA Architecture Overview



• If the scatter/gather read was for a DMA read, the 21071-DA terminates
the PCI transaction using the target abort protocol.

• If the scatter/gather read was for a DMA write, the 21071-DA dismisses
the write buffer entry (single cache line). Note that if a single PCI write
burst crossed a cache line boundary and therefore filled two write buffer
entries (two cache lines), each entry is handled separately on the sysBus.

• To clear the error, a logic 1 must be written to the iPTL bit in the DCSR.

9.6.2.8 Write Correctable and Uncorrectable Data Errors
If a DMA write is not a full hexaword, the 21071-CA chip performs a read-
modify-write. If an error is detected on the read from memory before the write
is done, the 21071-DA chip does not perform any action. See Section 16.2.2
for details about how the 21071-BA chip handles data errors on DMA write
transactions.

9.6.2.9 Scatter/Gather Correctable Data Error
On a scatter/gather read transaction, if there is a correctable error in memory
or Bcache and the 21071-BA chips are configured in ECC mode, the 21071-BA
chips will correct the longword with the single-bit error before sending it to the
21071-DA chip. When this longword is sent to the 21071-DA chip, along with
the data on the epiData bus, epiBEnErr<1> will contain information whether
or not this longword had a correctable error. The following action is taken:

• If the Disable Correctable Error Interrupt bit (dCEI) is set, the information
on epiBEnErr<1> is ignored. As a result, intHw0 will not be asserted, the
cMRD bit will not be set, and the error address will not be logged in SEAR.

• intHw0 signal is asserted to interrupt the microprocessor.

• No error occurs on the PCI and the transaction completes normally.

• The cMRD bit is set in the DCSR.

• The sysBus error address register (SEAR) contains the address that caused
the correctable error and is locked.

• To clear the error, a logic 1 must be written to the cMRD bit in the DCSR.

DECchip 21071-DA Architecture Overview 9–27



9.6.2.10 Scatter/Gather Uncorrectable Data Error
On a scatter/gather read transaction, if there is an uncorrectable error (parity
error or double-bit ECC error) in memory or Bcache, the 21071-BA chips will
inform the 21071-DA chip when it sends this data over the epiData bus.

When this longword is sent to the 21071-DA chip, along with the data on
the epiData bus, epiBEnErr<0> will contain information whether or not this
longword had an uncorrectable error. The following action is taken:

• intHw0 is asserted to interrupt the microprocessor.

• The uMRD bit is set.

• The sysBus error address register (SEAR) contains the address that caused
the uncorrectable error and is locked.

• If the scatter/gather read was for a DMA read, the 21071-DA terminates
the PCI transaction using the target abort protocol.

• If the scatter/gather read was for a DMA write, the 21071-DA dismisses
the write buffer entry (single cache line). Note that if a single PCI write
burst crossed a cache line boundary and therefore filled two write buffer
entries (two cache lines), each entry is handled separately on the sysBus.

• To clear the error, a logic 1 must be written to the mErr bit in the DCSR.

9.6.2.11 Scatter/Gather Memory Errors
On a DMA transaction, if the 21071-CA detects an error (non-existent memory
address, tag address parity error, or tag control parity error) during a
scatter/gather read transaction, it will terminate the sysBus transaction.
The 21071-CA will log the address and the specific error bit, and terminate
the sysBus transaction by driving 10 (DMA cycle error) on ioCAck<1:0>. The
following actions are taken by the 21071-DA:

• The mErr bit is set in the DCSR.

• The sysBus Error Address Register (SEAR) contains the address that
caused the memory error and is locked.

• intHw0 signal is asserted to interrupt the processor.

• If the scatter/gather read was for a DMA read, the 21071-DA terminates
the PCI transaction using the target abort protocol.

9–28 DECchip 21071-DA Architecture Overview



• If the scatter/gather read was for a DMA write, the 21071-DA dismisses
the write buffer entry (single cache line). Note that if a single PCI write
burst crossed a cache line boundary and therefore filled two write buffer
entries (two cache lines), each entry is handled separately on the sysBus.

• To clear the error, a logic 1 must be written to the mErr bit in the DCSR.

DECchip 21071-DA Architecture Overview 9–29





10
DECchip 21071-DA Programmer’s

Reference

This chapter provides information about DECchip 21071-DA address
translation. It also describes the DECchip 21071-DA internal registers.

10.1 Address Translation
This section describes the mapping of the 34-bit processor physical address
space to 32-bit PCI address space, and the translation of the 32-bit PCI
addresses to 34-bit physical memory space.

Note

The slave machine of the DECchip 21071-DA PCI interface will not
respond to a CPU-initiated address that has been driven onto the PCI
by the master machine of the PCI interface, even if the address hits the
programmed PCI DMA window. That is, the DECchip 21071-DA chip
does not support loopback mode on the PCI.

10.1.1 CPU Address Mapping to PCI Space
The 34-bit physical sysBus address space is divided to form:

• Memory address space

• Local I/O space (local I/O space is used for CSRs in the 21071-CA and
21071-DA chips)

DECchip 21071-DA Programmer’s Reference 10–1



• PCI space

The PCI defines three physical address spaces:

PCI memory (for memory residing on the PCI)

PCI I/O space

PCI configuration space

In addition to these three address spaces on the PCI, the sysBus I/O space is
also used to generate PCI interrupt acknowledge cycles and PCI special cycles.
Table 10–1 shows the sysBus address mapping required to generate these
address spaces.

Table 10–1 sysBus Address Map

sysAdr<33:32> sysAdr<31:28> Address Space Notes

00 XXXX Cacheable memory
space

The 21071-DA chip does not
respond to addresses in this
space.

01 0XXX Noncacheable memory
space

The 21071-DA chip does not
respond to addresses in this
space.

01 100X 21071-CA CSRs The 21071-DA chip does not
respond to addresses in this
space.

01 1010 21071-DA CSRs The 21071-DA chip will
respond to all addresses in
this space. Dstream access
only.

01 1011 PCI interrupt acknowl-
edge or PCI special
cycle

A read causes a PCI
interrupt acknowledge
cycle; a write causes a
special cycle. Dstream
access only.

(continued on next page)

10–2 DECchip 21071-DA Programmer’s Reference



Table 10–1 (Cont.) sysBus Address Map

sysAdr<33:32> sysAdr<31:28> Address Space Notes

01 110X PCI sparse I/O space 16 MB of PCI space. Lower
256 KB of this space must
be used for addressing PCI,
EISA, and ISA devices.
The rest of the space can
be used for other devices.
Dstream access only.

01 111X PCI configuration space Refer to Section 10.1.1.6
for details. Dstream access
only.

10 XXXX PCI sparse memory
space

128 MB of PCI space
addressable. The lower
address bits are used to
determine byte masks
and transaction length
information, hence the 4
GB space is reduced to a
128 MB sparse space. Must
use this space when byte
or word access granularity
is required. Read or write
length is no more than a
quadword. Reading more
than the requested data is
harmful. Prefetching read
data is prohibited. Dstream
access only.

11 XXXX PCI dense memory space 4 GB of PCI space. Used
for devices with access
granularity greater than
a longword. Reads do
not have side effects;
prefetching of data from
PCI devices is allowed.
Typically used for data
buffers. Dstream access
only.

DECchip 21071-DA Programmer’s Reference 10–3



10.1.1.1 PCI Sparse Memory Space
2 0000 0000 .. 2 FFFF FFFF
Accesses to this space can have byte, word, tribyte, longword, or quadword
granularity. The Alpha architecture does not provide byte, word, or tribyte
granularity, which the PCI requires. Therefore to provide this granularity, the
byte enable and byte length information are encoded in the lower address bits
in this space. Address bits <7:3> are used for this purpose. Bits <31:8> are
used to generate quadword addresses on the PCI, thus resulting in a sparse 4
GB space that maps to 128 MB of address space on the PCI. An access to this
space causes a memory read or memory write access on the PCI.

The mapping is as follows:

Address <33:32> are used to identify the various address spaces on the sysBus.
Address <7:3> are used to generate the length of the PCI transaction in bytes,
the byte enables, and address <2:0>. Refer to Table 10–2. Address <31:8>
correspond to the quadword PCI addresses and are sent out on AD<26:3>
during the address phase on the PCI. AD<31:27> are obtained from one of two
host address extension registers—HAXR0 and HAXR1. HAXR0 (which is hard
coded as 0) is used for sysBus addresses between 2 0000 0000 .. 2 1FFF FFFF,
that is, when sysBus address <31:29> is 0. HAXR1 is used to map sysBus
addresses between 2 2000 0000 .. 2 FFFF FFFF, that is, when sysBus address
<31:29> is non-zero anywhere in the PCI address space. HAXR1 is a CSR
in the 21071-DA chip and is fully programmable. This allows EISA/ISA
devices that require memory to be mapped in the lower 16 MB to coexist
with other devices that do not have that restriction. The lower 16 MB have a
fixed mapping (HAXR0) to 0, and the remaining 112 MB can be programmed
anywhere in PCI space.

Figure 10–1 shows the sysBus to PCI memory address translation. Table 10–2
shows the generation of the byte enables and the PCI address <2:0> from
sysBus address <6:3>.

10–4 DECchip 21071-DA Programmer’s Reference



Table 10–2 PCI Sparse Memory Space Byte Enable Generation

Length

CPU
Address
<6:5>

CPU
Address
<4:3>

PCI Byte
Enable 1 PCI Address<2:0> 2

Byte 00 00 1110 CPU Address<7>, 00

01 00 1101 CPU Address<7>, 00

10 00 1011 CPU Address<7>, 00

11 00 0111 CPU Address<7>, 00

Word 00 01 1100 CPU Address<7>, 00

01 01 1001 CPU Address<7>, 00

10 01 0011 CPU Address<7>, 00

11 01 Illegal3 —

Tribyte 00 10 1000 CPU Address<7>, 00

01 10 0001 CPU Address<7>, 00

10 10 Illegal3 —

11 10 Illegal3 —

Longword 00 11 0000 CPU Address<7>, 00

Longword 01 11 Illegal3 —

Longword 10 11 Illegal3 —

Quadword 11 11 0000 000

1Byte enable set to 0 indicates that byte lane carries meaningful data.
2In PCI sparse memory space, PCI address <1:0> are always 00.
3These combinations are architecturally illegal. If there is an access with this combination
of address<6:3>, then the 21071-DA will respond to the transactions, but the results are
unpredictable.

DECchip 21071-DA Programmer’s Reference 10–5



Figure 10–1 PCI Memory Space Address Translation

030405060708282930313233

Length in Bytes

Longword Address

1

(Refer to Table for Translation)

0 0 00

00010203262728293031

0 0 0 00 00

Byte Offset

HAXR0

030405060708282930313233

LJ-03123-TI0

Length in Bytes

Longword Address

1

(Refer to Table for Translation)

Non-Zero0

00010203

00

Byte Offset

HAXR1<31:27>

262728293031

Address Translation for Lower 16 MB of PCI Memory Space

Address Translation for Remaining 112 MB of PCI Memory Space

It is important to note that sysBus address<33:5> are directly available from
the Alpha 21064 microprocessor. sysBus address<4:3> have to be derived
from the longword masks, cpuCWMask<7:0>. On read transactions, the
DECchip 21064 sends out address bits <4:3> on cpuCWMask<1:0>. On write
transactions, the relationship between cpuCWMask<7:0> and address bits
<4:3> is as follows:

10–6 DECchip 21071-DA Programmer’s Reference



If cpuCWMask<1:0> is non-zero, then address <4:3> is 00.
If cpuCWMask<3:2> is non-zero, then address <4:3> is 01.
If cpuCWMask<5:4> is non-zero, then address <4:3> is 10.
If cpuCWMask<7:6> is non-zero, then address <4:3> is 11.

Note

Accesses in this space are no longer than a quadword. Software must
ensure that the processor does not merge consecutive writes in its write
buffers by using memory barriers after each write.

Architecturally, if a byte, word, tribyte, or longword must be written on
the PCI, an STL instruction must be done to the lower longword in the
corresponding quadword address. An STQ or an STL instruction to the
upper longword is not allowed. One bit-pair among cpuCWMask<1:0>,
<3:2>, <5:4>, and <7:6> must have a value of 01 (binary); the other
bit fields must all be 00 (binary). The location of the 01 (binary) field
indicates whether the reference is byte, word, tribyte, or longword
(respectively) in length.

Similarly, if a quadword has to be written to the PCI, software must do
an STQ instruction to the corresponding address; the only legal value
on cpuCWMask<7:0> in sparse space is 11000000 (binary).

If a byte, word, tribyte, or longword has to be read from the PCI,
an LDL instruction must be done to the lower longword in the
corresponding quadword address. An LDL instruction to the upper
longword or LDQ instruction will return the wrong data. If a quadword
has to be read from the PCI, software must use an LDQ instruction.
An LDL instruction will return wrong data.

10.1.1.2 PCI Dense Memory Space
3 0000 0000 .. 3 FFFF FFFF
PCI dense memory space is typically used for data buffers on the PCI and has
the following characteristics:

• There is a one-to-one mapping between CPU addresses and PCI addresses.
A longword address from the CPU maps to a longword on the PCI. Hence
the name dense space (as opposed to PCI sparse memory space).

• Byte or word accesses are not allowed in this space. Minimum access
granularity is a longword. The maximum transfer length implemented by
the 21071 and 21072 chipsets is a cache line (32 bytes) on writes and a
quadword on reads.

DECchip 21071-DA Programmer’s Reference 10–7



• Read prefetching is allowed in this space; extra reads have no side effects.
The DECchip 21064 microprocessor does not specify a longword address on
read transactions; it only specifies a quadword address. Therefore, reads in
this space will always be done as a quadword read with a burst length of
two on the PCI.

• Writes to addresses in this space can be buffered in the DECchip 21064
microprocessor. The 21071 and 21072 chipsets support a maximum burst
length of 8 on the PCI corresponding to a cache line of data.

The address generation in dense space is as follows:

CPU address <31:5> is directly sent out on PCI address <31:5>. On read
transactions, PCI address <4:3> is generated from cpuCWMask<1:0>, PCI
address <2> is always 0.

On write transactions, PCI address <4:2> is generated from cpuCWMask<7:0>.
If the lower longword is to be written, PCI address <2> is 0; if the lower
longword is masked out and the upper longword is to be written, PCI address
<2> is 1. The number of longwords written on the PCI is directly obtained
from cpuCWMask<7:0>. Any combination of cpuCWMask<7:0> is allowed by
the 21071 or 21072 chipsets.

Note

If the cache line written by the processor has holes, that is, if some of
the longwords have been masked out, the corresponding transfer will
still be performed on the PCI with disabled byte enables. Downstream
bridges must be able to deal with completely disabled byte enables on
the PCI during write transactions.

10.1.1.3 PCI Sparse I/O Space
1 C000 0000 .. 1 DFFF FFFF
The PCI sparse I/O space is sparse and has similar characteristics to the PCI
sparse memory space. This 512 MB sysBus address space maps to 16 MB of
PCI I/O address space. A read or write to this space causes a PCI I/O read or
PCI I/O write command respectively. The address generation is as follows:

Address <33:29> are used to identify the various address spaces on the sysBus.
Address <7:3> are used to generate the length of the PCI transaction in bytes,
the byte enables, and address <2:0> on the PCI (Table 10–3). Address <28:8>
correspond to the quadword PCI addresses and are sent out on AD<23:3>
during the address phase on the PCI. AD<31:24> are obtained from one of two
host address extension registers—HAXR0 and HAXR2.

10–8 DECchip 21071-DA Programmer’s Reference



HAXR0 (which is hard coded as 0) is used for sysBus addresses between
1 C000 0000 .. 1 C07F FFFF, that is, when sysBus address <28:23> is 0.
HAXR2 is used to map sysBus addresses between 1 C080 0000 .. 1 DFFF FFFF,
that is, when sysBus address <28:23> is non-zero, anywhere in the PCI address
space. HAXR2 is a CSR in the 21071-DA chip and is fully programmable. This
allows EISA/ISA devices that require their I/O space to be in the lower 256
KB, to coexist with other devices that do not have that restriction. The lower
256 KB have a fixed mapping (HAXR0) to 0, and the remaining 64 MB �
256 KB can be programmed anywhere in PCI space. Figure 10–2 shows the
sysBus to PCI I/O address translation. Table 10–3 describes the generation of
the byte enables, and the PCI address<2:0> from sysBus address <6:3>.

Table 10–3 PCI Sparse I/O Space Byte Enable Generation

Length

CPU
Address
<6:5>

CPU
Address
<4:3>

PCI Byte
Enable 1 PCI Address <2:0>

Byte 00 00 1110 CPU Address<7>, 00

01 00 1101 CPU Address<7>, 01

10 00 1011 CPU Address<7>, 10

11 00 0111 CPU Address<7>, 11

Word 00 01 1100 CPU Address<7>, 00

01 01 1001 CPU Address<7>, 01

10 01 0011 CPU Address<7>, 10

11 01 Illegal2 —

Tribyte 00 10 1000 CPU Address<7>, 00

01 10 0001 CPU Address<7>, 01

10 10 Illegal2 —

11 10 Illegal2 —

Longword 00 11 0000 CPU Address<7>, 00

Longword 01 11 Illegal2 —

Longword 10 11 Illegal2 —

Quadword 11 11 0000 000

1Byte enable set to 0 indicates that byte lane carries meaningful data.
2These combinations are architecturally illegal. If there is an access with this combination of
address<6:3>, the 21071-DA will respond to the transactions, but the results are unpredictable.

DECchip 21071-DA Programmer’s Reference 10–9



Warning

Quadword accesses to this PCI sparse I/O space will cause a two
longword burst on the PCI. PCI devices cannot support bursting in I/O
space.

Figure 10–2 PCI I/O Space Address Translation

030405060708282930313233

Length in Bytes

Longword Address

0

(Refer to Table for Translation)

1 1 01

00010203262728293031

0 0 0 00

HAXR0

LJ-03124-TI0

HAXR2<31:24>

262728293031

Address Translation for Lower 256 KB of PCI I/O Space

Address Translation for Remaining 16 MB of PCI I/O Space

25

0

24

0

23

0

28

0

27

0

26

0

25

0

24

0

23

0

22

030405060708282930313233

Length in Bytes

Longword Address

0

(Refer to Table for Translation)

1 1 01

010203

28 25 24

Non-Zero

23 22 23 22

0025 24 23

10.1.1.4 DECchip 21071-DA CSR Space
1 A000 0000 .. 1 AFFF FFFF
All the 21071-DA CSRs are mapped in the DECchip 21071-DA CSR space. The
21071-DA chip responds to all accesses in this space.

10–10 DECchip 21071-DA Programmer’s Reference



10.1.1.5 PCI Interrupt Acknowledge/Special Cycle Space
1 B000 0000 .. 1 BFFF FFFF
A read access to this address space causes an interrupt acknowledge cycle on
the PCI. The byte enable generation mechanism is based on address<6:3> and
is the same as that of the PCI sparse I/O space. See Table 10–3. The address
is a don’t care during this transaction.

A write access to this space causes a special cycle on the PCI. The address and
byte enables are don’t care during this transaction.

Note

Software must use an STL instruction to initiate these transactions.
An STQ instruction will result in a two longword burst on the PCI,
which is illegal.

10.1.1.6 PCI Configuration Space
1 E000 0000 .. 1FFF FFFF
A read or write access to this space causes a configuration read or write
cycle on the PCI. There are two classes of targets—devices on the primary
PCI bus and devices on secondary PCI buses that are accessed through PCI-
to-PCI bridge chips. During PCI configuration cycles, the meanings of the
address fields vary depending on the intended target of the configuration cycle.
AD<1:0>, which are supplied by the HAXR2 register, indicate the target bus:

AD<1:0> equal to 00 indicates the primary PCI bus.
AD<1:0> equal to 01 indicates a secondary PCI bus.

Table 10–4 defines the various fields of AD during the address phase of a
configuration read or write cycle.

DECchip 21071-DA Programmer’s Reference 10–11



Table 10–4 PCI Configuration Space Definition

Target Bus AD Bits Definition

Primary PCI Bus

<31:11> Decoded from sysAdr<20:16> according to
Table 10–5.
Can be used for IDSEL# or don’t cares.
Typically, the IDSEL# pin of each device is
connected to a unique AD line.

<10:8> Function select (1 of 8), from sysAdr<15:13>.

<7:2> Register select, from sysAdr<12:7>.

<1:0> 00, from HAXR2<1:0>

Secondary PCI Buses
(Must pass through a PCI-to-PCI bridge)

<31:24> Forced to 0 by the 21071-DA chip.

<23:16> Secondary bus number, from sysAdr<28:21>.

<15:11> Device number, from sysAdr<20:16>.

<10:8> Function select (1 of 8), from sysAdr<15:13>.

<7:2> Register select, from sysAdr<12:7>.

<1:0> 01, from HAXR2<1:0>

10.1.1.6.1 PCI Configuration Cycles to Primary Bus Targets Primary PCI
bus devices are selected during a PCI configuration cycle if their IDSEL# pin
is asserted, the PCI bus command indicates a configuration read or write,
and AD<1:0> are 00. AD<7:2>, which are taken from sysAdr<12:7>, select
a longword register in the device’s 256-byte configuration address space.
Configuration accesses can use byte masks, which may be derived by following
the method shown in Table 10–3.

