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Preface

TheAlpha Architecture Reference Manualorganized as shown in the following table.

Name Symbol  Contents

Common Architecture

M Describes the architecture that is common to and required of all implemen-
tations, and contains the following chapters:

Chapter 1, Introduction to the Common Architecture (1)

Chapter 2, Basic Architecture (1)

Chapter 3, Instruction Formats (1)

Chapter 4, Instruction Descriptions (1)

Chapter 5, System Architecture and Programming Implications (I)
Chapter 6, Common PALcode Architecture (1)

Chapter 7, Console Subsystem Overview (1)

Chapter 8, Input/Output Overview (1)

OpenVMS Operating System PALcode Architecture

(II-A)  Describes how the OpenVMS operating system relates to the Adptiai-
tecture and contains the following chapters:

Chapter 9, Introduction to OpenVME-A)
Chapter 10, PALcode Instruction Descriptidiis-A)
Chapter 11, Memory Management (lI-A)
Chapter 12, Process Structure (11-A)

Chapter 13, Internal Processor Registers (l11-A)

Chapter 14, Exceptions, Interrupts, and Machine Checks (II-A)

Tru64 UNIX Operating System PALcode Architecture

(II-B)  Describes how the Tru64 UNIX operating system relates to the Adpblai-
tecture and contains the following chapters:

Chapter 15, Introduction to Tru64 UNIX (1I-B)
Chapter 16, PALcode Instruction Descriptidtis-B)
Chapter 17, Memory Management (11-B)
Chapter 18, Process Structure (11-B)

Chapter 19, Exceptions and Interrufiis-B)



Alpha Linux Operating System PALcode Architecture

(II-C)  Describes how the Alpha Linux operating system relates to the Adpttai-
tecture and contains the following chapters:

Console Interface Architecture

Appendixes

Indexes

Chapter 20, Introduction to Alpha Linux (1I-C)
Chapter 21, PALcode Instruction Descriptidiis-C)
Chapter 22, Memory Management (1I-C)
Chapter 23, Process Structure (1I-C)

Chapter 24, Exceptions and Interrufits-C)

(D Describes an architected csole firmware implementation and contains the
following chapters:

Chapter 25, Console Subsystem Overview (I11)
Chapter 26, Console Intiaice to Operting System Software (l11)
Chapter 27, System Bootstrapping (llI)

The following appendixes are included:

Appendix A, Software Considerations

Appendix B, IEEE Floating-Point Conformance

Appendix C, Instruction Summary

Appendix D, Registered System and Processor Identifiers
Appendix E, Waivers and Implementation-Dependent Functionality

Appendix F, Windows NT Software

The index at the end of the manual is structured like a master index. Index
entries are called out by the chapter and page, followed by the appropriate
Section symbol{l), (lI-A), and so forth. Index entries for the appendixes
are called out by appendix letter and page number. Following the manual
index is an index of the instructions. The instruction index is the easiest way
to find primary documentation for the Alpha instruction set and the PAL-
code instructions for each operating system.




Common Architecture (1)

The following chapters describe the common Alpha architecture:

Chapter 1, Introduction to the Common Architecture (1)

Chapter 2, Basic Architecture (1)

Chapter 3, Instruction Formats (1)

Chapter 4, Instruction Descriptions (1)

Chapter 5, System Architecture and Programming Implications (I)
Chapter 6, Common PALcode Architecture (1)

Chapter 7, Console Subsystem Overview (1)

Chapter 8, Input/Output Overview (1)






Chapter 1

Introduction to the Common Architecture (I)

Alphais a 64-bit load/store RISC architecture that is designed with particular emphasis on the
three elements that most affect performance: clock speed, multiple instruction issue, and multi-
ple processors.

The Alpha architects examined and analyzed current and theoretical RISC architecture design
elements and developed high-performance alternatives for the Alpha architecture. The archi-
tects adopted only those design elements that appeared valuable for a projected 25-year design
horizon. Thus, Alpha becomes the first 21st century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating system or pro-
gramming language. Alpha supports the OpenVMS, Tru64 UNIX, and Alpha Linux operating
systems and supports simple software migration for applications that run on those operating
systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit architecture
of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and all opera-
tions are performed between 64-bit registers. It is not a 32-bit architecture that was later
expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations

The instructions are very simple. All instructions are 32 bits in length. Memory operations are
either loads or stores. All data manipulation is done between registers.

The Alpha architecture facilitates pipelining multiple instances of the same operations because
there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register or memory
and another instruction reading from the same place. That makes it particularly easy to build
implementations that issue multiple instructions every CPU cycle.

Alpha makes it easy to maintain binary compatibility across multiple implementations and easy
to maintain full speed on multiple-issue implementations. For example, there are no implemen-
tation-specific pipeline timing hazards, no load-delay slots, and no branch-delay slots.
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The Alpha Approach to Byte Manipulation

The Alpha architecture reads and writes bytes between registers and memory with the LDBU
and STB instructions. (Alpha also supports word read/writes with the LDWU and STW
instructions.)

Byte shifting and masking is performed with normal 64-bit register-to-register instructions,
crafted to keep instruction sequences short.

The Alpha Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and writes
issued by one processor may be arbitrarily reordered by an implementation. This allows imple-

mentations to use multibank caches, bypassed write buffers, write merging, pipelined writes

with retry on error, and so forth. If strict ordering between two accesses must be maintained,

explicit memory barrier instructions can be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or an interfering
write from another processor, then the conditional store succeeds. Otherwise, the store fails and
the program eventually must branch back and retry the sequence. This style of interlocking
scales well with very fast caches and makes Alpha an especially attractive architecture for
building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed

A number of Alpha instructions include hints for implementations, all aimed at achieving
higher speed.

e Calculated jump instructions have a target hint that can allow much faster subroutine
calls and returns.

* There are prefetching hints for the memory system that can allow much higher cache hit
rates.

* There are granularity hints for the virtual-address mapping that can allow much more
effedive use of translation lookaside buffers for large contiguous structures.

PALcode — Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are specific to a par-
ticular Alpha operating system implementation. These subroutines provide operating-system
primitives for context switching, interrupts, exceptions, and memory management. PALcode is
similar to the BIOS libraries that are provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software CALL_PAL
instructions.

PALcode is written in standard machine code with some implementation-specific extensions to
provide access to low-level hardware.
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1.2

1.3

PALcode lets Alpha implementations run the full OpenVMS, Tru64 UNIX, and Alpha Linux
operating systems. PALcode can provide this functionality with little overhead. For example,
the OpenVMS PALcode instructions let Alpha run OpenVMS with little more hardware than
that found on a conventional RISC machine: the PALmode bit itself, plus four extra protection
bits in each translation buffer entry.

Other versions of PALcode can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating systems.

Alpha and Programming Languages

Alpha is an attractive architecture for compiling a large variety of programming languages.
Alpha has been carefully designed to avoid bias toward one or two programming languages.
For example:

e Alpha does not contain a subroutine call instruction that moves a register window by a
fixed amount. Thus, Alpha is a good match for programming languages with many
parameters and programming languages with no parameters.

e Alpha does not contain a global integeresflow enable bit. Such a bit would need to
be changed at every subroutine boundary when a FORTRAN program calls a C pro-
gram.

Data Format Overview

Alpha is a load/store RISC architecture with the following datarabirstics:
e All operations are done between 64-bit registers.

* Memory is accessed via 64-bit virtual byte addresses, using the little-endian or, option-
ally, the big-endian byte numbering convention.

* There are 32 integer registers and 32 floating-point registers.
e Longword (32-bit) and quadword (64-bit) integers are supported.
* Five floating-point data types are supported:

— VAXF_floating (32-hit)

— VAX G_floating (64-bit)

— |EEE single (32-bit)

— |EEE double (64-bit)

— |EEE extended (128-bit)

Instruction Format Overview

As shown in Figure 1-1, Alpha instructions are all 32 bits in length. There are four major
instruction format classes that contain 0, 1, 2, or 3 register fields. All formats have a 6-bit
opcode.
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Figure 1-1: Instruction Format Overview
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* PALcode instructions specify, in the function code field, one of a few dozen complex
operations to begrformed.

e Conditional branch instructions test register Ra and specify a signed 21-bit PC-rela-
tive longword target displacement. Subroutine calls put the return address in register

Ra.

e Load and store instructions move bytes, words, longwords, or quadwords between
register Ra and memory, using Rb plus a signed 16-bit displacement as the memory
address.

e Operate instructions for floating-point and integer operations are both represented in
Figure 1-1 by the operate format illustration and are as follows:

Word and byte sign-extension operators.

Floating-point operations use Ra and Rb as source registers and write the result in
register Rc. There is an 11-bit extended opcode in the function field.

Integer operations use Ra and Rb or an 8-bit literal as the source operand, and write
the result in register Rc.

Integer operate instructions can use the Rb field and part of the function field to
specify an 8-bit literal. There is a 7-bit extended opcode in the function field.

1.4 Instruction Overview

PALcode Instructions

As described in Section 1.1, a Privileged Architecture Library (PALcode) is a set of subrou-
tines that is specific to a particular Alpha operating-system implementation. These subroutines
can be invoked by hardware or by software CALL_PAL instructions, which use the function
field to vector to the specified subroutine.

Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero/nonzero,
and they can test integer registers for even/odd. Unconditional branch instructions can write a
return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit address in a

register.
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Load/Store Instructions

Load and store instructions move 8-bit, 16-bit, 32-bit, or 64-bit aligned quantities from and to
memory. Memory addresses are flat 64-bit virtual addresses with no segmentation.

The VAX floating-point load/store instructions swap words to give a consistent register format
for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies of the
high bit of the datum. A 32-bit floating-point datum is placed in a register in a canonical form
that extends the exponent by 3 bits and extends the fraction with 29 low-order zeros. The 32-
bit operates preserve these canonical forms.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and 64-bit oper-
ations. The Alpha architecture has no 32/64 mode bit.

Integer Operate Instructions

The integer operate instructions manipulate full 64-bit values and include the usual assortment
of arithmetic, compardopgical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They differ from their
64-bit counterparts only in overflow detection and in producing 32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:
e Scaled add/subtract instructions for quick subscript calculation
e 128-bit multiply for division by a constant, and multiprecision arithmetic
e Conditional move instructions for avoiding branch instructions
* An extensive set of in-register byte and word manipulation instructions
* A set of multimedia instructions that support graphics and video

Integer overflow trap enable is encoded in the function field of each instruction, rather than
kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ opcodes exist for spec-
ifying 64-bit ADD with and without overflow checking. That makes it easier to pipeline
implementations.

Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and IEEE arith-
metic instructions, plus instructions for performing conversions between floating-point and
integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha includes condi-
tional move instructions for avoiding branches and merge sign/exponent instructions for simple
field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field of each
instruction, rather than kept in global state bits. That makes it easier to pipeline
implementations.
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1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:
e Allinstructions are 32 bits long and have a regular format.

* There are 32 integer registers (RO through R31), each 64 bits widerdR8s as zero,
and writes to R31 are ignored.

* Allinteger data manipulation is between integer registers, with up to two variable regis-
ter source operands (one may be an 8-bit literal) and one register destination operand.

* There are 32 floating-point registers (FO through F31), each 64 bits wide. F31 reads as
zero, and writes to F31 are ignored.

* All floating-point data manipulation is between floating-point registers, with up to two
register source operands and one register destination operand.

* Instructions can move data in an integer register file to a floating-point register file, and
data in a floating-point register file to an integer register file. The instructions do not
interpret bits in the register files and do not access memory.

* All memory reference instraions are of the load/store type that moves data between
registers and memory.

e There are no branch condition codes. Branch instructions test an integer or floating-
point register value, which may be the result of a previous compare.

* Integer and logical instructions operate on quadwords.

* Floating-point instructions operate on G_floating, F_floating, and IEEE extended, dou-
ble, and single operands. D_floating "format compatibility," in which binary files of
D_floating numbers may be processed, but without the last 3 bitscfion precsion,
is also provided.

* A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions
The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other
than decimal are indicated with the name of the base in subscript form, for exampie, 10

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that allows pro-
tection mechanisms to be bypassed.

Security holes exist when unprivileged software (software running outside of kernel mode)
can:

* Affect the operation of another process without authorization from trerating sys-
tem;
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* Amplify its privilege without authorization from the operating system; or

e Communicate with another process, either overtly or covertly, without authorization
from the operating system.

The Alpha architecture has been designed to contain no architectural security holes. Hardware
(processors, buses, controllers, and so on) and software should likewise be designed to avoid
security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book. Their mean-
ings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger UNDE-
FINED operations. Unprivileged software cannot trigger UNDEFINED operations. However,
either privileged or unprivileged software can trigger UNPREDICTABLE results or

occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the processor;
it continues to execute instructions in its normal manner. In contrast, UNDEFINED operation
can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

* Results or occuences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

* An UNPREDICTABLE result may acquire an arbitrary value subject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any state
information that is accessible to the process in its current access mode. UNPREDICT-
ABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

* An occurrence specified as UNPREDICTABLE may happen or not based on an arbi-
trary choice funtion. The choice function is subject to the same constraints as are
UNPREDICTABLE results and, in particular, must not constitute a security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the current
process in the current access mode does not have access, or

— Halt or hang the system or any of its components.
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1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

For example, a security hole would exist if some UNPREDICTABLE result depended
on the value of a register in another process, on the contents of processor temporary
registers left behind by some previously running process, or on a sequence of actions
of different processes.

UNDEFINED

e Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

* UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

Ranges and Extents
Ranges are specified by a pair of numbers separated by two periods and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are inclu-
sive. For example, bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used interchange-
ably to refer to data objects that are powers of two in size. An aligned datum of size 2**N is
stored in memory at a byte address that is a multiple of 2**N, that is, one that has N low-order
zeros. Thus, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it is called
UNALIGNED.

Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-zero
value. These fields may be used at some future time. If the processor encounters a non-zero
value in a field specified as MBZ, an lllegal Operand exception occurs.

Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

Should Be Zero (SBZ2)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero value. Non-
zero values in SBZ fields produce UNPREDICTABLE results and may produce extraneous
instruction-issue delays.
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1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation-specific
purposes. Each implementation must document fully the behavior of all fields marked as IMP
by the Alpha specification.

1.6.11 Illlustration Conventions

Illustrations that depict registers or memory follow the convention that increasing addresses
run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or Chapter 10, or are
stylized code forms found in Appendix A .
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Chapter 2

Basic Architecture (I)

2.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. Virtual addresses are 64
bits long. An implementation may support a smaller virtual address space. The minimum vir-
tual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory addresses by the
memory management mechanism.

Although the data types in Section 2.2 are described in terms @-bttldian byte addressing,
implementations may also include big-endian addressing support, as described in Section 2.3.
All current implementations have some big-endian support.

2.2 Data Types
Following are descriptions of the Alpha architecture data types.

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are numbered
from right to left, 0 through 7, as shown in Figure 2—1.

Figure 2-1: Byte Format

7 0

A byte is specified by its address A. A byte is an 8-bit value. The byte is only supported in
Alpha by the load, store, sign-extend, extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, 0 through 15, as shown in Figure 2-2.
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Figure 2-2: Word Format

15 0

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the load, store, sign-extend,
extract, mask, and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 0

A longword is specified by its address A, the address of the byte containing bit 0. A longword
is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits of
increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is only sup-

ported in Alpha by sign-extended load and store instructions and by longword arithmetic
instructions.

Note:

Alpha implementations will impose a significant performance penalty when accessing
longword operands that are not naturally aligned. (A naturally aligned longword has zero
as the low-order two bits of its address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 63, as shown in Figure 2—4.

Figure 2—4 Quadword Format

63

A quadword is specified by its address A, the address of the byte containing bit 0. A quadword
is a 64-bit value. When interpreted arithmetically, a quadword is either a two’s-complement
integer with bits of increasing significance from 0 through 62 and bit 63 as the sign bit, or an
unsigned integer with bits of increasing significance from 0 through 63.
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Note:

Alpha implementations will impose a significant performance penalty when accessing
guadword operands that are not naturally aligned. (A naturally aligned quadword has zero

as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

VAX floating-point numbers are stored in one set of formats in memory and in a second set of
formats in registers. The floating-point load and store instructions convert between these for-
mats purely by rearranging bits; no rounding or range-checking is done by the load and store

instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary byte boundary.

The bits are labeled from right to left, O through 31, as shown in Figure 2-5.

Figure 2-5: F_floating Datum

31 16 15 14 7 6 0

Fraction Lo S Exp. Frac. Hi [:A

An F_floating operand occupies 64 bits in a floating register, left-justified in the 64-bit regis-

ter, as shown in Figure 2—6.

Figure 2—6 F_floating Register Format

63 62 52 51 2928

S Exp. Fraction 0

‘Fx

The F_floating load instruction reorders bits on the way in from memory, expands the expo-
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the register
an equivalent G_floating number suitable for either F_floating or G_floating operations. The
mapping from 8-bit memory-format exponents to 11-bit register-format exponents is shown in

Table 2—-1. This mapping preserves both normal values and exceptional values.

Table 2-1: F_floating Load Exponent Mapping (MAP_F)

Memory <14:7> Register <62:52>

11111111 10001111111
1 XXXXXXX 1 000 xxxxxxxX  (xxxxxxx not all 1's)
0 XXXXXXX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

The F_floating store instruction reorders register bits on the way to memory and does no
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored by the

store instruction.
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An F_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of an F_floating datum is sign magnitude with bit 15 the sign bit, bits <14:7> an
excess-128 binary exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction with the
redundant most significant fraction bit not represented. Within the fraction, bits of increasing
significance are from 16 through 31 and 0 through 6. The 8-bit exponent field encodes the val-
ues 0 through 255. An exponent value of 0, together with a sign bit of 0, is taken to indicate
that the F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. Expo-
nent values of 1..255 indicate true binary exponents of —127..127. An exponent value of 0,
together with a sign bit of 1, is taken as a reserved operand. Floating-point instructions pro-
cessing a reserved operand take an arithmetic exception. The value of an F_floating datum is in
the approximate range 0.29*10**-38 through 1.7*10**38. The precision of an F_floating
datum is approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when accessing
F_floating operands that are not naturally aligned. (A naturally aligned F_floating datum
has zero as the low-order two bits of its address.)

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are labeled from right to left, O through 63, as shown in Figure 2—7.

Figure 2—-7: G_floating Datum
31 16 15 14 4 3 0

Fraction Midh S Exp. Frac.Hi|:A

Fraction Lo Fraction Midl A+4

A G_floating operand occupies 64 bits in a floating registeiarged as shown in Figure 2-8.

Figure 2-8 G_floating Register Format

63 62

52 51 32 31 0

S

Exp. Fraction Hi Fraction Lo ‘Fx

A G_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits <14.:4> an excess-
1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with the redun-
dant most significant fraction bit not represented. Within the fraction, bits of increasing
significance are from 48 through 63, 32 through 47, 16 through 31, and 0 through 3. The 11-bit
exponent field encodes the values 0 through 2047. An exponent value of 0, together with a sign
bit of 0, is taken to indicate that the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction always produces
a datum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. Exponent values of
1..2047 indicate true binary exponents of —1023..1023. An exponent value of 0, together with a
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sign bit of 1, is taken as a reserved operand. Floating-point instructions processing a reserved
operand take a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*1 0**—308 through 0.9*10**308. The precision of a G_floating datum

is approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when accessing
G_floating operands that are not naturally aligned. (A naturally aligned G_floating datum
has zero as the low-order three bits of its address.)

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are labeled from right to left, O through 63, as shown in Figure 2-9.

Figure 2-9: D_floating Datum

31 16 15 14 7 6 0
Fraction Midh S Exp. Frac.Hi |:A

Fraction Lo Fraction Midl A+4

A D_floating operand occupies 64 bits in a floating registeraaged as shown in Figure 2—-10.

Figure 2-10 D_floating Register Format

63 62

55 54 48 47 32 31 16 15 0

S

Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo ‘Fx

The reordering of bits required for a D_floating load or store is identical to that required for a
G_floating load or store. The G_floating load and store instructions are therefore used for load-
ing or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of a D_floating datum is identical to an F_floating datum except for 32 addi-
tional low significance fraction bits. Within the fraction, bits of increasing significance are
from 48 through 63, 32 through 47, 16 through 31, and 0O through 6. The exponent conventions
and approximate range of values is the same for D_floating as F_floating. The precision of a
D_floating datum is approximately one part in 2**55, typically 16 decimal digits.

Notes:

D_floating is not a fully supported data type; no D_floating arithmetic operations are

provided in the architecture. For backward compatibility, exact D_floating arithmetic may

be provided via software emulation. D_floating "format compatibility"in which binary files

of D_floating numbers may be processed, but without the last three bits of fraction

precision, can be obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

Alpha implementations will impose a significant performance penalty on access to
D_floating operands that are not naturally aligned. (A naturally aligned D_floating datum
has zero as the low-order three bits of its address.)
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2.2.6 |IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, defines four
floating-point formats in two groups, basic and extended, each having two widths, single and
double. The Alpha architecture supports the basic single and double formats, with the basic
double format serving as the extended single format. The values representable within a format
are specified by using three integer parameters:

* P —the number of fraction bits

* Emax —the maximum exponent

e Emin — the minimum exponent

Within each format, only the following entities are permitted:

* Numbers of the form (-1)**S x 2**E x b(0).b(1)b(2)..b(P-1) where:
- S=0or1
— E =any integer between Emin and Emax, inclusive
— b(n)=0or1l

e Two infinities — positive and negative

e Atleast one Signaling NaN

e Atleast one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit pattern that repre-
sents something other than a number. NaNs come in two forms: Signaling NaNs and Quiet
NaNs. Signaling NaNs are used to provide values for uninitialized variables and for arithmetic
enhancements. Quiet NaNs provide retrospective diagnostic information regarding previous
invalid or unavailable data and results. Signaling NaNs signal an invalid operation when they
are an operand to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large magnitude.
Negative infinity is less than every finite number; positive infinity ieater than everyiiite
number.

2.2.6.1 S_floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in memory start-
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 31, as
shown in Figure 2—-11.

Figure 2-11: S_floating Datum

31 30 23 22 0

S Exp. Fraction A

An S_floating operand occupies 64 bits in a floating register, left-justified in the 64-bit regis-
ter, as shown in Figure 2-12.
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Figure 2-12 S_floating Register Format

63 62

52 51 2928 0

S

Exp. Fraction 0 :Fx

The S_floating load instruction reorders bits on the way in from memory, expanding the expo-
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the register
an equivalent T_floating number, suitable for either S_floating or T_floating operations. The

mapping from 8-bit memory-format exponents to 11-bit register-format exponents is shown in

Table 2-2.

Table 2-2: S_floating Load Exponent Mapping (MAP_S)

Memory <30:23> Register <62:52>
11111111 11111111111
1 XXXXXXX 1 000 xxxxxxx (xxxxxxx not all 1's)
0 XXXXXXX 0 1171 xxXxxxxx (xxxxxxx not all 0’'s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the mapping for
all 1's differs from that of F_floating load, since for S_floating all 1's is an exceptional value
and for F_floating all 1's is a normal value.

The S_floating store instruction reorders register bits on the way to memory and does no
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored by the
store instruction. The S_floating load instruction does no checking of the input.

The S_floating store instruction does no checking of the data; theepling operation should
have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing bit 0. The
memory form of an S_floating datum is sign magnitude with bit 31 the sign bit, bits <30:23>
an excess-127 binary exponent, and bits <22:0> a 28duton.

The value (V) of an S_floating number is imfed from its comstituent sign (S), exponent (E),
and fraction (F) fields as follows:

e |f E=255 and F<>0, then V is NaN, regardless of S.

e |f E=255 and F=0, then V = (-1)**S x Infinity.

e If0<E <255, then V = (=1)**S x 2**(E=127) x (1.F).
e If E=0 and F<>0, then V = (-=1)**S x 2**(—126) x (0.F).
e |If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception for a vari-
ety of reasons, including invalid operations, overflow, underflow, division by zero, and inexact
results.
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Note:

Alpha implementations will impose a significant performance penalty when accessing
S floating operands that are not naturally aligned. (A naturally aligned S_floating datum
has zero as the low-order two bits of its address.)

2.2.6.2 T _floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in memory start-
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 63, as
shown in Figure 2—-13.

Figure 2-13: T_floating Datum

3130 2019 0

Fraction Lo A

S Exponent Fraction Hi :A+4

A T_floating operand occupies 64 bits in a floating registeraiaged as shown in Figure 2-14.

Figure 2-14 T_floating Register Format

63 62

52 51 32 31 0

S

Exp. Fraction Hi Fraction Lo ‘Fx

The T_floating load instruction performs no bit reordering on input, nor does it perform check-
ing of the input data.

The T_floating store instruction performs no bit reordering on output. This instruction does no
checking of the data; the preceding operation should have specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits <62:52> an excess-
1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S), exponent (E),
and fraction (F) fields as follows:

e |f E=2047 and F<>0, then V is NaN, regardless of S.

e |If E=2047 and F=0, then V = (-1)**S X Infinity.

e If0<E <2047, then V = (=1)**S x 2**(E=1023) x (1.F).
e |f E=0 and F<>0, then V = (-1)**S x 2**(-1022) x (0.F).
e |If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception for a vari-
ety of reasons, including invalid operations, overflow, underflow, division by zero, and inexact
results.
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Note:

Alpha implementations will impose a significant performance penalty when accessing
T floating operands that are not naturally aligned. (A naturally aligned T_floating datum
has zero as the low-order three bits of its address.)

2.2.6.3 X_floating

Support for 128-bit IEEE extended-precision (X_float) floating-point is initially provided
entirely through software. This section is included to preserve the intended consistency of
implementation with other IEEE floating-point data types, should the X_float data type be sup-
ported in future hardware.

An IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in memory,
starting on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 127, as
shown in Figure 2—15.

Figure 2-15 X _floating Datum

6362 48 47 0
Fraction_low A
S Exponent Fraction_high :A+8
An X_floating datum occupies two consecutive even/odd floating-point registers (such as
F4/F5), as shown in Figure 2—16.
Figure 2-16: X_floating Register Format
127 126 112 111 64 63 N 0
RSN RSN
S| Exponent Fraction_high Fraction_low
< AR
AN Al J
Y Y
FnOR 1 Fn

An X_floating datum is specified by its address A, the address of the byte containing bit 0. The
form of an X_floating datum is sign magnitude with bit 127 the sign bit, bits <126:112> an
excess—16383 binary exponent, and bits <111:0> a 112-bit fraction.

The value (V) of an X_floating number is inferred from its constituent sign (S), exponent (E),
and fraction (F) fields as follows:

e |f E=32767 and F<>0, then V is a NaN, regardless of S.

e |f E=32767 and F=0, then V = (-1)**S x Infinity.

e If0<E <32767,thenV = (=1)**S x 2**(E-16383) x (1.F).
e [IfE=0and F<>0, then V = (-1)**S x 2**(-16382) x (0.F).
e IfE=0andF=0,thenV = (-1)**S x 0 (zero).

Note:

Alpha implementations will impose a significant performance penalty when accessing
X_floating operands that are not naturally aligned. (A naturally aligned X_floating datum
has zero as the low-order four bits of its address.)
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X_Floating Big-Endian Formats

Section 2.3 describes Alpha support for big-endian data types. It is intended that software or
hardware implementation for a big-endian X_float data type comply with that support and have
the following formats.

Figure 2-17 X_floating Big-Endian Datum

Byte
0

A: S Exponent Fraction_high
Byte
15
A+8: Fraction_low
Figure 2-18: X _floating Big-Endian Register Format
Byte Byte
0 NS 15
RSN AN
S| Exponent Fraction_high Fraction_low
EAY <<
N\ A J
Y Y
FnOR 1 Fn

2.2.7 Longword Integer Format in Floating-Point Unit
A longword integer oprand ocapies 32 bits in memongrranged as shown inigure 2—19.

Figure 2-19: Longword Integer Datum

3130 0

S Integer A

A longword integer operand occupies 64 bits in a floating register, arranged as shown in Fig-
ure 2-20.

Figure 2—-20: Longword Integer Floating-Register Format
63 62 61 59 58 29 28 0

S| 1| xxx Integer 0 ‘Fx

There is no explicit longword load or store instruction; the S_floating load/store instructions
are used to move longword data into or out of the floating registers. The register bits <61:59>
are set by the S_floating load exponent mapping. They are ignored by S_floating store. They
are also ignored in operands of a longword integer operate instruction, and they are set to 000
in the result of a longword operate instruction.

The register format bit <62> "I" in Figure 2—-20 is part of the Integer field in Figure 2—-19 and
represents the high-order bit of that field.
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Note:

Alpha implementations will impose a significant performance penalty when accessing
longwords that are not naturally aligned. (A naturally aligned longword datum has zero as
the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memamngreged as shown in Figure 2—-21.

Figure 2—-21: Quadword Integer Datum

31 30 0

Integer Lo A

S Integer Hi :A+4

A quadword integer operand occupies 64 bits in a floating register, arranged as shown in Fig-
ure 2-22.

Figure 2—-22 Quadword Integer Floating-Register Format

63 62

32 31 0

S

Integer Hi Integer Lo ‘FX

There is no explicit quadword load or store instruction; the T_floating load/store instructions
are used to move quadword data between memory and the floating registers. (The ITOFT and
FTOIT are used to move quadword data between integer and floating registers.)

The T_floating load instruction performs no bit reordering on input. The T_floating store
instruction performs no bit reordering on output. This instruction does no checking of the data;
when used to store quadwords, the preceding operation should have specified a quadword
result.

Note:

Alpha implementations will impose a significant performance penalty when accessing
guadwords that are not naturally aligned. (A naturally aligned quadword datuzehass
the low-order three bits of its address.)

2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha hardware.
e Octaword
* H_floating
* D floating (except load/store and convert to/from G_floating)
e Variable-Length Bit Field
* Character String

* Trailing Numeric String
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Leading Separate Numeric String

Packed Decimal String

2.3 Big-Endian Addressing Support

Alpha implementations may include optional big-endian addressing support.

In a little-endian machine, the bytes within a quadword are numbered right to left:

Figure 2—-23 Little-Endian Byte Addressing

7

6 5 4 3 2 1 0

In a big-endian machine, they are numbered left to right:

Figure 2—-24 Big-Endian Byte Addressing

Bit numbering within bytes is naffected by thédyte numbering convention (big-endian or lit-
tle-endian).

The format for the X_floating big-endian data type is shown in Section 2.2.6.3.

The byte numbering convention does not matter waeresing complete aligned quadwords
in memory. However, the numbering convention does matter when accessing smaller or
unaligned quantities, or when manipulating data in registers, as follows:

A guadword load or store of data at location 0 moves the same eight bytes under both
numbering conventions. However, a longword load or store of data at location 4 must
move the leftmost half of a quadword under the little-endian convention, and the right-

most half under the big-endian convention. Thus, to support both conventions, the con-
vention being used must be known and it must affect longword load/store operations.

A byte extract of byte 5 from a quadword of data into the low byte of a register requires
a right shift of 5 bytes under the little-endian convention, but a right shift of 2 bytes
under the big-endian convention.

Manipulation of data in a register is almost the same for both conventions. In both, inte-
ger and floating-point data have their sign bits in the leftmost byte and their least signif-
icant bit in the rightmost byte, so the same integer and floating-point instructions are
used unchanged for both conventions. Big-endiaaratter strings have their masg-
nificant character on the left, while little-endian strings have their most significant char-
acter on the right.

The compare byte (CMPBGE) instruction is neutral about direction, doing eight byte
compares in parallel. However, following the CMPBGE instruction, the codeffisr di

ent that examines the byte mask to determine which string is larger, depending on
whether the rightmost or leftmost unequal byte is used. Thus, compilers must be
instructed to generate somewhat different code sequences for the two conventions.
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Implementations that include big-endian support must supply all of the following features:

* A means at boot time to choose the byte numbering convention. The implementation is
not required to support dynamically changing the convention during program execu-
tion. The chosen convention applies to all code executed, both operating-system and
user.

e If the big-endian convention is chosen, the longword-length load/store instructions
(LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2> (bit 2 of the vir-
tual address). This has tleéfect of accessing the half of a qisord other than the half
that would be accessed under the little-endian convention.

e If the big-endian convention is chosen, the word-length load and store instructions,
LDWU and STW, invert bits va<1:2> (bits 1 and 2 of the virtual address). This has the
effect of accessing the half of tHengword that would be accessed under the little-
endian convention.

e If the big-endian convention is chosen, the byte-length load and store instructions,
LDBU and STB, invert bits va<0:2> (bits 0 through 2 of the virtual address). This has
the effect of accessing the half of the word that would be accessed under the little-
endian convention.

e If the big-endian convention is chosen, the byte manipulation instructions (EXTxX,
INSxx, MSKxXx) invert bits Rbv<2:0>. This has the effect of changing a shift of 5 bytes
into a shift of 2 bytes, for example.

The instruction stream is always considered to keliendian, and is independent of the cho-

sen byte numbering convention. Compilers, linkers, and debuggers must be aware of this when
accessing an instruction stream using data-stream load/store instructions. Thus, the rightmost
instruction in a quadword is always executed first and always has the instruction-stream
address 0 MOD 8. The same hytes accessed by a longword load/store instruction have data-
stream address 0 MOD 8 under the little-endian convention, and 4 MOD 8 under the big-
endian convention.

Using either byte numbering convention, it is sometimes necessary to access data that origi-
nated on a machine that used the other convention. When this occurs, it is often necessary to
swap the bytes within a datum. See Section A.4.3 for a suggested code sequence.
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Chapter 3

Instruction Formats (1)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state. If an Alpha
system contains multiple Alpha processors, there are multiple per-processor sets of these
registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream. As each
instruction is decoded, the PC is advanced to the next sequential instruction. This is referred to
as theupdated PCAny instruction that uses the value of the PC will use the updated PC. The
PC includes only bits <63:2> with bits <1:0> treated as RAZ/IGN. This quantity is a long-
word-aligned byte address. The PC is an implied operand on conditional branch and subroutine
jump instructions. The PC is not accessible as an integer register.

3.1.2 Integer Registers

There are 32 integer registers (RO through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is specified as
a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of an instruction
that specifies R31 as a destination operand are discarded. Also, itis UNPREDICTABLE
whether the other destination operands (implicit and explicit) are changed by the instruction. It
is implementation dependent to what extent the instruction is actually executed once it has
been fetched. An exception is never signaled for a load that specifies R31 as a destination oper-
ation. For all other operations, itis UNPREDICTABLE whether exceptions are signaled during
the execution of such an instruction. Note, however, that exceptions associated with the
instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Appendix A, certain load instructions to an R31 destination are the
preferred method for performing a cadbleck prefetch.
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There are some interesting cases involving R31 as a destination:
e STx _CR31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset the
lock flag, this instruction causes the lock flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

e LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock flag and
locked_physical_address to become UNPREDICTABLE.

Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_COROUTINE)
instructions, when R31 is specified as the Ra operand, execute normally and update the PC
with the target virtual address. Of course, no PC value can be saved in R31.

3.1.3 Floating-Point Registers

There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is supplied. See
Section 4.7.3 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded and it is
UNPREDICTABLE whether the other destination operands (implicit and explicit) are changed
by the instruction. In this case, it is implementation-dependent to what extent the instruction is
actually executed once it has been fetched.

A memory management exception or alignment exception is never signaled for a load that
specifies F31 as a destination register. It is UNPREDICTABLE whether a floating-point dis-
abled exception can be signaled by a load that specifies F31 as a destination register. For all
other instructions that specify F31 as an output operand, itis UNPREDICTABLE whether
exceptions are signaled during the execution of such an instruction. Note, however, that excep-
tions associated with the instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Appendix A, certain load instructions to an F31 destination are the
preferred method forignalling a cache block prefetch.

A floating-point instruction that ogrates on single-precision data reads all bits <63:0> of the
source floating-point register. A floating-point instruction that produces a single-precision
result writes all bits <63:0> of the destination floating-point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C instructions, the
lock_flag and the locked_physical_address register. The use of these registers is described in
Section 4.2.
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3.1.5 Processor Cycle Counter (PCC) Register

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an
unsigned wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are
operating system dependent in their implementation.

PCC_CNT is the base clock register for measuring time intervals and is suitable for timing
intervals on the order of nanoseconds.

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific integer
in the range 1..16. The cycle counter frequency is the number of times the processor cycle
counter gets incremented per second. The integer count wraps to 0 from a count of FFFF
FFFF g The counter wraps no more frequently than 1.5 times the implementation’s interval

clock interrupt period (which is two thirds of the interval clock interrupt frequency), which
guarantees that an interrupt occurs before PCC _CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in a simple
implementation. However, if PCC_OFF is used to calculate a per-process or per-thread cycle
count, it must contain a value that, when added to PCC_CNT, returns the total PCC register
count for that process or thread, modulo 2**32.

Implementation Note:
OpenVMS, Tru64 UNIX, and Alpha Linux supply &pthread value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each processor
on a multiprocessor system has its own private, independent PCC.

The PCC is read by the RPCC instruction. See Section 4.11.9.

3.1.6 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX compatibility
processor registers.

3.1.6.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an implementation will
include two sets of state prefetch registers used by those instructions. The use of these regis-
ters is described in Section 4.11. These registers are not directly accessible by software and are
listed for completeness.

3.1.6.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as described in
Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence of con-
trol and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation

Tables 3-1, 3-2, and 3-3 list the notation for the operands, the operand values, and the other
expression operands.

Table 3—1 Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction
Rb An integer register operand in the Rb field of the instruction
#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction
Fa A floating-point register ogrand in the Ra field of thenstruction
Fb A floating-point register ogrand in the Rb field of thanstruction
Fc A floating-point register ogrand in the Rc field of thenstruction

Table 3—2 Operand Value Notation

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a zero-
extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating-point Fa operand. This is the contents of register Fa.

Fbv The value of the floating-point Fb operand. This is the contents of register Fb.

Table 3—3 Expression Operand Notation

Notation Meaning

IPR_x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n
X[m] Element m of array X

3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier notation
used in thevVAX Architecture Standardnstruction ogrands are described as follows:

<name>.<access type><data type>
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3.2.2.1 Operand Name Notation

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand (integer or
floating). It can be one of the following:

Table 3—4 Operand Name Notation

Name Meaning

disp The displacement field of the instruction

fnc The PALcode function field of the instruction

Ra An integer register operand in the Ra field of the instruction
Rb An integer register operand in the Rb field of the instruction
#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction
Fa A floating-point register ogrand in the Ra field of thenstruction
Fb A floating-point register ogrand in the Rb field of theastruction
Fc A floating-point register ogrand in the Rc field of thenstruction

3.2.2.2 Operand Access Type Notation

A letter that denotes the operand access type:

Table 3-5 Operand Access Type Notation

Access Type Meaning

a The operand is used in an address calculation to form an effective address. The data
type code that follows indicates the units of addressability (or scale factor) applied to
this operand when the instruction is decoded.

For example:

".al" means scale by 4 (longwords) to get byte units (used in branch displacements);
".ab" means the operand is already in byte units (used in load/store instructions).

i The operand is an immediate literal in the instruction.

r The operand is read only.
m The operand is both read and written.
w The operand is write only.
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3.2.2.3 Operand Data Type Notation

A letter that denotes the data type of the operand:

Table 3—6 Operand Data Type Notation

Data Type Meaning

b Byte

f F_floating

g G_floating

I Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

X The data type is specified by the instruction

3.2.3 Operators

Table 3—7 describes the operators:

Table 3—7 Operators

Operator Meaning

! Comment delimiter.

+ Addition.

- Subtraction.

* Signed multiplication.

*U Unsigned multiplication.

*x Exponentiation (left argument raised to right argument).
/ Division.

- Replacement.

Il Bit concatenation.

{1 Indicates explicit operator precedence.

(x) Contents of memory location whose address is x.

X <m:n> Contents of bit field of x defined by bits n through m.

X <m> M’th bit of x.

ACCESS(x,y) Accessibility of the location whose address is x using the access
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Table 3—7 Operators (Continued)

Operator

Meaning

AND
ARITH_RIGHT_SHIFT(x,y)

BYTE_ZAP(X,y)

CASE

DIV
LEFT_SHIFT(x,y)

LOAD_LOCKED

g
MAP_x
MAXS(X,Y)

Logical product.

Arithmetic right shift of first operand by the second operand. Y is an
unsigned shift value. Bit 63, the sign bit, is copied into vacated bit
positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit corresponds to
a byte of the result. The y bit to x byte correspondence is
y <n> o x <8n+7:8n>. This correspondence also exists between y
and the result.

For each bit of y fromn=01to 7, if y <n> is 0 then byte <n> of x is
copied to byte <n> of result, and if y <n> is 1 then byte <n> of result
is forced to all zeros.

The CASE construct selects one of several actions based on the value
of its argument. The form of a case is:

CASE argument OF
argvaluel: action 1
argvalue2: action_2

argvaluen:action_n
[otherwise: default_action]
ENDCASE

If the value of argument is argvaluel then action_1 is executed; if
argument = argvalue2, then action_2 is executed, and so forth.

Once a single action is executed, the code stream breaks to the END-
CASE (there is an implicit break as in Pascal). Each action may
nonetheless be a sequence of pseudocode operations, one operation
per line.

Optionally, the last argvalue may be the atom ‘otherwise’. The asso-
ciated default action will be taken if none of the other argvalues
match the argument.

Integer division (truncates).

Logical left shift of first operand by the second operand.Y is an
unsigned shift value. Zeros are moved into the vacated bit positions,
and shifted out bits are discarded.

The processor records the target physical address in a per-processor
locked_physical_address register and sets the per-processor
lock flag.

Log to the base 2.
F _float or S_float memory-to-register exponent mapping function.

Returns the larger of x and y, with x and y interpreted as signed inte-
gers.
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Table 3—7 Operators (Continued)

Operator Meaning

MAXU(X,Y) Returns the larger of x and y, with x and y interpreted as unsigned
integers.

MINS(X,y) Returns the smaller of x and y, with x and y interpreted as signed
integers.

MINU(X,y) Returns the smaller of x and y, with x and y interpreted as unsigned
integers.

X MODy X moduloy.

NOT Logical (ones) complement.

OR Logical sum.

PHYSICAL_ADDRESS
PRIORITY_ENCODE

Relational Operators:

RIGHT_SHIFT(x,y)

SEXT(x)
STORE_CONDITIONAL
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Translation of a virtual address.

Returns the bit position of most significant set bit, interpreting its
argument as a positive integer (=int(Ig(x))). For example:

priority_encode( 255 ) = 7

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned
NE Not equal signed and unsigned
GE Greater or equal signed
GEU Greater or equal unsigned
GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit signed

Logical right shift of first operand by the second operand. Y is an
unsigned shift value. Zeros are moved into vacated bit positions, and
shifted out bits are discarded.

X is sign-extended to the required size.

If the lock_flag is set, then do the indicated store and clear the
lock flag.



Table 3—7 Operators (Continued)

Operator Meaning

TEST(x,cond) The contents of register x are tested for branch condition (cond) true.
TEST returns a Boolean value TRUE if x bears the specified relation
to 0, else FALSE is returned. Integer and floating test conditions are
drawn from the preceding list of relational @@tors.

XOR Logical difference.

ZEXT(X) X is zero-extended to the required size.

3.2.4 Notation Conventions

The following conventions are used:
* Only operands that appear on the left side of a replacemearatgr are modified.

* No operator precedence is assumed other than that replacemghté the lowest pre-
cedence. Explicit precedence is indicated by the use of "{}".

e All arithmetic, logical, and relational operators are defined in the context of their oper-
ands. For example, "+" applied to G_floating operands means a G_floating add,
whereas "+" applied to quadword operands is an integer add. Similarly, "LT" is a
G_floating comparison when applied to G_floating operands and an integer comparison
when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

¢ Memory
* Branch
* Operate

* Floating-point Operate
* PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26> of the
instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value of 31.

Software Note:

There are several instructions, each formatted as a memory instruction, that do not use the
Ra and/or Rb fields. These instructions are: Memorgrrigr, Fetch, Fetch_M, Read
Process Cycle Counter, Read and Clear, Read and Set, and Trap Barrier.
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3.3.1 Memory Instruction Format

The Memory format is used to transfer data between registers and memory, to load an effec-
tive address, and for subroutine jumps. It has the format shown in Figure 3—1.

Figure 3—1: Memory Instruction Format

31 26 25 2120 16 15 0

Opcode Ra Rb Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address fields, Ra
and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents of register
Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value, depending on the
specific instruction. The virtual address (va) is computed as follows for all memory format
instructions except the load address high (LDAH):

va « {Rbv + SEXT(Memory_disp)}
For LDAH the virtual address (va) is computed as follows:
va « {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement field in the
memory instruction format with a function code that designates a set of miscellaneous instruc-
tions. The format is shown in Figure 3-2.

Figure 3—2: Memory Instruction with Function Code Format

31 26 25 2120 16 15 0

Opcode Ra Rb Function

The memory instruction with function code format contains a 6-bit opcode field and a 16-bit
function field. Unused function codes produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction. See Sec-
tion 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the displacement
field is used to provide branch-prediction hints as described in Section 4.3.
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3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative subroutine
jumps. It has the format shown in Figure 3-3.

Figure 3-3: Branch Instruction Format

31 26 25 2120 0

Opcode Ra Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address field (Ra),
and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits (to
address a longword boundary), sign-extended to 64 bits, and added to the updated PC to form
the target virtual address. Overflow is ignored in this calculation. The target virtual address
(va) is computed as follows:

va « PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer register
operations. The Operate format allows the specification of one destination operand and two
source operands. One of the source operands can be a literal constant. The Operate format in
Figure 3—4 shows the two cases when bit <12> of the instruction is 0 and 1.

Figure 3—4: Operate Instruction Format

31 26 25 2120 16151312 11 5 4 0

Opcode | Ra Rb [SBZ|0| Function Rc

31 26 25 2120 1312 11 5 4 0

Opcode | Ra LIT

=

Function Rc

An Operate format instruction contains a 6-bit opcode field and a 7-bit function code field.
Unused function codes for opcodes defined as reserved in the Version 5 Alpha architecture
specification (May 1992) produce an illegal instruction trap. Those opcodes are 01, 02, 03, 04,
05, 06, 07, OA, OC, 0D, OE, 14, 19, 1B, 1C, 1D, 1E, and 1F. For other opcodes, unused func-
tion codes produce UNPREDICTABLE but not UNDEFINED results; they are not security
holes.

There are three operand fields, Ra, Rb, and Rc.
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The Ra field specifies a source operand. Symbolically, the integer Rav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Rav « O

ELSE
Rav - Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an integer
register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed by bits
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and 255
and is zero-extended to 64 bits. Symbolically, the integer Rbv operand is formed as follows:

IF inst <12> EQ 1 THEN
Rbv ~ ZEXT(inst<20:13>)
ELSE
IF inst <20:16> EQ 31 THEN
Rbv « 0
ELSE
Rbv « Rb
END
END

The Rc field specifies a destinationanand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating-point register
to floating-point register operations. The Floating-point Operate format allows the specifica-
tion of one destination operand and two source operands. The Floating-point Operate format is
shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 2120 16 15 5 4 0

Opcode Fa Fb Function Fc

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-bit func-
tion field. Unused function codes for those opcodes defined as reserved in the Version 5 Alpha
architecture specification (May 1992) produce an illegal instruction trap. Those opcodes are
01, 02, 03, 04, 05, 06, 07, 14, 19, 1C, 1B, 1D, 1E, and 1F. For other opcodes, unused function
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security holes.

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either an integer or
floating-point operand as defined by the instruction.
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The Fa field specifies a source operand. Symbolically, the Fav operand is formed as follows:

IF inst<25:21> EQ 31 THEN
Fav « O

ELSE
Fav — Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as follows:

IF inst<20:16> EQ 31 THEN
Fov « 0O
ELSE
Fov « Fb
END
Note:
Neither Fa nor Fb can be a literal in Floatinghpt Operate instructions.

The Fc field specifies a destinationanand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate format and per-
form register-to-register conversion operations. The Fb operand specifies the source; the Fa
field must be F31.

3.3.4.2 Floating-Point/Integer Register Moves

Instructions that move data between a floating-point register file and an integer register file are
a subset of the Floating-point Operate format. The unused source field must be 31.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended processor
functions. It has the format shown in Figure 3—6.

Figure 3—6: PALcode Instruction Format

31 26 25 0

Opcode PALcode Function

The 26-bit PALcode function field specifies the operation. The source and destination oper-
ands for PALcode instructions are supplied in fixed registers that are specified in the individual
instruction descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.
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Chapter 4

Instruction Descriptions ()

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The instruction
set is divided into the following sections:

Instruction Type Section
Integer load and store 4.2
Integer control 4.3
Integer arithmetic 4.4
Logical and shift 4.5
Byte manipulation 4.6
Floating-point load and store 4.7
Floating-point control 4.8
Floating-point branch 4.9
Floating-point operate 4.10
Miscellaneous 411
VAX compatibility 4,12

Multimedia (graphics and video) 4.13

Within each major section, closely related instructions are combined into groups and described
together.

The instruction group description is composed of the following:

The group name

The format of each instruction in the group, which includes the name, access type, and
data type of each instruction operand

The operation of the instruction
Exceptions specific to the instruction
The instruction mnemonic and name of each instruction in the group

Quialifiers specific to the instructions in the group
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* A description of the instruction operation

e Optional programming examples and optional notes on the instruction

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture is not per-
formed in either hardware or PALcode. System software may provide emulation routines for
subsetted instructions.

4.1.2 Floating-Point Subsets
Floating-point support is optional on an Alpha processor. An implementation that supports
floating-point must implement the following:
* The 32 floating-point registers
* The Floating-point Control Register (FPCR) and the instructions to access it
* The floating-point branch instructions
* The floating-point copy sign (CPYSX) instructions
* The floating-point convert instructions
* The floating-point conditional move instruction (FCMOV)

e The S _floating and T_floating memory operations

Software Note:

A system that will not support floating-point operations is still required to provide the 32
floating-point registers, the Floating-point Control Register (FPCR) and the instructions to
access it, and the T_floating memory operations if the system intends to support the
OpenVMS operating system. This requirement facilitates the implementation of a floating-
point emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset groups:
1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. |EEE Floating-point Operate instructions (S_ and T_floating). Within this group, an
implementation can choose to include or omit separately the ability to perform IEEE
rounding to plus infinity and minus infinity.

Note:

If one instruction in a group is provided, all other instructions in that group must be
provided. An implementation with full floating-point support includes both groups; a

subset floating-point implementation supports only one of these groups. The individual
instruction descriptions indicate whether an instruction can be subsetted.

4.1.3 Software Emulation Rules
General-purpose layered and application software that executes in User mode may assume that

certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores (STL, STQ, STF,
STG, STL, and STT) of unaligned data are emulated by system software. General-purpose lay-
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ered and application software that executes in User mode may assume that subsetted
instructions are emulated by system software. Frequent use of emulation may be significantly
slower than using alternative code sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need not be pro-
vided in privileged access modes. System software that supports special-purpose dedicated
applications need not provide emulation in User mode if emulation is not needed for correct
execution of the special-purpose applications.

4.1.4 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several variants. For
example, for the VAX formats, Add F_floating (ADDF) is supported with and without float-

ing underflow enabled and with either chopped or VAX rounding. For IEEE formats, IEEE
unbiased rounding, chopped, round toward plus infinity, and round toward minus infinity can
be selected.

The different variants of such instructions are denoted by opcode qualifiers, which consist of a
slash (/) followed by a string of selected qualifiers. Each qualifier is denoted by a single char-
acter as shown in Table 4—1. The opcodes for each qualifier are listed in Appendix C.

Table 4-1: Opcode Qualifiers

Qualifier Meaning

C Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable
Exception completion enable

Floating underflow enable

< C wnw

Integer overflow enable

The default values are normal rounding, exception completion disabled, inexact result dis-
abled, floating underflow disabled, and integeediow disabled.
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4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA Load Address

LDAH Load Address High

LDBU Load Zero-Extended Byte from Memory to Register
LDL Load Sign-Extended Longword

LDL_L Load Sign-Extended Longword Locked

LDQ Load Quadword

LDQ L Load Quadword Locked

LDQ U Load Quadword Unaligned

LDWU Load Zero-Extended Word from Memory to Register
STB Store Byte

STL Store Longword

STL C Store Longword Conditional

STQ Store Quadword

STQ_C Store Quadword Conditional

STQ U Store Quadword Unaligned

STW Store Word
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4.2.1 Load Address

Format:

LDAX Ra.wq,disp.ab(Rb.ab) 'Memory format
Operation:

Ra — Rbv + SEXT(disp) ILDA

Ra « Rbv + SEXT(disp*65536) ILDAH
Exceptions:

None

Instruction mnemonics:

LDA Load Address
LDAH Load Address High
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment for LDA, and 65536 times the sign-extended 16-bit displacement for LDAH. The 64-bit
result is written to register Ra.
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4.2.2 Load Memory Data into Integer Register

Format:

LDx Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rbv + SEXT(disp)}

CASE
big_endian_data: va'
big_endian_data: va'

va XOR 000, ILDQ
va XOR 100, ILDL

1

1

big_endian_data: va' ~ va XOR 110, ILDWU

big_endian_data: va' ~ va XOR 111, ILDBU

litle_endian_data: va' < va

ENDCASE

Ra ~ (va)<63.0> ILDQ

Ra « SEXT((va)<31.0>) ILDL

Ra — ZEXT((va)<15:0>) ILDWU

Ra « ZEXT((va)<07:0>) ILDBU
Exceptions:

Access Violation
Alignment
Fault on Read

Translation Not Valid

Instruction mnemonics:

LDBU Load Zero-Extended Byte from Memory to Register
LDL Load Sign-Extended Longword from Memory to Register
LDQ Load Quadword from Memory to Register
LDWU Load Zero-Extended Word from Memory to Register
Quialifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va.
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In the case of LDQ and LDL, the source operand is fetched from memory, sign-extended, and
written to register Ra.

In the case of LDWU and LDBU, the source operand is fetched from memory, zero-extended,
and written to register Ra.

In all cases, if the data is not naturally aligned, an alignment exception is generated.

Notes:

The word or byte that the LDWU or LDBU instruction fetches from memory is placed
in the low (rightmost) word or byte of Ra, with the remaining 6 or 7 bytes set to zero.

Accesses have byte granularity.

For big-endian access with LDWU or LDBU, the word/byte remains in the rightmost
part of Ra, but the va sent to memory has the indicated bits inverted. See Operation sec-
tion, above.

No sparse address space mechanisms are allowed with the LDWU and LDBU instruc-
tions.

An LDL instruction for which the Ra operand is 31 is executed as a PREFETCH
instruction, described in Section 4.11.8.

An LDQ instruction for which the Ra operand is 31 is executed as a PREFETCH_EN
instruction, described in Section 4.11.8.

Implementation Notes:

The LDWU and LDBU instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction clears feature mask bit 0. LDWU and LDBU
are supported with software emulation in Alpha implementations for which AMASK
does not clear feature mask bit 0. Software emulation of LDWU and LDBU is signifi-
cantly slower than hardware support.

Depending on an address space region’s caching policy, implementations may read a
(partial) cache block in order to do word/byte stores. This may only be done in regions
that have memory-like behavior.

Implementations are expected to provide sufficient low-order address bits and length-
of-access information to devices on IiDses. But, strictly speaking, this is outside the
scope of architecture.
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4.2.3 Load Unaligned Memory Data into Integer Register

Format:
LDQ_U Ra.wq,disp.ab(Rb.ab) 'Memory format

Operation:

va « {{Rbv + SEXT(disp)} AND NOT 7}
Ra « (va)<63.0>

Exceptions:

Access Violation
Fault on Read

Translation Not Valid

Instruction mnemonics:

LDQ U Load Unaligned Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then the low-order three bits are cleared. The source operand is fetched from memory
and written to register Ra.
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4.2.4 Load Memory Data into Integer Register Locked
Format:
LDx L Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ~ va XOR 000, ! LDQ_L
big_endian_data: va' ~ va XOR 100, ! LDL L
litle_endian_data: va' < va I LDL L
ENDCASE

lock flag -1

locked_physical_address ~ PHYSICAL_ADDRESS(va)

Ra « SEXT((va)<31.0>) I'LDL L

Ra « (va)<63.0> 1 LDQ_L
Exceptions:

Access Violation
Alignment
Fault on Read

Translation Not Valid

Instruction mnemonics:

LDL_L Load Sign-Extended Longword from Memory to Register
Locked
LDQ L Load Quadword from Memory to Register Locked
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, i@ computed from va by inverting va<2> (bit 2 of

the virtual address), but any memory management fault is reported for the original va (not
va ). The source operand is fetched from memory, sign-extended for LDL_L, and written to
register Ra.
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When a LDx_L instruction is executed without faulting, the processor records the target physi-
cal address in a per-processor locked _physical_address register and sets the per-processor
lock flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed (accessing

within the same 16-byte naturally aligned block as the LDx_L), the store occurs; otherwise, it

does not occur, as described for the STx_C instructions. The behavior of an STx_C instruction
is UNPREDICTABLE, as described in Section 4.2.5, when it does not access the same 16-byte
naturally aligned block as the LDx_L.

ProcessoA causes the clearing of a set lock_flag in procegsby doing any of the following
in B's locked range of physical addresses:

* A successful store
* A successful store_condition
e Executing a WH6# instruction that modifies data on proces8or

A processor’s locked range is the aligned block of 2**N bytes that includes the
locked_physical_address. The 2**N value is implementation dependent. It is at least 16 (mini-
mum lock range is an aligned 16-byte block) and is at most the page size for that
implementation (maximum lock range is one physical page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL REI,
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or not a pro-
cessor’s lock_flag is cleared on any other CALL_PAL instruction. It is UNPREDICTABLE
whether a processor’s lock_flag is cleared by that processor executing a nhormal load or store
instruction. It is UNPREDICTABLE whether a processor’s lock _flag is cleared by that proces-
sor executing a taken branch (including BR, BSR, and Jumps); conditional branches that fall
through do not clear the lock_flag. It is UNPREDICTABLE whether a processor’s lock flag is
cleared by that processor executing a Wki64 ECB instruction.

In addition, a set lock_flag on procesd®can be unpredictably cleared by unspecified events
on processorA. But, processoA will guarantee that such events are rare enough that they will
not interferewith the forward progress of the system.

Implementation Note:

ProcessoA can, at the implementation’s option, cause the clearing of a set lock_flag in
processoB by executing a PREFETCH_M or PREFETCH_MENB#s locked ranges of
physical addresses.

The sequence:
LDx_L
Modify
STx_C
BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum in shared
memory if the branch falls through. If the branch is taken, the store did not modify memory
and the sequence may be repeated until it succeeds. See Section 5.5 for more information.
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Notes:

LDx_L instructions do not check for write access; hence a matching STx_C may take
an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does négcafany arbitecturally
visible state on another processor, and in particular cannot cause an STx_C on another
processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may be
followed by a conditional branch: on the fall-through path an STx_C is executed,
whereas on the taken path no matching STx_C is executed.

If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

Software will not emulate unaligned LDx_L instructions.

If the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to the lock
range; hence, no useful program should do this.