Peripherals that integrate multiple functional units (for example, SCSI and
Ethernet) can provide configuration spaces for each function. AD<10:8>, which
are taken from sysAdr<15:13>, can be decoded by the peripheral to select one
of eight functional units.

AD<31:11> are used to generate the IDSEL# signals. Typically, the IDSEL#
pin of each PCI peripheral is connected to a unique address line. AD<31:11>
are decoded from sysAdr<20:16> according to Table 10–5, ensuring that only
one bit of AD<31:11> is asserted for any given configuration space transaction
on the primary PCI bus. sysAdr<28:21> are ignored.

10–12 DECchip 21071-DA Programmer’s Reference



Table 10–5 PCI Address Decoding for Primary Bus Configuration Accesses

Device Number
(sysAdr<20:16>) PCI AD<31:11>

00000 0000 0000 0000 0000 0000 1
00001 0000 0000 0000 0000 0001 0
00010 0000 0000 0000 0000 0010 0
00011 0000 0000 0000 0000 0100 0
00100 0000 0000 0000 0000 1000 0
00101 0000 0000 0000 0001 0000 0
00110 0000 0000 0000 0010 0000 0
00111 0000 0000 0000 0100 0000 0
01000 0000 0000 0000 1000 0000 0
01001 0000 0000 0001 0000 0000 0
01010 0000 0000 0010 0000 0000 0
01011 0000 0000 0100 0000 0000 0
01100 0000 0000 1000 0000 0000 0
01101 0000 0001 0000 0000 0000 0
01110 0000 0010 0000 0000 0000 0
01111 0000 0100 0000 0000 0000 0
10000 0000 1000 0000 0000 0000 0
10001 0001 0000 0000 0000 0000 0
10010 0010 0000 0000 0000 0000 0
10011 0100 0000 0000 0000 0000 0
10100 1000 0000 0000 0000 0000 0
10101 0000 0000 0000 0000 0000 0
10110 0000 0000 0000 0000 0000 0
10111 0000 0000 0000 0000 0000 0
11000 0000 0000 0000 0000 0000 0
11001 0000 0000 0000 0000 0000 0
11010 0000 0000 0000 0000 0000 0
11011 0000 0000 0000 0000 0000 0
11100 0000 0000 0000 0000 0000 0
11101 0000 0000 0000 0000 0000 0
11110 0000 0000 0000 0000 0000 0
11111 0000 0000 0000 0000 0000 0

DECchip 21071-DA Programmer’s Reference 10–13



10.1.1.6.2 PCI Configuration Cycles to Secondary Bus Targets If the PCI
cycle is a configuration read or write cycle but AD<1:0> are 01, then a device
on a secondary PCI bus is being selected across a PCI-to-PCI bridge. This
cycle will be accepted by a PCI-to-PCI bridge for propagation to its secondary
PCI bus. During this cycle, AD<23:16>, taken from sysAdr<28:21>, select a
unique bus number; AD<15:11>, taken from sysAdr<20:16>, select a device on
that bus (typically decoded by the target bridge to generate IDSEL# signals);
AD<10:8>, taken from sysAdr<15:13>, select one of eight functional units
per device; and AD<7:2>, taken from sysAdr<12:7>, select a longword in the
device’s configuration register space.

Each PCI-to-PCI bridge device can be configured using PCI configuration cycles
on its primary PCI interface. Configuration parameters in the PCI-to-PCI
bridge will identify the bus number for its secondary PCI interface and a range
of bus numbers that may exist hierarchically behind it.

If the bus number of the configuration cycle matches the bus number of the
bridge chip’s secondary PCI interface, then it will intercept the configuration
cycle, decode it, and generate a PCI configuration cycle with AD<1:0> equal to
00 on its secondary PCI interface. If the bus number is within the range of bus
numbers that may exist hierarchically behind its secondary PCI interface, the
PCI configuration cycle passes, unmodified (leaving AD<1:0> = 01), through
the bridge. The configuration cycle will be intercepted and decoded by a
downstream bridge.

10.1.2 PCI To Physical Memory Addressing
Incoming 32-bit PCI memory addresses have to be mapped to the 34-bit
physical memory addresses. The 21071-DA chip allows two regions in PCI
memory space to be mapped to system memory with two programmable
address windows. The mapping from the PCI address to the physical address
can be direct (physical mapping with an extension register) or scatter/gather
mapped (virtual). These two address windows are referred to as the PCI target
windows. Each window has three registers associated with it. These are:

• PCI base register

• PCI mask register

• Translated base register

The PCI mask register provides a mask corresponding to bits <31:20> of an
incoming PCI address. The size of each window can be programmed to be from
1 MB to 4 GB, in powers of two, by masking bits of the incoming PCI address
using the PCI mask register. Table 10–6 shows an example of this.

10–14 DECchip 21071-DA Programmer’s Reference



Table 10–6 PCI Target Window Enables

pci_Mask<31:20> 1 Size of Window Value of n 2

0000 0000 0000 1 MB 20

0000 0000 0001 2 MB 21

0000 0000 0011 4 MB 22

0000 0000 0111 8 MB 23

0000 0000 1111 16 MB 24

0000 0001 1111 32 MB 25

0000 0011 1111 64 MB 26

0000 0111 1111 128 MB 27

0000 1111 1111 256 MB 28

0001 1111 1111 512 MB 29

0011 1111 1111 1 GB 30

0111 1111 1111 2 GB 31

1111 1111 1111 4 GB3 32

1Combinations of bits in pci_Mask<31:20> that are not shown in Table 10–6 are not supported.
2Depending upon the target window size, only the incoming address bits <31:n> are compared
with bits <31:n> of the PCI base registers, as shown in Figure 10–3 (n = 20 to 32). If n=32, no
comparison is performed. n is also used in Figure 10–5.
3When this combination is chosen, the wEnb bit in the other PCI base register has to be cleared,
otherwise the two windows will overlap.

Based on the value of the PCI mask register, the unmasked bits of the incoming
PCI address are compared with the corresponding bits of each window’s PCI
base register. If the base registers and the incoming PCI address match,
then the incoming PCI address has hit in that PCI target window; otherwise,
the incoming PCI address has missed in that window. A window enable bit,
wEnb, is provided in each window’s PCI base register to allow windows to be
independently enabled or disabled. If a window’s wEnb bit is set, then the
window is enabled. The PCI target windows must be programmed so that the
PCI address ranges that each one responds to do not overlap. The compare
scheme between the incoming PCI address and the PCI base register (along
with the PCI mask register) described previously is shown in Figure 10–3.

Note

The window base addresses should be on naturally aligned address
boundaries depending on the size of the window.

DECchip 21071-DA Programmer’s Reference 10–15



Figure 10–3 PCI Target Window Compare

00121320n-1n31

Peripheral Page Number

LJ-03126-TI0

Offset

19n-1n31

20n-1n31

20n-1n31

1110000000

XXX

Compare

PCI Base
Register

PCI Mask
Register (Determines n)

Hit

PCI Address

When an address match occurs with a PCI target window, the 21071-DA chip
translates the 32-bit PCI address to a 34-bit processor byte address (actually
a 29-bit hexaword address). The translated address is generated in one of two
ways as determined by the scatter/gather bit of the window’s PCI base register.

If the scatter/gather bit is cleared, the DMA address is direct mapped, and
the translated address is generated by concatenating bits from the matching
window’s translated base register with bits from the incoming PCI address.
The PCI mask register determines which bits of the translated base register
and PCI address are used to generate the translated address, as shown in
Table 10–7.

10–16 DECchip 21071-DA Programmer’s Reference



Note

The unused bits of the translated base register indicated in Table 10–7
must be cleared for proper operation. Because system memory is
located in the lower half of the CPU address space, address <33> is
always 0. Address <32:5> is obtained from the translated base register.

Table 10–7 PCI Target Address Translation—Direct Mapped (Scatter/Gather
Mapping Disabled)

pci_Mask<31:20> Translated Address<32:5>

0000 0000 0000 t_Base<32:20> :pci_Address<19:5>

0000 0000 0001 t_Base<32:21> :pci_Address<20:5>

0000 0000 0011 t_Base<32:22> :pci_Address<21:5>

0000 0000 0111 t_Base<32:23> :pci_Address<22:5>

0000 0000 1111 t_Base<32:24> :pci_Address<23:5>

0000 0001 1111 t_Base<32:25> :pci_Address<24:5>

0000 0011 1111 t_Base<32:26> :pci_Address<25:5>

0000 0111 1111 t_Base<32:27> :pci_Address<26:5>

0000 1111 1111 t_Base<32:28> :pci_Address<27:5>

0001 1111 1111 t_Base<32:29> :pci_Address<28:5>

0011 1111 1111 t_Base<32:30> :pci_Address<29:5>

0111 1111 1111 t_Base<32:31> :pci_Address<30:5>

1111 1111 1111 t_Base<32>: pci_Address<31:5>

If the scatter/gather bit is set, then the translated address is generated by
a table lookup. The incoming PCI address is used to index a table stored
in system memory. This table is referred to as a scatter/gather map. The
translated base register specifies the starting address of the scatter/gather map
table. Bits of the incoming PCI address are used as an offset from the base of
the table. The map entry provides the physical address of the page.

DECchip 21071-DA Programmer’s Reference 10–17



Each scatter/gather map entry maps an 8 KB page of PCI address space
into an 8 KB page of the processor’s address space. Each scatter/gather map
entry is a quadword. Each entry has a valid bit in bit position 0. Address
bit <13> is at bit position 1 of the map entry. Because the DECchip 21071
and DECchip 21072 chipsets implement only valid memory addresses up to
6 GB, bits <63:21> of the scatter/gather map entry should be programmed to
0. Bits <20:1> of the scatter/gather entry are used to generate the physical
page address. This is appended to bits <12:5> of the incoming PCI address to
generate the memory address that needs to go out on the sysBus. Figure 10–4
shows the scatter/gather map entry.

The size of the scatter/gather map table is determined by the size of the PCI
target window as defined by the PCI mask register (Table 10–8). Because the
scatter/gather map is located in system memory, translated address <33> is
always 0. Address<32:3> are obtained from translated base register and the
PCI address, as shown in Table 10–8.

Table 10–8 Scatter/Gather Map Address

pci_Mask<31:20>
Scatter/Gather
Map Table Size Scatter/Gather Map Address<32:3>

0000 0000 0000 1 KB t_Base<32:10> :pci_Address<19:13>

0000 0000 0001 2 KB t_Base<32:11> :pci_Address<20:13>

0000 0000 0011 4 KB t_Base<32:12> :pci_Address<21:13>

0000 0000 0111 8 KB t_Base<32:13> :pci_Address<22:13>

0000 0000 1111 16 KB t_Base<32:14> :pci_Address<23:13>

0000 0001 1111 32 KB t_Base<32:15> :pci_Address<24:13>

0000 0011 1111 64 KB t_Base<32:16> :pci_Address<25:13>

0000 0111 1111 128 KB t_Base<32:17> :pci_Address<26:13>

0000 1111 1111 256 KB t_Base<32:18> :pci_Address<27:13>

0001 1111 1111 512 KB t_Base<32:19> :pci_Address<28:13>

0011 1111 1111 1 MB t_Base<32:20> :pci_Address<29:13>

0111 1111 1111 2 MB t_Base<32:21> :pci_Address<30:13>

1111 1111 1111 4 MB t_Base<32:22> :pci_Address<31:13>

10–18 DECchip 21071-DA Programmer’s Reference



Figure 10–4 Scatter/Gather Map Page Table Entry in Memory

0001202131

LJ-03290-TI0

3263

Page Address <32:13>0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000

30 00010203040506070809101112131415161718192021222324252627282931

SAMPLE

62 32333435363738394041424344454647484950515253545556575859606163

Reserved

Reserved

V
A
L

Figure 10–5 shows the entire translation from PCI address to physical address
on a window that implements scatter/gather mapping.

The process is as follows:

• Bits <12:2> of the PCI address are used directly to generate the page offset.

• The relevant bits of the PCI address (as specified by the window mask
register, depending on the size of the window) are used to generate the
offset into the scatter/gather map.

• The relevant bits of the translated base register indicate the base address
of the scatter/gather map.

• The map base is appended to the map offset to generate the address of the
corresponding scatter/gather entry.

• Bits <20:1> of the map entry are used to generate the physical page
address, which is appended to the page offset to generate the PCI address.

• Bit <0> is the valid bit for the Page Table Entry.

DECchip 21071-DA Programmer’s Reference 10–19



Figure 10–5 Scatter/Gather Map Translation of PCI to sysBus Address

001213n31

Peripheral Page Number

LJ-03127-TI0

Offset

n31

07n-11n-1033

t_Base 0000

Compare

PCI Address

0405

0

03n-11n-1033

05121333 32

0 OffsetsysBus Page Number ::: :::

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Scatter/Gather Entry

0120

sysBus 
Base Address

(Translated
Base Register)

Scatter/Gather
Map Address
Driven on 
sysBus

Scatter/Gather Map
(in Main Memory)

Physical Memory
Location Address
Driven on sysBus

0

10–20 DECchip 21071-DA Programmer’s Reference



10.2 DECchip 21071-DA Internal Registers
This section provides a summary of the DECchip 21071-DA internal registers,
and it describes each register.

10.2.1 Register Overview
The control and status register (CSR) addresses are listed in Table 10–9. All
registers are longword and are addressed on cache line boundaries (address
<4:2> must be 0). Writes to read-only registers do not cause errors and are
acknowledged as normal. Only 0’s should be written to unspecified bits within
a register. Registers are initialized as specified in the detailed descriptions in
this chapter. Addresses in CSR space that are not specified here should not be
read or written.

Table 10–9 DECchip 21071-DA Register Summary

Address (hex) Register Name

1 A000 0000 Diagnostic control and status register (DCSR)

1 A000 0020 PCI error address register (PEAR)

1 A000 0040 sysBus error address register (SEAR)

1 A000 0060 Dummy register1

1 A000 0080 Dummy register2

1 A000 00A0 Dummy register3

1 A000 00C0 Translated base 1 register

1 A000 00E0 Translated base 2 register

1 A000 0100 PCI base 1 register

1 A000 0120 PCI base 2 register

1 A000 0140 PCI mask 1 register

1 A000 0160 PCI mask 2 register

1 A000 0180 Host address extension register 0 (HAXR0)

1 A000 01A0 Host address extension register 1 (HAXR1)

1 A000 01C0 Host address extension register 2 (HAXR2)

1 A000 01E0 PCI master latency timer (PMLT)

1 A000 0200 TLB tag 0 register

1 A000 0220 TLB tag 1 register

(continued on next page)

DECchip 21071-DA Programmer’s Reference 10–21



Table 10–9 (Cont.) DECchip 21071-DA Register Summary

Address (hex) Register Name

1 A000 0240 TLB tag 2 register

1 A000 0260 TLB tag 3 register

1 A000 0280 TLB tag 4 register

1 A000 02A0 TLB tag 5 register

1 A000 02C0 TLB tag 6 register

1 A000 02E0 TLB tag 7 register

1 A000 0300 TLB data 0 register

1 A000 0320 TLB data 1 register

1 A000 0340 TLB data 2 register

1 A000 0360 TLB data 3 register

1 A000 0380 TLB data 4 register

1 A000 03A0 TLB data 5 register

1 A000 03C0 TLB data 6 register

1 A000 03E0 TLB data 7 register

1 A000 0400 Translation buffer invalidate all register (TBIA)

10.2.2 Register Descriptions
This section provides registers descriptions.

10.2.2.1 Dummy Registers 1–3
Dummy registers are CSRs that have no side effects on writes, and return 0’s
on reads. Writes to these registers can be used to pack the DECchip 21064
write buffers to prevent merging of sparse space I/O writes. Software does not
have to use memory barrier instructions between writes if this mechanism is
used.

10.2.2.2 Diagnostic Control and Status Register (DCSR)
The DCSR provides control of operational and diagnostic modes, and reports
status and error conditions. Figure 10–6 shows the register bit assignments,
and Table 10–10 provides the bit descriptions for the diagnostic control and
status register.

10–22 DECchip 21071-DA Programmer’s Reference



Figure 10–6 Diagnostic Control and Status Register (DCSR)

30 00010203040506070809101112131415161718192021222324252627282931

LJ-03084-TI0

tEnb
Reserved
pEnb
dCEI
dPEC
ioRT
lost
Reserved
dDPE
ioPE
tAbt
nDev
cMRD
uMRD
iPTL
mErr
dByp
pCmd
Reserved

00 0 0 0 0 0 0 0 0 0

pass2

1 A000 0000

Table 10–10 Diagnostic Control and Status Register

Field Extent
Type,
Reset Description

pass2 <31> RO,– Chip version reads low on pass1 and reads
high on pass2.

Reserved <30:22> MBZ

pCmd <21:18> RO,– The pCmd field indicates the PCI cycle type
when a PCI-initiated error is logged in the
DCSR. This field is only valid when iPTL,
nDev, tAbt, or ioPE errors are set.

(continued on next page)

DECchip 21071-DA Programmer’s Reference 10–23



Table 10–10 (Cont.) Diagnostic Control and Status Register

Field Extent
Type,
Reset Description

dByp<1:0> <17:16> RW, 0 The disable read bypass bits are used to
control the ordering of PCI-initiated memory
reads with respect to PCI-initiated memory
writes. This field has three modes:

Value Mode Description

00 Full
Bypass

In this mode, PCI-
initiated memory reads
will bypass buffered DMA
writes if the double-
hexaword address of the
read does not match that
of the buffered writes.
The address comparison
is done across address
bits <31:6>.

01 Reserved —
10 Partial

Bypass
In this mode, DMA reads
will bypass buffered
memory writes if the
address within the page
does not match that
of the buffered DMA
writes. The address
comparison is done across
bits <12:6>.

11 No
Bypass

In this mode, DMA read
bypassing is completely
disabled. DMA reads
will be ordered with
respect to DMA writes
originating on the PCI.

(continued on next page)

10–24 DECchip 21071-DA Programmer’s Reference



Table 10–10 (Cont.) Diagnostic Control and Status Register

Field Extent
Type,
Reset Description

mErr <15> RWC,0 The memory error (mErr) bit is set when
the 21071-DA chip receives an error code
in the ioCAck<1:0> field in response to
a memory access. sysAdr<33:5> for this
transaction is logged in the sysBus error
address register<31:4>. This bit is not logged
if the sysBus error address register is locked
by a previous error. The lost error bit is set
instead.

If the mErr bit and either the cMRD or the
uMRD bits are set, this indicates that the
address for the mErr is lost.

iPTL <14> RWC,0 The invalid page table lookup (iPTL) bit is set
when the longword scatter/gather map entry
being accessed is invalid. (See Figure 10–4.)
AD<31:0> is logged in the PCI error address
register, if it is not already locked.

If the iPTL bit and any of the ioRT, ioPE,
nDev, tAbt, and dDPE bits are set, this
indicates that the address for the iPTL is
lost.

uMRD <13> RWC,0 The uncorrectable memory read data (uMRD)
bit is set when an uncorrectable error is
encountered by the 21071-DA chip. The error
is encountered when the data read from
the DMA read buffer in the 21071-BA chip
reaches the 21071-DA chip on a DMA read or
a scatter/gather read transaction.

sysAdr<33:6> for this transaction is logged in
the sysBus error address register<31:4>, if the
SEAR is not locked.

(continued on next page)

DECchip 21071-DA Programmer’s Reference 10–25



Table 10–10 (Cont.) Diagnostic Control and Status Register

Field Extent
Type,
Reset Description

cMRD <12> RWC,0 The correctable memory read data (cMRD)
bit is set when a correctable error is
encountered by the 21071-DA chip. The error
is encountered when the data read from the
DMA read buffer in the 21071-BA reaches the
21071-DA on a DMA read or a scatter/gather
read transaction.

sysAdr<33:6> for this transaction is logged
in the sysBus error address register<31:4> if
the SEAR is not locked. The logging of this
error can be prevented by setting the disable
correctable error (dCEI) in this register.

nDev <11> RWC,0 The no device (nDev) bit is set when
DEVSEL# is not asserted in response to
an I/O read or write transaction initiated on
the PCI by the 21071-DA chip. AD<31:0> for
this transaction is logged in the PCI error
address register<31:0>.

tAbt <10> RWC,0 The target abort (tAbt) bit is set when a PCI
slave device ends an I/O read or write trans-
action using the PCI target abort protocol.
AD<31:0> for this transaction is logged in the
PCI error address register<31:0>.

ioPE <9> RWC,0 The I/O parity error (ioPE) bit is set when a
parity error occurs in the data phase of an
I/O read or I/O write transaction. AD<31:0>
for this transaction is logged in the PCI error
address register<31:0>.

dDPE <8> RWC,0 The DMA data parity error (dDPE) bit is set
when a parity error occurs in the data phase
of a DMA transaction. AD<31:0> for this
transaction is logged in the PCI error address
register<31:0>.

Reserved <7> MBZ —

(continued on next page)

10–26 DECchip 21071-DA Programmer’s Reference



Table 10–10 (Cont.) Diagnostic Control and Status Register

Field Extent
Type,
Reset Description

lost <6> RWC,0 The lost error (lost) bit is set by the occurrence
of an 21071-DA chip error condition when
the address register corresponding to that
error is locked because of a previous error.
Under those circumstances, error information
pertaining to the second error is lost. The
logged address information in the sysBus
error address register or the PCI error address
register still remains valid for the initial error
condition indicated by the error bit already
set.

ioRT <5> RWC, 0 This bit is set when a retry timeout error
occurs on CPU-initiated write or read
transactions on the PCI. AD<31:0> is logged
in the PCI error address register.