If any other memory access (ECB, LDx, LDQ_U, STx_C, STQ_U, WxJ64 exe-
cuted on the given processor between the LDx_L and the STx_C, the sequence above
may always fail on some implementations; hence, no useful program should do this.

If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

If a subsetted instruction (for example, floating-point) is executed between the LDx_L
and the STx_C, the sequence above may always fail on some implementations because
of the lllegal Instruction Trap; hence, no useful program should do this.

If an instruction with an unused function code is executed between the LDx_L and the
STx_C, the sequence above may always fail on some implementations because an
instruction with an unused function code is UNPREDICTABLE.

If a large number of instructions are executed between the LDx_L and the STx_C, the
sequence above may always fail on some implementations because of a tenermint
always clearing the lock_flag before the sequence completes; hence, no useful program
should do this.

Hardware implementations are encouraged to lock no more than 128 bytes. Software
implementations are encouraged to separate lockeddnsaby at least 128 bytes from
other locations that could potentially be written by another processor while the first
location is locked.

Execution of a WH6# instruction on processadk to a region within the lock range of
processorB, where the execution of the WHg4changes the contents of memory,
causes the lock_flag on proces®to be cleared. If the WH6ddoes not change the
contents of memory on procesdyrit need not clear the lock_flag.
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Implementation Notes:

Implementations that impede the mobility of a cache block on LDx_L, such as that which
may occur in a Read for Ownership cache coherency protocol, may release the cache block
and make the subsequent STx_C fail if a branch-taken or memory instruction is executed

on that processor.

All implementations should dqarantee that at least 40 non-subsettedrafeinstructions
can be executed between timer interrupts.

4-12 Common Architecture (1)



4.2.5 Store Integer Register Data into Memory Conditional

Format:
STx C Ra.mx,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ~ va XOR 000, I STQ C
big_endian_data: va' ~ va XOR 100, I STL C
litle_endian_data: va' ~ va I STL C
ENDCASE
IF lock flag EQ 1 THEN
(va)<31.0> ~ Rav<31.0> I STL C
(va) ~ Rav I STQ C
Ra « lock flag
lock flag <0
Exceptions:

Access Violation
Fault on Write
Alignment

Translation Not Valid

Instruction mnemonics:

STL C Store Longword from Register to Memory Conditional
STQ C Store Quadword from Register to Memory Conditional
Quialifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, v@computed from va by inverting va<2> (bit 2 of

the virtual address), but any memory management fault is reported for the original va (not
va ).
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If the lock_flag is set and the address meets the following constraints relative to the address
specified by the preceding LDx_L instruction, the Ra operand is written to memory at this
address. If the address meets the following constraints but the lock_flag is not set, a zero is
returned in Ra and no write to memory occurs. The constraints are:

* The computed virtual address must specify a location within the naturally aligned 16-
byte block in virtual memory accessed by the preceding LDx_L instruction.

* The resultant physical address must specify a location within the naturally aligned 16-
byte block in physical memory accessed by the preceding LDx_L instruction.

If those addressing constraints are not met, itis UNPREDICTABLE whether the STx_C
instruction succeeds or fails, regardless of the state of the lock_flag, unless the lock_flag is
cleared as described in the next paragraph.

Whether or not the addressing constraints are met, a zero is returned and no write to memory
occurs if the lock_flag was cleared by execution on a processor of a CALL_PAL REI,
CALL_PAL rti, CALL_PAL rfe, or STx_C, after the most recent execution on that processor

of a LDx_L instruction (in processor issue sequence).

In all cases, the lock_flag is set to zero at the end of the operation.

Notes:
e Software will not emulate unaligned STx_C instructions.

e Each implementation must do the test and store atomically, as illustrated in the follow-
ing two examples. (See Section 5.6.1 for complete information.)

— If two processors attempt STx_C instructions to the same lock range and that lock
range was accessed by both processors’ preceding LDx_L instructions, exactly one
of the stores succeeds.

— A processor executes a LDx_L/STx_C sequence and includes an MB between the
LDx_L to a particular address and teeccessfulSTx_C to a different address (one
that meets the constraints required for predictable behavior). That instruction
sequence establishes an access order under which a store operation by another pro-
cessor to that lock range occurs before the LDx_L or after the STx_C.

e If the virtual and physical addresses for a LDx_L and STx_C sequence are not within
the same naturally aligned 16-byte sections of virtual and physical memory, that
sequence may always fail, or may succeed despite another processor’s store to the lock
range; hence, no useful program should do this.

* The following sequence should not be used:

try again: LDQ L R1, X
<modify R1>
STQ C R1, x
BEQ R1, try _again
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That sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the Alpha

architecture. In the case where the STQ_Ccsads and the branchill actually fall

through, that sequence incurs unnecessary delay due to a mispredicted backward
branch. Instead, a forward branch should be used to handle the failure case, as shown
in Section 5.5.2.

Software Note:

If the address specified by a STx_C instruction does not match the one given in the

preceding LDx_L instruction, an MB is required to guarantee ordering between the two
instructions.

Hardware/Software Implementation Note:

STQ_C is used in the first Alpha implementations to access the MailBox Pointer Register
(MBPR). In this special case, the effect of the STQ C is well defined (that is, not

UNPREDICTABLE) even though the preceding LDx_L did not specify the address of the

MBPR. The effect of STx_C in this special case may vary from implementation to

implementation.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to prevent any
other store from changing the state of the lock bit, before its outcome can be determined.

If an implementation could encounter a TB or cache miss on the md¢sence of the
STx_C in the sequence above (as might occur in some shared I- and D-stream direct-

mapped TBs/caches), it must be able to resolve the miss and complete the store without
always failing.
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4.2.6 Store Integer Register Data into Memory

Format:

STx Ra.rx,disp.ab(Rb.ab) 'Memory format

Operation:
va « {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ~ va XOR 000, ISTQ
big_endian_data: va' ~ va XOR 100, ISTL
big_endian_data: va' ~ va XOR 110, ISTW
big_endian_data: va' ~ va XOR 111, ISTB
litle_endian_data: va' < va
ENDCASE
(va@) « Rav ISTQ
(va)<31.00> ~ Ravw<3l.0> ISTL
(va)<15:00> ~ Raw15:.0> ISTW
(va)<07:00> ~ Raw<07:.0> ISTB
Exceptions:
Access Violation
Alignment
Fault on Write
Translation Not Valid
Instruction mnemonics:
STB Store Byte from Register to Memory
STL Store Longword from Register to Memory
STQ Store Quadword from Register to Memory
STW Store Word from Register to Memory
Quialifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian access, the indicated bits are inverted, and any memory management
fault is reported for va (not va.
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The Ra operand is written to memory at this address. If the data is not naturally aligned, an
alignment exception is generated.

Notes:

e The word or byte that the STB or STW instruction stores to memory comes from the
low (rightmost) byte or word of Ra.

* Accesses have byte granularity.

* For big-endian access with STB or STW, the byte/word remains in the rightmost part of
Ra, but the va sent to memory has the indicated bits inverted. See Operation section,
above.

* No sparse address space mechanisms are allowed with the STB and STW instructions.

Implementation Notes:

e The STB and STW instructions are supported in hardware on Alpha implementations
for which the AMASK instruction cleargeature mask bit 0. STB and STW are sup-
ported with software emulation in Alpha implementations for which AMASK does not
clear feature mask bit 0. Software emulation of STB and STW is significantly slower
than hardware support.

e Depending on an address space region’s caching policy, implementations may read a
(partial) cache block in order to do byte/word stores. This may only be done in regions
that have memory-like behavior.

* Implementations are expected to provide sufficient low-order address bits and length-
of-access information to devices on IiDses. But, strictly speaking, this is outside the
scope of architecture.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:
STQ_U Ra.rq,disp.ab(Rb.ab) 'Memory format

Operation:

va « {{Rbv + SEXT(disp)} AND NOT 7}
(va)<63:.0> ~ Raw<63.0>

Exceptions:

Access Violation
Fault on Write

Translation Not Valid

Instruction mnemonics:

STQ_ U Store Unaligned Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment, then clearing the low-order three bits. The Ra operandittemrto memory at this
address.
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to subroutine, and
jump instructions. The PC used in these instructions is the updated PC, as described in Section
3.1.1.

To allow implementations to achieve high performance, the Alpha architecture includes
explicit hints based on a branch-prediction model:

e For many implementations of computed branches (JSR/RET/JMP), there is a substan-
tial performance gain in forming a good guess of the expected targgmtHe address
before register Rb is accessed.

* For many implementations, the first-level (or only) I-cache is no bigger than a page (8
KB to 64 KB).

e Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicabroutine return I-
cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target address,
return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function code
(JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that statically specifies the
16 low bits of the most likely target address. The PC-relative calculation using these bits can
be exactly the PC-relative calculation used in unconditional branches. The low 16 bits are
enough to specify an I-cache block within the largest possible Alpha page and hence are
expected to be enough for branch-prediction logic to start an early I-cache access for the most
likely target.

For all branches, hint or opcode bits are used to distinguish simple branches, subroutine calls,
subroutine returns, and coroutine links. These distinctions allow branch-predict logic to main-
tain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken/fall-through
hint. The instructions are summarized in Table 4-3.

Table 4-3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero
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Table 4-3: Control Instructions Summary (Continued)

Mnemonic Operation

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine
JSR_COROUTINE Jump to Subroutine Return
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4.3.1 Conditional Branch

Format:
Bxx Ra.rg,disp.al IBranch format

Operation:

{update PC}

va « PC + {4*SEXT(disp)}

IF TEST(Rav, Condition _based on_Opcode) THEN
PC - va

Exceptions:

None

Instruction mnemonics:

BEQ Branch if Register Equal to Zero
BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero
BLBC Branch if Register Low Bit Is Clear
BLBS Branch if Register Low Bit Is Set
BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero
BNE Branch if Register Not Equal to Zero
Qualifiers:
None
Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/— 1M instructions.

The test is on the signed quadword integer interpretation of the register contents; all 64 bits are
tested.
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4.3.2 Unconditional Branch

Format:
BxR Ra.wq,disp.al IBranch format

Operation:

{update PC}
Ra -« PC
PC -~ PC + {4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch
BSR Branch to Subroutine
Qualifiers:
None
Description:

The PC of the following instruction (the updated PC) is written to register Ra and then the PC
is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed displacement gives a
forward/backward branch distance of +/— 1M instructions.

PC-relative addressability can be established by:

BR RxL1
L1:

Notes:

* BR and BSR do identical operations. They onl§feli in hints topossible branch-pre-
diction logic. BSR is predicted as a subroutine call (pushes the return address on a
branch-prediction stack), whereas BR is predicted as a branch (no push).
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4.3.3 Jumps

Format:
mnemonic Ra.wg,(Rb.ab),hint 'Memory format

Operation:

{update PC}
va « Rbv AND {NOT 3}
Ra - PC
PC « va

Exceptions:

None

Instruction mnemonics:

JMP Jump
JSR Jump to Subroutine
RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written to register
Ra and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra and Rb may
specify the same register; the target calculation using the old value is done before the new
value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible branch-pre-

diction logic. The displacement field of the instruction is used to pass this information. The

four different "opcodes" set different bit patterns in disp<15:14>, and the hint operand sets
disp<13:0>.
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These bits are intended to be used as shown in Table 4-4.

Table 4—4: Jump Instructions Branch Prediction

Predicted Prediction
disp<15:14> Meaning Target<15:0> Stack Action
00 JMP PC + {4*disp<13:0>} -
01 JSR PC + {4*disp<13:0>} Push PC
10 RET Prediction stack Pop
11 JSR_COROUTINE Prediction stack Pop, push PC

The design in Table 4—4 allows specification of the low 16 bits of a likely longword target
address (enough bits to start a useful I-cache access early), and also allows distinguishing call
from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits can improve
performance but is not needed for correct operation. See Section A.2.3 for more information on
branch prediction.

An unconditional long jump can be performed by:
IJMP R3L1,(Rb) hint

Coroutine linkage can be performed by specifying the same register in both the Ra and Rb
operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE) (that is, the tar-
get address prediction, if any, would come from a predictor implementation stack), then bits
<13:0> are reserved for software and must be ignored by all implementations. All encodings
for bits <13:0> are used by Compaq software or Reserved to Compagq, as follows:

Encoding Meaning
00006 Indicates non-procedure return
000 ¢ Indicates procedure return

All other encodings are reserved to Compag.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, signed and unsigned com-
pare, and bit count operations.

The integer instructions are summarized in Table 4-5.

Table 4-5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD Add Quadword/Longword

S4ADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal
CTLZ Count leading zero

CTPOP Count population

CTTz Count trailing zero

CMPULT Compare Unsigned Quadword Less Than
CMPULE Compare Unsigned Quadword Less Than or Equal
MUL Multiply Quadword/Longword

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword

S4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done by using UMULH,;
division by a variable can be done by using a subroutine. See Section A.4.2.
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4.4.1 Longword Add

Format:
ADDL Ra.rl,Rb.rl,Rc.wq Operate format
ADDL Ra.rl,#b.ib,Rc.wq IOperate format
Operation:

Rc « SEXT( (Rav + Rbv)<31.0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is added to register Rb or a literal and the sign-extended 32-bit sum is written to
Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
32-bit sum. Overflow detection is based on the longword sum Rav<31:0> + Rbv<31:0>.
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4.4.2 Scaled Longword Add

Format:
SXADDL Ra.rl,Rb.rq,Rc.wq IOperate format
SxADDL Ra.rl,#b.ib,Rc.wq IOperate format
Operation:
CASE

SAADDL: Rc — SEXT ((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
SBADDL: Rc — SEXT ((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL Scaled Add Longword by 4
S8ADDL Scaled Add Longword by 8
Quialifiers:
None
Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for SBADDL) and is added to register Rb or a
literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
sum.
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4.4.3 Quadword Add

Format:
ADDQ Ra.rq,Rb.rgq,Rc.wq IOperate format
ADDQ Ra.rqg,#b.ib,Rc.wq IOperate format
Operation:

Rc - Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ Add Quadword

Quialifiers:

Integer Overflow Enable (/V)

Description:
Register Ra is added to register Rb or a literal and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.

The unsigned compare instructions can be used to generate carry. After adding two values, if
the sum is less unsigned than either one of the inputs, there was a carry out of the most signifi-
cant bit.
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4.4.4 Scaled Quadword Add

Format:
SXADDQ Ra.rq,Rb.rg,Rc.wq IOperate format
SxXADDQ Ra.rg,#b.ib,Rc.wq IOperate format
Operation:
CASE

S4ADDQ: Rc — LEFT SHIFT(Rav,2) + Rbv
SBADDQ: Rc — LEFT_SHIFT(Rav,3) + Rbv
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4
S8ADDQ Scaled Add Quadword by 8
Quialifiers:
None
Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for SBADDQ) and is added to register Rb or a
literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destination
register.
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4.4.5 Integer Signed Compare

Format:

CMPxx Ra.rq,Rb.rg,Rc.wq IOperate format

CMPxx Ra.rg,#b.ib,Rc.wq IOperate format

Operation:

IF Rav SIGNED_RELATION Rbv THEN
Rc « 1

ELSE

Rc - O

Exceptions:

None

Instruction mnemonics:

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal
CMPLT Compare Signed Quadword Less Than
Qualifiers:
None
Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero is written to Rc.
Notes:

e Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal Bekefine only
the less-than operations are included.
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4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rq,Rb.rq,Rc.wq 'Operate format

CMPUxx Ra.rg,#b.ib,Rc.wq !Operate format

Operation:

IF Rav UNSIGNED_RELATION Rbv THEN
Rc -« 1

ELSE
Rc « O

Exceptions:

None

Instruction mnemonics:

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than
Quialifiers:
None
Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is true, the
value one is written to register Rc; otherwise, zero is written to Rc.
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4.4.7 Count Leading Zero

Format:

CTLZ Rb.rq,Rc.wq I Operate format

Operation:
temp = 0
FOR i FROM 63 DOWN TO 0
IF { Rbw<i> E Q 1 } THEN BREAK
temp = temp + 1

END

Rc<6.0> ~ temp<6:.0>

Rc<637> ~ 0
Exceptions:

None

Instruction mnemonics:

CTLZ Count Leading Zero

Quialifiers:

None

Description:

The number of leading zeros in Rb, dtag at the most significant bit position, is written to Rc.
Ra must be R31.

Implementation Notes:

* The CTLZ instruction is supported in hardware on Alpha implementations for which
the AMASK instruction clears feature mask bit 2. CTLZ is supported with software
emulation in Alpha implementations for which AMASK does not clear feature mask bit
2. Software emulation of CTLZ is significantly slower than hardware support.
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4.4.8 Count Population

Format:

CTPOP Rb.rq,Rc.wq I Operate format
Operation:

temp = 0

FOR i FROM 0 TO 63
IF{Rbv<i>E Q 1} THEN temp = temp + 1

END

Rc<6.0> ~ temp<6:.0>

Rc<637> ~ 0
Exceptions:

None

Instruction mnemonics:

CTPOP Count Population

Qualifiers:

None

Description:

The number of ones in Rb is written to Rc. Ra must be R31.

Implementation Notes:

e The CTPOP instruction is supported in hardware on Alpha implementations for which
the AMASK instruction clears feature mask bit 2. CTPOP is supported with software
emulation in Alpha implementations for which AMASK does not clear feature mask bit
2. Software emulation of CTPOP is significantly slower than hardware support.
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4.4.9 Count Trailing Zero

Format:

CTT1Z

Operation:

temp = 0
FOR i FROM 0 TO 63

Rb.rq,Rc.wq

IF { Row<i> E Q 1 } THEN BREAK

temp = temp + 1

END

Rc<6.0> ~ temp<6:.0>

Rc<637> ~ 0
Exceptions:

None

Instruction mnemonics:

CTTZ Count Trailing Zero

Quialifiers:

None

Description:

The number of trailing zeros in Rb, starting at the least significant bit position, is written to Rc.

Ra must be R31.

Implementation Notes:

e The CTTZ instruction is supported in hardware on Alpha implementations for which
the AMASK instruction clears feature mask bit 2. CTTZ is supported with software
emulation in Alpha implementations for which AMASK does not clear feature mask bit

! Operate format

2. Software emulation of CTTZ is significantly slower than hardware support.
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4.4.10 Longword Multiply

Format:
MULL Ra.rl,Rb.rl,Rc.wq IOperate format
MULL Ra.rl,#b.ib,Rc.wq IOperate format
Operation:
Rc « SEXT ((Rav * Rbv)<31.0>)
Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal and the sign-extended 32-bit product is
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
product. Overflow detection is based on the longword product Rav<31:0> * Rbv<31:0>. On
overflow, the proper sign extension of the least significant 32 bits of the true result is written to
the destination register.

The MULQ instruction can be used to return the full 64-bit product.
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4.4.11 Quadword Multiply

Format:
MULQ Ra.rg,Rb.rq,Rc.wq IOperate format
MULQ Ra.Rq,#b.ib,Rc.wq IOperate format
Operation:

Rc -~ Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal and the 64-bit product is written to register
Rc. Overflow detection is based on considering the operands and the result as signed quanti-
ties. On overflow, the least significant 64 bits of the true result are written to the destination
register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-hit result when
an overflow occurs.
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4.4.12 Unsigned Quadword Multiply High

Format:
UMULH Ra.rq,Rb.rq,Rc.wq Operate format
UMULH Ra.rg,#b.ib,Rc.wq IOperate format
Operation:

Rc « {Rav * U Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

UMULH Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a 128-bit result.
The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result as
follows:

Ra and Rb are unsigned: result of UMULH
Ra and Rb are signed: (result of UMULH) — Ra<63>*Rb — Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.
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4.4.13 Longword Subtract

Format:
SUBL Ra.rl,Rb.rl,Rc.wq Operate format
SUBL Ra.rl,#b.ib,Rc.wq IOperate format
Operation:

Rc « SEXT ((Rav - Rbv)<31:.0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL Subtract Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra and the sign-extended 32-bit difference is
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
difference. Overflow detection is based on tbadword difference Rav<31:0> — Rbv<31:0>.
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4.4.14 Scaled Longword Subtract

Format:
SxSUBL Ra.rl,Rb.rl,Rc.wq IOperate format
SxSUBL Ra.rl,#b.ib,Rc.wq !Operate format
Operation:
CASE

SASUBL: Rc — SEXT ((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Rc — SEXT ((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBL Scaled Subtract Longword by 4
S8SUBL Scaled Subtract Longword by 8
Quialifiers:
None
Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled by 4
(for S4SUBL) or 8 (for SBSUBL), and the sign-extended 32-bit difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated 32-bit
difference.
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4.4.15 Quadword Subtract

Format:
SUBQ Ra.rgq,Rb.rgq,Rc.wq IOperate format
SUBQ Ra.rg,#b.ib,Rc.wq IOperate format
Operation:

Rc « Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ Subtract Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra and the 64-bit difference is written to reg-
ister Rc. On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend (Rav) is
less unsigned than the subtrahend (Rbv), a borrow will occur.
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4.4.16 Scaled Quadword Subtract

Format:
SxSUBQ Ra.rg,Rb.rgq,Rc.wq IOperate format
SxSUBQ Ra.rg,#b.ib,Rc.wq IOperate format
Operation:
CASE

S4SUBQ: Rc ~ LEFT_SHIFT(Rav,2) - Rbv
S8SUBQ: Rc ~ LEFT_SHIFT(Rav,3) - Rbv
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ Scaled Subtract Quadword by 4
S8SUBQ Scaled Subtract Quadword by 8
Quialifiers:
None
Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled by 4
(for S4SUBQ) or 8 (for SBSUBQ), and the 64-bit difference is written to Rc.
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move integer
instructions perform conditionals without a branch. The shift instructions perform left and right
logical shift and right arithmetic shift. These are summarized in Table 4-6.

Table 4—6: Logical and Shift Instructions Summary

Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement
BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical

Software Note:

There is no arithmetic left shift instruction. Where an arithmetic left shift would be used, a

logical shift will do. For multiplying by a small power of two in address computations,
logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift witbrflew checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done with a left
logical shift and a right arithmetic shift.
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4.5.1 Logical Functions

Format:
mnemonic Ra.rg,Rb.rg,Rc.wq !Operate format
mnemonic Ra.rq,#b.ib,Rc.wq 'Operate format
Operation:
Rc « Rav AND Rbv IAND
Rc « Rav OR Rbv BIS
Rc « Rav XOR Rbv IXOR
Rc « Rav AND {NOT Rbv} IBIC
Rc « Rav OR {NOT Rbv} IORNOT
Rc « Rav XOR {NOT Rbv} IEQV
Exceptions:
None

Instruction mnemonics:

AND Logical Product
BIC Logical Product with Complement
BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference

Qualifiers:
None

Description:

These instructions perform the designated Boolean function between register Ra and register
Rb or a literal. The result is written to register Rc.

The NOT function can be performed by doing an ORNOT with zero (Ra = R31).

Instruction Descriptions (1343



4.5.2 Conditional Move Integer

Format:
CMOVxx Ra.rgq,Rb.rq,Rc.wq IOperate format
CMOVxx Ra.rg,#b.ib,Rc.wq 'Operate format
Operation:

IF TEST(Rav, Condition _based on_Opcode) THEN

Rc - Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ CMOVE if Register Equal to Zero
CMOVGE CMOVE if Register Greater Than or Equal to Zero
CMOVGT CMOVE if Register Greater Than Zero
CMOVLBC CMOVE if Register Low Bit Clear
CMOVLBS CMOVE if Register Low Bit Set
CMOVLE CMOVE if Register Less Than or Equal to Zero
CMOVLT CMOVE if Register Less Than Zero
CMOVNE CMOVE if Register Not Equal to Zero
Quialifiers:
None
Description:
Register Ra is tested. If the specified relationship is true, the value Rbv is written to register
Rc.
Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:
CMOVEQ Ra,Rb,Rc
is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc
label: ...
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For example, a branchless sequence for:
R1=MAX(R1,R2)

CMPLT R1,R2,R3 I R3=1 if R1<R2
CMOVNE R3,R2R1 I Move R2 to R1 if R1<R2
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4.5.3 Shift Logical

Format:
SxL Ra.rg,Rb.rgq,Rc.wq IOperate format
SxL Ra.rg,#b.ib,Rc.wq IOperate format
Operation:
Rc « LEFT _SHIFT(Rav, Rbv<5:0>) ISLL
Rc « RIGHT SHIFT(Rav, Rbv<5:0>) ISRL
Exceptions:
None

Instruction mnemonics:

SLL Shift Left Logical
SRL Shift Right Logical
Qualifiers:
None
Description:

Register Ra is shifted logically left or right O to 63 bits by the count in register Rb or a literal.
The result is written to register Rc. Zero bits are propagated into the vacated bit positions.
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4.5.4 Shift Arithmetic

Format:
SRA Ra.rq,Rb.rq,Rc.wq IOperate format
SRA Ra.rg,#b.ib,Rc.wq IOperate format
Operation:

RC « ARITH_RIGHT SHIFT(Rav, Rov<5:0>)

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or a literal.
The result is written to register Rc. The sign bit (Rav<63>) is propagated into the vacated bit
positions.
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4.6 Byte Manipulation Instructions

Alpha implementations that support the BWX extension provide the following instructions for
loading, sign-extending, and storing bytes and words between a register and memory:

Instruction Meaning Described in Section
LDBU/LDWU Load byte/word unaligned 4.2.2
SEXTB/SEXTW Sign-extend byte/word 4.6.5
STB/STW Store byte/word 4.2.6

The AMASK and IMPLVER instructions report whether a particular Alpha implementation
supports the BWX extension. AMASK and IMPLVER are described in Sections 4.11.1 and
4.11.6, respectively, and in Appendix D.

LDBU and STB are the recommended way to perform byte load and store operations on Alpha
implementations that support them; use them rather than the extract, insert, and mask byte
instructions described in this section. In particular, the implementation examples in this sec-
tion that illustrate byte ogrations are not appropriate for Alpha implementations that support
the BWX extension — instead use the recommendations in Appendix A.

In addition to LDBU and STB, Alpha provides the instructions in Table 4-7 for operating on
byte operands within registers.

Table 4-7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH Insert Word High
INSLH Insert Longword High
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Table 4-7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic

Operation

INSQH

MSKBL
MSKWL
MSKLL
MSKQL
MSKWH
MSKLH
MSKQH

SEXTB
SEXTW

ZAP
ZAPNOT

Insert Quadword High

Mask Byte Low

Mask Word Low
Mask Longword Low
Mask Quadword Low
Mask Word High
Mask Longword High
Mask Quadword High

Sign Extend Byte
Sign Extend Word

Zero Bytes
Zero Bytes Not
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4.6.1 Compare Byte

Format:
CMPBGE Ra.rgq,Rb.rgq,Rc.wq IOperate format
CMPBGE Ra.rg,#b.ib,Rc.wq !Operate format
Operation:

FOR i FROM 0 TO 7

temp<80> ~ O || Rav<i*8+7:i*8>} + {0 || NOT Rbv<i*8+7:i*8>} + 1
Rc<i> ~ temp<8>

END

Rc<638> ~ 0

Exceptions:

None

Instruction mnemonics:

CMPBGE Compare Byte

Quialifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding bytes of Rav
and Rbv, storing the eight results in the low eight bits of Rc. The high 56 bits of Rc are set to
zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc corresponds to byte 1, and so forth. A result
bit is set in Rc if the corresponding byte of Rav is greater than or equal to Rbv (unsigned).

Notes:
The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:
<iniialize R1 to aligned QW address of string>

LOOP:
LDQ R2, O(R1) ; Pick up 8 bytes
LDA R1, 8(R1) ; Increment string pointer
CMPBGE R31, R2,R3 ; If NO bytes of zero, R3<7:.0>=0
BEQ R3, LOOP ; Loop if no terminator byte found

; At this point, R3 can be used to
; determine which byte terminated
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To compare two character strings for greater/equal/less:

<iniialize R1 to aligned QW address of stringl>
<iniialize R2 to aligned QW address of string2>

LOOP:

LDQ R3, O(R1) ; Pick up 8 bytes of stringl
LDA R1, 8(R1) ; Increment stringl pointer
LDQ R4, O0O(R2) ; Pick up 8 bytes of string2
LDA R2, 8(R2) ; Increment string2 pointer
CMPBGE R31, R3, R6 ; Test for zeros in stringl
XOR R3, R4, R5 ; Test for all equal bytes
BNE R6, DONE : Exit if a zero found

BEQ R5, LOOP ; Loop if all equal
DONE: CMPBGE R31, R5, R5 ;

; At this point, R5 can be used to determine the first not-equal
; byte position (ff any), and R6 can be used to determine the
; position of the terminating zero in stringl (if any).

To range-check a string of characters in R1 for..!09’:

LDQ R2, lit0s ; Pick up 8 bytes of the character

;. BELOW ‘O ‘/iiliir
LDQ R3, lit9s ; Pick up 8 bytes of the character

; ABOVE ‘9 ‘i
CMPBGE R2, R1, R4 ; Some R4<i>=1 if character is LT ‘O’
CMPBGE R1, R3, R5 : Some R5<i>=1 if character is GT ‘9
BNE R4, ERROR : Branch if some char too low
BNE R5, ERROR ; Branch if some char too high
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4.6.2 Extract Byte

Format:
EXTxx Ra.rgq,Rb.rgq,Rc.wq
EXTxx Ra.rqg,#b.ib,Rc.wq
Operation:
CASE
big_endian_data: Rbv' ~ Rbv XOR 11%
litle_endian_data: Rbv' ~ Rbv
ENDCASE
CASE
EXTBL: byte mask ~ 0000 0001 ,
EXTWx: byte mask ~ 0000 0011 ,
EXTLx: byte mask ~ 0000 1111,
EXTOx: byte mask ~ 1111 1111,
ENDCASE
CASE
EXTxL:
byte loc  ~ Rbv<2.0>*8
temp ~ RIGHT _SHIFT(Rav, byte loc<5:0>)
Rc « BYTE_ZAP(temp, NOT(byte_mask) )
EXTxH:
byte loc ~ 64 - Rbv'<2:0>*8
temp ~ LEFT_SHIFT(Rav, byte loc<5:0>)
Rc « BYTE_ZAP(temp, NOT(byte_mask) )
ENDCASE
Exceptions:
None

Instruction mnemonics:

EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
Quialifiers:
None
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Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions, and then
extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left by 0 to 7 bytes,
inserts zeros intoacated bit pasions, and then extracts 2, 4, or 8 bytes into register Rc. The
number of bytes to shift is specified by Rb¥2:0>. The number of bytes to extract is speci-
fied in the function code. Remaining bytes are filled with zeros.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is CBAx xxxx, and
the value of the aligned quadword containing X+7(R11) is yyyH GFED, and the datum is little-

endian.

The examples below are the most general case unless otherwise noted; if more information is
known about the value or intended alignment of X, shorter sequences can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ U R1, X(R11)

LDQ U R2, X+7(R11)

LDA  R3, X(R11)
EXTQL R1, R3, R1
EXTQH R2, R3, R2
OR R2, R1, R1

; Ignores va<2:0>, R1 = CBAX Xxxx
; Ignores va<2:0>, R2 = yyyH GFED

; R3<2.0> = (X mod 8) = 5

; R1 = 0000 OCBA
; R2 = HGFE D000
; R1 = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned address X

IS:
LDQ U R1, X(R11)

LDQ U R2, X+3(R11)

LDA  R3, X(R11)
EXTLL R1, R3, R1
EXTLH R2, R3, R2
OR R2, R1, R1

; Ignores va<2:0>, R1 = CBAX Xxxx

; Ignores va<2:0>, R2 = yyyy yyyD
; R3<2.0> = (X mod 8) = 5

; R1 = 0000 OCBA
; R2 = 0000 DOOO
; R1 = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned address X

IS:
LDQ U R1, X(R11)

LDQ U R2, X+3(R11)

LDA  R3, XR11)
EXTLL R1, R3, R1
EXTLH R2, R3, R2
OR R2, R1, Rl
ADDL  R31, R1, R1

; Ignores va<2:0>, R1 = CBAX Xxxx

; Ignores va<2:0>, R2 = yyyy yyyD
; R3<2.0> = (X mod 8) = 5

; R1 = 0000 OCBA

; R2 = 0000 DOOO
: R1 = 0000 DCBA
: R1 = ssss DCBA
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For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a word from unaligned address X is:

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = yBAX XXxX
LDQ U R2, X+1(R11) ; Ignores va<2:.0>, R2 = yBAX XXxX
LDA R3, X(R11) ; R3<20> = (X mod 8) = 5
EXTWL R1, R3, R1 ; R1 = 0000 O0BA

EXTWH R2, R3, R2 ; R2 = 0000 0000

OR R2, R1, R1 ; R1 = 0000 OOBA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a word from unaligned address X is:

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = yBAX XXxX
LDQ U R2, X+1(R11) ; Ignores va<2:.0>, R2 = yBAX XXxXX
LDA R3, X+1+1(R11) ; R3<2.0> = 5+1+1 = 7

EXTQL R1, R3 R1 ; R1 = 0000 000y

EXTQH R2, R3, R2 ; R2 = BAXX xxx0

OR R2, R1, R1 ; R1 = BAXX XxXxy

SRA R1, #48, R1 ; R1 = ssss ssBA

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = yyAX XxxX
LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
EXTBL R1, R3, R1 ; R1 = 0000 000A

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending a byte from address X is:

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = yyAX XxxX
LDA R3, X+1(R11) ; R3<2.0> = (X + 1) mod 8§, ie,

; convert byte position within

; quadword to one-origin based
EXTOH R1, R3, R1 ; Places the desired byte into byte 7

; of R1final by left shifting

; Rlinitial by ( 8 - R3<2:0> ) byte

; positions
SRA R1, #56, R1 ; Arithmetic Shift of byte 7 down

; into byte 0,

Optimized examples:

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain a longword-
aligned address. The optimized sequences below take advantage of the known constant offset,
and the longword alignment (hence a single aligned longword contains the entire word). The
sequences generate a Data Alignment Fault if R3 does not contain a longword-aligned address.
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For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending an aligned word from 10(R3) is:

LDL R1, 8(R3) : R1 = ssss BAxx
; Faults if R3 is not longword aligned
EXTWL R1, #2, R1 ; R1 = 0000 OOBA

For software that is not designed to use the BWX extension, the intended sequence for loading
and sign-extending an aligned word from 10(R3) is:

LDL R1, 8(R3) : R1 = ssss BAXx
; Faults if R3 is not longword aligned
SRA R1, #16, R1 ; R1 = ssss ssBA

Big-endian examples:

For software that is not designed to use the BWX extension, the intended sequence for loading
and zero-extending a byte from address X is:

LDQ U R1, X(R11) ; Ignores va<2:.0>, RL = xxxx xAyy

LDA R3, X(R11) ; R3<2:0> = 5, shift will be 2 bytes

EXTBL R1, R3, R1 : R1 = 0000 OOOA

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = xxxxABC

LDQ U R2, X+7(R11) ; lgnores va<2:.0>, R2 = DEFGHyyy

LDA R3, X+7(R11) ; R3<2:0> = 4, shift will be 3 bytes

EXTOH R1, R3, R1 : R1 = ABCO 0000

EXTQL R2, R3, R2 : R2 = 000D EFGH

OR R1, R2, R1 : R1 = ABCD EFGH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for longwords
is X+3, and for words is X+1; for little-endian, these are all just X. Also note that the EXTQH
and EXTQL instructions are reversed with respect to the little-endian sequence.
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4.6.3 Byte Insert

Format:
INSxx Ra.rq,Rb.rgq,Rc.wq
INSxx Ra.rg,#b.ib,Rc.wq
Operation:
CASE
big_endian_data: Rbv' ~ Rbv XOR 11%
litle_endian_data: Rbv' ~ Rbv
ENDCASE
CASE

INSBL: byte mask ~ 0000 0000 0000 0001
INSWx: byte mask ~ 0000 0000 0000 0011
INSLx: byte mask  ~ 0000 0000 0000 1111
INSQx: byte mask ~ 0000 0000 1111 1111

ENDCASE
byte mask ~ LEFT_SHIFT(byte mask, Rbv'<2:0>)

N N NN

CASE
INSXL:
byte loc ~ Rbv<2:0>*8
temp ~ LEFT_SHIFT(Rav, byte loc<5:0>)
Rc « BYTE_ZAP(temp, NOT(byte_mask<7:0>))
INSXH:
byte loc ~ 64 - Rbv'<2:0>*8
temp ~ RIGHT _SHIFT(Rav, byte loc<5:0>)
Rc « BYTE_ZAP(temp, NOT(byte_mask<15:8>))
ENDCASE

Exceptions:

None

Instruction mnemonics:

INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
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Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros, storing the
result in register Rc. Register Rb¥2:0> selects the shift amount, and the function code
selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions can generate a byte,
word, longword, or quadword datum that is spread across two registers at an arbitrary byte
alignment.
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4.6.4 Byte Mask

Format:
MSKxx Ra.rgq,Rb.rgq,Rc.wq
MSKxx Ra.rqg,#b.ib,Rc.wq
Operation:
CASE
big_endian_data: Rbv' ~ Rbv XOR 11%
litle_endian_data: Rbv' ~ Rbv
ENDCASE
CASE
MSKBL: byte mask ~ 0000 0000 0000 0001
MSKWHx: byte mask ~ 0000 0000 0000 0011
MSKLx: byte mask ~ 0000 0000 0000 1111
MSKQx: byte mask ~ 0000 0000 1111 1111
ENDCASE

byte mask ~ LEFT_SHIFT(byte mask, Rbv'<2:0>)

CASE
MSKxL:
Rc « BYTE_ZAP(Rav, byte mask<7:0>)
MSKxH:
Rc « BYTE_ZAP(Rav, byte mask<15:8>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

MSKBL Mask Byte Low
MSKWL Mask Word Low
MSKLL Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High
Quialifiers:
None

4-58 Common Architecture (1)

N N NN

IOperate format

IOperate format



Description:

MSKXxL and MSKxH set selected bytes of register Ra to zero, storing the result in register Rc.
Register Rb¥<2:0> selects the starting position of the field of zero bytes, and the function
code selects the maximum width: 1, 2, 4, or 8 bytes. The instructions generate a byte, word,
longword, or quadword field of zeros that can spread across two registers at an arbitrary byte

alignment.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) is such
that (ea mod 8) =5, the value of the aligned quadword containing X(R11) is CBAx xxxx, the
value of the aligned quadword containing X+7(R11) is yyyH GFED, the value to be stored
from R5 is HGFE DCBA, and the datum is little-endian. Slight modifications similar to those

in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about the value
or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

LDA R6, X(R11) ; R6<2.0> = (X mod 8) = 5

LDQ U R2, X+7(R11) ; Ignores va<2:.0>, R2 = yyyH GFED

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = CBAX XXxX

INSQH R5, R6, R4 ; R4 = 000H GFED

INSQL R5, R6, R3 ; R3 = CBAO 0000

MSKQH R2, R6, R2 ; R2 = yyy0 0000

MSKQL R1, R6, R1 ; RL = 000x xxxx

OR R2, R4, R2 ; R2 = yyyH GFED

OR R1, R3, R1 ; R1L = CBAX xxxX

STQ U R2, X+7(R11) ; Must store high then low for

STQ U R1, X(R11) ; degenerate case of aligned QW
The intended sequence for storing an unaligned longword R5 at X is:

LDA R6, X(R11) ; R6<2.0> = (X mod 8) = 5

LDQ U R2, X+3(R11) ; Ignores va<2:.0>, R2 = yyyy yyyD

LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = CBAX XXxX

INSLH R5, R6, R4 ; R4 = 0000 000D

INSLL R5, R6, R3 ; R3 = CBAO 0000

MSKLH R2, R6, R2 7 R2 = yyyy ywy0

MSKLL R1, R6, R1 ; RL = 000x xxxx

OR R2, R4, R2 7 R2 = yyyy ywyD

OR R1, R3, R1 ; R1L = CBAX xxxX

STQ U R2, X+3(R11) ; Must store high then low for

STQ U R1, X(R11) ; degenerate case of aligned

Instruction Descriptions (13-59



For software that is not designed to use the BWX extension, the intended sequence for storing
an unaligned word R5 at X is:

LDA R6, X(R11) ; R6<2.0> = (X mod 8) = 5
LDQ U R2, X+1(R11) ; Ignores va<2:.0>, R2 = yBAX XXxXX
LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = yBAX XXXX
INSWH R5, R6, R4 ; R4 = 0000 0000

INSWL R5, R6, R3 ; R3 = OBAO 0000

MSKWH R2, R6, R2 ; R2 = yBAX XXxX

MSKWL R1, R6, R1 ; R1 = yOOX xxxx

OR R2, R4, R2 ; R2 = yBAX XxXXX

OR R1, R3, R1 ; R1 = yBAX XXXX

STQ U R2, X+1(R11) ; Must store high then low for
STQ U R1, X(R11) ; degenerate case of aligned

For software that is not designed to use the BWX extension, the intended sequence for storing
a byte R5 at X is:

LDA R6, X(R11) ; R6<2.0> = (X mod 8) = 5
LDQ U R1, X(R11) ; Ignores va<2:.0>, R1 = yyAX XxxX
INSBL R5, R6, R3 ; R3 = 00AO0 0000

MSKBL R1, R6, R1 ; R1 = yyOX xxxx

OR R1, R3, R1 ; R1 = yyAX xxxx

STQ U RI1, X(R11)
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4.6.5 Sign Extend

Format:
SEXTx Rb.rg,Rc.wq 'Operate format
SEXTx #b.ib,Rc.wq !Operate format
Operation:
CASE

SEXTB: Rc ~ SEXT(Rbv<07:0>)
SEXTW: Rc « SEXT(Rbv<15:0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

SEXTB Sign Extend Byte
SEXTW Sign Extend Word
Quialifiers:
None
Description:

The byte or word in register Rb is sign-extended to 64 bits and written to register Rc. Ra must
be R31.

Implementation Note:

The SEXTB and SEXTW instructions are supported in hardware on Alpha
implementations for which the AMASK instruction clears feature mask bit 0. SEXTB and
SEXTW are supported with software emulation in Alpha implementations for which
AMASK does not clear feature mask bit 0. Software emulation of SEXTB and SEXTW is
significantly slower than hardware support.

Instruction Descriptions (13-61



4.6.6 Zero Bytes

Format:

ZAPX Ra.rg,Rb.rgq,Rc.wq IOperate format

ZAPXx Ra.rg,#b.ib,Rc.wq IOperate format

Operation:

CASE
ZAP:
Rc « BYTE_ZAP(Rav, Rbv<7:.0>)

ZAPNOT:

Rc —« BYTE ZAP(Rav, NOT Rbv<7.0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

ZAP Zero Bytes
ZAPNOT Zero Bytes Not
Qualifiers:
None
Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero and store the result in register Rc.
Register Rb<7:0> selects the bytes to be zeroed. Bit 0 of Rbv corresponds to byte 0, bit 1 of
Rbv corresponds to byte 1, and so on. A result byte is set to zero if the corresponding bit of
Rbv is a one for ZAP and a zero for ZAPNOT.

4-62 Common Architecture (1)



4.7 Floating-Point Instructions

Alpha provides instructions for gpating on floating-point ogrands in each of four data
formats:

e F_floating (VAX single)

e G_floating (VAX double, 11-bit exponent)
* S floating (IEEE single)

* T floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-point and
guadword integer formats, between double and single floating, and between quadword and
longword integers.

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations are
provided in the architecture. For backward compatibility, exact D_floating arithmetic may
be provided via software emulation. D_floating "format compatibility," in which binary
files of D_floating numbers may be processed but without the last 3 bits of fraction
precision, can be obtained via conversions to G_floating, G arithmetic operations, then
conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also encodes the
choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions6tincluding loads or stores) that yield an F_floating or
G_floating zero rsult must materialize a true zero.

4.7.1 Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point registers in
canonical form, as subsets of double-precision values, with 11-bit exponents restricted to the
corresponding single-precision range, and with the 29 low-order fraction bits restricted to be all
zero.

Single-precision operations applied to canonical singkzigion values give single-precision
results. Floating-point operations applied to non-canonical single-precision operands give
UNPREDICTABLE results.

Longword integer values in floating-point registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in bits <28:0>. Floating-point operations applied to longword inte-
ger operations, where the operand register contains a non-zero value in bits <28:0>, give
UNPREDICTABLE results.

4.7.2 Subsets and Faults

All floating-point operations may take floating disabled faults. Any subsetted floating-point
instruction may take an lllegal Instruction Trap. These faults are not explicitly listed in the
description of each instruction.
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All floating-point loads and stores may take memory management faults (access control viola-
tion, translation not valid, fault oread/write, data alignment).

The floating-point enable (FEN) internal processor register (IPR) allows system software to
restrict access to the floating-point registers.

If a floating-point instruction is implemented and FEN = 0, attempts to execute the instruction
cause a floating disabled fault.

If a floating-point instruction is not implemented, attempts to execute the instruction cause an
Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations, either,
or none.

Some floating-point instructions are common to the VAX and IEEE subsets, some are VAX
only, and some are IEEE only. These are designated in the descriptions that follow. If either
subset is implemented, all the common instructions must be implemented.

An implementation that includes IEEE floating-point may subset the ability to perform round-
ing to plus infinity and minus infinity. If not implemented, instructions requesting these
rounding modes take lllegal Instruction Trap.

An implementation that includes IEEE floating-point may implement any subset of the Trap
Disable flags (DNOD, DZED, INED, INVD, OVFD, and UNFD) and Denormal Control flags
(DNZ and UNDZ) in the FPCR:

e |f a Trap Disable flag is not implemented, then the corresponding trap occurs as usual.

e |f DNZ is not implemented, then any IEEE operation with a denormal input must take
an Invalid Operation Trap.

e |f UNDZ is not implemented, then any IEEE operation that includes a /S qualifier that
underflows must take an Underflow Trap.

e |f DZED is implemented, then IEEE division of 0/0 must be treated as an invalid opera-
tion instead of a division by zero.

Any unimplemented bits in the FPCR are read as zero and ignored when set.

4.7.3 Definitions

The following definitions apply to Alpha floating-point support.

Alpha finite number

A floating-point number with a definite, in-range value. Specifically, all numbers in the inclu-
sive ranges —MAX through —MIN, zero, and +MIN through +MAX, where MAX is the largest
non-infinite representable floating-point number and MIN is the smallest non-zero represent-
able normalized floating-point number.

For VAX floating-point, finites do not include reserved operands or dirty zeros (this differs
from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-point, finites do
not include infinites, NaNs, or denormals, but do include minus zero.
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denormal

An |[EEE floating-point bit pattern that represents a number whose magnitude lies between
zero and the smallest finite number.

dirty zero

A VAX floating-point bit pattern that represents a zero value, but not in true-zero form.

infinity

An |IEEE floating-point bit pattern that represents plus or minus infinity.

LSB

The least significant bit. For a positive finite representable number A, A + 1 LSB is the next
larger representative number, and A + %2 LSB is exactly halfway between A and the next larger
representable number. For a positive representable number A whose fraction field is not all
zeros, A — 1 LSB is the next smaller representable number, and A — %2 LSB is exactly halfway
betweerA and the next smaller representable number.

non-finite number

An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand.

Not-a-Number

An |IEEE floating-point bit pattern that represents something other than a number. This comes
in two forms: signaling NaNs (for Alpha, those with an initial fraction bit of 0) and quiet NaNs
(for Alpha, those with an initial fraction bit of 1).

representable result

A real number that can be represented exactly as a VAX or IEEE floating-point number, with
finite precision and bounded exponent range.

reserved operand

A VAX floating-point bit pattern that represents an illegal value.

trap shadow

The set of instructions potentially executed after an instruction that signals an arithmetic trap
but before the trap is actually taken.

true result

The mathematically correct result of an operatiosguaming that the input operand values are
exact. The true result is typically rounded to the nearest representable result.
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true zero

The value +0, represented as exactly 64 zeros in a floating-point register.

4.7.4 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and fraction. The sign
is 1 bit; the exponentis 8, 11, or 15 bits; and the fraction is 23, 52, 55, or 112 bits. Some
encodings represent special values:

Sign  Exponent  Fraction VAX Meaning VAX Finite :\EeE;ing ::Elr'itEe
X All-1's Non-zero  Finite Yes +/-NaN No
X All-1's 0 Finite Yes +/—Infinity No

0 0 Non-zero  Dirty zero No +Denormal No
1 0 Non-zero  Resv.@rand No —Denormal No
0 0 0 True zero Yes +0 Yes
1 0 0 Resv. operand No -0 Yes
X Other X Finite Yes Finite Yes

The values of MIN and MAX for each of the five floating-point data formaits:

Data MIN MAX

Format

F_floating 2**-127*0.5 2*%%127 *(1.0 — 2**—24)
(0.293873588e—38) (1.7014117e38)

G_floating 2*-1023*0.5 2*¥1023 * (1.0 — 2**-53)
(0.5562684646268004e—308) (0.89884656743115785407e308)

S floating 2**~126*1.0 2*%%127 * (2.0 — 2**—23)
(1.17549435e—38) (3.40282347e38)

T floating 2**-1022*1.0 2*%1023 * (2.0 — 2**-52)
(2.2250738585072013e—308) (1.7976931348623158e308)

X_floating 2**-16382*1.0 2**16383*%(2.0—2**~112)
(See below) (See below)

T (1.18973149535723176508575932662800702e4932)
¥ (3.36210314311209350626267781732175260e—4932)
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4.7.5 Rounding Modes

All rounding modes map a true result that is exactly representable to that representable value.

VAX Rounding Modes

For VAX floating-point operations, two rounding modes are provided and are specified in each
instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute value (sometimes called
biased rounding away from zero); maps true resalMAX + 1/2 LSB in magnitude to an
overflow; maps non-zero true results < MIN — 1/4 LSB in magnitude to arercfruiv.

Chopped VAX rounding maps the true result to the smaller in magnitude of two surrounding
representable results; maps true resalMAX + 1 LSB in magnitude to an overflow; maps
non-zero true results < MIN in magnitude to an underflow.

IEEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal rounding (unbi-
ased round to nearest), rounding toward minus infinity, round toward zero, and rounding
toward plus infinity. The first three can be specified in the instruction. Rounding toward plus
infinity can be obtained by setting the Floating-point Control RegiFF®CR) to select it and
then specifying dynamic rounding mode in the instruction (see Section 4.7.8). Alpha IEEE
arithmetic does rounding before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the one whose fraction ends in 0 (sometimes
called unbiased rounding to even); maps true resul¥$AX + 1/2 LSB in magnitude to an
overflow; maps non-zero true results < MIN — 1/2 LSB in magnitude to arerftudv.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding representable
results; maps positive true results > MAX to an overflow; maps negative true results < -MAX
— 1 LSB to an overflow; maps true resuitstMIN — 1 LSB to an underflow; and maps nega-
tive true results > —MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding represent-
able results; maps positive true results > MAX + 1 LSB to an overflow; maps negative true
results < —MAX to an overflow; maps positive true results < +MIN to an underflow; and maps
negative true results —MIN + 1 LSB to an underflow.

Chopped IEEE rounding maps the true result to the smaller in magnitude of two surrounding
representable results; maps true reseltddAX + 1 LSB in magnitude to an overflow; and
maps non-zero true salts < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register and is
described in more detail in Section 4.7.8.
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The following tables summarize the floating-point rounding modes:

VAX Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Chopped /IC

IEEE Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’
Minus infinity M

Chopped /IC

4.7.6 Computational Models

The Alpha architecture provides a choice of floating-point computational models.

There are two computational models available on systems that implement the VAX floating-
point subset:

* VAX-format arithmetic with pecise exceptions
* High-performance VAX-format arithmetic

There are three computational models available on systems that implement the IEEE floating-
point subset:

* |EEE compliant arithmetic
* |EEE compliant arithmetic without inexact exception

e High-performance IEEE-format arithmetic

4.7.6.1 VAX-Format Arithmetic with Precise Exceptions

This model provides floating-point arithmetic that is fully compatible with the floating-point
arithmetic provided by the VAX architecture. It provides support for VAX non-finites and
gives precise exceptions.

This model is implemented by using VAX floating-point instructions with the /S, /SU, and /SV
trap qualifiers. Each instruction can determine whether it also takes an exception on underflow
or integer overflow. The performance of this model depends on how often computations
involve non-finite operands. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).

4.7.6.2 High-Performance VAX-Format Arithmetic

This model provides arithmetic operations on VAX finite numbers. An imprecise arithmetic
trap is generated by any operation that involves non-finite numbers, floating overflow, and
divide-by-zero exceptions.
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This model is implemented by using VAX floating-point instructions with a trap qualifier other
than /S, /SU, or /SV. Each instruction can determine whether it also traps on underflow or inte-
ger overflow. This model does not require the overhead of an operating system completion
handler and can be the faster of the two VAX models.

4.7.6.3 IEEE-Compliant Arithmetic

This model provides floating-point arithmetic that fully complies with the IEEE Standard for
Binary Floating-Point Arithmetic. It provides all of the exception status flags that are in the
standard. It provides a default where all traps and faults are disabled and where IEEE non-
finite values are used in lieu of exceptions.

Alpha operating systems provide additional mechanisms that allow the user to specify dynami-
cally which exception conditions should trap and which should proceed without trapping. The
operating systems also include mechanisms that allow alternative handling of denormal val-

ues. See Appendix B and the appropriate operating system documentation for a description of
these mechanisms.

This model is implemented by using IEEE floating-point instructions with the /SUI

or /SVI trap qualifiers. The performance of this model depends on how often computations
involve inexact results and non-finite operands and results. Performance also depends on how
the Alpha system chooses to trade off implementation complexity between hardware and oper-
ating system completion handlers (see Section 4.7.7.3). This model provides acceptable
performance on Alpha systems that implement the inexact disable (INED) bit in the FPCR.
Performance may be slow if the INED bit is not implemented.

4.7.6.4 IEEE-Compliant Arithmetic Without Inexact Exception

This model is similar to the model in Section 4.7.6.3, except this model does not signal inexact
results either by the inexact status flag or by trapping. Combining routines that are compiled
with this model and routines that are compiled with the model in Section 4.7.6.3 can give an
application better control over testing when an inexact operation will affect computational
accuracy.

This model is implemented by using IEEE floating-point instructions with the /SU or /SV trap
gualifiers. The performance of this model depends on how often computations involve non-
finite operands and results. Performance also depends on how an Alpha system chooses to
trade off implementation complexity between hardware and operating system completion han-
dlers (see Section 4.7.7.3).

4.7.6.5 High-Performance IEEE-Format Arithmetic

This model provides arithmetic operations on |IEEE finite numbers and notifies applications of
all exceptional floating-point operations. An imprecise arithmetic trap is generated by any
operation that involves non-finite numbers, floating overflow, divide-by-zero, and invalid
operations. Underflow results are set to zero. Conversion to integer results that overflow are set
to the low-order bits of the integer value.

This model is implemented by using IEEE floating-point instructions with a trap qualifier other
than /SU, /SV, /SUI, or /ISVI. Each instruction can determine whether it also traps on under-
flow or integer overflow. This model does not require the overhead of an operating system
completion handler and can be the fastest of the three IEEE models.
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4.7.7 Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions, all sig-
naled by an arithmetic exception trap. These exceptions are:

Invalid operation
Division by zero
Overflow
Underflow
Inexact result

Integer overflow (conversion to integer only)

4.7.7.1 VAX Trapping Modes

This section describes the characteristics of the four VAX trapping modes, which are summa-
rized in Table 4-8.

When no trap mode is specified (the default):

Arithmetic is performed on VAX finite numbers.

Operations give imgecise traps whenever the following occur:

— anoperand is a hon-finite number

— afloating overflow

— adivide-by-zero

Traps are imprecise and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

An underflow produces a zero result without trapping.

A conversion to integer that overflows uses the low-order bits of the integer as the
result without trapping.

The result of any operation that traps is UNPREDICTABLE.

When /U or /V mode is specified:

Arithmetic is performed on VAX finite numbers.

Operations give imgecise traps whenever the following occur:

an operand is a non-finite number

an underflow

an integer overflow

a floating overflow

a divide-by-zero

Traps are imprecise and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

An underflow trap produces a zero result.

A conversion to integer trapping with an integer overflow produces the low-order bits
of the integer value.

The result of any other operation that traps is UNPREDICTABLE.

When /S mode is specified:

Arithmetic is performed on all VAX values, both finite and non-finite.
A VAX dirty zero is treated as zero.
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e Exceptions are signaled for:
— aVAXreserved operand, which genates arnvalid operation exception
— afloating overflow
— adivide-by-zero

e Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values. See Section 4.7.7.3.

* An operation that underflows produces a zero result without taking an exception.

* A conversion to integer that overflows uses the low-order bits of the integer as the
result, without taking an exception.

* When an operation takes an exception, the result of the operation is UNPREDICT-
ABLE.

When /SU or /SV mode is specified:

* Arithmetic is performed on all VAX values, both finite and non-finite.

e A VAXdirty zero is treated as zero.

e Exceptions are signaled for:
— aVAXreserved operand, which genates arnvalid operation exception
— anunderflow
— aninteger overflow
— afloating overflow
— adivide-by-zero

e Exceptions are precise and an application can locate the instruction that caused the
exception, along with its operand values. See Section 4.7.7.3.

* Anunderflow exception produces a zero.

* A conversion to integer exception with integer overflow produces the low-order bits of
the integer value.

* The result of any other operation that takes an exception is UNPREDICTABLE.

A summary of the VAX trapping modes, instruction notation, and their meaning follows in
Table 4-8:

Table 4-8: VAX Trapping Modes Summary

Trap Mode Notation Meaning
Underflow disabled No qualifier Imprecise

/S Precise exception completion
Underflow enabled /U Imprecise

/SU Precise exception completion

Integer overflow disabled  No qualifier Imprecise

/S Precise exception completion
Integer overflow enabled  /V Imprecise
ISV Precise exception completion

Instruction Descriptions (13-71



4.7.7.2 |EEE Trapping Modes

This section describes the characteristics of the four IEEE trapping modes, which are summa-
rized in Table 4-9.

When no trap mode is specified (the default):

Arithmetic is performed on IEEE finite numbers.

Operations give imgecise traps whenever the following occur:

— anoperand is a hon-finite number

— afloating overflow

— adivide-by-zero

— aninvalid operation

Traps are imprecise, and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

An underflow produces a zero result without trapping.

A conversion to integer that overflows uses the low-order bits of the integer as the
result without trapping.

When an operation traps, the result of the operation is UNPREDICTABLE.

When /U or /V mode is specified :

Arithmetic is performed on IEEE finite numbers.

Operations give imgecise traps whenever the following occur:

— anoperand is a non-finite number

— anunderflow

— aninteger overflow

— afloating overflow

— adivide-by-zero

— aninvalid operation

Traps are imprecise, and it is not always possible to determine which instruction trig-
gered a trap or the operands of that instruction.

An underflow trap produces a zero.

A conversion to integer trap with an integer overflow produces the low-order bits of the
integer.

The result of any other operation that traps is UNPREDICTABLE.

When /SU or /SV mode is specified:

Arithmetic is performed on all IEEE values, both finite and non-finite.