This bit is also set in the event that the
21071-DA chip sees GntL deassert during the
address portion of a configuration transaction
224 consecutive times.

dPEC <4> RW,0 When the disable parity error checking
(dPEC) bit is set, parity checking will not
be performed on the PCI bus (address and
data cycles, DMA and I/O transactions).
Parity generation is not affected in any way.

dCEI <3> RW,0 When the disable correctable error interrupt
(dCEI) bit is set, correctable errors on DMA
read data are not logged in the cMRD bit
(DCSR12), and the address is not updated in
the sysBus error address register. This bit
only determines whether the error is logged
and if the processor is interrupted.

pEnb <2> RW,0 If the prefetch enable (pEnb) bit is set,
the sysBus master machine will enable
prefetching on DMA reads. This bit should be
self cleared following system reset and should
not be changed while DMA operations are
going on.

Reserved <1> MBZ —

(continued on next page)

DECchip 21071-DA Programmer’s Reference 10–27



Table 10–10 (Cont.) Diagnostic Control and Status Register

Field Extent
Type,
Reset Description

tEnb <0> RW,0 When the TLB enable (tEnb) bit is set, the
entire translation buffer (TLB) is enabled.
When this bit is cleared, the TLB will be
turned off and subsequent scatter/gather
reads will not result in allocation of TLB
entries. Entries that were valid when the
tEnb bit was cleared will remain valid. To
invalidate valid entries, software must write
to the TBIA register.

10–28 DECchip 21071-DA Programmer’s Reference



10.2.2.3 PCI Error Address Register
Figure 10–7 shows the register bit assignments, and Table 10–11 provides the
bit descriptions for the PCI error address register.

Figure 10–7 PCI Error Address Register

30 00010203040506070809101112131415161718192021222324252627282931

LJ-03086-TI0

pci_Err <31:0> 1 A000 0020

Table 10–11 PCI Error Address Register

Field Extent
Type,
Reset Description

pci_Err<31:0> <31:0> RO,— The address sent out on the PCI
bus (AD<31:0>) as a result of an I/O
transaction is stored here. This field logs
the address of the errors indicated by the
nDev, tAbt, ioPE, dDPE, iPTL, and ioRT
bits in the DCSR. This register is valid
only when one of these six error bits is set.
If one of these six error bits is set, then a
subsequent nDev, tAbt, ioPE, dDPE, iPTL,
or ioRT error will not update the address
logged in this register, and the lost bit in
DCSR is set.

pci_Err<31:0> are valid for nDev and
iPTL. Only pci_Err<31:5> are valid for
ioRT, tAbt, and ioPE errors that occur
during dense memory writes. For ioRT,
tAbt, and ioPE errors on any other
transaction, pci_Err<31:3> are valid.
pci_Err<31:6> are valid for dDPE errors.

DECchip 21071-DA Programmer’s Reference 10–29



10.2.2.4 sysBus Error Address Register
Figure 10–8 shows the register bit assignments, and Table 10–12 provides the
bit descriptions for the sysBus error address register.

Figure 10–8 sysBus Error Address Register
30 00010203040506070809101112131415161718192021222324252627282931

LJ-03085-TI0

Reserved

sys_Err <33:6> 0 0 00 1 A000 0040

Table 10–12 sysBus Error Address Register

Field Extent
Type,
Reset Description

sys_Err<33:6> <31:4> RO,— The address sent out on the sysBus.
(sysAdr<33:6> as a result of a DMA
transaction is stored here.) This field
logs the address of the errors indicated
by the mErr, uMRD, or cMRD bits in the
DCSR. This register is valid only when one
of these three error bits is set. If one of
these three error bits is set, a subsequent
mErr, uMRD, or cMRD error will not
update the address logged in this register,
and the lost bit in DCSR is set.

Reserved <3:0> MBZ —

10–30 DECchip 21071-DA Programmer’s Reference



10.2.2.5 Translated Base Registers 1–2
Figure 10–9 shows the register bit assignments, and Table 10–13 provides the
bit descriptions for the translated base registers 1 through 2.

Figure 10–9 Translated Base Registers 1–2
30 00010203040506070809101112131415161718192021222324252627282931

LJ-03087-TI0

Reserved

t_Base <32:10> 0 0 0 0 0 0 0 0 0

Table 10–13 Translated Base Registers 1–2

Field Extent
Type,
Reset Description

t_Base<32:10> <31:9> RW,— If scatter/gather mapping is disabled
t_Base specifies the base CPU address of
the translated PCI address for the PCI
target window. If scatter/gather mapping
is enabled t_Base specifies the base CPU
address for the scatter/gather map table
for the PCI target window.

Reserved <8:0> MBZ —

DECchip 21071-DA Programmer’s Reference 10–31



10.2.2.6 PCI Base Registers 1–2
Figure 10–10 shows the register bit assignments, and Table 10–14 provides the
bit descriptions for the PCI base registers 1 through 2.

Figure 10–10 PCI Base Registers 1–2

30 00010203040506070809101112131415161718192021222324252627282931

LJ-03088-TI0

Reserved

pci_Base <31:20>

sGEn
wEnb

000000000000000000

Table 10–14 PCI Base Registers 1–2

Field Extent
Type,
Reset Description

pci_Base<31:20> <31:20> RW,— pci_Base specifies the base address of the
PCI target window.

wEnb <19> RW,0 When the window enable (wEnb) bit is
cleared, this PCI target window is disabled
and will not respond to PCI-initiated
transfers. When wEnb is set, this PCI
target window is enabled and will respond
to PCI-initiated transfers that hit in the
address range of the target window. This
bit should be disabled by the processor
(software) when modifying any of the PCI
target window registers (base, mask, or
translated base).

sGEn <18> RW,0 When the scatter/gather enable (sGEn)
bit is cleared, the PCI target window uses
direct mapping to translate a PCI address
to a CPU address. When this bit is set,
the PCI target window uses scatter/gather
mapping to translate a PCI address to a
CPU address.

Reserved <17:0> MBZ —

10–32 DECchip 21071-DA Programmer’s Reference



10.2.2.7 PCI Mask Registers 1–2
Figure 10–11 shows the register bit assignments, and Table 10–15 provides the
bit descriptions for the PCI mask registers 1 through 2.

Figure 10–11 PCI Mask Registers 1–2
30 00010203040506070809101112131415161718192021222324252627282931

LJ-03089-TI0

Reserved

pci_Mask <31:20> 00000000000000000000

Table 10–15 PCI Mask Registers 1–2

Field Extent
Type,
Reset Description

pci_Mask<31:20> <31:20> RW,— pci_Mask specifies the size of the PCI
target window. It is also used in the
translation of the PCI address to the
CPU address.

Reserved <19:0> MBZ —

DECchip 21071-DA Programmer’s Reference 10–33



10.2.2.8 Host Address Extension Register 0 (HAXR0)
This register is hardcoded to 0. A read from this register returns a 0; a write
does nothing.

10.2.2.9 Host Address Extension Register 1 (HAXR1)
This register is used to generate AD<31:27> on CPU-initiated transactions that
address PCI memory space. Figure 10–12 shows the register bit assignments,
and Table 10–16 provides the bit descriptions for host address extension
register 1.

Figure 10–12 Host Address Extension Register 1 (HAXR1)

30 00010203040506070809101112131415161718192021222324252627282931

LJ-03090-TI0

Reserved
eAddr <4:0>

0000000000000000000000000000 1 A000 01A0

Table 10–16 Host Address Extension Register 1

Field Extent
Type,
Reset Description

eAddr<4:0> <31:27> RW,0 For CPU-initiated transactions to PCI
memory, eAddr<4:0> are used as the upper
five PCI address bits (AD<31:27>).

Reserved <26:0> MBZ —

10–34 DECchip 21071-DA Programmer’s Reference



10.2.2.10 Host Address Extension Register 2 (HAXR2)
This register is used to generate AD<31:24> on CPU-initiated transactions
that address PCI I/O space. It is also used to generate AD<1:0> during
PCI configuration reads and writes. Figure 10–13 shows the register bit
assignments, and Table 10–17 provides the bit descriptions for host address
extension register 2.

Figure 10–13 Host Address Extension Register 2 (HAXR2)

30 00010203040506070809101112131415161718192021222324252627282931

LJ-03091-TI0

conf_Addr<1:0>

eAddr <7:0>

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 A000 01C0

Table 10–17 Host Address Extension Register 2

Field Extent
Type,
Reset Description

eAddr<7:0> <31:24> RW,0 For CPU-initiated transactions to PCI I/O
space, eAddr<7:0> are used as the upper
eight PCI address bits (AD<31:24>).

Reserved <23:2> MBZ —

conf_Addr<1:0> <1:0> RW,0 For CPU-initiated transactions to PCI
configuration space, conf_Addr<1:0> are
used as the lower two PCI address bits
(AD<1:0>).

DECchip 21071-DA Programmer’s Reference 10–35



10.2.2.11 PCI Master Latency Timer Register
Figure 10–14 shows the register bit assignments, and Table 10–18 provides the
bit descriptions for the PCI master latency timer register..

Figure 10–14 PCI Master Latency Timer Register

00070831

LJ-03429-TI0

pMLC<7:0>0 00000000000000000000000

30 00010203040506070809101112131415161718192021222324252627282931

Reserved

1 A000 01E0

Table 10–18 PCI Master Latency Timer Register

Field Extent
Type,
Reset Description

Reserved <31:8> MBZ —

pMLC<7:0> <7:0> RW,0 pMLC<7:0> is loaded into the master
latency timer register at the start of a
PCI master transaction initiated by the
21071-DA chip.1

1This value should be programmed to be non-zero during system configuration.

10–36 DECchip 21071-DA Programmer’s Reference



10.2.2.12 TLB Tag Registers 0–7
These registers are read only. TLB tag registers 0 through 7 have identical
formats.

Figure 10–15 shows the register bit assignments, and Table 10–19 provides the
bit descriptions for TLB tag registers 0 through 7.

Figure 10–15 TLB Tag Registers 0–7
30 00010203040506070809101112131415161718192021222324252627282931

LJ-03092-TI0

eVal
Reserved

pci_Page <31:13> 000000000000

Table 10–19 TLB Tag Registers 0–7

Field Extent
Type,
Reset Description

pci_Page<31:13> <31:13> RO,— The pci_Page bit field specifies the PCI
page address (TAG) corresponding to
the translated CPU page address in the
associated TLB data register.

eVal <12> RO,0 The entry valid (eVal) bit can be read
through this bit position. Normally, the
invalid bit contains the value read during
a page table entry read.

Reserved <11:0> MBZ —

DECchip 21071-DA Programmer’s Reference 10–37



10.2.2.13 TLB Data Registers 0–7
TLB data registers 0 through 7 have identical formats. These registers are
read only. Figure 10–16 shows the register bit assignments, and Table 10–20
provides the bit descriptions for TLB data registers 0 through 7.

Figure 10–16 TLB Data Registers 0–7
30 00010203040506070809101112131415161718192021222324252627282931

LJ-03093-TI0

Reserved

cpu_Page <32:13> 000000000000

Reserved

Table 10–20 TLB Data Registers 0–7

Field Extent
Type,
Reset Description

Reserved <31:21> MBZ —

cpu_Page<32:13> <20:1> RO,— Bits <32:13> of the translated CPU
address can be read through this bit
field.

Reserved <0> MBZ —

10.2.2.14 Translation Buffer Invalidate All (TBIA)
This register is a write-only register. A write to this register causes all the
valid entries in the scatter/gather map TLB to be invalidated.

10–38 DECchip 21071-DA Programmer’s Reference



11
DECchip 21071-DA Transactions

This chapter describes the transaction flows for the 21071-DA chip, from the
sysBus to the PCI and vice versa.

Throughout this chapter, the terms transaction and command are used
interchangeably. In general, higher level transactions are composed of lower
level transactions, or bus commands. For example, a DMA write transaction
consists of a PCI memory write transaction (command) and a sysBus DMA
write transaction (command).

11.1 CPU-Initiated Transactions
The 21071-DA chip responds to CPU-initiated transactions that address PCI
space or the 21071-DA CSR space. In addition to this, it also responds to
barrier, fetch, and fetchM. fetch and fetchM transactions are acknowledged
immediately by sending cpuCAck OK on ioCmd<2:0>; no further action is
taken.

11.1.1 Remote (PCI) Space I/O Read
This section describes the 21071-DA chip response to CPU-initiated remote
(PCI) space I/O read transactions.

• The sysBus interface continuously monitors the command and address
on the sysBus. When it detects a read block command and the address
is in PCI space, it generates the PCI address, byte enables, and the PCI
command (PCI memory read, PCI I/O read, PCI configuration read, and
PCI interrupt acknowledge), and it notifies the PCI master state machine.

• The PCI master state machine asserts the ReqL pin on the PCI and waits
for the bus to be granted to it. If the bus is parked with the 21071-DA
chip, that is, GntL is already asserted, then the 21071-DA chip does not
assert ReqL.

DECchip 21071-DA Transactions 11–1



• If a read from system memory happens on the PCI before the PCI master
machine has gained ownership of the PCI, the I/O read on the sysBus is
preempted by the 21071-DA chip. This is done to prevent deadlocks from
occurring.

• When a grant is received on the PCI, the address and command are sent
out on the PCI, and a request is sent to the epiBus arbiter to set the
direction of the epiBus from the 21071-DA chip to the 21071-BA chips. The
epiBus arbiter is described in Section 11.3.

• The PCI master state machine waits for a response from the PCI target
device.

• When the target responds, the transaction can complete in different ways:

If the target successfully returns data, the PCI master terminates the
transaction and releases the PCI.

If the target aborts the transaction with a error, or if a parity error
is found by the 21071-DA chip on the read data, the PCI master
terminates the transaction and releases the PCI. When the data is
returned to the CPU, an error is flagged.

If the target disconnects the transaction, indicating that the master
should retry the transaction at a later time, the PCI master machine
terminates the transaction, gives up the request for the epiBus, goes
back to idle, and retries the transaction after the PCI bus becomes
idle.

• If, when data is available from the PCI device, the epiBus has been granted
to the PCI master machine, data is sent across the epiBus into the I/O read
buffer and the request for the epiBus is cleared. If the epiBus has not been
granted to the PCI master state machine, data cannot be sent to the I/O
read buffer in the 21071-BA chip and is temporarily held in the 21071-DA
chip. A subsequent PCI transaction addressed to the 21071-DA chip may
stall TrdyL until the I/O read data has been moved.

• The transaction completes when the read data has been returned to the
CPU.

11–2 DECchip 21071-DA Transactions



11.1.2 Remote (PCI) Space I/O Write
This section describes the 21071-DA chip response to CPU-initiated remote
(PCI) space I/O write transactions.

• When an I/O write to PCI space is detected on the sysBus, the data is
loaded into the I/O write buffer by the 21071-CA chip. The 21071-BA chip
always has room to accommodate the data for an I/O write transaction.
One transaction is queued to go out on the PCI, and the second transaction
stalls on the sysBus until the first is completed. The data for the second
write is loaded into the second entry of the I/O write buffer (which acts as
a holding buffer).

• The address is loaded into the I/O write address buffer, an I/O write
request is posted to the PCI master state machine, and the transaction is
acknowledged on the sysBus. A second I/O write will stall on the sysBus,
until the first one completes on the PCI.

• The PCI master state machine asserts the ReqL pin on the PCI and waits
for the bus to be granted to it. At the same time, a request is sent to the
epiBus arbiter to set the direction of the epiBus from the 21071-BA chips
to the 21071-DA chip.

• DMA transactions are serviced until the PCI master machine gets
ownership of the PCI. If a second I/O write, CSR write, I/O read, or
CSR read is stalled on the sysBus behind this write, it will be preempted
to allow DMA read transactions or one DMA write transaction (if the DMA
write buffer is full) to complete.

• When the PCI master acquires ownership of the epiBus, two longwords of
data are then loaded into PCI output latches (temporary holding latches
only). If a DMA read happens before the I/O write has been able to get out
on the PCI, the data in the holding latches is lost and the arbitration has
to be performed again.

• When the PCI master receives the grant on the PCI, it drives the address
and command, and it asserts FrameL on the PCI if the I/O write data is
ready to go out on the PCI in the following cycle (if the epiBus has been
granted to the PCI master for transferring I/O write data).

• The PCI master drives AD<31:0> and CBE_l<3:0>, and it asserts FrameL.
This allows the target device to decode and acknowledge (by asserting
DevselL) the address. Data should be ready to be driven on the PCI by
that time.

DECchip 21071-DA Transactions 11–3



• As write data is sent out on the PCI, subsequent longwords are unloaded
from the I/O write buffer into the PCI output latches through the epiData
bus, until the transaction is terminated.

• It is possible that the target of the I/O transaction retries or disconnects
the transaction before all the data has been transferred. The 21071-DA
chip waits for the PCI to become idle and performs another I/O write
transaction with the unwritten data.

• If the entire data transfer completes, the transaction is terminated on the
PCI.

11.1.3 CSR Space I/O Read
A read from the 21071-DA CSRs behaves similarly to the remote read, except
that the transaction does not go out on the PCI. Instead, the data is read from
the 21071-DA CSRs.

Because CSR reads complete with a fixed known latency, a CSR read
transaction is not preempted unless it is queued behind an I/O write to the
PCI, which cannot complete because of DMA transactions on the PCI directed
toward system memory. No errors are detected during this transaction.

11.1.4 CSR Space I/O Write
A write to the 21071-DA CSRs behaves similarly to the remote write, except
that the transaction does not go out on the PCI. Instead, the data is written to
the 21071-DA CSRs. Data from the 21071-BA chip still has to be transferred
to the 21071-DA chip.

CSR writes, like I/O writes, are only preempted if they are queued behind an
I/O write to the PCI, which cannot complete because of DMA transactions on
the PCI.

11.1.5 Memory Barrier
The 21071-DA chip uses the memory barrier transaction as a means of
synchronization between the DMA stream and the CPU stream.

On a memory barrier transaction, the 21071-DA chip flushes the I/O write
buffer and those entries of the DMA write buffer that were valid when the
memory barrier transaction was recognized on the sysBus. The 21071-DA chip
preempts the memory barrier in order to flush the DMA writes. A memory
barrier is also preempted if a DMA read transaction is directed toward the
21071-DA chip, or if the DMA write buffer becomes full while the 21071-DA
chip is waiting to unload its I/O write buffer on the PCI.

11–4 DECchip 21071-DA Transactions



11.2 PCI-Initiated Transactions
The 21071-DA chip supports PCI-initiated transactions directed towards
system memory only. System memory can be mapped to two regions in PCI
space. The PCI slave is always monitoring FrameL and the PCI address
and command to determine if there is a transaction targeted towards system
memory. All PCI memory write commands are treated the same, and all the
PCI memory read commands are treated the same, except for read multiple
commands (causes start of prefetch sequence).

11.2.1 PCI Memory Read, Read Line, and Read Multiple
This section describes the 21071-DA chip response to PCI memory read, read
line, and read multiple transactions.

• Whenever the slave machine sees FrameL asserted, it checks for a valid
PCI command and for a hit in one of its address windows. If the address or
command is a hit, it asserts DevselL and proceeds with the transaction. If
the address or command is a miss, it does not do anything.

• The slave machine posts a DMA read request to the sysBus master
machine.

• A DMA request is posted to the sysBus arbiter.

• The sysBus master compares the read address with addresses queued in
the DMA write buffer. If there is a hit, writes are serviced until the write
that matches the read has been retried on the sysBus. If bypass mode is
turned off, the DMA read does not proceed until all buffered DMA writes
are completed.

Note

The comparison is on untranslated PCI addresses, not on physical
memory addresses.

• At the same time, the sysBus master does a lookup in the TLB in order to
determine if a scatter/gather map read is necessary. A scatter/gather map
read is performed if the PCI window being addressed had scatter/gather
mapping enabled, and there was a miss in the TLB.

• The scatter/gather read is performed (described later) or the TLB is read,
and a translated physical memory address is generated.

DECchip 21071-DA Transactions 11–5



• When grant is received on the sysBus, the sysBus master will perform a
fetch. The 21071-DA will also perform a prefetch, if the prefetch enable bit
is set in the DCSR and the transaction is addressed to the even cache line,
or if the PCI command is a read multiple and the transaction is addressed
to the even cache line. If prefetching will be performed, an atomic request
is posted on ioRequest<1:0>. The sysBus master arbitrates for the epiBus
so that the direction of the epiBus is from the 21071-BA chips to the
21071-DA chip.

• The address and command are sent out on the sysBus. If the sysBus
master is prefetching, two DMA read transactions are done one after the
other on the sysBus (guaranteed by the atomic request). A DMA read burst
command is used on the first read, and a DMA read command is used on
the prefetched read. If the requested data is the second octaword in the
cache line, the wrapped command is used; if prefetching is enabled, the
first command used is DMA read burst wrapped, but the second command
is always DMA read.