Alpha systems support all IEEE features except inexact exception (which requires /SUI

or /SVI):

— The IEEE standard specifies a default where exceptions do not fault or trap. In
combination with the FPCR, this mode allows disabling exceptions and producing
IEEE compliant nontrapping results. See Sections 4.7.7.10 and 4.7.7.11.

— Each Alpha operating system provides a way to optionally signal IEEE floating-
point exceptions. This mode enables the IEEE status flags that keep a record of
each exception that is encountered. An Alpha operating system uses the IEEE float-
ing-point control (FP_C) quadword, described in Appendix B, to maintain the IEEE
status flags and to enable calls to IEEE user signal handlers.

Exceptions signaled in this mode are precise and an application can locate the instruc-

tion that caused the exception, along with its operand values. See Section 4.7.7.3.
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When /SUI or /SVI mode is specified:
* Arithmetic is performed on all IEEE values, both finite and non-finite.
* |nexact exceptions are supported, along with all the other IEEE features supported by
the /SU or /SV mode.

A summary of the IEEE trapping modes, instruction notation, and their meaning follows in
Table 4-9.

Table 4-9 Summary of IEEE Trapping Modes

Trap Mode Notation Meaning
Underflow disabled and inexact disabled No qualifier Imprecise
Underflow enabled and inexact disabled /U Imprecise

/SU Precise exception completion
Underflow enabled and inexact enabled /SUI Precise exception completion
Integer overflow disabled and inexact disabled No qualifier Imprecise
Integer overflow enabled and inexact disabled /V Imprecise

ISV Precise exception completion
Integer overflow enabled and inexact enabled  /SVI Precise exception completion

4.7.7.3 Arithmetic Trap Completion

Because floating-point instructions may be pipelined, the trap PC can be an arbitrary number
of instructions past the one triggering the trap. Those instructions that are executed after the
trigger instruction of an arithmetic trap are collectively referred to adridye shadowof the

trigger instruction.

Marking floating-point instructions for exception completion with any valid qualifier combina-
tion that includes the /S qualifier enables the completion of the triggering instruction. For any
instruction so marked, the output register for the triggering instruction cannot also be one of
the input registers, so that an input register cannot be overwritten and the input value is avail-
able after a trap occurs.

See Section B.2 for more information.
The AMASK instruction reports how the arithmetic trap should be completed:

* |f AMASK does not clear feature mask bit 9, floating-point traps are imprecise. Excep-
tion completion requires that generated code must obey the trap shadow rules in Section
«, with a trap shadow length as described in Section 4.7.7.3.2.
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* |If AMASK clears feature mask bit 9, the hardware implements precise floating-point
traps. If the instruction has any valid qualifier combination that includes /S, the trap PC
points to the instruction that immediately follows the instruction that triggered the trap.
The trap shadow contains zero instructions; exception completion does not require that
the generated code follow the conditions in Section ¢ and the length rules in Section
4.7.7.3.2.

4.7.7.3.1 Trap Shadow Rules

For an operating system (OS) completion handler to complete non-finite operands and excep-
tions, the following conditions must hold.

Conditions 1 and 2, below, allow an OS completion handler to locate the trigger instruction by
doing a linear scan backwards from the trap PC while comparing destination registers in the
trap shadow with the registers that are specified in the register write mask parameter to the
arithmetic trap.

Condition 3 allows an OS completion handler to emulate the trigger instruction with its origi-
nal input operand values.

Condition 4 allows the handler to re-execute instructions in the trap shadow with their original
operand values.

Condition 5 prevents any unusual side effects that would cause problems on repeated execu-
tion of the instructions in the trap shadow.

Conditions:

1. The destination register of the trigger instruction may not be used as the destination reg-
ister of any instruction in the trap shadow.

The trap shadow may not include any branch or jump instructions.
An instruction in the trap shadow may not modify an input to the trigger instruction.

The value in a register or memory location that is used as input to some instruction in
the trap shadow may not be modified by a subsequent instruction in the trap shadow
unless that value is produced by an earlier instruction in the trap shadow.

5. The trap shadow may not contain any instructions with side effects that interact with
earlier instructions in the trap shadow or with other parts of the system. Examples of
operations with prohibited side effects are:

— Maodifications of the stack pointer or frame pointer that can changadbesbility
of stack variables and the exception context that is used by earlier instructions in
the trap shadow.

— Madifications of volatile values and access to I/O device registers.

— If order of exception reporting is important, taking an arithmetic trap by an integer
instruction or by a floating-point instruction that does not include a /S qualifier,
either of which can report exceptions out of order.

An instruction may be in the trap shadows of multiple instructions that include a /S qualifier.
That instruction must obey all conditions for all those trap shadows. For example, the destina-
tion register of an instruction in multiple trap shadows must be different than the destination
registers of each possible trigger instruction.
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4.7.7.3.2 Trap Shadow Length Rules

The trap shadow length rules in Table 4—11 apply only to those floating-point instructions with
any valid qualifier combination that includes a /S trap qualifier. Further, the instruction to
which the trap shadow extends is not part of the trap shadow and that instruction is not exe-
cuted prior to the arithmetic trap that is signaled by the trigger instruction.

Implementation notes:

* On Alpha implementations for which the IMPLVER instruction returns the value 0, the
trap shadow of an instruction may extend after the result is consumed by a floating-
point STx instruction. On all other implementations, the trap shadow ends when a result
is consumed.

e Because Alpha implementations need not execute instructions that have R31 or F31 as
the destination operand, instructions with such an destination should not be thought to
end a trap shadow.
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Table 4-10 Trap Shadow Length Rules

Floating-Point

Instruction Group Trap Shadow Extends Until Any of the Following Occurs:

Floating-point operate
(except DIVx and SQRTX)

Floating-point DIVx

Floating-point SQRTx

Encountering a CALL_PAL, EXCB, or TRAPB instruction.

The result is consumed by any instruction except floating-point
STx.

The fourth instructioh after the result is consumed by a float-
ing-point STx instruction.

Or, following the floating-point STx of the result, the result of a
LDx that loads the stored value is consumed by any instruction.

The result of a subsequent floating-point operate instruction is
consumed by any instruction except floating-point STX.

The second instructidrafter the result of a subsequent floating-
point operate instruction is consumed by a floating-point STx
instruction.

The result of a subsequent floating-point DIVXx or SQRTXx
instruction is consumed by any instruction.

Encountering a CALL_PAL, EXCB, or TRAPB instruction.

The result is consumed by any instruction except floating-point
STx.

The fourth instructioh after the result is consumed by a float-
ing-point STx instruction.

Or, following the floating-point STx of the result, the result of a
LDx that loads the stored value is consumed by any instruction.

The result of a subsequent floating-point DIVx is consumed by
any instruction.

Encountering a CALL_PAL, EXCB, or TRAPB instruction.
The result is consumed by any instruction.

The result of a subsequent SQRTX instruction is consumed by
any instruction.

T The length of four instructions is a conservative estimate of how far the trap shadow may extend pasta
consuming floating-point STx instruction. The length of two instructions is a conservative estimate of
how far the trap shadow may extend after a subsequent floating-point operate instruction is consumed
by a floating-point STx instruction. Compilers can make a more precise estimate by consulting the
Hardware Reference Manual for a particular processor at ftp.compaqg.com/pub/products/alphaCPU-

docs.
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4.7.7.4 Invalid Operation (INV) Arithmetic Trap

An invalid operation arithmetic trap is signaled if an operand is a non-finite number or if an
operand is invalid for the operation to be performed. (Note that CMPTxy does not trap on plus
or minus infinity.) Invalid orations are:

* Any operation on a signaling NaN.

e Addition of unlike-signed infinities or subtraction of like-signed infinities, such as
(+infinity + —infinity) or (+infinity — +infinity).

e Multiplication of OCnfinity.

e |EEE division of 0/0 or infinityinfinity.

e Conversion of an infinity or NaN to an integer.

e CMPTLE or CMPTLT when either operand is a NaN.
* SOQRTx of a negative non-zero number.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditiong; &R can dynamically dis-

able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

IEEE-compliant system software must also supply an invalid operation indication to the user
for x REM 0 and for conversions to integer that take an integer overflow trap.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, which
IEEE compliant software must change to an invalid operation trap for the user.

An implementation may choose not to take an INV trap for a valid IEEE operation that
involves denormal operands if:

* The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

* The implementation supports the DNZ (denormal operands to zero) bit and DNZ is set.

* The instruction produces the result and exceptions required by Section 4.7.10, as modi-
fied by the DNZ bit described in Section 4.7.7.11.

An implementation may choose not to take an INV trap for a valid IEEE operation that
involves denormal operands, and direct hardware implementation of denormal arithmetic is
permitted if:

* The instruction is modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

* The implementation supports both the DNOD (denormal operand exception disable) bit
and the DNZ (denormal operands to zero) bit and DNOD isvbéte DNZ is clear.

* The instruction produces the result and exceptions required by Section 4.7.10, possibly
modified by the UDNZ bit described in Section 4.7.7.11.
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Regardless of the setting of the INVD (invalid operation disable) bit, the implementation may
choose not to trap on valid operations that involve quiet NaNs and infinities as operands for
IEEE instructions that are modified by any valid qualifier combination that includes the /S
(exception completion) qualifier.

4.7.7.5 Division by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid operation
trap and the denominator is zero.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditiong; &R can dynamically dis-

able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

If an implementation does not support the DZED (division by zero disable) bit, it may respond
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, which
IEEE compliant software must change to an invalid operation trap for the user.

4.7.7.6 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude the largest
finite number of the destination format.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE value is
stored in the result register. However, under some conditiong; &R can dynamically dis-

able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as described in
Section 4.7.10.

4.7.7.7 Underflow (UNF) Arithmetic Trap

Section 4.7.5 defines conditions under which an underflow occurs.

Note:

The Alpha hardware definition underflow fthrs from the IEEE defiition in that the
Alpha definition does not depend on whether the result is inexact. Alpha provides IEEE
compliant underflow handling by means of a software completion handler, which is
described in Appendix B.

If an underflow trap occurs, a true zero (64 bits of zero) is always stored in the result register.
In the case of an IEEE operation that takes an underflow arithmetic trap, a true zero is stored
even if the result after rounding would have been -0 (underflow below the negative denormal
range).

If an underflow occurs and underflow traps are enabled by the instruction, an underflow arith-
metic trap is signaled. However, under some conditions, the FPCR can dynamically disable the
trap, as described in Section 4.7.7.10, producing the result described in Section 4.7.10, as mod-
ified by the UNDZ bit described in Section 4.7.7.11.

4.7.7.8 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded result.

If an inexact result occurs, the normal rounded result is still stored in the result register. If an
inexact result occurs and inexact result traps are enabled by the instruction, an inexact result
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arithmetic trap is signaled. However, under some conditions, the FPCR can dynamically dis-
able the trap; see Section 4.7.7.10 for information.

4.7.7.9 Integer Overflow (IOV) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the rounded
result is outside the range —2**63..2**63—1. In conversions from quadword integer to long-
word integer, an integer overflow occurs if the result is outside the range —2**31..2**31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the low-order
64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the instruction, an inte-
ger overflow arithmetic trap is signaled.

4.7.7.10 IEEE Floating-Point Trap Disable Bits

In the case of IEEE exception completion modes, any of the traps described in Sections
through 4.7.7.9 may be disabled by setting the appropriate trap disable bit in the FPCR. The
trap disable bits only affect the IEEE trap modes when the instruction is modified by any valid
gualifier combination that includes the /S (exception completion) qualifier. The trap disable
bits (DNOD, DZED, INED, INVD, OVFD, and UNFD) do not affect any of the VAX trap
modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware implemen-
tation sets the result of the operation to the nontrapping result value as specified in the IEEE
standard and Section 4.7.10 and modified by the denormal control bits. If the implementation

is unable to calculate the required result, it ignores the trap disable bit and signals a trap as
usual.

Note that a hardware implementation may choose to support any subset of the trap disable bits,
including the empty subset.

4.7.7.11 |EEE Denormal Control Bits

In the case of IEEE exception completion modes, the handling of denormal operands and
results is controlled by the DNZ and UNDZ bits in the FPCR. These denormal control bits only
affect denormal handling by IEEE instructions that are modified by any valid qualifier combi-
nation that includes the /S (exception completion) qualifier.

The denormal control bits apply only to the IEEE operate instructioA®b, SUB, MUL,
DIV, SQRT, CMPxx, and CVT with floating-point source end.

If both the UNFD (underflow disable) bit and the UNDZ (underflow to zero) bit are set in the
FPCR, the implementation sets the result of an underflow operation to a true zero result. The
zeroing of a denormal result by UNDZ must also be treated as an inexact result.

If the DNZ (denormal operands to zero) bit is set in the FPCR, the implementation treats each
denormal operand as if it were a signed zero value. The source operands in the register are not
changed. If DNZ is set, IEEE operations with any valid qualifier combination that includes a /S
gualifier signal arithmetic traps as if any denormal operand were zero; that is, with DNZ set:

* An IEEE operation with a denormal operand never generateserfiaw, underflow, or
inexact result arithmetic trap.
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* Dividing by a denormal operand is a division by zero or invalid operation as appropri-
ate.

e Multiplying a denormal by infinity is an invalid operation.
* A SQRT of a negative denormal produces a —0 instead of an invalid operation.

e Adenormal operand, treated as zero, does not take the denormal operand exception trap
controlled by the DNOD bit in the FPCR.

Note that a hardware implementation may choose to support any subset of the denormal con-
trol bits, including the empty subset.

4.7.8 Floating-Point Control Register (FPCR)

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its function
field (function field bits <12:11> = 11), the rounding mode to be used for the instruction is
derived from the FPCR register. The layout of the rounding mode bits and their assignments
matches exactly the format used in the 11-bit function field of the floating-point operate
instructions. The function field is described in Section 4.7.9.

In addition, the FPCR gives a summary of each exception type for the exception conditions
detected by all IEEE floating-point operates thus far, as well as an overall summary bit that
indicates whether any of these exception conditions has been detected. The individual excep-
tion bits match exactly in purpose and order the exception bits found in the exception summary
guadword that is pushed for arithmetic traps. However, for each instruction, these exception
bits are set independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that the excep-
tional condition was encountered by an instruction is still recorded in the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs to both
VAX and |IEEE subsets, appropriately set the FPCR exception bits. It is UNPREDICTABLE
whether floating-point oprates that beng only to the VAX floating-point subset set the
FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one. Once set
to one, these exception bits are only cleared when software writes zero into these bits by writ-
ing a new value into the FPCR.

Section 4.7.2 allows certain of the FPCR bits toshésetted.
The format of the FPCR is shown in Figure 4-1 and described in Table 4-11.
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Figure 4-1 Floating-Point Control Register (FPCR) Format
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Table 4-11 Floating-Point Control Register (FPCR) Bit Descriptions

Bit

Description (Meaning When Set)

63

62

61

60

59-58

57

56

55

54

53

52

Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to

FPCR<57 |56 | 55| 54 | 53 | 52>. The summary bit is not directly modified by writes to bit 63
of the FPCR, but is indirectly modified by changes to FPCR bits 57-52.

Inexact Disable (INEDJS. Suppress INE trap and place correct IEEE nontrapping result in the
destination register.

Underflow Disable (UNFD§. If the implementation is capable of producing the correct IEEE
nontrapping underflow result, suppress the UNF trap and place the appropriate result value in
the destination register. The correct result value is determined according to the value of the
UNDZ bit.

Underflow to Zero (UNDZj. Determines the result value in the destination register when an
underflow trap is disabled. When set, the non-trapping underflow result value is aetraie

(64 bits of zero); when clear, the non-traping underflow result value is the non-trapping result
(denorm, +0 or —0) specified in the IEEE standard.

Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by an IEEE float-
ing-point operate instruction when the instruction’s function field specifies dynamic mode
(/D). Assignments are:

DYN IEEE Rounding Mode Selected
00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 Plus infinity

Integer Overflow (I0V). A CVTGQ, CVTTQ, or CVTQL instruction overflowed the desti-
nation precision.

Inexact Result (INE). A floating arithmetic or conversion operation gave a result thetediff
from the mathematically exact result.

Underflow (UNF). A floating arithmetic or conversion operation underflowed the destination
exponent.

Overflow (OVF). A floating arithmetic or conversion operation overflowed the destination
exponent.

Division by Zero (DZE). An attempt was made terform a floatingdivide operation with a
divisor of zero.

Invalid Operation (INV). An attempt was made to perform a floating arithmetic, conversion,
or comparison operation, and one or more of the operand values were illegal.
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Table 4-11 Floating-Point Control Register (FPCR) Bit Descriptions (Continued)

Bit

Description (Meaning When Set)

51

50

49

48

47

46-0

Overflow Disable (OVFDF. Suppress OVF trap and place correct |E&Etrapping result in
the destination register if the implementation is capable of producing correct IEEE nontrap-
ping results.

Division by Zero Disable (DZE[ﬁ Suppress DZE trap and place correct |Efdhtrapping
result in the destination register if the implementation is capable of producing correct IEEE
nontrapping results.

Invalid Operation Disable (INVIj) Suppress INV trap and place correct IEEE nontrapping
result in the destination register if the implementation is capable of producing correct IEEE
nontrapping results.

Denormal Operands to Zero (DNJZ)Treat all denormal operands as a signed zero value with
the same sign as the denormal.

Denormal Operand Exception Disable (DNdII‘;?uppress INV trap for valid operations that
involve denormal oprand values and place the correct IEEmRtnapping result in the desti-
nation register if the implementation is capable of processing the denormal operand. If the
result of the operation underflows, the correct result is determined according to the value of
the UNDZ bit. If DNZ is set, DNOD has neffect because a denormal operand is treated as
having a zero value instead of a denormal value.

Reserved. Read as Zero. Ignored when written.

T Bit only has meaning for IEEE instructions whany valid qualifier combination that includes

exception completion (/S) is specified.
FPCR is read from and written to the floating-point registers by the MT_FPCR and MF_FPCR
instructions respectively, which are described in Section 4.7.8.1.

FPCR and the instructions to access it are required for an implementation that supports float-
ing-point (see Section 4.7.8). On implementations that do not support floating-point, the
instructions that access FPCR (MF_FPCR and MT_FPCR) take an lllegal Instruction Trap.

Software Note:

Support for FPCR is required on a system that supports the OpenVMS operating system
even if that system does not support floating-point.

4.7.8.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of floating-point
instructions, accessing tiPCR must be synchronized with other floatipgint instructions.

An EXCB instruction must be issued both prior to and after accessing the FPCR to ensure that
the FPCR access is synchronized with the execution of previous and subsequent floating-point
instructions; otherwise synchronization is not ensured.
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Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that only
floating-point instructions issued after the second EXCB are affected by and affect the new
value of the FPCR. Issuing an EXCB followed by an MF_FPCR followed by another EXCB
ensures that the value read from the FPCR only records the exception information for floating-
point instructions issued prior to the first EXCB.

Consider the following example:

ADDT/D

EXCB 1
MT_FPCR F1,F1F1

EXCB 2
SUBT/D

Without the first EXCB, it is possible in an implementation for the ADDT/D to execute in par-
allel with the MT_FPCR. Thus, it would be UNPREDICTABLE whether the ADDT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary were subsequently set by the ADDT/D.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to execute in
parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether the SUBT/D was
affected by the new rounding mode set by the MT_FPCR and whether fields cleared by the
MT_FPCR in the exception summary field of FPCR were previously set by the SUBT/D.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that code
needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should be issued before
attempting to write the FPCR if the code expects changes to bits <59:52> not to have depen-
dencies with prior instructions. An EXCB should be issued after attempting to write the FPCR

if the code expects subsequent instructions to have dependencies with changes to bits <59:52>.

4.7.8.2 Default Values of the FPCR
Processor initialization leaves the value of FPCR UNPREDICTABLE.

Software Note:

Compaq software should initialize FPCR<DYN> = 10 during program activation. Using
this default, a program can be coded to use only dynamic rounding without the need to
explicitly set the rounding mode to normal rounding in its start-up code.

Program activation normally clears all other fields in the FPCR. However, this behavior
may depend on the operating system.

4.7.8.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR value of one
process does not affect the rounding behavior and exception summary of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by image activa-
tion) is valid for the entirety of the program and remains in effect until subsequently changed
by the programmer or until image run-down occurs.
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Software Notes:
The following software notes apply to saving and restoring the FPCR:
1. The IEEE standard precludes saving and restoring the FPCR across subroutine calls.

2. The IEEE standard requires that an implementation provide status flags that are set
whenever the corresponding conditions occur and are reset only at the user’s request.
The exception bits in the FPCR do not satisfy that requirement, because they can be
spuriously set by instructions in a trap shadow that should not have been executed had
the trap been taken synchronously.

The IEEE status flags can be provided by software (as software status bits) as follows:

Trap interface softwareugually the operating system) keeps a set of software
status bits and a mask of the traps that the user wants to receive. Code is generated
with the /SUIl qualifiers. For a particular exception, the software clears the
corresponding trap disable bit if either thenasponding software status bit is 0 or

if the user wants to receive such traps. If a trap occurs, the software locates the
offending instruction in the trap shadow, simulates it and sets any of the software
status bits that are appropriate. Then, the software either delivers the trap to the
user program or disables further delivery of such traps. The user program must
interface to this trap interface software to set or clear any of the software status bits
or to enable or disable floating-point traps. See Appendix B.

When such a scheme is being used, the trap disable bits and denormal control bits
should be modified only by the trap imface software. If the disable bits are
spuriously cleared, unnecessary traps may occur. If they are spuriously set, the
software may fail to set the correct values in the software status bits. Programs should
call routines in the trap ietface software to set or clehits in the FPCR.

Compaq software may choose to initialize the software status bits and the trap disable
bits to all 1's to avoid any initial trapping when an exception condition first occurs. Or,
software may choose to initialize those bits to all 0’s in order to provide a summary of
the exception behavior when the program terminates.

In any event, the exception bits in the FPCR are still useful to programs. A program
can clear all of the exception bits in the FPCR, execute a single floating-point
instruction, and then examine the status bits to determine which hardware-defined
exceptions the instruction encountered. For this operation to work in the presence of
various implementation options, the single instruction should be followed by a TRAPB
or EXCB instruction, and exception completion by the system software should save
and restore the FPCR registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of floating-
point registers, they should not be used to manipulate FPCR values.

4.7.9 Floating-Point Instruction Function Field Format

The function code for IEEE and VAX floating-point instructions, bits <15..5>, contain the
function field. That field is shown in Figure 4—-2 and described for IEEE floating-point in Table
4-12 and for VAX floating-point in Table 4-13. Function codes for the independent floating-
point instructions, those with opcodek7do not correspond to the function fields below.
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The function field contains subfields that specify the trapping and rounding modes that are
enabled for the instruction, the source datatype, and the instruction class.

Figure 4-2: Floating-Point Instruction Function Field
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Table 4-12 IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning T

15-13 TRP  Trapping modes:
Contents  Meaning for Opcodes 14gand 164

000 Imprecise (default)

001 Underflow enable (/U) — floating-point output
Integer overflow enable (/V) — integer output

010 UNPREDICTABLE for opcode 1@ instructions
Reserved for opcode 14instructions

011 UNPREDICTABLE for opcode 1@ instructions
Reserved for opcode 14instructions

100 UNPREDICTABLE for opcode L@ instructions
Reserved for opcode 14instructions

101 /SU — floating-point output
ISV — integer output

110 UNPREDICTABLE for opcode L@ instructions
Reserved for opcode }4instructions

111 /SUI — floating-point output

/SVI — integer output
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Table 4-12 IEEE Floating-Point Function Field Bit Summary (Continued)

Bits Field

MeaningJr

12-11 RND

10-9 SRC

8-5 FNC

Rounding modes:

Contents
00
01
10
11

Meaning for Opcodes 1¢gand 144

Chopped (/C)
Minus infinity (/M)
Normal (default)

Dynamic (/D)

Source datatype:

Contents

00
01
10
11

Meaning for
Opcode 164
S floating
Reserved

T floating
Q_fixed

Instruction class:

Contents

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

Meaning for
Opcode 164

ADDX
SUBX
MULXx
DIVx
Reserved
CMPXEQ
CMPXLT
CMPXLE
Reserved
Reserved
Reserved
Reserved
CVTxS
Reserved
CVTxT

CVTxQ

Meaning for
Opcode 144
S floating
Reserved
T floating
Reserved

Meaning for
Opcode 144

Reserved
Reserved
Reserved
Reserved
ITOFS/ITOFT
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
SQRTS/SQRTT
Reserved
Reserved
Reserved

Reserved

T Encodings for the instructions CVTST and CVTST/S are exceptions to this table; use the encodings in

Appendix C.
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Table 4-13 VAX Floating-Point Function Field Bit Summary
Bits Field Meaning

15-13 TRP  Trapping modes:
Contents  Meaning for Opcodes 14gand 154

000 Imprecise (default)

001 Underflow enable (/U) — floating-point output
Integer overflow enable (/V) —integer output

010 UNPREDICTABLE for opcode 13instructions
Reserved for opcode 14instructions

011 UNPREDICTABLE for opcode Lginstructions
Reserved for opcode 14instructions

100 /S — Exception completion enable

101 /SU - floating-point output
ISV —integer output

110 UNPREDICTABLE for opcode Lginstructions
Reserved for opcode 14instructions

111 UNPREDICTABLE for opcode Lginstructions

Reserved for opcode 14instructions
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Table 4-13 VAX Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning

12-11 RND Rounding modes:
Contents  Meaning for Opcodes 15 and 144

00 Chopped (/C)

01 UNPREDICTABLE
10 Normal (default)
11 UNPREDICTABLE

10-9 SRC  source datatypé:
Contents  Meaning for Opcode 15 Meaning for Opcode 144

00 F_floating F_floating
01 D_floating F_floating
10 G_floating G_floating
11 Q_fixed Reserved
8-5 FNC Instruction class:
Contents  Meaning for Meaning for
Opcode 154 Opcode 144
0000 ADDX Reserved
0001 SUBX Reserved
0010 MULx Reserved
0011 DIVx Reserved
0100 CMPxXUN ITOFF
0101 CMPXEQ Reserved
0110 CMPXLT Reserved
0111 CMPXLE Reserved
1000 Reserved Reserved
1001 Reserved Reserved
1010 Reserved SQRTF/SQRTG
1011 Reserved Reserved
1100 CVTxF Reserved
1101 CVTxD Reserved
1110 CVTxG Reserved
1111 CVTxQ Reserved

T In the SRC field, both 00 and 01 specify the F_floating source datatype for opcqge 14
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4.7.10 |IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985) is
included by reference.

This standard leaves certain operations as implementation dependent. The remainder of this
section specifies the behavior of the Alpha architecture in these situations. Note that this
behavior may be supplied by either hardware (if the invalid operation disable, or INVD, bit is
implemented) or by software. See Sections 4.7.7.10, 4.7.7.11, 4.7.8, 4.7.8.3, and Appendix B.

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of a NaN or an Infinity value to an integer gives a result of zero.

Conversion of a NaN value from S_floating to T_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN.

Conversion of a NaN value from T_floating to S_floating gives a result identical to the input,
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN, and bits
<28:0> are cleared to zero.

4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid operation
exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of its inputs are NaN values, the
result of the operation is the quiet NaN value that has the sign bit set to one, all exponent bits
set to one (to indicate a NaN), the most significant fraction bit set to one (to indicate that the

NaN is quiet), and all other fraction bits cleared to zero. This value is referred to as "the canon-
ical quiet NaN."

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of its inputs are NaN values,
the IEEE standard requires that quiet NaN values be propagated when possible. With the Alpha
architecture, the result of such an operation is a NaN generated according to the first of the fol-
lowing rules that is applicable:

1. Ifthe operand in the Fb register of the operationdmiget NaN, that value is used as the
result.

2. If the operand in the Fb register of the operation is a signaling NaN, the result is the
quiet NaN formed from the Fb value by setting the most significeardtfon bit (bit 51)
to a one bit.

3. If the operation uses its Fa operand and the value in the Fa register is a quiet NaN, that
value is used as the result.

4. If the operation uses its Fa operand and the value in the Fa register is a signaling NaN,
the result is the quiet NaN formed from the Fa value by setting the most significant
fraction bit (bit 51) to a one bit.

5. The result is the canonical quiet NaN.
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4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and memory.
They use the Memory instruction format. They do not interpret the bits moved in any way; spe-
cifically, they do not trap on non-finite values.

The instructions are summarized in Table 4-14.

Table 4-14: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset
LDF Load F_floating VAX
LDG Load G_floating (Load D_floating) VAX
LDS Load S_floating (Load Longword Integer) Both
LDT Load T_floating (Load Quadword Integer) Both
STF Store F_floating VAX
STG Store G_floating (Store D_floating) VAX
STS Store S_floating (Store Longword Integer) Both
STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating

Format:
LDF Fa.wf,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rbv + SEXT(disp)}

CASE

big_endian_data: va' ~ va XOR 100,
litle_endian_data: va' ~ va
ENDCASE

Fa ~ (va)<15> || MAP_F((va)<14:7>) || (va)<6:0> ||
(va)<31:16> || 0<28:.0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDF Load F_floating

Qualifiers:

None

Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the data is not
naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an 11-bit
register-format exponent according to Table 2—1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (ndt)va he source operand is fetched
from memory and the bytes are reordered to conform to the F_floating register format. The
result is then zero-extended in the low-order longword and written to register Fa.
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4.8.2 Load G_floating

Format:

LDG Fa.wg,disp.ab(Rb.ab) IMemory format

Operation:

va « {Rbv + SEXT(disp)}
Fa ~ (va)<150> | (va)<31:16> || (va)<47:32> || (va)<63:48>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDG Load G_floating (Load D_floating)

Quialifiers:

None

Description:

LDG fetches a G_floating (or D_floating) datum from memory and writes it to register Fa. If
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory, the bytes are reordered to conform to the
G_floating register format (also conforming to the D_floating register format), and the result is
then written to register Fa.
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4.8.3 Load S_floating

Format:
LDS Fa.ws,disp.ab(Rb.ab) 'Memory format

Operation:
va « {Rbv + SEXT(disp)}

CASE

big_endian_data: va' ~ va XOR 100,
litle_endian_data: va' ~ va
ENDCASE

Fa ~ (va)<31> || MAP_S((va)<30:23>) || (va)<22:0> || 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDS Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated. The MAP_S function causes
the 8-bit memory-format exponent to be expanded to an 11-bit register-format exponent
according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (ndt)vad he source operand is fetched
from memory, is zero-extended in the low-order longword, and then written to register Fa.
Longword integers in floating registers are stored in bits <63:62,58:29>, with bits <61:59>
ignored and zeros in bits <28:0>.

An LDS instruction for which the Fa operand is 31 is executed as a PREFETCH_M instruc-
tion, described in Section 4.11.8.
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4.8.4 Load T_floating

Format:
LDT Fa.wt,disp.ab(Rb.ab) 'Memory format

Operation:
va « {Rbv + SEXT(disp)}

Fa « (va)<63.0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register Fa. If
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from memory and written tstezdra.

An LDT instruction for which the Fa operand is 31 is executed as a PREFETCH_MEN instruc-
tion, described in Section 4.11.8.
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4.8.5 Store F_floating

Format:
STF Fa.rf,disp.ab(Rb.ab) 'Memory format

Operation:
va « {Rbv + SEXT(disp)}

CASE

big_endian_data: va' ~ va XOR 100,
litle_endian_data: va' ~ va
ENDCASE

(va)<31:.0> ~ Fav<44:29> || Fav<63:62> || Fav<58:45>

Exceptions:
Access Violation

Fault on Write
Alignment

Translation Not Valid

Instruction mnemonics:

STF Store F_floating

Qualifiers:

None

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally aligned, an
alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not)vahe bits of the source operand are
fetched from register Fa, the bits are reordered to conform to F_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.
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4.8.6 Store G_floating

Format:
STG Fa.rg,disp.ab(Rb.ab) 'Memory format

Operation:

va « {Rbv + SEXT(disp)}
(va)<63:0> ~ Fav<15.0> || Fav<31l:16> || Fav<47:32> || Fav<63:48>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STG Store G_floating (Store D_floating)

Quialifiers:

None

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa, the bytes are reordered to conform to the
G_floating memory format (also conforming to the D_floating memory format), and the result

is then written to memory.
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4.8.7 Store S_floating

Format:
STS Fa.rs,disp.ab(Rb.ab) IMemory format

Operation:
va « {Rbv + SEXT(disp)}

CASE

big_endian_data: va' ~ va XOR 100,
litle_endian_data: va' ~ va
ENDCASE

(va)<31:.0> ~ Fav<63:62> || Fav<58:29>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STS Store S_floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data is not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted, and
any memory management fault is reported for va (not)vahe bits of the source operand are
fetched from register Fa, the bits are reordered to conform to S_floating memory format, and
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking
is done.
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4.8.8 Store T_floating

Format:

STT Fa.rt,disp.ab(Rb.ab) 'Memory format

Operation:

va « {Rbv + SEXT(disp)}
(va)<63:.0> ~ Fav<63.0>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STT Store T_floating (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data is not nat-
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit displace-
ment. The source operand is fetched from register Fa and written to memory.
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format instructions
test the value of a floating-point register and conditionally change the PC.

They do not interpret the bits tested in any way; specifically, they do not trap on non-finite
values.

The test is based on the sign bit and whether the rest of the register is all zero bits. All 64 bits
of the register are tested. The test is independent of the format of the operand in the register.
Both plus and minus zero are equal to zero. A non-zero value with a sign of zero is greater than
zero. A non-zero value with a sign of one is less than zero. No reserved operand dnit@n-f
checking is done.

The floating-point branch operations are summarized in Table 4-15:

Table 4-15: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset
FBEQ Floating Branch Equal Both
FBGE Floating Branch Greater Than or Equal Both
FBGT Floating Branch Greater Than Both
FBLE Floating Branch Less Than or Equal Both
FBLT Floating Branch Less Than Both
FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch

Format:

FBxx Fa.rqg,disp.al IBranch format

Operation:

{update PC}

va ~ PC + {4*SEXT(disp)}

IF TEST(Fav, Condition_based on Opcode) THEN
PC ~ va

Exceptions:

None

Instruction mnemonics:

FBEQ Floating Branch Equal
FBGE Floating Branch @&ater Than oEqual
FBGT Floating Branch @&ater Than
FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than
FBNE Floating Branch Not Equal
Quialifiers:
None
Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with the target vir-
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits, and added to the updated PC to
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement gives
a forward/backward branch distance of +/—1M instructions.

Notes:

* To branch properly on non-finite operands, compare to F31, then branch on the result of
the compare.

* The largest negative integer (8000 0000 0000 Q@X8 the same bit pattern as floating
minus zero, so it isreated as equal to zero by the brammestructions. To branch prop-
erly on the largest negative integer, convert it to floating or move it to an integer regis-
ter and do an integer branch.
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4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert operations on 64-
bit register values. The bit-operate instructions do not interpret the bits moved in any way; spe-
cifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply, divide, com-
pare, register move, squre root, and floating convert operations on 64-hbit register values in one
of the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well as the
rounding mode and trapping mode to be used. These instructions use the Floating-point Oper-

ate format.

The floating-point operate instructions are summarized in Table 4-16.

Table 4-16 Floating-Point Operate Instructions Summary

Mnemonic Operation Subset
Bit and FPCR Operations:

CPYS Copy Sign Both
CPYSE Copy Sign and Exponent Both
CPYSN Copy Sign Negate Both
CVTLQ Convert Longword to Quadword Both
CVTQL Convert Quadword to Longword Both
FCMOVxx Floating Conditional Move Both
MF_FPCR Move from Floating-point Control Register Both
MT_FPCR Move to Floating-point Control Register Both
Arithmetic Operations:

ADDF Add F_floating VAX
ADDG Add G_floating VAX
ADDS Add S_floating IEEE
ADDT Add T_floating IEEE
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Table 4-16 Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
Arithmetic Operations, Continued:

CMPGxx Compare G_floating VAX
CMPTxx Compare T_floating IEEE
CVTDG Convert D_floating to G_floating VAX
CVTGD Convert G_floating to D_floating VAX
CVTGF Convert G_floating to F_floating VAX
CVTGQ Convert G_floating to Quadword VAX
CVTQF Convert Quadword to F_floating VAX
CVTQG Convert Quadword to G_floating VAX
CVTQS Convert Quadword to S_floating IEEE
CVTQT Convert Quadword to T_floating IEEE
CVTST Convert S_floating to T_floating IEEE
CVTTQ Convert T_floating to Quadword IEEE
CVTTS Convert T_floating to S_floating IEEE
DIVF Divide F_floating VAX
DIVG Divide G_floating VAX
DIVS Divide S_floating IEEE
DIVT Divide T_floating IEEE
FTOIS Floating-point to integer register move, S_floating IEEE
FTOIT Floating-point to integer register move, T_floating IEEE
ITOFF Integer to floating-point register move, F_floating VAX
ITOFS Integer to floating-point register move, S_floating IEEE
ITOFT Integer to floating-point register move, T_floating IEEE
MULF Multiply F_floating VAX
MULG Multiply G_floating VAX
MULS Multiply S_floating IEEE
MULT Multiply T_floating IEEE
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Table 4-16 Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
Arithmetic Operations, Continued:

SQRTF Square root F_floating VAX
SQRTG Square root G_floating VAX
SQRTS Square root S_floating IEEE
SQRTT Square root T_floating IEEE
SUBF Subtract F_floating VAX
SUBG Subtract G_floating VAX
SUBS Subtract S_floating IEEE
SUBT Subtract T_floating IEEE
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4.10.1 Copy Sign

Format:

CPYSy Fa.rq,Fb.rg,Fc.wq IFloating-point Operate format

Operation:

CASE
CPYS: Fc ~ Fav<63> || Fbv<62:0>
CPYSN: Fc ~ NOT(Fav<63>) || Fbv<62:0>
CPYSE: Fc ~ Fav<63:52> | Fbv<51:.0>
ENDCASE

Exceptions:

None

Instruction mnemonics:

CPYS Copy Sign
CPYSE Copy Sign and Exponent
CPYSN Copy Sign Negate
Qualifiers:
None
Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case of CPYSN)
and concatenated with the exponent and fraction bits from Fb; the result is stored in Fc.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with the fraction
bits from Fb; the result is stored in Fc.

No checking of the oprands is performed.

Notes:

* Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute value
can be done using CPYS F31,Fx,Fy. Floating-point negation can be done using
CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using CPYSE.
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4.10.2 Convert Integer to Integer

Format:
CVTxy Fb.rg,Fc.wx IFloating-point Operate format
Operation:
CASE
CVTQL: Fc ~ Fbv<31:30> || 0<2:0> || Fbv<29:0> [|0<28:0>
CVTLQ: Fc ~ SEXT(Fbv<63:62> || Fbv<58:29>)
ENDCASE
Exceptions:

Integer Overflow, CVTQL only

Instruction mnemonics:

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword
Qualifiers:

Trapping: Exception Completion (/S) (CVTQL only)

Integer Overflow Enable (/V) (CVTQL only)

Description:

The two’s-complement operand in register Fb is converted to a two's-complement result and
written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of the oper-
and, with zero fill and optional integer overflow checking. Integer overflow occurs if Fb is
outside the range —2**31..2**31-1. If integer overflow occurs, the truncated result is stored in
Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the operand, with
sign extension.
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4.10.3 Floating-Point Conditional Move

Format:
FCMOVxx

Operation:

Fa.rg,Fb.rq,Fc.wq IFloating-point Operate format

IF TEST(Fav, Condition based on Opcode) THEN

Fc — Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ
FCMOVGE
FCMOVGT
FCMOVLE
FCMOVLT
FCMOVNE

Quialifiers:

None

Description:

FCMOVE if Register Equal to Zero

FCMOVE if Register Greater Than or Equal to Zero
FCMOVE if Register Greater Than Zero

FCMOVE if Register Less Than or Equal to Zero
FCMOVE if Register Less Than Zero

FCMOVE if Register Not Equal to Zero

Register Fa is tested. If the specified relationship is true, register Fb is written to register Fc;
otherwise, the move is suppressed and register Fc is unchanged. The test is based on the sign
bit and whether the rest of the register is all zero bits, as described for floating branches in Sec-

tion 4.9.

Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

FByy Falabel
CPYS Fb,Fb,Fc

label: ...
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For example, a branchless sequence for:
F1=MAX(F1,F2)

CMPXLT F1,F2F3 I F3=one if F1<F2; x=F/G/SIT
FCMOVNE F3,F2F1 I Move F2 to F1 if F1<F2
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4.10.4 Move from/to Floating-Point Control Register

Format:

Mx_FPCR Fa.rq,Fa.rg,Fa.wq IFloating-point Operate format

Operation:

CASE
MF_FPCR: Fa ~ FPCR
MT_FPCR: FPCR -~ Fav
ENDCASE

Exceptions:

None

Instruction mnemonics:

MF_FPCR Move from Floating-point Control Register
MT_FPCR Move to Floating-point Control Register
Qualifiers:
None
Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written to
(MT_FPCR), a floating-point register. The floating-point register to be used is specified by the
Fa, Fb, and Fc fields all pointing to the same floating-point register. If the Fa, Fb, and Fc fields
do not all point to the same floating-point register, then it is UNPREDICTABLE which regis-
ter is used. If the Fa, Fb, and Fc fields do not all point to the same floating-point register, the
resulting values in the Fc register and in FPCR are UNPREDICTABLE.

If the Fc field is F31 in the case of MT_FPCR, thesndting value in FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.8.
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4.10.5 VAX Floating Add

Format:
ADDXx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:

Fc -~ Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

ADDF Add F_floating
ADDG Add G_floating
Qualifiers:
Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:
Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that s,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs. See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.6 IEEE Floating Add

Format:
ADDXx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:

Fc -~ Fav + Fbv

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

ADDS Add S_floating

ADDT Add T_floating
Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
Inexact Enable (/1)

Description:
Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision and then the corresponding range is checked for
overflow/underflow. The single-precision operation on canonical single-precision values pro-
duces a canonical singlegzision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.7 VAX Floating Compare

Format:
CMPGyy Fa.rg,Fb.rg,Fc.wq IFloating-point Operate format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc — 4000 0000 0000 0000 16

ELSE
Fc ~ 0000 0000 0000 0000 44

Exceptions:

Invalid Operation

Instruction mnemonics:

CMPGEQ Compare G_floating Equal
CMPGLE Compare G_floating Less Than or Equal
CMPGLT Compare G_floating Less Than
Qualifiers:
Trapping: Exception Completion (/S)
Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, a non-zero floating value (0.5) is written to register Fc; otherwise, a true zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive relations
are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that s,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if

this occurs.

Notes:

e Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal Bekefine only
the less-than operations are included.
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4.10.8 IEEE Floating Compare

Format:
CMPTyy Fa.rx,Fb.rx,Fc.wq IFloating-point Operate format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc — 4000 0000 0000 0000 16

ELSE
Fc ~ 0000 0000 0000 0000 44

Exceptions:

Invalid Operation

Instruction mnemonics:

CMPTEQ Compare T_floating Equal

CMPTLE Compare T_floating Less Than or Equal

CMPTLT Compare T_floating Less Than

CMPTUN Compare T_floating Unordered
Qualifiers:

Trapping: Exception Completion (/SU)
Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualifier is
true, a non-zero floating value (2.0) is written to register Fc; otherwise, a true zero is written to
Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive relations are
possible: less than, equal, greater than, and unordered. The unordered relation is true if one or
both operands are NaN. (This behavior may be provided by an operating system (OS) comple-
tion handler, because NaNs may trap.) Comparisons ignore the sign of zero, so +0 = -0.

Comparisons with plus and minus infinity execute normally and do not take an invalid operation
trap.
Notes:

* In order to use CMPTxx with exception completion handling, it is necessary to specify
the /SU IEEE trap mode, even though an underflow trap is not possible.

e Compare Less Than A,B is the same as Compare Greater Than B,A; Compare Less
Than or Equal A,B is the same as Compare Greater Than or Equal Bekefine only
the less-than operations are included.
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4.10.9 Convert VAX Floating to Integer

Format:
CVTGQ Fb.rx,Fc.wq IFloating-point Operate format

Operation:

Fc « {conversion of Fbv}

Exceptions:

Invalid Operation
Integer Overflow

Instruction mnemonics:

CVTGQ Convert G_floating to Quadword
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Integer Overflow Enable (/V)

Description:

The floating operand in register Fb is converted to a two’s-complement quadword number and
written to register Fc. The conversion aligns the operand fraction with the binary point just to
the right of bit zero, rounds as specified, and complements the result if negative. Register Fa
must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on integer overflow.
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4.10.10 Convert Integer to VAX Floating

Format:
CVTQy Fb.rg,Fc.wx IFloating-point Operate format

Operation:
Fc « {conversion of Fbv<63:0>}

Exceptions:

None

Instruction mnemonics:

CVTQF Convert Quadword to F_floating
CVTQG Convert Quadword to G_floating
Qualifiers:
Rounding: Chopped (/C)
Description:

The two’s-complement quadword operand in register Fb is converted to a single- or double-

precision floating result and written to register Fc. The conversion complements a number if

negative, normalizes it, rounds to the target precision, and packs the result with an appropriate
sign and exponent field. Register Fa must be F31.
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4.10.11 Convert VAX Floating to VAX Floating

Format:
CVTxy Fb.rx,Fc.wx IFloating-point Operate format

Operation:

Fc « {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

CVTDG Convert D_floating to G_floating

CVTGD Convert G_floating to D_floating

CVTGF Convert G_floating to F_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:

The floating operand in register Fb is converted to the specified alternate floating format and
written to register Fc. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (that is,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow oerfiodyv.

Notes:

* The only arithmetic oprations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing three
fraction bits. The conversion from G_floating to D_floating adds three low-order zeros
as fraction bits, then the 8-bit exponent range is checked for overflow/underflow.

* The conversion from G_floating to F_floating rounds or chops to single precision, then
the 8-bit exponent range is checked for overflow/underflow.

* No conversion from F_floating to G_floating is required, since F_floating values are
always stored in registers as equivalent G_floating values.
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4.10.12 Convert IEEE Floating to Integer

Format:
CVTTQ Fb.rx,Fc.wg IFloating-point Operate format

Operation:

Fc « {conversion of Fbv}

Exceptions:

Invalid Operation
Inexact Result
Integer Overflow

Instruction mnemonics:

CVTTQ Convert T_floating to Quadword
Quialifiers:
Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Integer Overflow Enable (/V)
Inexact Enable (/1)

Description:

The floating operand in register Fb is converted to a two’s-complement number and written to
register Fc. The conversion aligns the operand fraction with the binary point just to the right of
bit zero, punds as specified, and complements the result if negative. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on integer overflow and inexact result.
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4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy Fb.rg,Fc.wx IFloating-point Operate format

Operation:

Fc « {conversion of Fbv<63:0>}

Exceptions:

Inexact Result

Instruction mnemonics:

CVTQS Convert Quadword to S_floating

CVTQT Convert Quadword to T_floating
Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Inexact Enable (/1)

Description:

The two’s-complement operand in register Fb is converted to a single- or double-precision
floating result and written to register Fc. The conversion complements a number if negative,
normalizes it, rounds to the target precision, and packs the result with an appropriate sign and
exponent field. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on inexact result.

Notes:

* Inorder to use CVTQS or CVTQT with exception completion handling, it is necessary
to specify the /SUI IEEE trap mode, even though an underflow trap is not possible.
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4.10.14 Convert IEEE S_floating to IEEE T_floating

Format:

CVTST Fb.rx,Fc.wx I Floating-point Operate format

Operation:

Fc « {conversion of Fbv}

Exceptions:

Invalid Operation

Instruction mnemonics:

CVTST Convert S_floating to T_floating
Quialifiers:

Trapping: Exception Completion (/S)
Description:

The S_floating operand in register Fb is converted to T_floating format and written to register
Fc. Register Fa must be F31.

Notes:

* The conversion from S_floating to T_floating is exact. No rounding occurs. No under-
flow, overflow, or inexact result can occur. In fact, the conversion for finite values is the
identity transformation.

* A trap handler can convert an S floating denormal value into the corresponding
T_floating finite value by adding 896 to the exponent and normalizing.
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4.10.15 Convert IEEE T_floating to IEEE S_floating

Format:
CVTTS Fb.rx,Fc.wx IFloating-point Operate format

Operation:

Fc « {conversion of Fbv}

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

CVTTS Convert T_floating to S_floating
Quialifiers:
Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
Inexact Enable (/1)

Description:

The T_floating operand in register Fb is converted to S_floating format and written to register
Fc. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.16 VAX Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:
Fc -« Fav / Fbv

Exceptions:
Invalid Operation
Division by Zero
Overflow
Underflow

Instruction mnemonics:

DIVF Divide F_floating

DIVG Divide G_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb and the
guotient is written to register Fc.

The quotient is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that s,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if
this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are UNPREDICTABLE if
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.17 |IEEE Floating Divide

Format:
DIVX Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:
Fc « Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow
Inexact Result

Instruction mnemonics:

DIVS Divide S_floating

DIVT Divide T_floating
Quialifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
Inexact Enable (/1)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb and the
guotient is written to register Fc.

The quotient is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.18 Floating-Point Register to Integer Register Move

Format:

FTOIx Fa.rq,Rc.wq IFloating-point Operate format

Operation:

CASE:
FTOIS:
Rc<63:.32> ~ SEXT(Fav<63>)
Rc<31:0> ~ Fav<63:62> || Fav <58:29>
FTOIT:
Rc <- Fav
ENDCASE

Exceptions:

None

Instruction mnemonics:

FTOIS Floating-point to Integer Register Move, S_floating
FTOIT Floating-point to Integer Register Move, T_floating
Qualifiers:
None
Description:

Data in a floating-point register file is moved to an integer register file.
The Fb field must be F31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

FTOIS is exactly equivalent to the sequence:

STS
LDL

FTOIT is exactly equivalent to the sequence:
STT
LDQ

Software Note:

FTOIS and FTOIT are no slower than the corresponding store/load sequence and can be
significantly faster.
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Implementation Note:

* The FTOIS and FTOIT instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction clears feature mask bit 1. FTOIS and FTOIT
are supported with software emulation in Alpha implementations for which AMASK
does not clear feature mask bit 1. Software emulation of FTOIS and FTOIT is signifi-
cantly slower than hardware support.
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4.10.19 Integer Register to Floating-Point Register Move

Format:
ITOFx Ra.rg,Fc.wq IFloating-point Operate format

Operation:

CASE:
ITOFF:
Fc ~ Rav<3l> || MAP_F(Rav<30:23> || Rav<22:0> || 0<28:0>
ITOFS:
Fc ~ Rav<3l> || MAP_S(Rav<30:23> || Rav<22:0> | 0<28:.0>
ITOFT:
Fc <- Rav
ENDCASE

Exceptions:

None

Instruction mnemonics:

ITOFF Integer to Floating-point Register Move, F_floating
ITOFS Integer to Floating-point Register Move, S_floating
ITOFT Integer to Floating-point Register Move, T_floating
Qualifiers:
None
Description:

Data in an integer register file is moved to a floating-point register file.
The Rb field must be R31.

The instructions do not interpret bits in the register files; specifically, the instructions do not
trap on non-finite values. Also, the instructions do not access memory.

ITOFF is equivalent to the following sequence, except that the word swapping that LDF nor-
mally performs is not performed by ITOFF:

STL
LDF

ITOFS is exactly equivalent to the sequence:

STL
LDS

ITOFT is exactly equivalent to the sequence:

STQ
LDT
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Software Note:

ITOFF, ITOFS, and ITOFT are no slower than the corresponding store/load sequence and
can be significantly faster.

Implementation Note:

The ITOFF, ITOFS, and ITOFT instructions are supported in hardware on Alpha imple-
mentations for which the AMASK instruction clears feature mask bit 1. ITOFF, ITOFS,

and ITOFT are supported with software emulation in Alpha implementations for which
AMASK does not clear feature mask bit 1. Software emulation of ITOFF, ITOFS, and
ITOFT is significantly slower than hardware support.
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4.10.20 VAX Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx

Operation:
Fc « Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

MULF Multiply F_floating
MULG Multiply G_floating
Qualifiers:
Rounding: Chopped (/C)
Trapping: Exception Completion (/S)
Underflow Enable (/U)
Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa

and the product is written to register Fc.

The product is rounded or chopped to the specified precision and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-preci-
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that s,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if

this occurs.

IFloating-point Operate format

See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.21 |IEEE Floating Multiply

Format:
MULXx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:
Fc « Fav * Fbv

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

MULS Multiply S_floating

MULT Multiply T_floating
Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
Inexact Enable (/1)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in register Fa
and the product is written to register Fc.

The product is rounded to the specified precision and then the corresponding range is checked
for overflow/underflow. The single-precision operation on canonical single-precision values
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.10.22 VAX Floating Square Root

Format:
SQRTX Fb.rx,Fc.wx IFloating-point Operate format

Operation:
Fc « Fb * (12

Exceptions:

Invalid operation

Instruction mnemonics:

SQRTF Square root F_floating

SQRTG Square root G_floating
Qualifiers:

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)

Underflow Enable (/U) — See Notes below

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of this instruction must be set to a value of F31.)

The result is rounded or chopped to the specified precision. The single-precision operation on a
canonical single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the operand has exp=0 and is not a true zero (that is, VAX
reserved operands and dirty zeros trap). An invalid operation is signaled if the sign of the oper-
and is negative.

The contents of the Fc are UNPREDICTABLE if an invalid operation is signaled.

Notes:

* Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier is ignored.

Implementation Notes:

* The SQRTF and SQRTG instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction clears feature mask bit 1. SQRTF and SQRTG
are supported with software emulation in Alpha implementations for which AMASK
does not clear feature mask bit 1. Software emulation of SQRTF and SQRTG is signifi-
cantly slower than hardware support.
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4.10.23 IEEE Floating Square Root

Format:
SQRTX Fb.rx,Fc.wx IFloating-point Operate format

Operation:
Fc « Fb * (12

Exceptions:

Inexact result
Invalid operation

Instruction mnemonics:

SQRTS Square root S_floating

SORTT Square root T_floating
Qualifiers:

Rounding: Chopped (/C)

Dynamic (/D)
Minus infinity (/M)
Trapping: Inexact Enable (/1)
Exception Completion (/S)
Underflow Enable (/U) — See Notes below

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (The Fa
field of this instruction must be set to a value of F31.) The result is rounded to the specified
precision. The single-precision operation on a canonical single-precision value produces a
canonical single-precision result. An invalid operation is signaled if the sign of teeaod is

less than zero. However, SQRT (-0) produces a result of 0.

Notes:

* Floating-point overflow and underflow are not possible for square root operation. The
underflow enable qualifier is ignored.

Implementation Notes:

* The SQRTS and SQRTT instructions are supported in hardware on Alpha implementa-
tions for which the AMASK instruction dars feature mask bit 1. SQRTS and SQRTT
are supported with software emulation in Alpha implementations for which AMASK
does not clear feature mask bit 1. Software emulation of SQRTS and SQRTT is signifi-
cantly slower than hardware support.
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4.10.24 VAX Floating Subtract

Format:

SUBXx Fa.rx,Fb.rx,Fc.wx

Operation:
Fc « Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

SUBF Subtract F_floating
SUBG Subtract G_floating
Qualifiers:
Rounding: Chopped (/C)
Trapping: Exception Completion (/S)
Underflow Enable (/U)
Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa

and the difference is written togester Fc.

The difference is rounded or chopped to the specified precision and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical single-

IFloating-point Operate format

precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that s,
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE if

this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.
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4.10.25 IEEE Floating Subtract

Format:
SUBXx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:
Fc « Fav - Fbv

Exceptions:
Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

SUBS Subtract S_floating

SUBT Subtract T_floating
Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
Inexact Enable (/1)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in register Fa
and the difference is written togester Fc.

The difference is rounded to the specified precision and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-precision
values produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.
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4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4-17.

Table 4-17: Miscellaneous Instructions Summary

Mnemonic Operation

AMASK Architecture Mask

CALL_PAL Call Privileged Architecture Likary Routine
ECB Evict Cache Block

EXCB Exception Barrier

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

IMPLVER Implementation Version

MB Memory Barrier

PREFETCH Normal prefetch

PREFETCH_EN Prefetch Memory Data, Evict Next
PREFETCH_M Prefetch Memory Data with Modify Intent
PREFETCH_MEN Prefetch Memory Data with Modify Intent, Evict Next
RPCC Read Processor Cycle Counter

TRAPB Trap Barrier

WH64 Write Hint — 64 Bytes

WHG64EN Write Hint — 64 Bytes Evict Next

WMB Write Memory Barrier
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4.11.1 Architecture Mask

Format:
AMASK Rb.rg,Rc.wq !Operate format
AMASK #b.ib,Rc.wq !Operate format
Operation:

Rc « Rbv AND {NOT CPU_feature_mask}

Exceptions:

None

Instruction mnemonics:

AMASK Architecture Mask

Qualifiers:

None

Description:

Rbv represents a mask of the requested architectural extensions. Bits are cleared that corre-
spond to architectural extensions that are present. Reserved bits and bits that correspond to
absent extensions are copied unchanged. In either case, the result is placed in Rc. If the result
is zero, all requested features are present.

Software may specify an Rbv of all 1's to determine the complete set of architectural exten-
sions implemented by a processor. Assigned bit definitions are located in Appendix D.

Ra must be R31 or the result in Rc is UNPREDICTABLE and itis UNPREDICTABLE
whether an exception is signaled.

Software Note:

Use this instruction to make instruction-set decisions; use IMPLVER to make code-tuning
decisions.

Implementation Note:
Instruction encoding is implemented as follows:

* On 21064/21064A/21066/21068/21066A (EV4/EV45/LCA/LCA45 chips), AMASK
copies Rbv to Rc.

e 0On 21164 (EV5), AMASK copies Rbv to Rc.
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* On 21164A (EV56), 21164PC (PCA56), 21264/By/6&nd 21364/EVX, AMASK cor-
rectly indicates support for architecture extensions by copying Rbv to Rc and clearing
appropriate bits.
Bits are assigned and placed in Appendix D for architecture extensions as ECOs for those
extensions are passed. The low 8 bits are reserved for standard architecture extensions so
they can be tested with a literal; application-specific extensions are assigned from bit 8
upward.
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4.11.2 Call Privileged Architecture Library

Format:

CALL_PAL fnc.ir IPAL format

Operation:

{Stall instruction issuing until all

prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

CALL_PAL Call Privileged Architecture Library

Qualifiers:

None

Description:

The CALL_PAL instruction is not issued until all previous instructions are guaranteed to com-
plete without exceptions. If an exception occurs, the continuation PC in the exception stack
frame points to the CALL_PAL instruction. The CALL_PAL instruction causes a trap to
PALcode.
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4.11.3 Evict Data Cache Block

4-136

Format:

ECB (Rb.ab) ! Memory format

Operation:

va — Rbv

IF { va maps to memory space } THEN

Prepare to reuse cache resources that are occupied by the
the addressed byte.

END

Exceptions:

None

Instruction mnemonics:

ECB Evict Cache Block

Qualifiers:

None

Description:

The ECB instruction provides a hint that the addressed location will not be referenced again in
the near future, so any cache space it occupies should be made available to cache other mem-
ory locations. If the cache copy of the location is dirty, the processor may start writing it back;

if the cache has multiple sets, the processor may arrange for the set containing the addressed
byte to be the next set allocated.