• The read data (either from the cache or memory) is loaded into the DMA
read buffer of the 21071-BA chip by the 21071-CA chip. The control signals
are used to access the appropriate cache line, and longwords within it are
set up when the sysBus master receives ownership of the epiBus. As the
data is loaded into the DMA read buffer, valid bits are set to indicate which
longwords are ready to be returned on the PCI.

• The termination conditions of a PCI memory read transaction are as
follows:

The initiator terminates the transaction.

Prefetching is not enabled and a cache line boundary crossing is
attempted.

A burst attempts to cross an odd-even cache line boundary, even if
prefetching is enabled.

An uncorrectable memory data error is detected on the requested data.

The sysBus transaction is acknowledged with an error by the 21071-CA
chip.

• If the sysBus transaction completes before the PCI transaction (this will
usually happen on a long burst), the sysBus is released.

11–6 DECchip 21071-DA Transactions



• If the PCI transaction completes before the sysBus transaction (this will
usually happen on a short burst when prefetching is enabled), data
remaining in the DMA read buffer is discarded. If the transaction
completes before the prefetch has started on the sysBus, the prefetch
transaction will not be performed.

11.2.2 PCI Memory Write/Write and Invalidate
This section describes the 21071-DA chip response to PCI memory write/write
and invalidate transactions.

• The transaction begins just like a read. If the address is a hit, DevselL is
asserted and the transaction continues.

• The PCI slave machine requests arbitration of the epiBus. The default path
of the epiBus is in the direction of the DMA write. If the PCI slave machine
has the epiBus, the write data is transferred to the 21071-BA chips. If the
epiBus is busy doing a CSR read, a CSR write, or a scatter/gather read, the
PCI slave will stall the first data transfer.

• After the DMA write path is set up between the 21071-DA chip and
the DMA write buffer through the epiBus, the 21071-DA chip does not
stall data transfers. If the transfer is stalled by the PCI master, the
corresponding epiBus transfer is also stalled.

• The termination conditions of the PCI memory write transactions are as
follows:

The initiator terminates the transaction.

The write burst attempts to cross an odd-even cache line boundary.

Only one DMA write buffer entry was available at the beginning of the
transaction, and a cache line boundary crossing is attempted.

• If the write buffer was full at the beginning of the transaction or if the
21071-DA chip is locked by a different PCI bus master, the PCI slave
disconnects without any data transfers.

• When a cache line boundary is crossed, and there were no data parity
errors, a valid bit is set, and the corresponding cache line entry is ready
to go out on the sysBus. If a write data parity error is detected on any
longword of that cache line, the valid bit is not set and data is not written
to memory. The PCI burst continues normally.

• The sysBus master is always monitoring the state of the DMA write buffer.
When it sees a valid write, it performs the address translation (doing
a scatter/gather read if necessary) and requests the sysBus using DMA
request.

DECchip 21071-DA Transactions 11–7



• The address of the transaction is sent out on the sysBus along with a DMA
write full or DMA write masked command, depending on whether the
entire cache line has valid data.

• The transaction completes when the 21071-CA chip returns an OK on
ioCAck<1:0> to the 21071-DA chip.

11.2.3 PCI Exclusive Access to System Memory
This section describes the 21071-DA chip response to PCI exclusive access to
system memory transactions.

• The PCI slave machine monitors the LockL signal along with FrameL. It
uses the value of LockL in the cycle of FrameL assertion and in the cycle
following the assertion of FrameL to determine whether or not the access
is locked.

• If LockL is asserted during the cycle of FrameL, the PCI slave machine will
not accept the transaction and will terminate it with a target disconnect
(retry, no data transfers).

• If LockL is deasserted during the cycle of FrameL and is deasserted in
the following cycle, the transaction proceeds normally as described in the
previous sections.

• If LockL is deasserted during the cycle of FrameL, and is asserted in the
following cycle, the transaction is treated as locked.

• Locked transactions are not treated specially on the PCI by the PCI slave
machine. They clear the system lock flag. The system lock flag is held
clear until the PCI LockL signal is released by the locking master. DMA
read bypass is disabled as long as there are locked writes in the DMA write
buffer.

• The system lock flag is cleared by sending an ioClrLock encoding on
ioCmd<2:0> instead of an Idle encoding when the 21071-DA chip does not
own the sysBus.

11.2.4 Scatter/Gather Map Read
A scatter/gather read is similar to a PCI-initiated DMA read on the sysBus.
Data has to be loaded from the DMA read buffer into the TLB.

If errors (uncorrectable data errors, memory errors, and invalid scatter/gather
entry errors) are found on a scatter/gather read, the transaction that caused
the scatter/gather read is not performed. On PCI read transactions, the
transaction is aborted by the 21071-DA chip; on writes an interrupt is posted.

11–8 DECchip 21071-DA Transactions



11.3 epiBus Arbitration
At any given time, the 21071-DA chip could be servicing multiple transactions
(CPU-initiated and PCI-initiated), all of which have to use the epiBus. The
21071-DA chip contains a central epiBus arbiter, which arbitrates for the
bus and appropriately sets the direction of the epiBus. The PCI master and
slave, as well as the sysBus master and slave, all request the bus for various
transactions. Table 11–1 lists the priority of the various requests and the
direction of the epiBus.

Table 11–1 epiBus Arbitration Priority

Priority Transaction Direction

1 PCI I/O reads 21071-DA to 21071-BA

2 DMA writes (default) 21071-DA to 21071-BA

3 DMA reads 21071-BA to 21071-DA

4 PCI I/O writes 21071-BA to 21071-DA

5 CSR writes 21071-BA to 21071-DA

6 CSR reads 21071-DA to 21071-BA

7 Scatter/gather reads 21071-BA to 21071-DA

DECchip 21071-DA Transactions 11–9





12
DECchip 21071-DA Electrical Data

This chapter includes the following information about the DECchip 21071-DA
chip:

• DC Electrical Data

• AC Electrical Data

12.1 DC Electrical Data
This section describes the dc characteristics of the DECchip 21071-DA chip.

12.1.1 Absolute Maximum Ratings
Table 12–1 lists the maximum ratings of the DECchip 21071-DA chip.

DECchip 21071-DA Electrical Data 12–1



Table 12–1 DECchip 21071-DA Maximum Ratings

Characteristics Minimum Maximum

Storage temperature –55°C (–67°F) 125°C (257°F)

Operating ambient temperature 0°C (32°F) 40°C (104°F)

Air flow 100 lfpm1 —

Junction temperature 25°C (77°F) 85°C (185°F)

Supply voltage with respect to Vss,
with reset_l asserted

–0.5 V +6.5 V

Supply voltage with respect to Vss,
with reset_l deasserted

4.75 V 5.25 V

Voltage on any pin with respect to Vss –0.5 V Vdd + 0.5 V

Maximum power:

@Vdd = 5.25 V
@Cycle = 30 ns

1.5 W

1lfpm = linear feet per minute

12–2 DECchip 21071-DA Electrical Data



Table 12–2 lists the dc parametric values of the DECchip 21071-DA chip.

Table 12–2 DC Parametric Values

Symbol Description Minimum Maximum Units Test Conditions

Vih Input high voltage 2.0 – V –
Vil Input low voltage – 0.8 V –
Voh Output high voltage 2.4 – V –
Vol Output low voltage – 0.4 V –
Iil Input leakage current1 –5 5 µA 0V < Vin < Vdd
Iilpu Input leakage current2 –15 –100 µA 0V < Vin < Vdd
Iilpd Input leakage current3 15 100 µA 0V < Vin < Vdd
Iol Output leakage current

(tristated)
–10 10 µA 0V < Vin < Vdd

1Excluding scanEn, testMode, and tristateL.
2For tristateL.
3For scanEn and testMode.

DECchip 21071-DA Electrical Data 12–3



12.2 AC Electrical Data
This section describes the ac characteristics of the DECchip 21071-DA chip.

12.2.1 Clocks
The DECchip 21071-DA chip uses one clock (running at twice the nominal
system frequency) plus a synchronous phase reference signal to generate four
internal clock edges. An additional clock input is used to generate two internal
clocks for the PCI logic. See Figures 12–1 and 12–2, and Tables 12–3 and 12–4
for details about DECchip 21071-DA external clock requirements and internal
clock phase relationships.

A clock system must meet the requirements shown in Figure 12–1 and
Table 12–4 to guarantee the proper behavior of the 21071-DA chip’s internal
logic. The 21071-DA chip does not specify the maximum skew allowed for
external transfers to or from the CPU, Bcache PALs, Bcache, 21071-BA
chips, or 21071-CA chip because these skew limits are dependent on module
placement and routing. A system designer must examine external transfers to
determine the maximum clock skews allowed between chips.

The skew numbers shown in Figure 12–1 and Table 12–4 are given for
a 30.0 ns cycle time. At a longer cycle time, the allowable skew may be
increased, as long as the given minimum times between clock edges are not
violated. These skew limits assume that the 21071-DA chip adds another 0.1
ns of uncertainty between rising and falling edges due to non-ideal input buffer
switching thresholds.

12–4 DECchip 21071-DA Electrical Data



Table 12–3 DECchip 21071-DA Clock AC Characteristics

Parameter Minimum Maximum Unit Note

System cycle time 30 — ns c in Figure 12–1

clk1x2 period 15 — ns —

clk1x2 frequency — 66 MHz —

clk1x2 rise time — 1 ns —

clk1x2 fall time — 1 ns —

pClk period 30 — ns —

pClk rise time — 1 ns —

clk2ref setup to clk1x2 rising 0.4 — ns Tsu in Figure 12–1

clk2ref hold from clk1x2 rising 2.3 — ns Th in Figure 12–1

Figure 12–1 DECchip 21071-DA Clock Skew Requirements

.5*c - 1.25 ns min

.5*c + 1.25 ns max

.5*c - 2.85 ns min

.5*c + 2.85 ns max

1.25*c - 2.10 ns min
1.25*c + 2.10 ns max

.75*c - 1.60 ns min

.75*c + 1.60 ns max

.5*c - 0.50 ns min

.5*c + 0.50 ns max

.75*c - 3.35 ns min

.75*c + 3.35 ns max

.5*c - 1.75 ns min

.5*c + 1.75 ns max

Tsu Th

clk1R clk2R clk1F clk2F clk1R clk2R

pClkR pClkF pClkR

sysClkOut1

clk1

clk2ref

Internal edges:

clk1x2

Internal edges:

pClk

LJ-03718-TI0

DECchip 21071-DA Electrical Data 12–5



Table 12–4 DECchip 21071-DA Clock Skew Limits at clk1x2 Pin

Parameter Example Transfers Maximum Unit Note

clk1x2 or pClk rising edge to
same clock rising edge

clk1R to clk1R, clk1R to clk1F,
clk1F to clk1R, clk1F to clk1F,
pClkR to pClkR

0.50 ns @ Cycle
= 30 ns

clk1x2 or pClk falling edge to
same clock falling edge

clk2R to clk2R, clk2R to clk2F,
clk2F to clk2R, clk2F to clk2F,
pClkF to pClkF

1.25 ns @ Cycle
= 30 ns

clk1x2 rising edge to falling edge clk1R to clk2R, clk1R to clk2F,
clk1F to clk2R, clk1F to clk2F

1.60 ns @ Cycle
= 30 ns

clk1x2 falling edge to rising edge clk2R to clk1R, clk2R to clk1F,
clk2F to clk1R, clk2F to clk1F

1.60 ns @ Cycle
= 30 ns

clk1x2 rising edge to pClk rising
edge,
pClk rising edge to clk1x2 rising
edge

clk1R to pClkR, clk1F to pClkR,
pClkR to clk1R, pClkR to clk1F

2.10 ns @ Cycle
= 30 ns

clk1x2 falling edge to pClk
falling edge,
pClk falling edge to clk1x2
falling edge

clk2R to pClkF, clk2F to pClkF,
pClkF to clk2R, pClkF to clk2F

2.85 ns @ Cycle
= 30 ns

clk1x2 rising edge to pClk falling
edge,
clk1x2 falling edge to pClk rising
edge,
pClk rising edge to clk1x2 falling
edge,
pClk falling edge to clk1x2 rising
edge

clk1R to pClkF, clk1F to pClkF,
clk2R to pClkR, clk2F to pClkR,
pClkR to clk2R, pClkR to clk2F,
pClkF to clk1R, pClkF to clk1F

3.35 ns @ Cycle
= 30 ns

pClk rising edge to falling edge,
pClk falling edge to rising edge

pclkR to pClkF,
pclkF to pClkR

1.75 ns @ Cycle
= 30 ns

12–6 DECchip 21071-DA Electrical Data



Figure 12–2 DECchip 21071-DA Clock Signals

LJ-03456-TI0

clk1x2

clk2ref

*clk1R

*clk2R

*clk2F

*pClkR

sysClkOut1

*clk1F

* Internally generated clocks.

*pClkF

The 21071-DA imposes no requirements on clk1 or sysClkOut1. Skew on
clk1 will be constrained by limits imposed by external paths to or from the
Bcache control PALs. The phase error between sysClkOut1 and clk1x2 will be
constrained by limits imposed by external paths to or from the CPU chip.

12.2.2 Signals
Figures 12–3 and 12–4 demonstrate the timing measurements specified in
Tables 12–6 and 12–7.

DECchip 21071-DA Electrical Data 12–7



Figure 12–3 DECchip 21071-DA Output Delay Measurement

1.5 V

Delay_B

0.8 V

LJ-03561-TI0

2.0 V

Delay_A

Output 2

Output 1

Input

Figure 12–4 DECchip 21071-DA Setup and Hold Time Measurement

LJ-03562-TI0

Set-up Hold

Valid Signal

1.5 V1.5 V

1.5 V

12–8 DECchip 21071-DA Electrical Data



The following ac electrical data is specified with respect to the appropriate edge
at the clk1x2 or pClk pins. Both the output delay table and the setup/hold
time table assume a 1 ns edge rate at the clk1x2 and pClk pins.

All outputs drive a 50 pF load. When estimating module delays, you may need
to replace the 50 pF load delay with a simulated (or calculated) delay. The
delays for 4 mA and 8 mA drivers that drive a 50 pF load are provided in
Table 12–5. See Table 8–1 for information about the buffer size of every output
pin.

Table 12–5 DECchip 21071-DA Output Buffer Delays into a 50 pF Load

Type Minimum Maximum Unit

4 mA 3.5 7.6 ns

8 mA 2.3 5.0 ns

DECchip 21071-DA Electrical Data 12–9



Table 12–6 DECchip 21071-DA AC Characteristics (Valid Delay into a 50 pF Load)

Signal Minimum Maximum Unit Reference Edge

sysAdr<33:5> 4.8 14.2 ns clk1R

ioRequest<1:0>,
ioCmd<2:0>

4.6 11.8 ns clk1R

AD<31:0>,
CBE_l<31:0>,
Par,
FrameL,
TrdyL,
IrdyL,
StopL,
PerrL,
LockL,
DevselL

2.0 11.0 ns pClkR

MemAckl,
ReqL

2.0 12.0 ns pClkR

epiData<31:0>,
epiBEnErr<3:0>

4.8 16.1 ns clk1R

epiSelDMA,
epiFromIOB,
epiOWSel,
epiLineSel<1:0>,
epiEnable<3:0>,
ioLineSel<1:0>,
epiLineInval

4.8 14.9 ns clk1R

intHw0 7.5 20.1 ns clk1F

12–10 DECchip 21071-DA Electrical Data



Table 12–7 DECchip 21071-DA AC Characteristics (Setup/Hold Time)

Signal Setup Hold Unit Reference Edge

sysAdr<33:5> 13.1 3.7 ns clk1R

cpuCWMask<7:0> 7.1 3.8 ns clk1R

cpuCReq<2:0> 0.0 3.2 ns clk1F

cpuCReq<2:0> 15.1 0.0 ns clk1R

cpuHoldAck –0.3 3.0 ns clk1F

ioGrant,
ioCAck<1:0>,
ioDataRdy

–0.3 3.2 ns clk1F

AD<31:0>,
CBE_l<31:0>,
Par,
FrameL,
TrdyL,
IrdyL,
StopL,
PerrL,
LockL,
DevselL,
MemReql

7.0 0.0 ns pClkR

GntL 10.0 0.0 ns pClkR

epiData<31:0>
epiBEnErr<3:0>

0.4 5.2 ns clk2F

DECchip 21071-DA Electrical Data 12–11





13
DECchip 21071-DA Power-Up and

Initialization

This chapter describes the behavior of the DECchip 21071-DA on power-up and
assertion of reset_l. It also describes the system level requirements and the
various registers that have to be initialized after reset_l is deasserted.

13.1 Power-Up
On power-up, the reset_l input of the DECchip 21071-DA should be asserted.
It should be kept asserted until the system clocks are up and running for 20
cycles.

13.2 Internal Reset
The assertion and deassertion of the reset_l pin on the module is asynchronous
to the DECchip 21071-DA chip. An internal reset signal is generated from
reset_l, which asserts asynchronously as soon as reset_l is asserted but
deasserts synchronously. Due to the synchronous deassertion of the internal
reset, the DECchip 21071-DA requires that no external transaction should
start until 10 system clock cycles after the deassertion of reset_l.

13.3 State of Pins on Reset Assertion
The following are general rules and requirements for the behavior of DECchip
21071-DA pins during reset:

• All input only control signals (except the clocks and reset_l) should be in
the deasserted state as long as reset is asserted.

• All output only signals are deasserted.

• All bidirectional signals are tristated.

DECchip 21071-DA Power-Up and Initialization 13–1



The exceptions to these rules are as follows:

• sysAdr<33:5> are driven synchronously with the assertion of reset and are
tristated as soon as reset_l deasserts (without waiting for the deassertion
of synchronous internal reset).

• epiData<31:0> and epiBEnErr<3:0> are driven as long as reset is asserted,
and they continue to be driven after reset_l deassertion.

• ReqL is tristated on the assertion of reset_l and remains tristated until the
deassertion of reset_l.

• If the PCI is not parked (that is, GntL is deasserted during reset) with
the DECchip 21071-DA, then AD<31:0> and CBE_l<3:0> are tristated
immediately on the assertion of reset_l, and Par is tristated a cycle later.
If the PCI is parked with the DECchip 21071-DA (that is, GntL is asserted
during reset), then AD<31:0>, CBE_l<3:0>, and Par are driven to 0.

• memAckl is tristated on the assertion of reset_l and remains tristated until
the deassertion of reset_l.

Note

In all cases, the assertion of tristate_l overrides the assertion of reset_l.
That is, if tristate_l is asserted during reset, all the outputs of the
chip go to their High-Z state. If reset_l is still asserted when tristate_l
deasserts, the signals return to the normal reset state described
previously.

13.4 Configuration after Reset Deassertion
The following states must be initialized by software in the DECchip 21071-DA
chip after the deassertion of reset_l.

• Diagnostic control and status register (DCSR)

• PCI base address registers

• PCI mask registers

• Translated base address registers

• Host address extension registers

• PCI master latency timer register

13–2 DECchip 21071-DA Power-Up and Initialization



Part III

Part III contains five chapters that provide information about the DECchip
21071-BA chip. The following table provides a brief description of each
chapter:

Chapter Description

14 Describes the DECchip 21071-BA pin signals.

15 Describes the DECchip 21071-BA architecture.

16 Describes the flow of data within the DECchip 21071-BA for various
transactions on the sysBus, memory data bus, and PCI bus.

17 Describes the DECchip 21071-BA electrical requirements.

18 Describes the behavior of the DECchip 21071-BA chip during power-up.





14
DECchip 21071-BA Pin Descriptions

The 21071-BA chip interfaces to three major buses:

• sysBus

• Memory data bus

• epiBus

This chapter provides a brief description of the pin signals for the 21071-BA
data chip followed by detailed description of the 21071-BA data chip interfaces.
This chapter also provides pin connection tables for the 21071-BA data chips in
different bus width modes and for each 21071-BA instance (21071-BA 0,1,2,3).

14.1 DECchip 21071-BA Pin List
Table 14–1 lists the pin signals grouped by function. The information in the
Type column identifies a signal as input (I), output (O), or bidirectional (B).
The Buffer Strength column indicates the buffer drive strength.

All output and bidirectional pins, except pTestout, can be tristated.

DECchip 21071-BA Pin Descriptions 14–1



Table 14–1 DECchip 21071-BA Pin List

Signals Quantity Type
Buffer
Strength Function

CPU/Bcache Interface Signals
(66 Total)

sysData<63:0> 64 B 4 ma sysBus Data.
In ECC mode,
sysCheck<6:0> appears
on sysData<38:32>, and
memCheck<6:0> appears
on sysData<57:63>.

sysPar<1:0> 2 B 4 ma Parity pins for sysBus
data.

Cache/Memory Data Path Control Signals
(13 Total)

drvSysData 1 I — Turns on 21071-BA
sysData<63:16> drivers.

drvSysCSR 1 I — Turns off 21071-BA
sysData<15:0> drivers.

drvMemData 1 I — Turns on 21071-BA
memData and memPar
drivers.

sysIORead 1 I — Selects I/O read buffer to
sysBus.

sysReadOW 1 I — Selects octaword to be
read.

subCmd<1:0> 2 I — Sub-commands for
sysBus side of the
21071-BA.

sysCmd<2:0> 3 I — Commands for sysBus
side of the 21071-BA.

memCmd<3:1> 3 I — Commands for memory
side of chip.

(continued on next page)

14–2 DECchip 21071-BA Pin Descriptions



Table 14–1 (Cont.) DECchip 21071-BA Pin List

Signals Quantity Type
Buffer
Strength Function

epiBus Signals
(46 Total)

epiData<31:0> 32 B 4 ma Interchip data for both
DMA and I/O operations.

epiBEnErr<3:0> 4 B 4 ma epiData byte enables
for epiBus from the
21071-DA operations and
error/corrected status
for epiBus to 21071-DA
operations.

epiFromIOB 1 I — Selects the next epiBus
transfer from the
21071-DA to the data
chip.

epiSelDMA 1 I — Selects which buffer
(I/O or DMA) will
be transferred on the
epiData bus.

epiEnable<1:0> 2 I — Qualifies epiData control
signals and enables
output drivers.

epiOWSel 1 I — Selects which octaword
of the cache line will
be transferred on the
epiData bus.

epiLineSel<1:0> 2 I — Selects which cache line
will be transferred on
the epiData bus.

ioLineSel<1:0> 2 I — Selects which cache line
should be read or written
from the sysBus.

epiLineInval 1 I — Clears all byte valid bits
in the current line of the
DMA write buffer.

(continued on next page)

DECchip 21071-BA Pin Descriptions 14–3



Table 14–1 (Cont.) DECchip 21071-BA Pin List

Signals Quantity Type
Buffer
Strength Function

Memory Signals
(33 Total)

memData<31:0> 32 B 4 ma Memory data.

memPar 1 B 4 ma Memory parity pins.

Miscellaneous/Clock
Signals (8 Total)

clk1x2 1 I — Clock input.

clk2ref 1 I — Phase reference for
clk1x2.

reset_l 1 I — Reset.

testMode 1 I — Test mode select.

tristate_l 1 I — Tristate.

pTestout 1 O 4 ma Parametric NAND tree
output.

eccMode 1 I — True indicates ECC
enabled.

wideMem 1 I — True indicates 128-bit
wide memory.

Pin Totals

Total signal pins:
Total power and ground pins:

Total pins:

166
42

208

14.2 DECchip 21071-BA Signal Descriptions
This section provides signal descriptions of the 21071-BA data chip, the clock
edges at which they can change, and rules about their usage during various
transactions.

For simplicity, sysClkOut1_h is treated as clk1R.

14–4 DECchip 21071-BA Pin Descriptions



Signal descriptions are grouped by function and correspond to the pin list
provided in Section 14.1.

Note

The DECchip 21064 microprocessor does not use clk1R, but it uses
sysClkOut1_h to generate and sample signals.

14.2.1 CPU/Bcache Interface Signals
See Section 2.2.4 for descriptions of 21071-CA signals that control 21071-BA
data chip functions.

This section describes the CPU/Bcache signals.

14.2.1.1 sysData<63:0>, sysPar<1:0>

Signal Type: Bidirectional (21071-BA, CPU, Bcache)
Input Sampling Clock Edge: clk2F
Output Clock Edge: clk1R

sysData<63:0> is a bidirectional bus which provides data to and from
the 21071-CA chip and the CPU. sysPar<1:0> are the parity bits for
sysData<63:0>.

The CPU is the default driver of sysData.

When the system is configured in longword parity mode:

• sysPar<0> is the even parity across sysData<31:0> and is connected to
check<0> of the processor.

• sysPar<1> is the even parity across sysData<63:32> and is connected to
check<7> of the processor.

When the system is configured in longword ECC mode:

• sysData<38:32> is the ECC across sysData<31:0> and is connected to
check<6:0> of the processor.

• sysData<57:63> (note reversed order) is the ECC across memData<31:0>,
and is connected to check<6:0> of the memory bus.

DECchip 21071-BA Pin Descriptions 14–5



14.2.2 Cache/Memory Data Path Control
This section describes the cache/memory data path control signals.

14.2.2.1 drvSysData

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk1R assertion, clk1F deassertion

When drvSysData is sampled asserted, the 21071-BA chips drive sysData<63:16>
and sysData<15:0> (only if drvSysCSR is deasserted) on this clk1R.

14.2.2.2 drvSysCSR

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk1R

When drvSysCSR is asserted, the 21071-BA chips will not drive sysData<15:0>
on the next clk1R.

14.2.2.3 drvMemData

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Clock Edge: Flow through

drvMemData directly controls the memData drivers on the 21071-BA chips.
When drvMemData is asserted, memData is driven; when drvMemData is
deasserted, memData is tristated.

14.2.2.4 sysIORead

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk2F

sysIORead is asserted by the 21071-CA chip along with drvSysData to indicate
that the contents of the I/O read buffer should be driven onto the sysBus.

sysIORead is used by the 21071-BA chips to drive the contents of the I/O read
buffer onto the sysBus.

14–6 DECchip 21071-BA Pin Descriptions



14.2.2.5 sysReadOW

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk2F

sysReadOW is asserted by the 21071-CA chip to indicate to the 21071-BA chips
that the upper octaword of data should be taken from the memory read, merge,
and I/O read buffers.

14.2.2.6 subCmd<1:0>

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk2F

The subCmd<1:0> signals are asserted to further qualify the sysCmd<2:0>
signals, as described in Table 14–2.

The subCmd<1:0> signals, in conjunction with sysCmd<2:0> signals, are used
by the 21071-BA chips as commands for operations on the sysBus data buffers.

14.2.2.7 sysCmd<2:0>

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk2F

The sysCmd<2:0> signals, in combination with the subCmd<1:0> signals,
indicate to the 21071-BA chip the action to take on the sysData bus. In
general, they echo the actions that took place on the sysBus during the
previous cycle. The bits are decoded into various actions. Table 14–2 describes
the sysCmd<2:0> and subCmd<1:0> encodings.

DECchip 21071-BA Pin Descriptions 14–7



Table 14–2 sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

000 0X RESET The merge bits in the merge buffer
are cleared. All sysBus counters
are reset. The data in the pad
latches is held (to save power).

000 1X NOP The data in the pad latches is held
in the latches, and new data will
not be clocked into them. Used
during reads or to hold the first
transfer of write data due to a full
write buffer.

001 XX LOAD No write action is performed. Sent
when waiting for write data to be
ready. Data from the sysData bus
is loaded into the pad flops.

010 XX RDDMAS WRIO Data in the sysData pad latches is
loaded into the DMA read buffer,
which also serves as the I/O write
buffer. A counter is incremented
so that the next RDDMAS will
load data into the next sub-cache
line of the buffer.

011 XX RDDMAM Data in the memory read buffer is
loaded into the DMA read buffer.
A counter is incremented so that
the next RDDMAM will load data
into the next sub-cache line of the
buffer.

(continued on next page)

14–8 DECchip 21071-BA Pin Descriptions



Table 14–2 (Cont.) sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

100 00 MERGE00 Nothing is loaded into the merge
buffer. A counter is incremented
so that the next MERGEnn will
load data into the next sub-cache
line of the buffer.

During STx_C transactions that
hit in the cache, each sub-cache
line of the merge buffer is loaded
twice: once with the CPU write
data using MERGE (that is,
MERGE01) and once with the
cache data using MERGE with
inverted enables, called an overlay
(that is, OVLY10).

100 01 MERGE01 Same as MERGE00, but longword
0’s data in the sysData pad latches
is loaded into the read/merge
buffer, and longword 0’s merge bit
is set.

100 10 MERGE10 Same as MERGE00, but longword
1’s data in the sysData pad latches
is loaded into the read/merge
buffer, and longword 1’s merge bit
is set.

100 11 MERGE11 Same as MERGE00, but longword
0 and 1’s data in the sysData pad
latches is loaded into the read
/merge buffer, and longword 0 and
1’s merge bits are set.

101 00 WRSYS0 Data in the sysData pad latches
is loaded into the memory write
buffer that represents cache line
0. A counter is incremented so
that the next WRSYS0 will load
data into the next sub-cache line
of cache line 0.

101 01 WRSYS1 Same as WRSYS0, but for cache
line 1.

(continued on next page)

DECchip 21071-BA Pin Descriptions 14–9



Table 14–2 (Cont.) sysCmd<2:0> and subCmd<1:0> Encodings

sysCmd subCmd Mnemonic Function

101 10 WRSYS2 Same as WRSYS0, but for cache
line 2.

101 11 WRSYS3 Same as WRSYS0, but for cache
line 3.

110 00 WRDMAS0 Data in the sysData pad latches
is merged with the DMA write
buffers and is loaded into
the memory write buffer that
represents cache line 0. A counter
is incremented so that the next
WRDMAS0 will load data into the
next sub-cache line of cache line 0.

110 01 WRDMAS1 Same as WRDMAS0, but for cache
line 1.

110 10 WRDMAS2 Same as WRDMAS0, but for cache
line 2.

110 11 WRDMAS3 Same as WRDMAS0, but for cache
line 3.

111 00 WRDMAM0 Data in the memory read buffer
is merged with the DMA write
buffers and is loaded into
the memory write buffer that
represents cache line 0. A counter
is incremented so that the next
WRDMAM0 will load data into the
next sub-cache line of cache line 0.

111 01 WRDMAM1 Same as WRDMAM0, but for
cache line 1.

111 10 WRDMAM2 Same as WRDMAM0, but for
cache line 2.

111 11 WRDMAM3 Same as WRDMAM0, but for
cache line 3.

14–10 DECchip 21071-BA Pin Descriptions



14.2.2.8 memCmd<3:1>

Signal Type: 21071-BA Input
Signal Source: 21071-CA
Input Sampling Clock Edge: clk1R

The memCmd<3:1> signals indicate to the 21071-BA chips which action to take
on the memData bus. For the encodings of memCmd<3:1>, see Table 14–3.

Table 14–3 memCmd<3:1> Encodings

memCmd Mnemonic Function

000 RDIMM Read data is loaded into the read/merge buffer on
the next memClkR. A counter is incremented so
that the next RDxxx will load data into the next
available sub-cache line of the read buffer.

001 RDDLY Read data is loaded into the read/merge buffer on
the memClkR after the next memClkR. A counter
is incremented so that the next RDxxx will load
data into the next available sub-cache line of the
read buffer.

010 NOP No operation.

011 RESET All memory counters are reset.

100 WRIMM Data from the memory write buffer is driven
to memory on the next memClkR. A counter is
incremented so that the next WRxxx will drive the
next sub-cache line to memory.

101 WRDLY Data from the memory write buffer is driven to
memory on the memClkR after the next memClkR.
A counter is incremented so that the next WRxxx
will drive the next sub-cache line to memory.

110 WRIMML Data from the memory write buffer is driven to
memory on the next memClkR. After the write,
the quadword pointer is reset to 0, and the cache
line pointer is incremented so that the next WRxxx
will drive the first sub-cache line of the next line
to memory.

(continued on next page)

DECchip 21071-BA Pin Descriptions 14–11



Table 14–3 (Cont.) memCmd<3:1> Encodings

memCmd Mnemonic Function

111 WRDLYL Data from the memory write buffer is driven to
memory on the memClkR after the next memClkR.
After the write, the quadword pointer is reset to 0,
and the cache line pointer is incremented so that
the next WRxxx will drive the first sub-cache line
of the next line to memory.

14–12 DECchip 21071-BA Pin Descriptions



14.2.3 epiBus Signals
This section describes the epiBus signals.

14.2.3.1 epiData<31:0>

Signal Type: Bidirectional (21071-BA, 21071-DA)
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

epiData is a 32-bit bidirectional bus which connects the 21071-DA and the
21071-BA chips.

14.2.3.2 epiBEnErr<3:0>

Signal Type: Bidirectional (21071-BA, 21071-DA)
Output Clock Edge: clk1R
Input Sampling Clock Edge: clk2F

epiBEnErr<3:0> is timed with epiData. During epiBus transfers from the
21071-DA chip to the 21071-BA chips, this field indicates which bytes of the
longword on the epiData bus are valid. When an epiBEnErr<3:0> bit is set
(high), the corresponding byte is valid. The byte enable is used for DMA write
transfers and ignored on I/O read transfers.

During epiBus transfers from the 21071-BA data chips to the 21071-DA chip,
epiBEnErr<0> is asserted if the longword being sent on epiData contains
a parity error or uncorrectable ECC error. epiBEnErr<1> is asserted if the
longword being sent on epiData contained a correctable ECC error. Table 14–4
lists the epiBEnErr functions.

Table 14–4 epiBEnErr Functions

Signal Transfers to 21071-BA Transfers from 21071-BA

epiBEnErr<0> epiData<7:0> byte enable DMA read or I/O write
uncorrectable error (this
longword)

epiBEnErr<1> epiData<15:8> byte enable DMA read or I/O write
corrected error (this longword)

epiBEnErr<2> epiData<23:16> byte enable Reserved

epiBEnErr<3> epiData<31:24> byte enable Reserved

DECchip 21071-BA Pin Descriptions 14–13



14.2.3.3 epiFromIOB

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

epiFromIOB indicates the direction of epiData to the 21071-BA chips. When
epiFromIOB is deasserted, only the 21071-BA chip selected with epiEnable
drives epiData<31:0> and epiBEnErr<3:0>. When epiFromIOB is asserted, the
21071-BA chips receive data on epiData<31:0> and epiBEnErr<3:0>.

14.2.3.4 epiSelDMA

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

epiSelDMA is used by the 21071-BA chips when epiFromIOB is asserted,
to determine whether the destination of epiData is the DMA write buffer
(epiSelDMA = high) or the I/O read buffer (epiSelDMA = low).

14.2.3.5 epiEnable<1:0>

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

The epiEnable<1:0> signals are asserted by the 21071-DA chip to the 21071-BA
chip to indicate that the 21071-DA is performing an epiBus transfer. When
epiEnable is driven low, the epiData and epiBus control signals are ignored.

epiEnable is used to determine which longword within the octaword has to be
driven onto and received from the epiData bus in the following cycle.

The command is always sent 1 cycle prior to the corresponding data.

14–14 DECchip 21071-BA Pin Descriptions



Table 14–5 indicates the function performed by the 21071-BA chips based on
the values of epiEnable, epiFromIOB, and epiSelDMA.

Table 14–5 21071-BA epiBus Interface Function

epiEnable epiFromIOB epiSelDMA Function

0 X X No action, except for possible line
invalidate; epiData is tristated.

1 0 X The DMA read or I/O write buffer is
driven onto epiData.

1 1 0 epiData is loaded into the I/O read
buffer.

1 1 1 epiData is loaded into the DMA write
buffer.

14.2.3.6 epiOWSel

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

epiOWSel is used by the 21071-BA chips to select the octaword within the
cache line that has to be written or read using the epiData bus. When
epiOWSel is 0, the lower octaword is selected. When epiOWSel is 1, the
upper octaword is selected.

14.2.3.7 epiLineSel<1:0>

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

epiLineSel<1:0> is used to select the cache line of the DMA read or I/O write
buffer that has to be read onto the epiBus. epiLineSel<1:0> is also used to
select the cache line of the DMA write buffer to be loaded from the epiBus.

DECchip 21071-BA Pin Descriptions 14–15



14.2.3.8 ioLineSel<1:0>

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

ioLineSel<1:0> is used to select the cache line of the DMA read or I/O write
buffer that has to be loaded from the sysBus.

14.2.3.9 epiLineInval

Signal Type: 21071-BA Input
Signal Source: 21071-DA
Input Sampling Clock Edge: clk2F

When epiLineInval is asserted, all byte enables for the selected cache line will
be cleared in the DMA write buffer.

14.2.4 Memory Signals
This section describes the memory signals.

14.2.4.1 memData<31:0>, memPar<0>

Signal Type: Bidirectional (21071-BA, Memory)
Input Sampling Clock Edge: memClkR
Output Clock Edge: memClkR

memData<31:0> is a bidirectional bus which provides data to and from the
21071-BA chip and memory. memPar<0> is the corresponding parity bit.

The 21071-BA chip is the default driver of memData<31:0>. memData<31:0>
is driven during all transactions except memory reads. During reads,
memData<31:0> is tristated on memClkR. The 21071-CA chip controls the
turn-on and turn-off of the memData bus with drvMemData. The timing for
driving out write data or latching in read data is controlled by the 21071-CA
chip using memCmd<3:1>.

14–16 DECchip 21071-BA Pin Descriptions



14.2.5 Miscellaneous/Clock Signals
This section describes the miscellaneous and clock signals.

14.2.5.1 clk1x2

Signal Type: 21071-BA Input
Signal Source: Clock generator

clk1x2 is a clock input which supplies a clock at twice the frequency of the
DECchip 21064 sysClkOut1, with a minimum period of 15 ns and a 50% duty
cycle.

14.2.5.2 clk2ref

Signal Type: 21071-BA Input
Signal Source: Clock generator

clk2ref is a signal input which is low when the assertion of clk1x2 corresponds
to the assertion of sysClkOut1. The received signal must be setup to the
assertion of clk1x2.

14.2.5.3 reset_l

Signal Type: 21071-BA Input
Signal Source: External logic
Input Clock Edge: Asynchronous on assertion, clk1R on deassertion

Assertion of reset_l sets all internal logic and state machines to their initialized
states.

14.2.5.4 testMode

Signal Type: 21071-BA Input
Signal Source: Test logic
Input Clock Edge: Asynchronous

Assertion of testMode places the chip into a mode for chip testing. testMode
is intended to be used only during chip testing, and it must be tied low during
normal system operation.

testMode has a weak internal pull-down and a Schmitt trigger input.

DECchip 21071-BA Pin Descriptions 14–17



14.2.5.5 tristate_l

Signal Type: 21071-BA Input
Signal Source: External logic
Input Clock Edge: Asynchronous

Assertion of this signal tristates all output and bidirectional drivers. tristate_l
is intended for use during chip testing and power-up.

tristate_l has a weak internal pull-up and a Schmitt trigger input.

14.2.5.6 pTestout

Signal Type: 21071-BA Output
Signal Source: Test logic
Output Clock Edge: Flow through

The pTestout signal contains the output from the Parametric NAND tree, as
required for testability. The testMode signal must be asserted for pTestout to
be valid. pTestout is intended for use only during chip testing.

14.2.5.7 eccMode

Signal Type: 21071-BA
Input Clock Edge: Static

The eccMode signal is an input to the 21071-BA chip which indicates the
type of error-checking used on the module. eccMode tied high indicates that
the 21071-BA chip must use the 7-bit ECC code used by the DECchip 21064;
eccMode tied low indicates that the 21071-BA chip must use longword parity
checking. See Section 15.2.6 for a description of how and when the 21071-BA
chip performs data checks and corrections.

14–18 DECchip 21071-BA Pin Descriptions



eccMode should be used only in conjunction with a 128-bit memory data bus
(using four 21071-BA chips).

Caution

eccMode tied high with wideMem tied low will result in UNDEFINED
behavior and may cause damage to system hardware.

eccMode has a weak internal pull-down and a Schmitt trigger input buffer.

Note

Changing eccMode after reset is deasserted may result in UNDEFINED
behavior.

14.2.5.8 wideMem

Signal Type: 21071-BA Input
Input Clock Edge: Static

The wideMem signal is an input to the 21071-BA chip that indicates the width
of the memory data bus. wideMem tied high indicates a 128-bit wide memory
data bus (DECchip 21072 ); wideMem tied low indicates a 64-bit wide memory
data bus (DECchip 21071 ).

wideMem has a weak internal pull-down and a Schmitt trigger input buffer.

Note

Changing wideMem after reset is deasserted may result in UNDEFINED
behavior.