The ECB instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth) during execution, it is treated as a
NOP.

If the address maps to non-memory-like (I/0) space, ECB is treated as a NOP.

Software Note:

* ECB makes a particular cache location available for reuse by evicting and invalidating
its contents. The intent is to give software more control over cache allocation policy in
set-associative caches so that "useful” blocks can be retained in the cache.

* ECB is a performance hint — it does not serialize the eviction of the addressed cache
block with any preceding or following memory operation.

e ECB is not intended for flushing caches prior to power failure or low power operation
— CFLUSH is intended for that purpose.
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Implementation Note:

Implementations with set-associative caches are encouraged to update their allocation
pointer so that the next D-stream reference that misses the cache and maps to this line is
allocated into the vacated set.
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4.11.4 Exception Barrier

Format:

EXCB I Mfc format

Operation:

{EXCB does not appear to issue untl completion of all
exceptions and dependencies on the Floating-point Control
Register (FPCR) from prior instructions.}

Exceptions:

None

Instruction mnemonics:

EXCB Exception Barrier

Qualifiers:

None

Description:

The EXCB instruction allows software to guarantee that in a pipelined implementation, all pre-
vious instructions have completed any behavior related to exceptions or rounding modes before
any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are guaranteed to have
been made, whether or not there is an associated exception. Also, all potential floating-point
exceptions and integer overflow exceptions are guaranteed to have been taken. EXCB is thus a
superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB instruction acts
like a fault. In this case, the value of the Program Counter reported to the program may be the
address of the EXCB instruction (or earlier) but is never the address of an instruction follow-
ing the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.8.1.
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4.11.5 Prefetch Data

Format:
FETCHXx 0(Rb.ab) 'Memory format

Operation:

va ~ {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent
Qualifiers:

None
Description:

The virtual address is given by Rbv. This address is used to designate an aligned 512-byte
block of data. An implementation may optionally attempt to move all or part of this block (or a
larger surrounding block) of data to a part of the memory hierarchy that has faster-access, in
anticipation of subsequent Load or Store instructions that access that data.

Implementation Note:

FETCHXx is intended to help software overlap memory latencies when such latencies are on
the order of at least 100 cycles. FETCHXx is unlikely to help (or be implemented) for
significantly shorter memory latencies. Code scheduling and cache-line prefetching (see
Section A.3.6) should be used to overlap such shorter latencies.

Existing Alpha implementations (through the 21364) have memory latencies that are too
short to profitably implement FETCHx. Therefore, FETCHx does not improve memory
performance in exting Alpha implementations.

The FETCH instruction is a hint to the implementation that may allow faster execution. An
implementation is free to ignore the hint. If prefetching is done in an implementation, the order
of fetch within the designated block is UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to some or all
of the data block are anticipated.
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No exceptions are generated by FETCHXx. If a Load (or Store in the case of FETCH_M) that
uses the same address would fault, the prefetch request is ignored. It is UNPREDICTABLE

whether a TB-miss fault is ever taken by FETCHX.

Implementation Note:
Implementations are encouraged to take the TB-miss fault, then continue the prefetch.
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4.11.6 Implementation Version

Format:

IMPLVER Rc IOperate format

Operation:
Rc < value, which is defined in Appendix D

Exceptions:

None

Instruction mnemonics:

IMPLVER Implementation Version

Description:

A small integer is placed in Rc that specifies the major implementation version of the proces-
sor on which it is executed. This information can be used to make code-scheduling or tuning
decisions, or the information can be used to branch to different pieces of code optimized for
different implementatins.

Notes:

e The value returned by IMPLVER does not identify the particular processor type.
Rather, it identifies a group of processors that can be treated similarly for performance
characteristics such as scheduling. Ra must be R31 and Rb must be the literal #1 or the
result in Rc is UNPREDICTABLE and it is UNPREDICTABLE whether an exception
is signaled.

Software Note:

Use this instruction to make code-tuning decisions; use AMASK to make instruction-set
decisions.

Instruction Descriptions (3-141



4.11.7 Memory Barrier

Format:

MB IMemory format

Operation:

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barrier

Qualifiers:

None

Description:
The use of the Memory Barrier (MB) instruction is required only in multiprocessor systems.

In the absence of an MB instruction, loads and stores to different physical locations are
allowed to complete out of order on the issuing processor as observed by other processors. The
MB instruction allows memorgaccesses to be serialized on thguing processor as observed

by other processors. See Section 5.6 for details on using the MB instruction to serialize these
accesses. Section 5.6 also details coordinating memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the progress of
memory operations.
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4.11.8 Prefetch Memory Data

Format:
PREFETCH disp.ab(Rb.ab) ‘Memory format
Operation:
CASE
PREFETCH: LDL R31, disp (Rb)
PREFETCH_EN: LDQ R3L, disp (Rb)
PREFETCH_M:  LDS F31, disp (Rb)
PREFETCH_MEN: LDT F31, disp (Rb)
ENDCASE
Exceptions:
None

Instruction mnemonics:

PREFETCH Normal Prefetch
PREFETCH_EN Prefetch, Evict Next
PREFETCH_M Prefetch with Modify Intent

PREFETCH_MEN Prefetch with Modify Intent, Evict Next

Quialifiers:

None

Description:

A prefetch is a hint to the processor that a cache block might be used in the future and should
be brought into the cache now.

A prefetch with modify intent is a hint to the processor that a cache block might be modified in
the future and should be brought into the cache now with write permission.

A prefetch, evict next, is a hint to the processor that a cache block should be brought into the
cache now and marked for preferential eviction on future cache fills. Such a prefetch is particu-
larly useful with an associative cache, to prefetch data that is not repeatedly referenced — data
that has a short temporal lifetime in the cache. If such a cache block might require write per-
mission, the prefetch is also specified with modify intent.
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The PREFETCHX instructionsepform different types of cachalock prefetches, as follows:

Instruction Operation

PREFETCH If possible, the addressed cache block is allocated to the Dcacheeadth
permission.

PREFETCH_EN Prefetch the addressed cache block and mark it flar@néal evition on
future cache fills.

PREFETCH_M If possible, the addressed cache block is allocated to the Dcache with write
permission.

PREFETCH_MEN Prefetch the addressed cache block with modify intent and mark it for prefer-
ential eviction on future cache fills.

Implementation Notes:

e PREFETCH and PREFETCH_EN onbffect performance and do notadify any
architecturally visible state.

e PREFETCH_M and PREFETCH_MEN only affect performance except for possibly
signalling a floating-point disabled exception or for their effects on LDx_L/STx C
sequences.

e PREFETCH_M and PREFETCH_MEN must not trap on processors that choose not to
implement floating-point support. On processors that do implement floating-point sup-
port, it is UNPREDICTABLE whether PREFETCH_M and PREFETCH_MEN can
generate a floating-point disable exception.

e Eviction policy is implementation-dependent and is described in the hardei@mence
manual for the particular implementation. Consult Chapter 2 in the appropriate manual,
available at ftp.compag.com/pub/products/alphaCPUdocs.
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4.11.9 Read Processor Cycle Counter

Format:
RPCC Ra.wq, Rb.rq 'Memory format

Operation:

{see programming note for use of Rb}
Ra « {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC Read Processor Cycle Counter

Quialifiers:

None

Description:

Register Ra is written with the processor cycle counter (PCC). The PCC register consists of
two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an unsigned, wrapping counter,
PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are operating-system depen-
dent in their implementation.

The RPCC instruction is not issued until all previous instructions that generate a result in Rb
have completed.

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle count,
that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT. The following
example computes that cycle count, modulo 2**32, and returns the count value in RO. Notice
the care taken not to cause an unwanted sign extension.

RPCC RO ; Read the process cycle counter
SLL RO, #32, R1 ; Line up the offset and count fields
ADDQ RO, R1, RO ; Do add

SRL RO, #32, RO : Zero extend the count to 64 hits
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The following example code returns the valueREC_CNT in RO81:0> and all zeros in
R0<63:32>.

RPCC RO
ZAPNOT RO#15,R0

RPCC does not read the Processor Cycle Counter (PCC) any earlier than the generation of a
result by the nearest preceding instruction that modifies register Rb. If R31 is used as the Rb
operand, the PCC need not wait for any preceding computation.

Programming Note

See Section E.1.4 for information about RPCC and various Alpha processor implementations.
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4.11.10 Trap Barrier
Format:

TRAPB IMemory format

Operation:

{TRAPB does not appear to issue until all prior instructions
are guaranteed to complete without causing any arithmetic traps}.

Exceptions:

None

Instruction mnemonics:

TRAPB Trap Barrier

Quialifiers:

None

Description:

The TRAPB instruction allows software to guarantee that in a pipelined implementation, all
previous arithmetic instructions will complete without incurring any arithmetic traps before the
TRAPB or any instructions after it are issued.

If an arithmetic exception occurs for which trapping is enabled, the TRAPB instruction acts
like a fault. In this case, the value of the Program Counter reported to the program may be the
address of the TRAPB instruction (or earlier) but is never the address of the instruction follow-
ing the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for each excep-
tion domain, to isolate the address range in which an exception occurs. If the address of the
instruction following the TRAPB were allowed, there would be no way to distinguish an
exception in the address range preceding a label from an exception in the range that includes
the label along with the faulting instruction and a branch back to the label. This case arises
when the code is not following exception completion rules but is inserting TRAPB instruc-
tions to isolate exceptions to the proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see Section 4.11.4.
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4.11.11 Write Hint

Format:
WH64x (Rb.ab) I Mfc format

Operation:

va ~ Rbv

IF { va maps to memory space } THEN

Write UNPREDICTABLE data to the aligned 64-byte region
containing the addressed byte.

END

Exceptions:

None

Instruction mnemonics:

WH64 Write Hint - 64 Bytes

WH64EN Write Hint - 64 Bytes Evict Next
Qualifiers:

None
Description:

The WH64 instruction provides a hint that the current contents of the aligned 64-byte block
containing the addressed byte will never be read again but will be overwritten in the near
future.

The processor may allocate cache resources to hold the block without reading its previous con-
tents from memory; the contents of the block may be set to any value that does not introduce a
security hole, as described in Section 1.6.2.

The WH64 instruction does not generate exceptions; if it encounters data address translation
errors (access violation, translation not valid, and so forth), it is treated as a NOP.

If the address maps to non-memory-like (I/O) space, WiH84reated as a NOP. If WH&4s
not supported on a particular Alpha implementation, it is treated as a NOP.

WHG4EN is a hint to the processor that the corresponding 64-byte cache block should have a
short temporal lifetime in the cache and can be marked for preferential eviction in future cache
fills.

Software Note:

This instruction is a performance hint that should be used when writing a large continuous
region of memory. The intended code sequence consists of one MVE@truction
followed by eight quadword stores for each aligned 64-byte region to be written.
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Implementation Notes:

If the 64-byte region containing the addressed byte is not in the data cache, implementa-
tions are encouraged to allocate the region in the data cache without first reading it from
memory. However, if any of the addressed bytes exist in the caches of other processors,
they must be kept coherent with respectitoge processors.

Processors with cache blocks smaller than 64 bytes are encouraged to implement
WHG64x as defined. However, they may instead implement the instruction by allocating
a smaller aligned cache block for write access or by treating Wta64 NOP.

Processors with cache blocks larger than 64 bytes are also encouraged to implement
WHG64x as defined. However, they may insteaglt WH64& as a NOP.

WHG64EN is implemented as a NOP on processors previous to the 21264/EV6x and
implemented as WH64 on 21264/EV6Xx processors.

WH64 and WHG64EN differ only in their eviion policy, and that policy is implementa-
tion-dependent. The eviction policy for particular implementations is described in the
appropriate hardware reference manual, which can be foundtpatom-
pag.com/pub/products/alphaCPUdocs.
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4.11.12 Write Memory Barrier

Format:

WMB IMemory format

Operation:

{ Guarantee that

{ Al preceding stores that access memory-like

{ regions are ordered before any subsequent stores
that access memory-like regions and

All preceding stores that access non-memory-like
regions are ordered before any subsequent stores
that access non-memory-like regions.

{
{
{
{

Exceptions:

None

Instruction mnemonics:

WMB Write Memory Barrier

Quialifiers:

None

Description:

The WMB instruction provides a way for software to control write buffers. It guarantees that
writes preceding the WMB are not aggregated with writes that follow the WMB.

WMB guarantees that writes to memory-like regions that precede the WMB are ordered before
writes to memory-like regions that follow the WMB. Similarly, WMB guarantees that writes to
non-memory-like regions that precede the WMB are ordered before writes to non-memory-like
regions that follow the WMB. It does not order writes to memory-like regions relative to writes
to non-memory-like regions.

WMB causes writes that are contained in buffers to be completed without unnecessary delay. It
is particularly suited for batching writes to high-performance 1/O devices.

WMB prevents writes that precede the WMB from being merged with writes that follow the
WMB. In particular, two writes that access the same location and are separated by a WMB
cause two distinct and ordered write events.

In the absence of a WMB (or IMB or MB) instruction, stores to memory-like or non-memory-
like regions can be aggregated and/or buffered and completed in any order.
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The WMB instruction is the preferred method for providing high-bandwidth write streams
where order must be preserved between writes in that stream.

Notes:

WMB is useful for ordering streams of writes to a non-memory-like region, such as to mem-
ory-mapped control registers or to a graphics frame buffer. While both MB and WMB can

ensure that writes to a non-memory-like region occur in order, without being aggregated or
reordered, the WMB is usually faster and is never slower than MB.

WMB can correctly order streams of writes in programs that operate on shared sections of data
if the data in those sections are protected by a classic semaphore protocol. The following
example illustrates such a protocol:

Processor i Processor |

<Acquire lock>

MB

<Read and write data in shared section>

WMB

<Release lock> — <Acquire lock>
MB
<Read and write data in shared section>
WMB

The example above is similar to that in Section 5.5.5, except a WMB is substituted for the sec-
ond MB in the lock-update-release sequence. It is correct to substitute WMB for the second
MB only if:

1. All data locations that are read or written in the critical section are accessed only after
acquiring a software lock by using lock variable (and before releasing the software
lock).

2. For each read of shared data in the critical section, there is a wigeich that:
a. vis BEFORE the WMB.
b. vfollows uin processor issue sequence (see Section 5.6.1.1).

c. Veither depends on(see Section 5.6.1.7) or overlapgsee Section 5.6.1), or
both.

3. Bothlock_variable and all the shared data are in memory-like regions (or lock_variable
and all the shared data are in non-memory-like regions). If the lock_variable is in a non-
memory-like region, the atomic lock protocol must use some implementation-specific
hardware support.

The substitution of a WMB for the second MB is usually faster and never slower.
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4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4-18 for use in translated VAX code. These

instructions are intended to preserve customer assumptions about VAX instruction atomicity in
porting code from VAX to Alpha.

These instructions should be generated only by the VAX-to-Alpha software translator; they
should never be used in native Alpha code. Any native code that uses them may cease to work.

Table 4-18: VAX Compatibility Instructions Summary

Mnemonic Operation
RC Read and Clear
RS Read and Set
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4.12.1 VAX Compatibility Instructions

Format:

Rx Ra.wq IMemory format

Operation:
Ra < intr_flag
intr_flag -0 IRC
intr_flag -1 IRS
Exceptions:
None

Instruction mnemonics:

RC Read and Clear
RS Read and Set
Qualifiers:
None
Description:

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha instructions
between RS and RC (corresponding to a single VAX instruction) was executed without inter-
ruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor encounters a
CALL_PAL REl instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when that processor exe-
cutes an LDx_L or STx_C instruction. A processor’s intr_flag is not affected when that
processor executes a normal load or store instruction.

A processor’s intr_flag is notfeected when that prossor executes a taken branch.

Notes:

* These instructions are intendedly for use by the VAX-to-Alpha software translator;
they should never be used by native code.
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4.13 Multimedia (Graphics and Video) Support

Alpha provides the following instructions that enhance support for graphics and video

algorithms:
Mnemonic Operation
MINUBS8 Vector Unsigned Byte Minimum
MINSBS8 Vector Signed Byte Minimum
MINUW4 Vector Unsigned Word Minimum
MINSW4 Vector Signed Word Minimum
MAXUB8 Vector Unsigned Byte Maximum
MAXSB8 Vector Signed Byte Maximum
MAXUW4 Vector Unsigned Word Maximum
MAXSW4 Vector Signed Word Maximum
PERR Pixel Error
PKLB Pack Longwords to Bytes
PKWB Pack Words to Bytes
UNPKBL Unpack Bytes to Longwords
UNPKBW Unpack Bytes to Words

The MIN and MAX instructions allow the clamping of pixel values to maximum values that
are allowed in different standards and stages of the CODEC:s.

The PERR instruction accelerates the macroblock search in motion estimation.

The pack and unpack (PKxB and UNPKBX) instructions accelerate the blocking of interleaved
YUV coordinates for processing by the CODEC.

Implementation Note:

Alpha processors for which the AMASK instruction clears feature mask bit 8 implement these
instructions. Those processors for which AMASK does not clear feature mask bit 8 can take an
Illegal Instruction trap, and software can emulate their function, if required.

4-154 Common Architecture (1)



4.13.1 Byte and Word Minimum and Maximum

Format:
MINXxX Ra.rg,Rb.rqRc.wq
Ra.rqg,#b.ib,Rc.wq
MAXXXX Ra.rq,Rb.rgq,Rc.wq
Ra.rqg,#b.ib,Rc.wq
Operation:
CASE
MINUBS:
FOR i FROM 0 TO 7
Rev<i*8+7:*8> = MINU(Rav<i*8+7:i*8> Rbv<i*8+7:i*8>)
END
MINSBS:
FOR i FROM 0 TO 7
Rev<i*8+7:*8> = MINS(Rav<i*8+7:i*8>Rbv<i*8+7:i*8>)
END
MINUW4:
FOR i FROM 0 TO 3
Rev<i*16+15:*16> = MINU(Rav<i*16+15:*16> Rbv<i*16+15:i*16>)
END
MINSW4:
FOR i FROM 0 TO 3
Rev<i*16+15:i*16> = MINS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END
MAXUBS:
FOR i FROM 0 TO 7
Rev<i*8+7:*8> = MAXU(Rav<i*8+7:i*8>Rbv<i*8+7:i*8>)
END
MAXSBS:
FOR i FROM 0 TO 7
Rev<i*8+7:*8> = MAXS(Rav<i*8+7.i*8>,Rbv<i*8+7:i*8>)
END
MAXUW4:
FOR i FROM 0 TO 3
Rev<i*16+15:*16> = MAXU(Rav<i*16+15:i*16> Rbv<i*16+15:*16>)
END
MAXSW4:.
FOR i FROM 0 TO 3
Rev<i*16+15:*16> = MAXS(Rav<i*16+15:i*16> Rbv<i*16+15:i*16>)
END
ENDCASE:
Exceptions:
None

! Operate Format

! Operate Format
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Instruction mnemonics:

MINUBS Vector Unsigned Byte Minimum
MINSBS8 Vector Signed Byte Minimum
MINUW4 Vector Unsigned Word Minimum
MINSW4 Vector Signed Word Minimum
MAXUBS Vector Unsigned Byte Maximum
MAXSB8 Vector Signed Byte Maximum
MAXUW4 Vector Unsigned Word Maximum
MAXSW4 Vector Signed Word Maximum
Qualifiers:
None
Description:

For MINxB8, each byte of Rc is vitten with the smaller of the goesponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MINxW4, each word of Rc is written with the smaller of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned values.

For MAXxB8, each byte of Rc is written with the larger of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MAXxW4, each word of Rc is written with the larger of the corresponding words of Ra or
Rb. The words may be interpreted as signed or unsigned values.
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4.13.2 Pixel Error

Format:
PERR Ra.rg,Rb.rq,Rc.wq ! Operate Format

Operation:
temp = 0
FOR i FROM 0 TO 7
IF { Rav<i*8+7:*8> GEU Rbv<i*8+7:*8>} THEN
temp ~ temp + (Rav<i*8+7.*8> - Rbv<i*8+7:*8>)
ELSE
temp ~ temp + (Rbv<i*8+7:*8> - Rav<i*8+7:*8>)
END
Rc ~ temp
Exceptions:

None

Instruction mnemonics:

PERR Pixel Error

Quialifiers:

None

Description:

The absolute value of the difference between each of the bytes in Ra and Rb is calculated. The
sum of the resulting bytes is written to Rc.
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4.13.3 Pack Bytes

Format:

PKxB Rb.rg,Rc.wq I Operate Format

Operation:

CASE

PKLB:

BEGIN

Rc<07:00> ~ Rbv<07:00>
Rc<15.08> ~ Rbv<39:32>
Rc<63:16> ~ O

END

PKWB:

BEGIN

Rc<07:00> ~ Rbv<07:00>
Rc<15.08> ~ Rbv<23:16>
Rc<23:16> ~ Rbv<39:32>
Rc<31:24> ~ Rbv<55:48>
Rc<63:32> ~ O

END

ENDCASE

Exceptions:

None

Instruction mnemonics:

PKLB Pack Longwords to Bytes
PKWB Pack Words to Bytes
Quialifiers:
None
Description:

For PKLB, the component longwords of Rb are truncated to bytes and written to the lower two
byte positions of Rc. The upper six bytes of Rc are written with zero.

For PKWB, the component words of Rb are truncated to bytes and written to the lower four
byte positions of Rc. The upper four bytes of Rc are written with zero.
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4.13.4 Unpack Bytes

Format:
UNPKBX Rb.rq,Rc.wq ! Operate Format

Operation:

temp = 0

CASE
UNPKBL:
BEGIN
temp<07:00>
temp<39:32>
END
UNPKBW:
BEGIN
temp<07:00>
temp<23:16>
temp<39:32>
temp<55:48>
END

ENDCASE

Rc —~ temp

Rbv<07:00>
Rbv<15:08>

Rbv<07:00>
Rbv<15:08>
Rbv<23:16>
Rbv<31:24>

Exceptions:

None

Instruction mnemonics:

UNPKBL Unpack Bytes to Longwords
UNPKBW Unpack Bytes to Words
Qualifiers:
None
Description:

For UNPKBL, the lower two component bytes of Rb are zero-extended to longwords. The
resulting longwords are written to Rc.

For UNPKBW, the lower four component bytes of Rb are zero-extended to words. The result-
ing words are written to Rc.
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Chapter 5

System Architecture and Programming

Implications (I)

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and the system struc-
ture, of both uniprocessor and multiprocessor implementations. Architectural implications
considered in the following sections are:

Physical address space behavior
Translation buffers and virtual caches
Caches and write buffers

Data sharing

Read/write ordering

Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware implementors need
to take these issues into consideration.

5.2 Physical Address Space Characteristics

Alpha physical address space is divided into four equal-size regions. The regions are delin-
eated by the two most significant, implemented, physical address bits. Each region’s
characteristics are distinguished by the coherency, granularity, and width of memory accesses,
and whether the region exhibits memory-like behavior or non-memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementations must provide a coherent view of memory, in which each write by a
processor or I/O device (hereafter, called "processor") becomes visible to all other processors.
No distinction is made between catency of "memory space" and "l/O space."
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5.2.2

Memory coherency may be provided in different ways for each of the four physical address
regions.

Possible per-region policies include, but are not restricted to:
* No caching

No copies are kept of data in a region; all reads and writes access the actual data
location (memory or I/O regist), but a processor mayige multiple accesses to the
same data (see Section 5.2.3).

*  Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes update
the actual data location and either update or invalidate all copies.

* Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies, and
writes use additional state to determine whether there are other copies to invalidate or
update.

Software/Hardware Note:

To produce separate and distinct accesses to a specific location, the location must be a
region with no caching and a memory barrier instruction must be inserted between
accesses. See Section 5.2.3.

Part of the coherency policy implemented for a given physical address region may include
restrictions on excess data transfers (performing more accesses to a location than is necessary
to acquire or change the location’s value) or may specify data transfer widths (the granularity
used to access a logart).

Independent of coherency policy, a processor may use different hardware or different hard-
ware resource policies for caching orffaring different ghysical address regions.

Granularity of Memory Access

For each region, an implementation must support aligned quadword access and may optionally
support aligned longword access or byte access. If byte access is supported in a region, aligned
word access and aligned longword access are also supported.

For a quadword access region, accesses to physical memory must be implemented such that
independent accesses to adjacent aligned quadwords produce the same results regardless of the
order of execution. Further, an access to an aligned quadword must be done in a single atomic
operation.

For a longword access region, accesses to physical memory must be implemented such that
independent accesses to adjacent aligned longwords produce the same results regardless of the
order of execution. Further, an access to an aligned longword must be done in a single atomic
operation, and an access to an aligned quadword must also be done in a single atomic
operation.
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For a byte access region, accesses to physical memory must be implemented such that indepen-
dent accesses to adjacent bytes or adjacent aligned words produce the same results, regardless
of the order of execution. Further, an access to a byte, an aligned word, an aligned longword,

or an aligned quadword must be done in a single atomic operation.

In this context, "atomic" means that the following is true if different processors do simulta-
neous reads and writes of the same data:

* The result of any set of writes must be the same as if the writes had occurred sequen-
tially in some order, and

* Any read that observes thedfect of a write on some part of memory mudiserve the
effect of that write (or of a later write or writes) on the entire part of memory that is
accessed by both the read and the write.

When a write accesses only part of a given word, longword, or quadword, a read of the entire
structure may observe the effect of that partial write without observing fleetedf an earlier
write of another byte or bytes to the same structure. See Sections 5.6.1.5 and 5.6.1.6.

5.2.3 Width of Memory Access
Subject to the granularity, ordering, and coherency constraints given in Sections 5.2.1, 5.2.2,
and 5.6, accesses to physical memory may be freely cached, bufferedeéetd ped.

A processor may read more physical memory data (such as a full cache block) than is actually
accessed, writes may trigger reads, and writes may write back more data than is actually
updated. A processor may elide multiple reads and/or writes to the same data.

5.2.4 Memory-Like and Non-Memory-Like Behavior

Memory-like regions obey the following rules:

e Each page frame in the region either exists in its entirety or does not exist in its entirety;
there are no holes within a page frame.

¢ All locations that exist are read/write.

* A write to a location followed by a read from that location returns precisely the bits
written; all bits act as memory.

* A write to one location does not change any other location.
* Reads have no side effects.

e Longword access granularity is provided, and if the byte/word extension is imple-
mented, byte access granularity is provided.

* Instruction-fetch is supported.

* Load-locked and store-cditional are supported.
Non-memory-like regions may have much more arbitrary behavior:

* Unimplemented locations or bits may exist anywhere.

* Some locations or bits may be read-only and others write-only.

* Address ranges may overlap, such that a write to one location changes the bits read
from a different location.
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* Reads may have side effects, although this is strongly discouraged.

e Longword granularity need not be supported and, even if the byte/word extension is
implemented, byte access granularity need not be implemented.

* Instruction-fetch need not be supported.

* Load-locked and store-cditional need not be supported.

Hardware/Software Coordination Note:

The details of such behavior are outside the scope of the Afsbhitecture. Specific
processor and I/O device implementations may choose and document whatever behavior
they need. It is the responsibility of system designers to impose enough consistency to
allow processors successfully to access matching non-memory devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a virtual instruction cache (virtual I-cache) or a virtual data
cache (virtual D-cache). A system may also choose to include either a combined data and
instruction translation buffer (TB) or separate data and instruction TBs (DTB and ITB). The
contents of these caches and/or translation buffers may become invalid, depending on what
operating system activity is beinggdormed.

Whenever a non-software field of a valid page table entry (PTE) is modified, copies of that
PTE must be made coherent. PALcode mechanisms are available to clear all TBs, both DTB
and ITB entries for a given VA, either DTB or ITB entries for a given VA, or all entries with

the address space match (ASM) bit clear. Virtual D-cache entries are made coherent whenever
the corresponding DTB entry is requested to be cleared by any of the appropriate PALcode
mechanisms. Virtual I-cache entries can be made coherent via the IMB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has the Address
Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then entries can also effec-
tively be made coherent by assigning a new, unused ASN to the currently running process and
not reusing the previous ASN before calling the appropriate PALcode routine to invalidate the
translation buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only one proces-
sor is not always sufficient. An operating system must arrange to perform the above actions on
each processor that could possibly have copies of the PTE or data for any affected page.

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce meatogss time by mak-

ing local copies of recently used memory contents (or those expected to be used) or by
buffering writes to complete at a later time. Caches and write buffers are examples of these
mechanisms. They must be implemented so that their existence is transparent to software
(except for timing, error reporting/controdcovery, and modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations. All pro-
cessors must provide a coherent view of memory.
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Write buffers may be used to delay and aggregate writes. From thwpweiat of another
processor, buffered writes appear not to have happened yet. (Wiferdmust not
delay writes indefinitely. See Section 5.6.1.9.)

Write-back caches must be able to detect a later write from another processor and inval-
idate or update the cache contents.

A processor must guarantee that a data store to a location followed by a data load from
the same location reads the updated value.

Cache prefetching is allowed, but virtual caches must not prefetch from invalid pages.
See Sections 5.6.1.3, 5.6.4.3, and 5.6.4.4.

A processor must guarantee that all of its previous writes are visible to all other proces-
sors before a HALT instruction completes. A processor must guarantee that its caches
are coherent with the rest of the system before continuing from a HALT.

If battery backup is supplied, a processor must guarantee that the memory system
remains coherent across a powerfail/recovery sequence. Data that was written by the
processor before the powerfail may not be lost, and any caches must be in a valid state
before (and if) normal instruction processing is continued after power is restored.

Virtual instruction caches are not required to notice modifications of the virtual I-
stream (they need not be coherent with the rest of memory). Software that creates or
modifies the instruction stam must execute aALL_PAL IMB before trying to exe-

cute the new instructions.