DECchip 21071-BA Pin Descriptions 14–19



14.3 DECchip 21071-BA Pin Connection Table
This section includes DECchip 21071-BA pin connection tables.

Table 14–6 DECchip 21071-BA Pin Assignments for DECchip 21072 with
Parity

Module Trace Name

21071-BA
Pin Name

21071-BA
Chip #3

21071-BA
Chip #2

21071-BA
Chip #1

21071-BA
Chip #0

eccMode VSS VSS VSS VSS

wideMem VCC VCC VCC VCC

epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0>

epiData<31:0> epiData<31:0> epiData<31:0> epiData<31:0> epiData<31:0>

epiEnable<1> VSS VSS VSS VSS

epiEnable<0> epiEnable<3> epiEnable<2> epiEnable<1> epiEnable<0>

memData<31:0> memData<127:96> memData<95:64> memData<63:32> memData<31:0>

memPar<0> memPar<3> memPar<2> memPar<1> memPar<0>

drvSysCSR VSS VSS VSS drvSysCSR

drvSysData drvSysData drvSysData drvSysData drvSysData

subCmd<1> subCmdCommon subCmdCommon subCmdCommon subCmdCommon

subCmd<0> subCmdB<1> subCmdA<1> subCmdB<0> subCmdA<0>

sysData<63:32> —1 —1 —1 —1

sysData<31:0> sysData<127:96> sysData<95:64> sysData<63:32> sysData<31:0>

sysPar<1> —1 —1 —1 —1

sysPar<0> sysCheck<21> sysCheck<14> sysCheck<7> sysCheck<0>

1Tie off to VCC or VSS with resistor

14–20 DECchip 21071-BA Pin Descriptions



Table 14–7 DECchip Pin Assignments for DECchip 21072 with ECC

Module Trace Name

21071-BA
Pin Name

21071-BA
Chip #3

21071-BA
Chip #2

21071-BA
Chip #1

21071-BA
Chip #0

eccMode VCC VCC VCC VCC

wideMem VCC VCC VCC VCC

epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0>

epiData<31:0> epiData<31:0> epiData<31:0> epiData<31:0> epiData<31:0>

epiEnable<1> VSS VSS VSS VSS

epiEnable<0> epiEnable<3> epiEnable<2> epiEnable<1> epiEnable<0>

memData<31:0> memData<127:96> memData<95:64> memData<63:32> memData<31:0>

memPar<0> N/C2 N/C2 N/C2 N/C2

drvSysCSR VSS VSS VSS drvSysCSR

drvSysData drvSysData drvSysData drvSysData drvSysData

subCmd<1> subCmdCommon subCmdCommon subCmdCommon subCmdCommon

subCmd<0> subCmdB<1> subCmdA<1> subCmdB<0> subCmdA<0>

sysData<63:57> memCheck<21:27> memCheck<14:20> memCheck<7:13> memCheck<0:6>

sysData<56:39> —1 —1 —1 —1

sysData<38:32> sysCheck<27:21> sysCheck<20:14> sysCheck<13:7> sysCheck<6:0>

sysData<31:0> sysData<127:96> sysData<95:64> sysData<63:32 sysData<31:0>

sysPar<1:0> —1 —1 —1 —1

1Tie off to VCC or VSS with resistor
2N/C = not connected

DECchip 21071-BA Pin Descriptions 14–21



Table 14–8 DECchip 21071-BA Pin Assignments for DECchip 21071 With
Parity 1

Module Trace Name

21071-BA
Pin Name

21071-BA
Chip #1

21071-BA
Chip #0

eccMode VSS VSS

wideMem VSS VSS

epiBEnErr<3:0> epiBEnErr<3:0> epiBEnErr<3:0>

epiData<31:0> epiData<31:0> epiData<31:0>

epiEnable<1> epiEnable<3> epiEnable<2>

epiEnable<0> epiEnable<1> epiEnable<0>

memData<31:0> memData<63:32> memData<31:0>

memPar<0> memPar<1> memPar<0>

drvSysCSR VSS drvSysCSR

drvSysData drvSysData drvSysData

subCmd<1> subCmdB<1> subCmdA<1>

subCmd<0> subCmdB<0> subCmdA<0>

sysData<63:32> sysData<127:96> sysData<95:64>

sysData<31:0> sysData<63:32> sysData<31:0>

sysPar<1> sysCheck<21> sysCheck<14>

sysPar<0> sysCheck<7> sysCheck<0>

14.4 DECchip 21071-BA Pin Assignment
The DECchip 21071-BA is a 208-pin plastic quad flat pack (PQFP). Figure 14–1
shows the signal assignments. Sections 14.4.1 and 14.4.2 provide alphabetical
and numerical pin listings.

1 DECchip 21071-BA does not support ECC with 64-bit memory.

14–22 DECchip 21071-BA Pin Descriptions



Figure 14–1 DECchip 21071-BA Pinout Diagram

LJ-03443-TI0

inpVSS
inpVDD
outVSS
outVDD
sysData<0>
sysData<1>
sysData<2>
sysData<3>
sysData<4>
sysData<5>
sysData<6>
sysData<7>
sysData<8>
sysData<9>
sysData<10>
outVSS
sysData<11>
sysData<12>
sysData<13>
sysData<14>
sysData<15>
clk2ref
inpVDD
clk1x2
inpVSS
outVDD
outVSS
sysData<16>
sysData<17>
sysData<18>
sysData<19>
sysData<20>
sysData<21>
sysData<22>
sysData<23>
sysData<24>
outVSS
sysData<25>
sysData<26>
sysData<27>
sysData<28>
sysData<29>
sysData<30>
sysData<31>
sysPar<0>
sysData<32>
sysData<33>
sysData<34>
sysData<35>
sysData<36>
outVDD
outVSS

outVSS
outVDD

epiEnable<0>
epiEnable<1>

pTestOut
tristate_l

testMode
reset_l

eccMode
wideMem

inpVSS
memData<0>
memData<1>
memData<2>
memData<3>

outVSS
memData<4>
memData<5>
memData<6>
memData<7>
memData<8>
memData<9>

memData<11>
memData<12>

outVSS
outVDD

memData<13>
memData<14>
memData<15>
memData<16>
memData<17>
memData<18>
memData<19>
memData<20>
memData<21>

outVSS
memData<22>
memData<23>
memData<24>
memData<25>
memData<26>
memData<27>
memData<28>
memData<29>
memData<30>
memData<31>

memPar<0>

outVDD
inpVDD

inpVSS

inpVSS

o
u

tV
S

S
o

u
tV

D
D

sy
sP

a
r<

1
>

sy
sD

a
ta

<
6

3
>

sy
sD

a
ta

<
6

2
>

sy
sD

a
ta

<
6

1
>

sy
sD

a
ta

<
6

0
>

sy
sD

a
ta

<
5

9
>

sy
sD

a
ta

<
5

8
>

sy
sD

a
ta

<
5

7
>

d
rv

M
e

m
D

a
ta

m
e

m
C

m
d

<
1

>
m

e
m

C
m

d
<

2
>

m
e

m
C

m
d

<
3

>
sy

sI
o

R
e

a
d

sy
sC

m
d

<
0

>
sy

sC
m

d
<

1
>

sy
sC

m
d

<
2

>
sy

sR
e

a
d

O
W

d
rv

S
ys

D
a

ta
d

rv
S

ys
C

S
R

su
b

C
m

d
<

0
>

su
b

C
m

d
<

1
>

io
L

in
e

S
e

l<
1

>
o

u
tV

S
S

o
u

tV
D

D
io

L
in

e
S

e
l<

0
>

sy
sD

a
ta

<
5

6
>

sy
sD

a
ta

<
5

5
>

sy
sD

a
ta

<
5

4
>

sy
sD

a
ta

<
5

3
>

sy
sD

a
ta

<
5

2
>

sy
sD

a
ta

<
5

1
>

sy
sD

a
ta

<
5

0
>

o
u

tV
D

D
in

p
V

D
D

in
p

V
S

S

1

in
p

V
S

S
in

p
V

D
D

o
u

tV
S

S
o

u
tV

D
D

e
p

iF
ro

m
IO

B
e

p
iL

in
e

In
va

l
e

p
iS

e
lD

M
A

e
p

iL
in

e
S

e
l<

0
>

e
p

iL
in

e
S

e
l<

1
>

e
p

iO
W

S
e

l
e

p
iB

E
n

E
rr

<
0

>
e

p
iB

E
n

E
rr

<
1

>
e

p
iB

E
n

E
rr

<
2

>
e

p
iB

E
n

E
rr

<
3

>
e

p
iD

a
ta

<
0

>
o

u
tV

S
S

e
p

iD
a

ta
<

1
>

e
p

iD
a

ta
<

2
>

e
p

iD
a

ta
<

3
>

e
p

iD
a

ta
<

4
>

e
p

iD
a

ta
<

5
>

e
p

iD
a

ta
<

6
>

e
p

iD
a

ta
<

7
>

e
p

iD
a

ta
<

8
>

e
p

iD
a

ta
<

9
>

o
u

tV
D

D
o

u
tV

S
S

e
p

iD
a

ta
<

1
0

>
e

p
iD

a
ta

<
1

1
>

e
p

iD
a

ta
<

1
2

>
e

p
iD

a
ta

<
1

3
>

e
p

iD
a

ta
<

1
4

>
e

p
iD

a
ta

<
1

5
>

e
p

iD
a

ta
<

1
6

>
e

p
iD

a
ta

<
1

7
>

e
p

iD
a

ta
<

1
8

>
o

u
tV

S
S

e
p

iD
a

ta
<

1
9

>
e

p
iD

a
ta

<
2

0
>

e
p

iD
a

ta
<

2
1

>
e

p
iD

a
ta

<
2

2
>

e
p

iD
a

ta
<

2
3

>
e

p
iD

a
ta

<
2

4
>

e
p

iD
a

ta
<

2
5

>
e

p
iD

a
ta

<
2

6
>

e
p

iD
a

ta
<

2
7

>
e

p
iD

a
ta

<
2

8
>

e
p

iD
a

ta
<

2
9

>
e

p
iD

a
ta

<
3

0
>

e
p

iD
a

ta
<

3
1

>
o

u
tV

D
D

o
u

tV
S

S

5

10

15

20

25

30

35

40

45

50

5
5

6
0

6
5

7
0

7
5 8
0

8
5 9
0

9
5

1
0

0

155

150

145

140

135

130

125

120

115

110

105

2
0

5

2
0

0

1
9

5

1
9

0

1
8

5

1
8

0

1
7

5

1
7

0

1
6

5

1
6

0

2
0

8

memData<10>

o
u

tV
S

S

sy
sD

a
ta

<
4

9
>

o
u

tV
S

S
sy

sD
a

ta
<

4
8

>
sy

sD
a

ta
<

4
7

>
sy

sD
a

ta
<

4
6

>
sy

sD
a

ta
<

4
5

>
sy

sD
a

ta
<

4
4

>
sy

sD
a

ta
<

4
3

>
sy

sD
a

ta
<

4
2

>
sy

sD
a

ta
<

4
1

>
sy

sD
a

ta
<

4
0

>
sy

sD
a

ta
<

3
9

>
sy

sD
a

ta
<

3
8

>
sy

sD
a

ta
<

3
7

>

208 PQFP

DECchip 21071-BA Pin Descriptions 14–23



14.4.1 DECchip 21071-BA Alphabetical Pin Assignment List
Table 14–9 lists the DECchip 21071-BA pins in alphabetical order. The
following list describes the abbreviations used in the Type column of the table.

• B = Bidirectional

• I = Input

• P = Power

• O = Output

Table 14–9 Alphabetical Pin Assignment List

Pin Name Pin Type Pin Name Pin Type

clk1x2 133 I epiData<16> 175 B
clk2ref 135 I epiData<17> 174 B
drvMemData 63 I epiData<18> 173 B
drvSysCSR 74 I epiData<19> 171 B
drvSysData 73 I epiData<20> 170 B
eccMode 9 I epiData<21> 169 B
epiBEnErr<0> 198 B epiData<22> 168 B
epiBEnErr<1> 197 B epiData<23> 167 B
epiBEnErr<2> 196 B epiData<24> 166 B
epiBEnErr<3> 195 B epiData<25> 165 B
epiData<0> 194 B epiData<26> 164 B
epiData<1> 192 B epiData<27> 163 B
epiData<2> 191 B epiData<28> 162 B
epiData<3> 190 B epiData<29> 161 B
epiData<4> 189 B epiData<30> 160 B
epiData<5> 188 B epiData<31> 159 B
epiData<6> 187 B epiEnable<0> 3 I
epiData<7> 186 B epiEnable<1> 4 I
epiData<8> 185 B epiFromIOB 204 I
epiData<9> 184 B epiLineInval 203 I
epiData<10> 181 B epiLineSel<0> 201 I
epiData<11> 180 B epiLineSel<1> 200 I
epiData<12> 179 B epiOWSel 199 I
epiData<13> 178 B epiSelDMA 202 I
epiData<14> 177 B inpVdd 51 P
epiData<15> 176 B inpVdd 103 P

14–24 DECchip 21071-BA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

inpVdd 134 P memData<14> 29 B
inpVdd 155 P memData<15> 30 B
inpVdd 207 P memData<16> 31 B
inpVss 11 P memData<17> 32 B
inpVss 49 P memData<18> 33 B
inpVss 52 P memData<19> 34 B
inpVss 104 P memData<20> 35 B
inpVss 132 P memData<21> 36 B
inpVss 156 P memData<22> 38 B
inpVss 208 P memData<23> 39 B
ioLineSel<0> 80 I memData<24> 40 B
ioLineSel<1> 77 I memData<25> 41 B
memCmd<1> 64 I memData<26> 42 B
memCmd<2> 65 I memData<27> 43 B
memCmd<3> 66 I memData<28> 44 B
memData<0> 12 B memData<29> 45 B
memData<1> 13 B memData<30> 46 B
memData<2> 14 B memData<31> 47 B
memData<3> 15 B memPar<0> 48 B
memData<4> 17 B outVdd 2 P
memData<5> 18 B outVdd 27 P
memData<6> 19 B outVdd 50 P
memData<7> 20 B outVdd 54 P
memData<8> 21 B outVdd 79 P
memData<9> 22 B outVdd 102 P
memData<10> 23 B outVdd 106 P
memData<11> 24 B outVdd 131 P
memData<12> 25 B outVdd 153 P
memData<13> 28 B outVdd 158 P

DECchip 21071-BA Pin Descriptions 14–25



Pin Name Pin Type Pin Name Pin Type

outVdd 183 P sysData<5> 147 B
outVdd 205 P sysData<6> 146 B
outVss 1 P sysData<7> 145 B
outVss 16 P sysData<8> 144 B
outVss 26 P sysData<9> 143 B
outVss 37 P sysData<10> 142 B
outVss 53 P sysData<11> 140 B
outVss 68 P sysData<12> 139 B
outVss 78 P sysData<13> 138 B
outVss 105 P sysData<14> 137 B
outVss 89 P sysData<15> 136 B
outVss 120 P sysData<16> 129 B
outVss 130 P sysData<17> 128 B
outVss 141 P sysData<18> 127 B
outVss 154 P sysData<19> 126 B
outVss 157 P sysData<20> 125 B
outVss 172 P sysData<21> 124 B
outVss 182 P sysData<22> 123 B
outVss 193 P sysData<23> 122 B
outVss 206 P sysData<24> 121 B
pTestout 5 O sysData<25> 119 B
reset_l 8 I sysData<26> 118 B
sysCmd<0> 69 I sysData<27> 117 B
sysCmd<1> 70 I sysData<28> 116 B
sysCmd<2> 71 I sysData<29> 115 B
sysData<0> 152 B sysData<30> 114 B
sysData<1> 151 B sysData<31> 113 B
sysData<2> 150 B sysData<32> 111 B
sysData<3> 149 B sysData<33> 110 B
sysData<4> 148 B sysData<34> 109 B

14–26 DECchip 21071-BA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

sysData<35> 108 B sysData<60> 59 B
sysData<36> 107 B sysData<61> 58 B
sysData<37> 101 B sysData<62> 57 B
sysData<38> 100 B sysData<63> 56 B
sysData<39> 99 B sysIORead 67 I
sysData<40> 98 B sysPar<0> 112 B
sysData<41> 97 B sysPar<1> 55 B
sysData<42> 96 B sysReadOW 72 I
sysData<43> 95 B subCmd<0> 75 I
sysData<44> 94 B subCmd<1> 76 I
sysData<45> 93 B testMode 7 I
sysData<46> 92 B tristate_l 6 I
sysData<47> 91 B wideMem 10 I
sysData<48> 90 B
sysData<49> 88 B
sysData<50> 87 B
sysData<51> 86 B
sysData<52> 85 B
sysData<53> 84 B
sysData<54> 83 B
sysData<55> 82 B
sysData<56> 81 B
sysData<57> 62 B
sysData<58> 61 B
sysData<59> 60 B

DECchip 21071-BA Pin Descriptions 14–27



14.4.2 DECchip 21071-BA Numerical Pin Assignment List
Table 14–10 lists the DECchip 21071-BA pins in numerical order. The
following list describes the abbreviations used in the Type column of the
table.

• B = Bidirectional

• I = Input

• P = Power

• O = Output

Table 14–10 DECchip 21071-BA Numerical Pin Assignment List

Pin Name Pin Type Pin Name Pin Type

outVss 1 P outVss 26 P
outVdd 2 P outVdd 27 P
epiEnable<0> 3 I memData<13> 28 B
epiEnable<1> 4 I memData<14> 29 B
pTestout 5 O memData<15> 30 B
tristate_l 6 I memData<16> 31 B
testMode 7 I memData<17> 32 B
reset_l 8 I memData<18> 33 B
eccMode 9 I memData<19> 34 B
wideMem 10 I memData<20> 35 B
inpVss 11 P memData<21> 36 B
memData<0> 12 B outVss 37 P
memData<1> 13 B memData<22> 38 B
memData<2> 14 B memData<23> 39 B
memData<3> 15 B memData<24> 40 B
outVss 16 P memData<25> 41 B
memData<4> 17 B memData<26> 42 B
memData<5> 18 B memData<27> 43 B
memData<6> 19 B memData<28> 44 B
memData<7> 20 B memData<29> 45 B
memData<8> 21 B memData<30> 46 B
memData<9> 22 B memData<31> 47 B
memData<10> 23 B memPar<0> 48 B
memData<11> 24 B inpVss 49 P
memData<12> 25 B outVdd 50 P

14–28 DECchip 21071-BA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

inpVdd 51 P outVdd 79 P
inpVss 52 P ioLineSel<0> 80 I
outVss 53 P sysData<56> 81 B
outVdd 54 P sysData<55> 82 B
sysPar<1> 55 B sysData<54> 83 B
sysData<63> 56 B sysData<53> 84 B
sysData<62> 57 B sysData<52> 85 B
sysData<61> 58 B sysData<51> 86 B
sysData<60> 59 B sysData<50> 87 B
sysData<59> 60 B sysData<49> 88 B
sysData<58> 61 B outVss 89 P
sysData<57> 62 B sysData<48> 90 B
drvMemData 63 I sysData<47> 91 B
memCmd<1> 64 I sysData<46> 92 B
memCmd<2> 65 I sysData<45> 93 B
memCmd<3> 66 I sysData<44> 94 B
sysIORead 67 I sysData<43> 95 B
outVss 68 P sysData<42> 96 B
sysCmd<0> 69 I sysData<41> 97 B
sysCmd<1> 70 I sysData<40> 98 B
sysCmd<2> 71 I sysData<39> 99 B
sysReadOW 72 I sysData<38> 100 B
drvSysData 73 I sysData<37> 101 B
drvSysCSR 74 I outVdd 102 P
subCmd<0> 75 I inpVdd 103 P
subCmd<1> 76 I inpVss 104 P
ioLineSel<1> 77 I outVss 105 P
outVss 78 P outVdd 106 P

DECchip 21071-BA Pin Descriptions 14–29



Pin Name Pin Type Pin Name Pin Type

sysData<36> 107 B sysData<13> 138 B
sysData<35> 108 B sysData<12> 139 B
sysData<34> 109 B sysData<11> 140 B
sysData<33> 110 B outVss 141 P
sysData<32> 111 B sysData<10> 142 B
sysPar<0> 112 B sysData<9> 143 B
sysData<31> 113 B sysData<8> 144 B
sysData<30> 114 B sysData<7> 145 B
sysData<29> 115 B sysData<6> 146 B
sysData<28> 116 B sysData<5> 147 B
sysData<27> 117 B sysData<4> 148 B
sysData<26> 118 B sysData<3> 149 B
sysData<25> 119 B sysData<2> 150 B
outVss 120 P sysData<1> 151 B
sysData<24> 121 B sysData<0> 152 B
sysData<23> 122 B outVdd 153 P
sysData<22> 123 B outVss 154 P
sysData<21> 124 B inpVdd 155 P
sysData<20> 125 B inpVss 156 P
sysData<19> 126 B outVss 157 P
sysData<18> 127 B outVdd 158 P
sysData<17> 128 B epiData<31> 159 B
sysData<16> 129 B epiData<30> 160 B
outVss 130 P epiData<29> 161 B
outVdd 131 P epiData<28> 162 B
inpVss 132 P epiData<27> 163 B
clk1x2 133 I epiData<26> 164 B
inpVdd 134 P epiData<25> 165 B
clk2Ref 135 I epiData<24> 166 B
sysData<15> 136 B epiData<23> 167 B
sysData<14> 137 B epiData<22> 168 B

14–30 DECchip 21071-BA Pin Descriptions



Pin Name Pin Type Pin Name Pin Type

epiData<21> 169 B epiBEnErr<2> 196 B
epiData<20> 170 B epiBEnErr<1> 197 B
epiData<19> 171 B epiBEnErr<0> 198 B
outVss 172 P epiOWSel 199 I
epiData<18> 173 B epiLineSel<1> 200 I
epiData<17> 174 B epiLineSel<0> 201 I
epiData<16> 175 B epiSelDMA 202 I
epiData<15> 176 B epiLineInval 203 I
epiData<14> 177 B epiFromIOB 204 I
epiData<13> 178 B outVdd 205 P
epiData<12> 179 B outVss 206 P
epiData<11> 180 B inpVdd 207 P
epiData<10> 181 B inpVss 208 P
outVss 182 P
outVdd 183 P
epiData<9> 184 B
epiData<8> 185 B
epiData<7> 186 B
epiData<6> 187 B
epiData<5> 188 B
epiData<4> 189 B
epiData<3> 190 B
epiData<2> 191 B
epiData<1> 192 B
outVss 193 P
epiData<0> 194 B
epiBEnErr<3> 195 B

14.5 DECchip 21071-BA Mechanical Specifications
Figure 14–2 shows the package dimensions for the DECchip 21071-BA chip.

DECchip 21071-BA Pin Descriptions 14–31



Figure 14–2 DECchip 21071-BA Package Dimensions

Millimeters Inches

MIN MAX
DIM

A

B

C

D

G

H

J

K

L

M

R

S

30.50

27.90

30.50

27.90

0.23

.500 BSC

0.45

3.45

0.13

0.25

25.5 REF

25.5 REF

30.77

28.10

30.77

28.10

0.33

0.62

3.85

0.23

0.35

1.201

1.098

1.201

1.098

0.009

0.0197 BSC

0.018

0.136

0.005

0.010

1.004 REF

1.004 REF

1.211

1.106

1.211

1.106

0.013

0.024

0.152

0.009

0.012

MIN MAX

K

L

M

J

H

R

A

B

DC

S

LJ-03666-TI0

P
IN

 1

G208 PQFP

14–32 DECchip 21071-BA Pin Descriptions



15
DECchip 21071-BA Architecture Overview

This chapter describes the architecture of the DECchip 21071-BA chip.

Figure 15–1 shows a block diagram of the DECchip 21071-BA chip.

Figure 15–1 DECchip 21071-BA Block Diagram

Memory
Read
Buffer
1 X 4 LWS

Merge &
I/O Read
Buffer
1 X 4 LWS

Source
LW
MUXes

QW
MUXes

64

ECC
Check

DMA
Hit/Miss
MUX

32

64

64

32

32

32

64 32

32

32

PAD 
Latch DMA

Write
Buffer
4 X 4 LWS

DMA
Read
Buffer
2 X 4 LWS

I/O
Write
Buffer
2 X 4 LWS

EPI
Output
MUX

ECC
GEN

DMA/CPU
Write
MUX

Memory
Write
Buffer
4 X 4 LWS

L J - 0 3 0 6 0 - T I 0

SysData

<95:64>
<31:0>

memData

<31:0>

epiData

<31:0>
NOTE:

LWS = Longwords (32 Bits)

DECchip 21071-BA Architecture Overview 15–1



15.1 Bus Widths
This section describes the bus widths.

15.1.1 sysData Bus
Each 21071-BA data chip has 64 pins for the sysData bus. The DECchip 21071
and DECchip 21072 configured systems support only a 128-bit wide sysData
bus; a 64-bit wide sysData bus is not supported.

In a DECchip 21071 configuration, sysData pins on each 21071-BA chip are
connected to the sysBus:

• The lower 21071-BA data chip (#0) connects to sysData<31:0> (longword 0)
and sysData<95:64> (longword 2).

• The upper 21071-BA data chip (#1) connects to sysData<63:32> (longword
1) and sysData<127:96> (longword 3).

In a DECchip 21072 configuration, only the lower 32-bits of the sysData bus of
each 21071-BA chip are used:

• 21071-BA data chip #0 connects to longword 0 (sysData<31:0>).

• 21071-BA data chip #1 connects to longword 1 (sysData<63:32>).

• 21071-BA data chip #2 connects to longword 2 (sysData<95:64>).

• 21071-BA data chip #3 connects to longword 3 (sysData<127:96>).

15.1.2 memData Bus
The number of 21071-BA data chips used in a system depends on the width of
the memData bus. If the width of the memData bus is 64-bits, two 21071-BA
data chips are required (DECchip 21071 ). If the width of the memData bus is
128-bits, four 21071-BA chips are required (DECchip 21072 ).

Each 21071-BA data chip connects to 32 bits of memData. In all systems:

• 21071-BA #0 connects to longword 0 (memData<31:0>).

• 21071-BA #1 connects to longword 1 (memData<63:32>).

In a 4-chip configured system:

• 21071-BA #2 connects to longword 2 (memData<95:64>).

• 21071-BA #3 connects to longword 3 (memData<127:64>).

15–2 DECchip 21071-BA Architecture Overview



Each 21071-BA data chip needs to know the width of the memData bus for
proper operation. This is obtained from the wideMem pin. The 21071-BA
data chips do not need to know which longword they are connected to. The
proper latching and driving of data is achieved by appropriately connecting the
21071-CA and 21071-DA command signals (Section 14.3).

15.1.3 epiData Bus
Each 21071-BA data chip has 32 epiData pins.

The epiData pins of all the 21071-BA data chips are tied together to form a
32-bit wide epiData bus.

15.2 Description of DECchip 21071-BA Architecture
This section describes the DECchip 21071-BA architecture.

15.2.1 Memory Read Buffer
The memory read buffer is also used to store data that is read from memory
before it is returned to the CPU on the sysBus or to DMA in the DMA read
buffer.

Each 21071-BA data chip stores four longwords worth of data and
corresponding check bits in the memory read buffer.

• In a two 21071-BA data chip designed system, the total storage is eight
longwords or a cache line.

• A four 21071-BA data chip designed system contains an additional eight
longwords of storage; however, this extra storage is not usable.

15.2.2 I/O Read Buffer and Merge Buffer
On CPU-initiated memory transactions, this buffer performs the merge buffer
functions described in Section 3.1.7. On CPU-initiated I/O reads addressed
to or through the 21071-DA chip, this buffer acts as the I/O read buffer. The
loading of data into this buffer is therefore controlled by both the 21071-CA
and 21071-DA chips.

Each 21071-BA data chip contains four longwords of data and corresponding
check bits. The check bits are meaningful only for merge data. The check bits
are UNPREDICTABLE for I/O read data.

DECchip 21071-BA Architecture Overview 15–3



15.2.3 I/O Write Buffer and DMA Read Buffer
This buffer can store up to four entries of data. Each entry has four longwords
per 21071-BA data chip. Data from this buffer is sent out on the epiData bus.
System designers may choose to allocate each entry of this buffer according to
their needs. The 21071-DA chip may use the full cache line available in each
entry.

In the 21071 or 21072 implementation, two entries of this buffer are allocated
for I/O write data storage, and two entries are allocated for DMA read data
storage.

In a two 21071-BA chip system, storing one cache line uses all four longwords
of each DMA read buffer entry; in a four 21071-BA chip system it uses only
two of the four longwords of each entry, but the extra storage is not accessible.

The loading of each entry can be controlled separately, thus allowing maximum
flexibility in allocating the buffer entries to the 21071-DA.

The loading of this buffer is handled by the 21071-CA chip, with the address
provided by the 21071-DA on ioLineSel<1:0>. The 21071-DA chip controls
unloading of this buffer.

15.2.4 DMA Write Buffer
The DMA write buffer has four entries. Each entry contains four longwords
per 21071-BA and corresponding byte masks. In a four 21071-BA data chip
system, only half the storage per entry is used. The extra storage is not
accessible.

The DMA write buffer is loaded by the 21071-DA chip and is unloaded by the
21071-CA chip during a DMA write transaction on the sysBus. The byte masks
are used to merge the valid bytes of data written in the DMA write buffer
with the background data from the cache line. The background data may be
obtained from the Bcache or memory.

15.2.5 Memory Write Buffer
The memory write buffer has four entries. Each entry contains four longwords
of data per 21071-BA and corresponding check bits. The memory write buffer
is loaded by the 21071-CA sysBus interface and is unloaded by the 21071-CA
memory controller.

15–4 DECchip 21071-BA Architecture Overview



15.2.6 Error Checking/Correction
The 21071-BA chip performs error checking/correction (ECC) on DMA
transactions. When memory or Bcache data is read because of a DMA
transaction (DMA read or a DMA write masked), the data is checked for
parity/ECC errors.

If ECC is enabled, and the Bcache/memory data contains a correctable error,
the 21071-BA data chip sends corrected data to its destination (DMA read
buffer for DMA reads, memory write buffer for MUXing with DMA write data
for DMA writes).

If the data contains an uncorrectable error (dual-bit ECC error or any parity
error), then the 21071-DA is notified (for a DMA read), or bad ECC/parity is
written back into memory (for a DMA write).

In case of a DMA write masked transaction, parity/ECC is calculated for the
merged data going into the memory write buffer.

The 21071-BA data chip uses the same ECC code as the DECchip 21064
microprocessor. See the DECchip 21064 Hardware Reference Manual for
details.

15.3 Data Path Logic
This section describes the data path logic.

15.3.1 epiBus
The epiBus may be used to load the I/O read buffer or the DMA write buffer.
In addition to write data, byte masks are stored in the DMA write buffer.

The epiBus may also be used to unload the DMA read buffer (which also serves
as the I/O write buffer).

15.3.2 sysBus Output Selectors
Two levels of muxes select the output for the sysData bus. The first level
selects the source for each longword of data and check bits, and the second
level selects the 2 longwords to be driven on the sysData bus.

The source is described in Table 15–1. In 64-bit memory mode, the lower and
upper mux work together to select longwords 0 and 2 in the first cycle (while
the other 21071-BA data chip selects longwords 1 and 3) and to select 4 and
6 in the second cycle (while the other 21071-BA data chip selects longwords 5
and 7).

DECchip 21071-BA Architecture Overview 15–5



Table 15–1 sysBus Output Sources

Buffer Function

Memory read DMA and CPU read, DMA write masked

Merge LDx_L, STx_C

Merge and memory read CPU write allocates

I/O read CPU I/O space reads

The lower 16 bits of the sysData bus are controlled by a special signal to enable
the 21071-CA chip to drive the lower 16 bits on CSR reads from the 21071-CA
chip while the 21071-BA data chips drive the remaining data lines.

15–6 DECchip 21071-BA Architecture Overview



16
DECchip 21071-BA Transactions and

Timing Diagrams

This chapter describes the flow of data within the 21071-BA chip on various
transactions on the sysBus, memory data bus, and epiBus.

16.1 sysBus Transactions
This section describes the sysBus transactions.

16.1.1 CPU Memory Read
Read data from memory is loaded into the memory read buffer by the memory
control machine in the 21071-CA. This data is available, by default, when the
sysBus controller enables the 21071-BA chips to drive the sysData bus.

The sysBus controller sends sysReadOW to indicate when the 21071-BA chips
must switch to the high-order octaword.

16.1.2 CPU Memory Read with Victim
The victim data is loaded from the sysBus into the memory write buffer
through a holding latch. If the write buffer is full, the data is held in the
holding latch until there is room for it in the write buffer. (The control for this
is provided by the 21071-CA chip.)

Read data from memory can be loaded into the memory read buffer
independent of the loading of the memory write buffer.

16.1.3 CPU Memory Write Allocate
The CPU write data is loaded by the 21071-CA chip into the merge buffer
through the holding pad latch. The merge buffer can never be full, so this
loading does not stall. If the write is partial, read data from memory is loaded
into the memory read buffer. If there is a victim, the victim data is written
into the memory write buffer through the holding pad latch.

DECchip 21071-BA Transactions and Timing Diagrams 16–1



When all the data is in place (memory read data, CPU write data, and victim
data), the appropriate longwords of the memory read buffer and the merge
buffer are merged and sent out on sysData.

16.1.4 CPU Memory Write Noncacheable/Noallocate
The data from the sysBus is loaded into the memory write buffer through the
holding latch. If the memory write buffer is full, the data has to stall.

Data from the memory write buffer is unloaded by the memory control
sequencer from the 21071-CA chip when it is ready to service the write.

16.1.5 STx_C Hit
The write data from the CPU is loaded into the merge buffer. If the address
is a hit in the cache, the remaining data is read from the cache and is loaded
into the unwritten longwords of the merge buffer. Data from the merge buffer
is then sent out on the sysBus.

16.1.6 STx_C Miss
This is exactly like a CPU memory write.

16.1.7 LDx_L Hit
Data is read from the cache and is loaded into the merge buffer. It is sent out
on the sysBus from there.

16.1.8 LDx_L Miss
This is exactly like a CPU memory read.

16.1.9 CPU Read From or Through the DECchip 21071-DA
The 21071-DA chip sets the direction of the epiData bus to be from the 21071-
DA chip to the 21071-BA chips. It sets the epiBus controls to indicate the I/O
read buffer as the destination of the data. When the I/O read data is available,
it is loaded into the I/O read buffer. The I/O read buffer has already been
selected as the source of sysBus data by 21071-CA. The I/O read data is thus
returned to the CPU.

16.1.10 CPU Write To or Through the DECchip 21071-DA
When an I/O write transaction is detected on the sysBus, the 21071-DA
chip is required to set up the controls for the I/O write buffer to point to the
appropriate entry of the I/O write buffer. The loading of data is controlled by
the 21071-CA chip.

16–2 DECchip 21071-BA Transactions and Timing Diagrams



The 21071-DA chip sets the direction of the epiData to point from the 21071-BA
chip to the 21071-DA chip, and it extracts the data as needed by controlling
the longword select bits and enabling the appropriate 21071-BA chips using
epiEnable<3:0>.

16.2 PCI and Other I/O Bus Transactions
This section describes PCI and other I/O bus transactions.

16.2.1 PCI Read from System Memory
The 21071-DA chip performs a DMA read transaction on the sysBus and sets
up the controls of the DMA read buffer to point to the appropriate entry of the
DMA read buffer.

The 21071-CA chip gets the data from memory or Bcache. If the data is to be
read from memory, the memory read buffer is loaded as data is received from
memory. Data from the memory read buffer is loaded into the DMA read buffer
after error checking has happened. If the data will be read from the Bcache,
the data is loaded from the sysBus via the holding pad latch into the DMA
read buffer, after error checking has happened.

The 21071-DA chip sets up the direction of the epiData bus to be from the
21071-BA chips to the 21071-DA chip whenever it is ready to receive data. As
the data is loaded into the DMA read buffer, it is extracted by the 21071-DA
chip.

16.2.2 PCI Write to System Memory
The direction of the epiData bus is set to be from the 21071-DA chip to the
21071-BA chip by the 21071-DA chip. The appropriate controls for loading the
correct write buffer entry are set. The write data and the corresponding byte
masks are loaded into the selected entry as it is available. If for some reason
the write is not valid, the 21071-DA chip can overwrite that entry by using
the epiLineInval signal. epiLineInval should be used at the start of any DMA
write that does not use the full cache line.

Whenever the 21071-DA chip is ready to do the transaction on the sysBus, a
DMA write is initiated. If the DMA write buffer contains completely unmasked
data, the data from the DMA write buffer is moved to the memory write buffer
after the proper error bits have been generated.

DECchip 21071-BA Transactions and Timing Diagrams 16–3



If the DMA write is partially masked, a read-modify-write is performed. Data
is read from memory (cache miss) into the memory read buffer or from the
sysBus (cache hit) and is merged with the data from the DMA write data
based on the DMA write byte masks. Error checking is performed on the read
data. If there is no error or a correctable error (error is corrected in this case),
check bits are generated for the merged data and are written to the memory
write buffer. If there is an uncorrectable error in the read data, the merge is
performed but incorrect check bits are written into the memory write buffer. A
read from this location will result in a hard error later.

16.3 epiBus Transactions
This section describes the epiBus transactions.

16.3.1 DMA Read Buffer to the 21071-DA
The following table describes the cycles for an epiBus transaction which
transfers data from the DMA read buffer to the 21071-DA, as shown in
Figure 16–1.

Cycle Description

0 The 21071-DA chip may read data from the DMA read buffer after the
data has been loaded by the 21071-CA chip. The earliest that data may be
read out is two cycles after an ioCAck<2:0> for that read or one cycle after
sysReadOW for the octaword to be read. ioCAck<2:0> in this cycle of the
diagram indicates that data is ready by cycle 2.

1 If ioCAck<2:0> was not sent in cycle 0, a sysReadOW indicates that the first
octaword of data may be read out in cycle 2.

The 21071-DA chip recognizes that the data is going to be ready. It asserts
the epiLineSel<1:0> lines to request a read of the DMA read buffer line
which was indicated on ioLineSel when the read was started. The 21071-DA
chip places a request for the first longword of read data by deasserting
epiFromIOB (indicating a read), deasserting epiOWSel (indicating the first
octaword), and asserting epiEnable<0> (LW 0 within first octaword). If the
21071-DA was driving epiData, it must tristate the bus by clk2F.

2 The 21071-BA chip receives the epiBus control signals and begins driving
epiData with the first longword of data. The 21071-BA also drives error
information on epiBENErr<3:0>. See Table 8–7.

The 21071-DA chip requests LW 1 by changing to assert epiEnable<1>.
(Shown in figure as a 2, because epiEnable<3:0> = 0010 = 2.)

The 21071-DA chip receives and latches epiData<31:0> on clk2F. The
21071-BA receives epiEnable<3:0> and tristates epiData<31:0> and
epiBENErr<3:0> on clk2F.

16–4 DECchip 21071-BA Transactions and Timing Diagrams



Cycle Description

3 Similar to cycle 2, the 21071-DA chip requests LW 2, and another 21071-BA
chip drives LW 1. EpiData<31:0> and epiBEnErr<3:0> are always one cycle
behind the EPI control lines.

4 The 21071-DA chip requests LW 3; a 21071-BA chip drives LW 2.

5 The 21071-DA chip requests LW 4; a 21071-BA chip drives LW 3. Because
LW 4 is in the second octaword, epiOWSel asserts and epiEnable<0> is used.

6 The read continues. There is no constraint on the order or number of times
that a longword may be read out (as long as the LW is ready, as described in
cycle 0).

DECchip 21071-BA Transactions and Timing Diagrams 16–5



Figure 16–1 Timing of DMA Read Buffer to the 21071-DA Transfer

CY0 CY1 CY2 CY3 CY4

CY5 CY6 CY7 CY9

LJ-03177-TI0

clk1

clk2

epiData

epiBEnErr

epiFromIOB

epiLineSel

epiOWSel

epiEnable

ioCmd

TD 501  tim_EPI_FROM_DMA

2 4 8

21 4 8

ioDataRdy

ioCAck

CY8

1

EPI Bus: DMA Read Buffer to IOB

DMA Rd LW0

LW0 Error

1 2

3 4 5 6 7

1 2

3 4 5 6 7

DMA Read Buffer Line

DMA Read

OK

DMA Read 
in Progress

Fetch LW 0
I/O Data Ready
or ioCAck last
Cycle

Fetch LW 1
Receive LW 0

Fetch LW 2
Receive LW 1

Fetch LW 3
Receive LW 2

Fetch LW 4
Receive LW 3

Fetch LW 5
Receive LW 4

Fetch LW 6
Receive LW 5

Fetch LW 7
Receive LW 6

Receive LW 7

clk1

clk2

epiData

epiBEnErr

epiFromIOB

epiLineSel

epiOWSel

epiEnable

ioCmd

ioDataRdy

ioCAck

16–6 DECchip 21071-BA Transactions and Timing Diagrams



16.3.2 I/O Write Buffer to 21071-DA
An epiBus transaction that transfers data from the I/O write buffer to the
21071-DA chip is identical to the previous case shown in Figure 16–1. Because
the same buffer is used for both DMA reads and I/O writes, the only difference
is that a different buffer line will be requested using epiLineSel<1:0>. (The
line that was present on ioLineSel<1:0> when the I/O write occurred.)

16.3.3 21071-DA to DMA Write Buffer
The following table describes the cycles for an epiBus transaction that
transfers data from the 21071-DA chip into the DMA write buffer, as shown in
Figure 16–2.

Cycle Description

0 The 21071-DA chip places a request to store the first longword of DMA
write data by asserting epiFromIOB (indicating a write into the 21071-BA),
asserting epiSelDMA (indicating a DMA transfer), deasserting epiOWSel
(indicating the first octaword), and asserting epiEnable<0> (LW 0 within
first octaword). The 21071-DA chip asserts the epiLineSel<1:0> lines to
point to an empty line in the DMA read buffer. Because this is the first store
to this DMA write buffer line, epiLineInval is asserted to clear all of the byte
enables left over from the previous usage of the cache line.

If a 21071-BA chip was driving epiData<31:0>, then it will tristate the bus
by clk2F.

1 The 21071-DA chip sends the data to be stored on epiData<31:0>. The
21071-DA chip drives epiBENErr<3:0> with the byte enables for the 4 bytes
in the longword. (epiBEnErr<3:0> is on if the byte is valid.)

The 21071-BA chip receives the epiBus control signals and latches LW 0 into
the I/O read buffer.

The 21071-DA chip requests that LW 1 be stored in the next cycle by
changing to assert epiEnable<1>.

2 Similar to cycle 1, the 21071-DA chip requests storing LW 2 and drives
data for LW 1, and the 21071-BA chip latches LW 1. epiData<31:0> and
epiBEnErr<3:0> are always one cycle behind the epiBus control lines.

3 The 21071-DA chip requests storing LW 3; 21071-DA drives LW 2.

4 The 21071-DA chip requests storing LW 4; 21071-DA drives LW 3. Because
LW 4 is in the second octaword, epiOWSel asserts and epiEnable<0> is used.

5 The 21071-DA chip requests storing LW 5; the 21071-DA drives LW 4.

DECchip 21071-BA Transactions and Timing Diagrams 16–7



Cycle Description

6 The 21071-DA chip requests storing LW 6; the 21071-DA drives LW 5.

If the 21071-DA can ensure that the last data will be sent by cycle 7, then it
may request a DMA write transaction with the 21071-CA. By the time the
21071-CA requires the DMA write data, it will have been loaded into the
DMA write buffer.

7 The stores continue. There is no constraint on the order or number of times
that a longword may be stored. There is also no constraint that the entire
cache line be loaded, because the epiLineInval will set all of the byte enables
that were not loaded to off. (This functionality allows an 21071-DA chip
aggregate writes.)

16–8 DECchip 21071-BA Transactions and Timing Diagrams



Figure 16–2 Timing of 21071-DA to DMA Write Buffer Transfer

CY0 CY1 CY2 CY3 CY4

CY5 CY6 CY7 CY8

LJ-03186-TI0

clk1

clk2

epiData

epiBEnErr

epiSelDMA

epiFromIOB

epiLineSel

epiOWSel

epiEnable

epiLineInv

ioCmd

Set-up LW 0 Set-up LW 1
Send LW 0

Set-up LW 2
Send LW 1

Set-up LW 3
Send LW 2

Set-up LW 4
Send LW 3

Set-up LW 5
Send LW 4

Set-up LW 6
Send LW 5
Request DMA Wr

Set-up LW 7
Send LW 6

Send LW 7

DMA Wr LW0

Byte Enable

1 2 3

4 5 6 7

1 2 3

4 5 6 7

DMA Write Buffer Line

21 4 8

2

1

4 8

DMA Write Request

clk1

clk2

epiData

epiBEnErr

epiSelDMA

epiFromIOB

epiLineSel

epiOWSel

epiEnable

epiLineInv

ioCmd

Note:
sysReadOW is not important during this transaction.

DMA Write Buffer Line

DECchip 21071-BA Transactions and Timing Diagrams 16–9



16.3.4 21071-DA to I/O Read Buffer
The following table describes the cycles for an epiBus transaction that transfers
data from the 21071-DA chip into the CPU I/O read buffer, as shown in
Figure 16–3.

Cycle Description

0 It is presumed that a CPU read to I/O space has already begun, and that
the 21071-DA chip recognizes that the read data is going to be ready. The
21071-DA chip places a request to store the first longword of read data by
asserting epiFromIOB (indicating an write into the 21071-BA), deasserting
epiSelDMA (indicating an I/O transfer), deasserting epiOWSel (indicating
the first octaword), and asserting epiEnable<0> (LW 0 within first octaword).
If the 21071-BA chip was driving epiData<31:0>, then it will tristate the bus
by clk2F. The 21071-CA chip asserts sysIORead to select the I/O read buffer
onto the sysData bus.

1 The 21071-DA chip sends the data to be stored on epiData<31:0>. The
21071-DA chip drives epiBENErr<3:0> with arbitrary values to prevent the
bus from floating.

The 21071-BA chip receives the epiBus control signals and latches LW 0 into
the I/O read buffer.

The 21071-DA chip requests that LW 1 be stored in the next cycle by
changing to assert epiEnable<1>.

2 Similar to cycle 1, the 21071-DA chip requests storing LW 2, drives
data for LW 1, and the 21071-BA chip latches LW 1. epiData<31:0> and
epiBEnErr<3:0> are always one cycle behind the epiBus control lines.

3 The 21071-DA chip requests storing LW 3; 21071-DA drives LW 2.

4 The 21071-DA chip requests storing LW 4; 21071-DA drives LW 3. Because
LW 4 is in the second octaword, epiOWSel asserts and epiEnable<0> is used.

Because a full octaword of data will be stored in the 21071-BA chip
by the end of cycle 4, the 21071-DA chip may send a cpuDRAck<2:0>
OK_NCACHE_NCHK request through the 21071-BA chip to the CPU.

5 The 21071-DA chip requests storing LW 5; 21071-DA drives LW 4.

The 21071-CA chip receives the cpuDRAck<2:0> OK_NCACHE_NCHK
request and sends the OK on cpuDRAck<2:0>. The 21071-BA chip sends the
first octaword on sysData<31:0> to the CPU.

6 The stores continue. There is no constraint on the order or number of times
that a longword may be stored. There is also no constraint that an entire
octaword be sent on epiData<31:0> before requesting a cpuDRAck<2:0>. (Of
course, a cpuDRAck<2:0> cannot be requested before all of the data that
needs to be sent has been transferred.)

16–10 DECchip 21071-BA Transactions and Timing Diagrams



Figure 16–3 Timing of 21071-DA to I/O Read Buffer Transfer

CY0 CY1 CY2 CY3 CY4

CY5 CY6 CY7 CY8

LJ-03187-TI0

clk1

clk2

epiData

epiSelDMA

epiFromIOB

epiOWSel

epiEnable

ioCmd

Set-up LW 0 Set-up LW 1
Send LW 0

Set-up LW 2
Send LW 1

Set-up LW 3
Send LW 2

Set-up LW 4
Send LW 3

Set-up LW 5
Send LW 4

Set-up LW 6
Send LW 5

Set-up LW 7
Send LW 6

Send LW 7

TD 504  tim_EPI_TO_IO EPI Bus : IOB to IO Read Buffer

1 2 3

4 5 6 7

21 4 8

2

1

4 8

I/O Rd LW0

dack_cpu

dack_cpuidle

Request DACK

clk1

clk2

epiData

epiSelDMA

epiFromIOB

epiOWSel

epiEnable

ioCmd

Note:
epiBEnErr,epiLineSel,epiLineInv and ioDataRdy
are not important during this transaction.

Request DACK

DECchip 21071-BA Transactions and Timing Diagrams 16–11





17
DECchip 21071-BA Electrical Data

This chapter includes the following information about the DECchip 21071-BA
chip:

• DC Electrical Data

• AC Electrical Data

17.1 DC Electrical Data
This section describes the dc characteristics of the DECchip 21071-BA chip.

17.1.1 Absolute Maximum Ratings
Table 17–1 lists the maximum ratings of the DECchip 21071-BA chip.

DECchip 21071-BA Electrical Data 17–1



Table 17–1 DECchip 21071-BA Maximum Ratings

Characteristics Minimum Maximum

Storage temperature –55°C (–67°F) 125°C (257°F)

Operating ambient temperature 0°C (32°F) 40°C (104°F)

Air flow 100 lfpm1 —

Junction temperature 25°C (77°F) 100°C (212°F)

Supply voltage with respect to Vss,
with reset_l asserted

–0.5 V +6.5 V

Supply voltage with respect to Vss,
with reset_l deasserted

4.75 V 5.25 V

Voltage on any pin with respect to Vss –0.5 V Vdd + 0.5 V

Maximum power:

@Vdd = 5.25 V
@Cycle = 30 ns

1.7 W

1lfpm = linear feet per minute

17–2 DECchip 21071-BA Electrical Data



Table 17–2 lists the dc parametric values of the DECchip 21071-BA chip.

Table 17–2 DC Parametric Values

Symbol Description Minimum Maximum Units Test Conditions

Vih Input high voltage 2.0 — V —
Vil Input low voltage — 0.8 V —
Voh Output high voltage 2.4 — V —
Vol Output low voltage — 0.4 V —
Iil Input leakage current1 –5 5 µA 0 V < Vin < Vdd
Iilpu Input leakage current2 –15 –100 µA 0 V < Vin < Vdd
Iilpd Input leakage current3 15 100 µA 0 V < Vin < Vdd
Iol Output leakage current

(tristated)
–10 10 µA 0 V < Vin < Vdd

1Excluding drvSysCSR, eccMode, testMode, tristateL, and wideMem.
2For tristateL.
3For drvSysCSR, eccMode, testMode, and wideMem.

17.2 AC Electrical Data
This section describes the ac characteristics of the DECchip 21071-BA chip.

17.2.1 Clocks
The DECchip 21071-BA uses one clock (running at twice the nominal system
frequency) plus a synchronous phase reference signal to generate five internal
clock edges. See Figure 17–1, Figure 17–2, Table 17–3, and Table 17–4 for
details about DECchip 21071-BA external clock requirements and internal
clock phase relationships.

A clock system must meet the requirements in Figure 17–1 and Table 17–4
to guarantee the proper behavior of the 21071-BA chip’s internal logic. The
21071-BA chip does not specify the maximum skew allowed for external
transfers to or from the CPU, Bcache PALs, Bcache, 21071-CA chip, or
21071-DA chip because these skew limits are dependent on module placement
and routing. A system designer must examine external transfers to determine
the maximum clock skews allowed between chips.

DECchip 21071-BA Electrical Data 17–3



The skew numbers shown in Figure 17–1 and Table 17–4 are given for a 30.0
ns cycle time. At a longer cycle time, the allowable skew may be increased,
as long as the given minimum times between clock edges are not violated.
These skew limits assume that the 21071-BA chip adds another 0.1 ns of
uncertainty between rising and falling edges due to non-ideal input buffer
switching thresholds.

Table 17–3 DECchip 21071-BA Clock AC Characteristics

Parameter Minimum Maximum Unit Note

System cycle time 30 — ns c in Figure 17–1

clk1x2 period 15 — ns —

clk1x2 frequency — 66 MHz —

clk1x2 rise time — 1 ns —

clk1x2 fall time — 1 ns —

clk2ref setup to clk1x2 rising 0.8 — ns Tsu in Figure 17–1

clk2ref hold from clk1x2 rising 1.8 — ns Th in Figure 17–1

17–4 DECchip 21071-BA Electrical Data



Figure 17–1 DECchip 21071-BA Clock Skew Requirements

.5*c - 1.25 ns min

.5*c + 1.25 ns max

.75*c - 1.60 ns min

.75*c + 1.60 ns max

.5*c - 0.50 ns min

.5*c + 0.50 ns max

Tsu Th

clk1R clk2R clk1F clk2F clk1R clk2R

sysClkOut1

clk1

clk2ref

Internal edges:

clk1x2

LJ-03719-TI0

Internal memClk: memClkR memClkRmemClkR

Table 17–4 DECchip 21071-BA Clock Skew Limits at clk1x2 Pin

Parameter Example Transfers Maximum Unit Note

clk1x2 rising edge to rising edge clk1R to clk1R, clk1R to clk1F,
clk1F to clk1R, clk1F to clk1F

0.50 ns @ Cycle =
30 ns

clk1x2 falling edge to falling
edge

clk2R to clk2R, clk2R to clk2F,
clk2F to clk2R, clk2F to clk2F

1.25 ns @ Cycle =
30 ns

clk1x2 rising edge to falling edge clk1R to clk2R, clk1R to clk2F,
clk1F to clk2R, clk1F to clk2F

1.60 ns @ Cycle =
30 ns

clk1x2 falling edge to rising edge clk2R to clk1R, clk2R to clk1F,
clk2F to clk1R, clk2F to clk1F

1.60 ns @ Cycle =
30 ns

DECchip 21071-BA Electrical Data 17–5



Figure 17–2 DECchip 21071-BA Clock Signals

LJ-03455-TI0

clk1x2

clk2ref

*clk1R

*clk2R

*clk2F

*memClkR

sysClkOut1

*clk1F

* Internally generated clocks.

The 21071-BA imposes no requirements on clk1 or sysClkOut1. Skew on
clk1 will be constrained by limits imposed by external paths to or from the
Bcache control PALs. The phase error between sysClkOut1 and clk1x2 will be
constrained by limits imposed by external paths to or from the CPU chip.

17.2.2 Signals
Figure 17–3 and Figure 17–4 demonstrate the timing measurements specified
in Table 17–6 and Table 17–7.

17–6 DECchip 21071-BA Electrical Data



Figure 17–3 DECchip 21071-BA Output Delay Measurement

1.5 V

Delay_B

0.8 V

LJ-03561-TI0

2.0 V

Delay_A

Output 2

Output 1

Input

Figure 17–4 DECchip 21071-BA Setup and Hold Time Measurement

LJ-03562-TI0

Set-up Hold

Valid Signal

1.5 V1.5 V

1.5 V

DECchip 21071-BA Electrical Data 17–7



The following ac electrical data is specified with respect to the appropriate edge
at the clk1x2 pin. Both the output delay table and the setup/hold time table
assume a 1 ns edge rate at the clk1x2 pin.

All outputs drive a 50 pF load. When estimating module delays, you may
need to replace the 50 pF load delay with a simulated (or calculated) delay.
The delays for 4 mA and 8 mA drivers driving a 50 pF load are provided in
Table 17–5. See Table 14–1 for information about the buffer size of every
output pin.

Table 17–5 DECchip 21071-BA Output Buffer Delays into a 50 pF Load

Type Minimum Maximum Unit

4 mA 3.5 7.6 ns

8 mA 2.3 5.0 ns

Table 17–6 DECchip 21071-BA AC Characteristics (Valid Delay into a 50 pF
Load)

Signal Minimum Maximum Unit Reference Edge

sysData<63:0>,
sysPar<1:0>,
sysCheck<6:0>

5.9 18.5 ns clk1R

memData<31:0>,
memPar<0>,
memCheck<6:0>

4.3 16.8 ns memClkR

epiData<31:0>,
epiBEnErr<3:0>

4.9 16.2 ns clk1R

17–8 DECchip 21071-BA Electrical Data



Table 17–7 DECchip 21071-BA AC Characteristics (Setup/Hold Time)

Signal Setup Hold Unit Reference Edge

sysData<63:0>,
sysPar<1:0>,
sysCheck<6:0>

2.4 2.9 ns clk2F

memData<31:0>,
memPar<0>,
memCheck<6:0>

0.6 4.4 ns memClkR

epiData<31:0>,
epiBEnErr<3:0>

1.0 5.2 ns clk2F

sysCmd<2:0>,
subCmd<1:0>,
sysIORead,
sysReadOW

0.6 5.0 ns clk2F

drvSysData1,
drvSysCSR

2.1 2.6 ns clk1R

drvSysData2 2.1 2.6 ns clk1F

memCmd<3:1> 2.1 5.2 ns clk1R

epiFromIOB,
epiSelDMA

1.0 5.2 ns clk2F

ioLineSel,
epiLineInval

1.0 5.2 ns clk2F

epiOWSel3,
epiLineSel<1:0>3

1.0 5.2 ns clk2F

1 For dvrSysData asserting.
2 For dvrSysData deasserting.
3 These signals pass through a transparent latch (closing on clk2F) and then reach a clk1R flip-flop.

(continued on next page)

DECchip 21071-BA Electrical Data 17–9



Table 17–7 (Cont.) DECchip 21071-BA AC Characteristics (Setup/Hold Time)

Signal Setup Hold Unit Reference Edge

epiOWSel3,
epiLineSel<1:0>3

9.7 — ns clk1R

epiEnable<1:0>3 1.0 5.2 ns clk2F

epiEnable<1>3 6.0 — ns clk1R

3 These signals pass through a transparent latch (closing on clk2F) and then reach a clk1R flip-flop.

17–10 DECchip 21071-BA Electrical Data



18
DECchip 21071-BA Power-Up and

Initialization

This chapter describes the behavior of the 21071-BA chip on power-up and
assertion of reset_l.

18.1 Power-Up
On power-up, the reset_l input of the 21071-BA chip should be asserted. It
should be kept asserted until the system clocks are up and running for 20
cycles.

18.2 Internal Reset
The assertion and deassertion of the reset_l pin on the module is asynchronous
to the DECchip 21071-BA. An internal reset signal is generated from reset_l
which asserts asynchronously as soon as reset_l is asserted, but which
deasserts synchronously. Due to the synchronous deassertion of the internal
reset, the DECchip 21071-BA requires that no external transaction should
start until 10 system clock cycles after the deassertion of reset_l.

18.3 State of Pins on Reset Assertion
The following are general rules and requirements for the behavior of the
21071-BA at its pins during reset:

• All input only control signals (except the clocks and reset_l) should be in
the deasserted state as long as reset is asserted.

• All output only signals are deasserted.

• All bidirectional signals are tristated.

• wideMem and eccMode should be stable before reset_l deasserts and should
never change thereafter.

DECchip 21071-BA Power-Up and Initialization 18–1



The exceptions to these rules are as follows:

• The value of memData<31:0> is unpredictable; the drive state depends on
the state of the drvMemData input.

• drvMemData is asserted by the 21071-CA during reset so memData<31:0>
are driven by the 21071-BA.

Note

In all cases, the assertion of tristate_l overrides the assertion of reset_l.
That is, if tristate_l is asserted during reset, all the outputs of the
chip go to their High-Z state. If reset_l is still asserted when tristate_l
deasserts, the signals return to the normal reset state described
previously.

18–2 DECchip 21071-BA Power-Up and Initialization



A
Bcache PAL Equations

This appendix provides Bcache PAL equations.

Bcache PAL Equations A–1



Table A–1 provides cache data write enable equations.

Table A–1 Equations for Cache Data Write Enables

bcDataWE31 = (sysDataLongWE & longWr)
# (sysDataWEEn & !clk1 & !longWr)
# cpuDataWE3;

bcDataWE3.OE = (( 1 ));

bcDataWE21 = (sysDataLongWE & longWr)
# (sysDataWEEn & !clk1 & !longWr)
# cpuDataWE2;

bcDataWE2.OE = (( 1 ));

bcDataWE11 = (sysDataLongWE & longWr)
# (sysDataWEEn & !clk1 & !longWr)
# cpuDataWE1;

bcDataWE1.OE = (( 1 ));

bcDataWE01 = (sysDataLongWE & longWr)
# (sysDataWEEn & !clk1 & !longWr)
# cpuDataWE0;

bcDataWE0.OE = (( 1 ));

!bcDataA4_31 2= ( sysDataALEn & !clk2 )
# ( sysDataAHEn & clk2 )
# ( sysDataALEn & sysDataAHEn3 )
# cpuDataA4;

bcDataA4_3.OE = (( 1 ));

!bcDataA4_21 2 = ( sysDataALEn & !clk2 )
# ( sysDataAHEn & clk2 )
# ( sysDataALEn & sysDataAHEn3 )
# cpuDataA4;

bcDataA4_2.OE = (( 1 ));

!bcDataA4_11 2 = ( sysDataALEn & !clk2 )
# ( sysDataAHEn & clk2 )
# ( sysDataALEn & sysDataAHEn3 )
# cpuDataA4;

bcDataA4_1.OE = (( 1 ));

1# = OR, & = AND, ! = NOT
2Cache address bit 4; these are 4 identical copies.
3This term is logically redundant but must be included to prevent glitches in the output.

(continued on next page)

A–2 Bcache PAL Equations



Table A–1 (Cont.) Equations for Cache Data Write Enables

!bcDataA4_01 2 = ( sysDataALEn & !clk2 )
# ( sysDataAHEn & clk2 )
# ( sysDataALEn & sysDataAHEn3 )
# cpuDataA4;

bcDataA4_0.OE = (( 1 ));

1# = OR, & = AND, ! = NOT
2Cache address bit 4; these are 4 identical copies.
3This term is logically redundant but must be included to prevent glitches in the output.

Bcache PAL Equations A–3



Table A–2 provides tag and data output enable equations.

Table A–2 Equations for the Tag and Data Output Enables

bcTagCEOE1 = (sysTagOEEn & !senseDis
# cpuTagCEOE & !senseDis
# sysEarlyOEEn & cpuCReq2 & !senseDis
# sysEarlyOEEn & cpuCReq1 & !senseDis
# sysEarlyOEEn & cpuCReq0 & !senseDis);

bcTagCEOE.OE = (( 1 ));

bcDataCEOE01 = (sysDataOEEn & !senseDis
# cpuDataCEOE & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq0 & !senseDis
# sysEarlyOEEn & cpuCReq2 & !cpuCReq0 & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq1 & !senseDis) ;

bcDataCEOE0.OE = (( 1 ));

bcDataCEOE11 = (sysDataOEEn & !senseDis
# cpuDataCEOE & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq0 & !senseDis
# sysEarlyOEEn & cpuCReq2 & !cpuCReq0 & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq1 & !senseDis) ;

bcDataCEOE1.OE = (( 1 ));

bcDataCEOE21 = (sysDataOEEn & !senseDis
# cpuDataCEOE & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq0 & !senseDis
# sysEarlyOEEn & cpuCReq2 & !cpuCReq0 & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq1 & !senseDis);

bcDataCEOE2.OE = (( 1 ));

bcDataCEOE31 = (sysDataOEEn & !senseDis
# cpuDataCEOE & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq0 & !senseDis
# sysEarlyOEEn & cpuCReq2 & !cpuCReq0 & !senseDis
# sysEarlyOEEn & !cpuCReq2 & cpuCReq1 & !senseDis;)

bcDataCEOE3.OE (( 1 ));

cpuDOE1 2= (sysEarlyOEEn & cpuCReq2 & cpuCReq0
# sysDOE );

cpuDOE.OE1 2 = !senseDis;

1# = OR, & = AND, ! = NOT
2CPU output enable; must be tristated when 3.3 V is not stable.

A–4 Bcache PAL Equations



Note

In addition to the two PALs, the DECchip 21071 and DECchip 21072
chipsets also require two NOR gates to control the cache. These may
be implemented using NORs or unused portions of the PALs.

Table A–3 provides Bcache and NOR gate equations.

Table A–3 Equations for Bcache and NOR Gates

tagCtlWE_l1 = ! ( cpuTagCtlWe + sysTagWE )

tagAdrWE_l1 = ! ( sysTagWE )

1# = OR, & = AND, ! = NOT

Bcache PAL Equations A–5





B
Technical Support and Ordering

Information

B.1 Technical Support
If you need technical support or help deciding which literature best
meets your needs, call the Digital Semiconductor Information Line:

United States and Canada
Outside North America

1–800–332–2717
+1–508–628–4760

B.2 Ordering Digital Semiconductor Products
To order the DECchip 21071 and DECchip 21072 core logic chipsets, contact
your local distributor.

B.3 Ordering Associated Literature
For a complete list of available Digital Semiconductor literature contact the
Digital Seminconductor Information Line.

Technical Support and Ordering Information B–1