In this context, to "modify the virtual I-stream" means either:

— any Store to the same physical address that is subsequently fetched as an instruction
by some corresponding (virtual address, ASN) pair, or

— any change to the virtual-to-physical address mapping so tffatatit values are
fetched.

For example, if two different virtual addresses, VA1 and VA2, map to the same page
frame, a store to VA1 modifies the virtual I-stream fetched by VA2.

However, the following sequence does not modify the virtualréash (this might
happen in soft page faults).

1. Change the mapping of an I-stream page from valid to invalid.
2. Copy the corresponding page frame to a new geagae.
3. Change the original mapping to be valid and point to the new page frame.

Physical instruction caches are not required to notice modifications of the physical I-
stream (they need not be coherent with the rest of memory), except for certain paging
activity. (See Section 5.6.4.4.) Software that creates or modifies the instruction stream
must execute a CALL_PAL IMB before trying to execute the new instructions.

In this context, to "modify the physical I-stream" means any Store to the same physical
address that is subsequently fetched as an instruction.
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5.5 Data Sharing

5.5.1

5.5.2

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

Atomic Change of a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change of a shared
aligned longword or quadword. ("Change" means that the new value is not a function of the old

value.) In particular, an ordinary STL or STQ instruction can be used to change a variable that
could be simultaneously accessed via an LDx_L/STx_C sequence.

Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic update of a
shared aligned longword or quadword. ("Update" means that the new value is a function of the
old value.)

The following sequence performs a read-modify-write operation on locati@mly register-
to-register operate instructions and branch fall-throughs may occur in the sequence:

try_again:
LDQ L R1x
<modify R1>
STQ C Rl1x
BEQ R1,no_store
no_store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes to loca-
tion x (more precisely, the locked range includirRgbetween the LDQ_L and STQ_C
instructions, then the STQ_C shown in the example stores the modified vatenimhsets R1

to 1. If, however, the sequence encounters exceptions or interrupts that eventually continue the
sequence, or another processor writeg, tthen the STQ_C does not store and sets R1to 0. In

this case, the sequence is repeated by the branches to no_store and try_again. This repetition
continues until the reasons for exceptions or interrupts are removed and no interfering store is
encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary number
of times, giving the same result values each time. A sufficient (but not necessary) condition is
that, within the sequence, the set of operand destinations and the set of operand sources are
disjoint.

Note:

A sufficiently long instruction sequence between LDx_L and STx_C will never complete,
because periodic timer interrupts will always occur before the sequence completes. The
rules in Appendix A describe sequences that will eventually completallinAlpha
implementations.
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5.5.3

This load-locked/store-conditional paradigm may be used whenever an atomic update of a
shared aligned quadword is desired, including getting the effect of atomic byte writes.

Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned longword
or quadword), the programmer can acquire control of the data structure by using an atomic

update to set a software lock variable. Such a software lock can be cleared with an ordinary

store instruction.

A software-critical section, therefore, may lolike the sequence:

stq_c_loop:
spin_loop:
LDQ R1lock variable ; This optional spin-loop code
BLBS Rlalready set ; should be used unless the
; lock is known to be low-contention.
LDQ_L R1,lock variable 0\
BLBS Rlalready set ;o\
OR R1#1R2 ;> Set lock bit
STQ_C R2,lock variable po
BEQ R2stq c fail 0
MB
<critical section: updates various data structures>
MB ; Second MB
STQ R31,lock variable ; Clear lock bit
already_set:
<code to block or reschedule or test for too many iterations>
BR spin_loop
stq_c fail:

<code to test for too many iterations>
BR stg c loop

This code has a number of subtleties:

If the lock_variable is already set, the spin loop is done without doing any stores. This
avoidance of stores improves memory subsystenfiopmance and avoids the dback
described below. The loop uses an ordinary load. This code sequencteisgaanless

the lock is known to be low-contention, because the sequence increases the probability
that the LDQ_L hits in the cache and the LDQ_L/STQ_C sequence complete quickly
and successfully.

If the lock variable is actually being changed from 0 to 1, and the STQ_C fails (due to
an interrupt, or because another processor simultaneously changed lock_variable), the
entire process starts over by reading the lock_variable again.

Only the fall-through path of the BLBS instructions does a STx_C; some implementa-
tions may not allow a successful STx_C after a branch-taken.

Only register-to-register operate instructions are used to do the modify.

The OR writes its result to a second register; this allows the OR and the BLBS to be
interchanged if that would give a faster instruction schedule.
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e Other operateinstructions (from the critical setion) may be scheduled into the
LDQ L..STQ_C sequence, so long as they do not fault or trap and they give correct
results if repeated; other memory or operate instructions may be scheduled between the
STQ_C and BEQ.

* The memory barrier instructions are discussed in Section 5.5.5. It is correct to substitute
WMB for the second MB only if:

— All data locations that are read or written in the critical section are accessed only
after acquiring a software lock by using lock variable (and before releasing the
software lock).

— For each read of shared data in the critical section, there is a wviggich that:

1. vis BEFORE the WMB.
2. vfollows uin processor issue sequence (see Section 5.6.1.1).

3. veither depends oun (see Section 5.6.1.7) or overlapgsee Section 5.6.1), or
both.

— Both lock variable and all the shared data are in memory-like regions (or
lock variable and all the shared data are in non-memory-like regions). If the
lock variable is in a non-memory-like region, the atomic lock protocol must use
some implementation-specific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.
e Anordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C sequence
(to move the BLBS after the BEQ) because that sequence may repeatedly change the software
lock variable from "locked" to "locked," with each write causing extra access delays in all
other caches that contain the lock_variable. In the extreme, spin-waits that contain writes may
deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not changing)
the lock variable, then the writes on the first processor may cause the STx_C of the
modify on the second processor always to fail.

This deadlock situation is avoided by:
e Having only one processor execute a store (no STx_C), or
* Having no write in the spin loop, or

* Doing a writeonly if the shared variable actually changes state-(1 does not change
state).

5.5.4 Prefetching Low-Contention Atomic Data and Locks

A low-contention situation is one in which multiple processors are not vigorously contending
for the same datum. In a low-contention situation, performance can be improved by executing
a prefetch-with-modify-intent well in advance of attempting an atomic update or of attempting
to set an atomic lock.

LDA R3,0x1000 # test AMASK<12>. See Section E.1.6.
AMASK  R3,R3
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5.5.5

BNE R3, skip_prefetch

LDS F31, O(R1) # Prefetch with modify intent (PREFETCH_M)
# to prefetch the cache block
# with the lock in it exactly
# once per lock acquisition.
skip_prefetch:
. # 20 to 80 cycles ahead of the
# atomic memory ref to overcome
. # memory latency if possible.
start:
LDA R2, 1(R31)
LDQ L RO, ORYL)
BNE RO, lazy
STQ C R2, 0ORYD
BEQ R2, start
BR done
lazy:
LDQ RO, O(RY1)
BNE RO, lazy
BR start
done:

Notice that this code does not use the spin-loop, shown in the example code in Section 5.5.3,
which is suitable only for high-contention locks. Notice also relative to the code in Section
5.5.2, the prefetch is executed before the atomic update.

The code above can be particularly useful in large multiprocessor systems with significant

latencies. With this code, only one system transaction is required for the lock to succeed
because the cache block that contains the lock is brought into the cache with write permission.
Without the prefetch-with-modify-intent, two system transactions can be required: one for the

LDx_L to read the block into the cache and one for the STx_C to get permission to write the

block.

Note:

When a prefetch-with-modify-intent issues a system transaction to get write permission (or
ownership) of the block, the prefetch is issuing a transaction similar to a store. And, like a
store, such a prefetch can clear the lock flag nather processor.

Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three steps:
1. Acquire software lock
2. Critical section — read/write shared data
3. Clear software lock

In the absence of explicit instructions to the contrary, the Alatahitecture allows reads and
writes to be reordered. While this may allow more implementation speed and overlap, it can
also create undesired side effects on shared data structures. Normallyitittad section just
described would have two instructions added to it:
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<acquire software lock>

MB (memory barrier #1)

<critical section — readiwrite shared data>
MB (memory barrier #2)

<clear software lock>

<endcode_example>

The first memory barrier prevents any reads (from within the critical section) from being
prefetched before the software lock is acquired; such prefetched reads would potentially con-
tain stale data.

The second memory barrier prevents any writes and reads in the critical section being delayed
past the clearing of the software lock. Such delayed accesses could interact with the next user
of the shared data, defeating the purpose of the software lock entirely. It is correct to substitute

WMB for the second MB only if:

1. All data locations that are read or written in the critical section are accessed only after
acquiring a software lock by using lock variable (and before releasing the software
lock).

2. For each read of shared data in the critical section, there is a wigeich that:
a. vis BEFORE the WMB.
b. vfollows uin processor issue sequence (see Section 5.6.1.1).
c. veither depends on(see Section 5.6.1.7) or overlapgsee Section 5.6.1), or both.

3. Bothlock_variable and all the shared data are in memory-like regions (or lock_variable
and all the shared data are in non-memory-like regions). If the lock_variable is in a non-
memory-like region, the atomic lock protocol must use some implementation-specific
hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

Software Note:

In the VAX architecture, many instructions provide norimtiptable read-modify-write
sequences to memory variables. Most programmers never regard data sharing as an issue.

In the Alpha architecture, programmers must pay more attention to synchronizing access to
shared data; for example, to AST routines. In the VAX architecture, a programmer can use
an ADDL2 to update a variable that is shared between a "MAIN" routine and an AST
routine, if running on a single processor. In the Alpha architecture, a programmer must
deal with AST shared data by using multiprocessor shared data sequences.

5.6 Read/Write Ordering

This section applies to programs that run on multiple processors or on one or more processors
that are interacting with DMA 1/O devices. To a program running on a single processor and not
interacting with DMA 1/O devices, all memory accesses appear to happen in the order speci-
fied by the programmer. This section deals with predictable read/write ordering across multiple
processors and/or DMA 1/O devices.
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5.6.1

The order of reads and writes done in an Alpha implementation may differ from that specified
by the programmer.

For any two memory accesses A and B, either A must occur before B in all Alpha implementa-
tions, B must occur before A, or they are UNORDERED. In the last case, software cannot
depend upon one occurring first: the order may vary from implementation to implementation,
and even from run to run or moment to moment on a single implementation.

If two accesses cannot be shown to be ordered by the rules given, they are UNORDERED and
implementations are free to do them in any order that is convenient. Implementations may take
advantage of this freedom to deliver substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory accesses
on a single processor, then defines the (partial) ordering on this issue sequeraiéAligita
implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access sequences at
each shared memory location. The discussion defines the (partial) ordering on the individual
access sequences tladit Alpha implementations are required to maintain.

The net result is that for any code that executes on multiple processors, one can determine
which memory accesses are required to occur before otheali &fpha implementations and
hence can write useful shared-variable software.

Software writers can force one access to occur before another by inserting a memory barrier
instruction (MB, WMB, or CALL_PAL IMB) between theaesses.

Alpha Shared Memory Model

An Alpha system consists of a collection of processors, 1/0 devices (and possibly a bridge to
connect remote I/O devices), and shared memories that are accessible by all processors.

Note:

An example of an unshared location is a physical address in I/O space that refers to a CSR
that is local to a processor and not accessible by other processors.

A processor is an Alpha CPU.

In most systems, DMA 1/O devices or other agents can read or write shared memory locations.
The order of accesses by those agents is not completely specified in this document. It is possi-
ble in some systems for read accesses by I/O devices or other agents to give results indicating
some reordering of accesses. However, there are guarantees that apply in all systems. See Sec-
tion 5.6.4.7.

A shared memory is the primary storage place for one or more locations.

A location is a byte, specified by its physical address. Multiple virtual addresses may map to
the same physical address. Ordering considerations are based only on the physical address.
This definition of location specifically includes locations and registers in memory mapped 1/0
devices and bridges to remote I/O (for example, Mailbox Pointer Registers, or MBPRS).

Implementation Note:

An implementation may allow a location to have multiple physical addresses, but the rules
for accesses via mixtures of the addresses are implementation-specific and outside the

System Architecture and Programming Implicationss{f)1



scope of this section. Accesses via exactly one of the physical addresses follow the rules
described next.

Each processor may generate accesses to shared memory locations. There are six types of
accesses:

1. |Instruction fetch by processoto locationx, returning valuea, denoted Pi:l<4>(x,a).

2. Data read (including load-locked) by process$ao location x, returning valuea,
denoted Pi:R<size>(x,a).

3. Data write (including successful séacondtional) by processor to locationx, storing
valuea, denoted Pi:W<size>(x,a).

Memory barrier issued by processpdenoted Pi:MB.
Write memory barrier issued by processatenoted Pi:WMB.
I-stream memory barriéssued by processordenoted Pi:IMB.

The first access type is also called an I-stream access or I-fetch. The next two are also called
D-stream accesses. The first three types are collectively called read/write accesses, denoted
Pi:Op<m>(x,a), wherenis the size of the access in bytesis the (physical) address of the
access, and is a value representable inbytes; for anyk in the range 0..m-1, byteof value

a (where byte 0 is the low-order byte) is the value written teead from locéion x+k by the

access. This relationship reflects little-endian addressing; big-endian addressing representation
is as described in Chapter 2.

The last three types collectively are calleatiiers or memory barriers.

The size of a read/write access is 8 for a quadword access, 4 for a longword access (including
all instruction fetches), 2 for a word access, or 1 for a byte access. All read/write accesses in
this chapter are naturally aligned. That is, they have the form Pi:Op<m>(x,a), where the
addresx s divisible by sizem.

The word "access" is also used as a verb; a read/write access Pi:Op<m>(x,a) accessis byte
X £ z < x+m. Two read/write accesses Opl<m>(x,a) and Op2<n>(y,b) are defined to overlap if
there is at least one byte that is accessed by both, that is, if max(x,y) < min(x+m,y+n).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a hypothetical sim-
ple implementation that contains one processor and a single shared memory, with no caches or
buffers.This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a single data
read from memory for a Load instruction or a single data write to memory for a Store
instruction.

3. Update: The PC for the processor is updated.
4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done and the
PC is updated to point to a PALcode fault handler. If the read/write step gets a memory man-
agement fault, the read/write is not done and the PC is updated to point to a PALcode fault
handler.
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5.6.1.2 Definition of Before and After

The ordering relation BEFOREX ) is a partial order on memory accesses. It is further defined
in Sections 5.6.1.3 through 5.6.1.9.

The ordering relation BEFOREX ), being a partial order, is acyclic.

The BEFORE order cannot be observed directly, nor fully predicted before an actual execu-
tion, nor reproduced exactly from one execution to another. Nonetheless, some useful ordering
properties must hold in all Alpha implementations.

Ifu v, thenvis said to be AFTERu.

5.6.1.3 Definition of Processor Issue Constraints

Processor issue constraints are imposed on the processor issue sequence defined in Section
5.6.1.1, as shown in Table 5-1.

Table 5—-1 Processor Issue Constraints

1stl 2nd - Pisl<n=4>(y,b) Pi:R<n>(y,b) Pi:W<n>(y,b) Pi:MB  Pi:IMB
Pi:l<xm=4>(x,a) O if overlap O if overlap O O
Pi:R<m>(x,a) O if overlap O if overlap O O
Pi:W<m>(x,a) O if overlap O O
Pi:MB 0 0 0
Pi:IMB 0 0 0 0 0

Where "overlap" denotes the condition max(x,y) < min(x+m,y+n).

For two accessesandyv issued by processor Pi, ifprecedew by processor issue constraint,
thenu precedew in BEFORE orderu andv on Pi are ordered by processor issue constraint if
any of the following applies:

1. The entry in Table 5-1 indicated by the access type (dfst) andv (2nd) indicates the
accesses are ordered.

2. uandv are both writes to memory-like regions and there is a WMB betweandv in
processor issue sequence.

3. uandv are both writes to non-memory-like regions and there is a WMB betwesatd
v in processor issue sequence.

4. uis a TBfill that updates a PTE, for example, a PTE read in order to satisfy a TB miss,
andvis an I- or D-stream access using that PTE (see Sections 5.6.4.3 and 5.6.4.4).

In Table 5-1,1stand2ndrefer to the ordering of accesses in the processor issue sequence.
Note that Table 5—1 imposes no direct constraint on the ordering relationship between non-
overlapping read/write accesses, though there may be indirect constraints due to the transitivity
of BEFORE (d ). Conditions 2 through 4, above, impose ordering constraints on some pairs of
nonoverlapping read/write accesses.
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Table 5-1 permits a read access Pi:R<n>(y,b) to be ordered BEFORE an overlapping write
access Pi:W<m>(x,a) that precedes the read access in processor issue order. This asymmetry
for reads allows reads to be satisfied by using data from an earlier write in processor issue
sequence by the same processor (for example, by hitting in a write buffer) before the write
completes. The write access remains "visible" to the read access; "visibility" is described in
Sections 5.6.1.5 and 5.6.1.6 and illustrated in Litmus Test 11 in Section 5.6.2.11.

An I-fetch Pi:l<4>(y,b) may also be ordered BEFORE an overlapping write Pi:W<m>(x,a) that
precedes it in processor issue sequence. In that case, the write may, but need not, be visible to
the I-fetch. This asymmetry in Table 5-1 allows writes to the I-stream to be incoherent until a
CALL_PAL IMB is executed.

Implementations are free to perform memory accesses from a single processor in any sequence
that is consistent with processor issue constraints.

5.6.1.4 Definition of Location Access Constraints

Location access constraints are imposed on overlapping read/write accessandN are
overlapping read/write accesses, at least one of which is a writeptaedv must be compara-
ble in the BEFOREI{] ) ordering, that is, eitherl v orv O u.

There is no direct requirement that nonoverlapping accesses be comparable in the BEFORE
(O ) ordering.

All writes accessing any given byte are totally ordered, and any read or I-fetch accessing a
given byte is ordered with respect to all writes accessing that byte.
5.6.1.5 Definition of Visibility

If uis a write access Pi:W<m>(x,a) ards an overlapping read access Pj:R<n>(y\bis visi-
ble tov only if:

ul v, or
u precedew in processor issue sequence (possible only if Pi=Pj).

If uis a write access Pi:W<m>(x,a) awds an overlapping instruction fetch Pj:1<4>(y,b),
there are the following rules for visibility:

1. Iful v, thenuis visible tov.
2. If uprecedeyin processor issue sequence, then:
a. If there is a writew such that:
u overlapsw and precedew in processor issue sequence, and
w is visible tov,
thenu is visible tov.
b. If there is an instruction fetcl such that:
uis visible tow, and
w overlapsy and precedegin processor issue sequence,
thenu is visible tov.

3. If udoes not precedein either processor issue sequence or BEFORE order,ulien
not visible tov.
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Note that the rules of visibility for reads and instruction fetches are slightly different. If a write

u precedes an overlapping instruction fetein processor issue sequence, s not
BEFOREv, thenu may or may not be visible te.

5.6.1.6 Definition of Storage

The property of storage applies only to memory-like regions.

The value read from any byte by a read access or instruction ¥etstthe value written by the
latest (in BEFORE order) writa to that byte that is visible tg. More formally:

If uis Pi:W<m>(x,a), and is either Pj:I<4>(y,b) or Pj:R<n>(y,b), and z is a byte accessed
by bothu andv, andu is visible tov; and there is no write that is AFTER is visible tov,

and accesses byte z; then the value of byte z readigexactly the value written by. In

this situationu is a source of.

The only way to communicate information between different processors is for one to write a
shared location and the other to read the shared location and receive the newly written value.

(In this context, the sending of an interrupt from processor Pi to Pj is modeled as Pi writing to a
location INTIj, and Pj reading from INTij.)

5.6.1.7 Definition of Dependence Constraint

The depends relation (DP) is defined as follows. Giueandv issued by processor Pi, wheue
is a read or an instruction fetch amds a write,u precedew in DP order (writteru DP v, that
is, vdepends om) in either of the following situations:

* udetermines the execution gfthe location accessed byor the value written by.

* u determines the execution or address or value of another memory actrestspre-
cedesy or might precede (that is, would precede in some execution path depending
on the value read by) by processor issue constraint (see Section 5.6.1.3).

Note that the DP relation does not directly impose a BEFORE ¢rdering between accesses
uandv.

The dependence constraint requires that the union of the DP relation and the "is a source of"

relation (see Section 5.6.1.6) be acyclic. That is, there must not exist reads and/or I-fetches R1,
..., Rn, and writes W1, ..., W, such that:

1. n=1,

2. Foreach,1<i<n, RiDP Wi,

3. Foreach,1<i<n,Wiisasourceof Ri+1, and
4. Wnis a source of R1.

That constraint eliminates the possibility of "causal loops." A simple example of a "causal
loop" is when the execution of a write on Pi depends on the execution of a write on Pj and vice
versa, creating a circular dependence chain. The following simple example of a "causal loop"
is written in the style of the litmus tests in Section 5.6.2, where initimiyndy are 1:

Processor Pi executes:

LDQ RLx
STQ Rly
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Processor Pj executes:

LDQ Rly
STQ RIlx

Representing those code sequences in the style of the litmus tests in Section 5.6.2, it is impos-
sible for the following sequence to result:

Pi Pj

[U1] Pi:R<8>(x,0) [V1] Pj:R<8>(y,0)

[U2] Pi:W<8>(y,0) [V2] Pj:W<8>(x,0)
Analysis:

<1> By the definitions of storage and visibility, U2 is the source of V1, and V2 is the
source of U1.

<2> By the definition of DP and examination of the code, U1 DP U2, and V1 DP V2.

<3> Thus, Ul DP U2, U2 is the source of V1, V1 DP V2, and V2 is the source of U1l.
This circular chain is forbidden by the dependence constraint.

Given the initial condition x, y = 1, the access sequence above would also be impossible if the
code were:

Processor Pi's program:

LDQ Ri1x
BNE R1,done
STQ R3ly

done:

Processor Pj's program:

LDQ Rily
BNE R1,done
STQ R31lx

done:

5.6.1.8 Definition of Load-Locked and Store-Conditional
The property of load-locked and store-conditional applies only to memory-like regions.

For each successful store-conditiomathere exists a load-lockadsuch that the following are
true:

1. uprecedewin the processor issue sequence.

2. There is no load-locked or store-conditional betweeand v in the processor issue
sequence.

3. If uandv access within the same naturally aligned 16-byte physical and virtual block in
memory, then for every writev by a different processor that accesses withiglock
range (wherav is either a store or a successful store conditional), it must be truathat
O uorvld w.

u's lock range contains the region of physical memory thatcesses. See Sens 4.2.4 and
4.2.5, which define the lock range and conditions for success or failure of a store conditional.
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5.6.1.9 Timeliness

Even in the absence of a barrier after the write, no write by a processor may be delayed indefi-
nitely in the BEFORE ordering.

5.6.2 Litmus Tests

Many issues about writing and reading shared data can be cast into questions about whether a
write is before or after a read. These questions can be answered by rigorously checking
whether any ordering satisfies the rules in Sections 5.6.1.3 through 5.6.1.8.

In litmus tests 1-9 below, all initial quadword memory locations contain 1. In all these litmus
tests, it is assumed that initializations are performed by a write or writes that are BEFORE all
the explicitly listed accesses, that all relevant writes other than the initializations are explicitly
shown, and that all accesses shown are to memory-like regions (so the definition of storage

applies).
5.6.2.1 Litmus Test 1 (Impossible Sequence)

Initially, locationx contains 1.:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(x,2)
[V2]Pj:R<8>(x,1)
Analysis:
<1> By the definition of storage (Section 5.6.1.6), V1 reading 2 implies that U1 is visible
to V1.

<2> By the rules for visibility (Section 5.6.1.5), U1 being visible to V1, but being issued
by a different processor, ipfies that U1 V1.

<3> By the processor issue constraints (Section 5.6.1.3)]\W2.

<4> By the transitivity of the partial orddr , it follows from <2> and <3> that U1]
V2.

<5> By the rules for visibility, it follows from U1 V2 that U1 is visible to V2.

<6> Since Ul is AFTER the initialization of U1 is the latest (in thé&l ordering) write
to x that is visible to V1.

<7> By the definition of storage, it follows that V2 should read the value written by U1,
in contradiction to the stated result.

Thus, once a processor reads a new value from a location, it must never see an old value — time
must not go backward. V2 must read 2.
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5.6.2.2 Litmus Test 2 (Impossible Sequence)

Initially, locationx contains 1:

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)
[V2]Pj:R<8>(x,2)
[V3]Pj:R<8>(x,3)

Analysis:
<1> Since V1 precedes V2 in processor issue sequence, V1 is visible to V2.
<2> V2reading 2 implies Ul is the latest (ih order) write tox visible to V2.
<3> From<1>and<2>, V1] Ul.
<4> Since Ul is visible to V2, and they are issued bifedent processors, Ul V2.
<5> By the processor issue constraints, N2V3.
<6> From <4>and <5>, ULl V3.
<7> From <6> and the visibility rules, U1 is visible to V3.

<8> Since both V1 and the initialization afare BEFORE U1, U1l is the latest write xo
that is visible to V3.

<9> By the definition of storage, it follows that V3 should read the value written by U1,
in contradiction to the stated result.

Thus, once processor Pj reads a new value written by U1, any other writes that must precede
the read must also precede Ul. V3 must read 2.

5.6.2.3 Litmus Test 3 (Impossible Sequence)

Initially, locationx contains 1:

Pi Pj Pk
[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3) [W1]Pk:R<8>(x,3)
[U2]Pi:R<8>(x,3) [W2]Pk:R<8>(x,2)

Analysis:

<1> U2reading 3 implies V1 is the latest writexwisible to U2, therefore UT] V1.

<2> W1 reading 3 implies V1 is visible to W1, so 1 W1 O W, therefore V1 is also
visible to W2.

<3> W2 reading 2 implies U1 is the latest writexwisible to W2, therefore VII U1.
<4> From<1>and<3>, ULl V10O Ul

Again, time cannot go backwards. If V1 is ordered before U1, then processor Pk cannot read
first the later value 3 and then the earlier value 2. Alternatively, if V1 is ordered before U1, U2
must read 2.
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5.6.2.4 Litmus Test 4 (Sequence Okay)

Initially, locationsx andy contain 1:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)
[U2]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

Analysis:

<1> Vlreading 2 implies UZ] V1, by storage and visibility.
<2> Since V2 does not read 2, there cannot be UY2.

<3> By the access order constraints, it follows from <2> thattV2J1.
There are no conflicts in the sequence. There are no violations of the definition of BEFORE.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Initially, locationsx andy contain 1:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)
[V2]Pj:MB
[U2]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)
Analysis:

<1> Vlreading 2 implies UZ] V1, by storage and visibility.
<2> V10O V20O V3, by processor issue constraints.
<3> V3reading 1 implies V31 UL, by storage and visibility.

Thereis U20 V10O V20O V30O Ul. There are no conflicts in this sequence. There are no
violations of the definition of BEFORE.
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5.6.2.6 Litmus Test 6 (Sequence Okay)

Initially, locationsx andy contain 1:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)
[U2]Pi:MB
[U3]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

Analysis:

<1> Ul0O U200 U3, by processor issue constraints.
<2> Vlreading 2 implies UBl V1, by storage and visibility.
<3> V2reading 1 implies VZI U1, by storage and visibility.

Thereis V20 U1l 0O U200 U30O V1. There are no conflicts in this sequence. There are no
violations of the definition of BEFORE.

In litmus tests 4, 5, and 6, writes to two different locatior@ndy are observed (by another
processor) to occur in the opposite order than that in which they were performed. An update to
y propagates quickly to Pj, but the updatextis delayed, and Pi and Pj do not both have MBs.

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Initially, locationsx andy contain 1:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)
[U2]Pi:MB [V2]Pj:MB
[U3]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

Analysis:

<1> V3reading 1 implies V& U1, by storage and visibility.
<2> Vlreading 2 implies UBl V1, by storage and visibility.
<3> U1l0 U20 U3, by processor issue constraints.
<4> V10O V20O V3, by processor issue constraints.
<6> By<2> <3>and<4> U0l U20 U30O V10O v20 V3.
Both <1> and <5> cannot be true, so if V1 reads 2, then V3 must also read 2.

If both x andy are in memory-like regions, the sequence remains impossible if U2 is changed
to a WMB. Similarly, if bothx andy are in non-memory-like regions, the sequence remains
impossible if U2 is changed to a WMB.
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5.6.2.8 Litmus Test 8 (Impossible Sequence)

Initially, locationsx andy contain 1:

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:R<8>(y,1) [V3]Pj:R<8>(x,1)
Analysis:

<1> V3reading 1 implies V& U1, by storage and visibility.
<2> U3reading 1 implies U8 V1, by storage and visibility.
<3> Ul0O U210 U3, by processor issue constraints.
<4> V10O V20O V3, by processor issue constraints.

<5> By<2> <3>and<4> ULl U200 U3 Vv1iO v20O V3.

Both <1> and <5> cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa.

5.6.2.9 Litmus Test 9 (Impossible Sequence)

Initially, locationx contains 1.:

Pi Pj
[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)
[U2]Pi:R<8>(x,2) [V2]Pj:R<8>(x,3)
[U3]Pi:R<8>(x,3) [V3]Pj:R<8>(x,2)

Analysis:

<1> V3reading 2 implies Ul is the latest writexwisible to V3, therefore V11 Ul.
<2> U3reading 3 implies V1 is the latest writexwisible to U3, therefore ULl V1.

Both <1> and <2> cannot be true. Time cannot go backwards. If V3 reads 2, then U3 must read
2. Alternatively, if U3 reads 3, then V3 must read 3.
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5.6.2.10 Litmus Test 10 (Sequence Okay)
For an aligned quadword locatiox,initially 100000003%:

Pi Pj

[U1]Pi:W<4>(x,2) [V1]Pj:W<4>(x+4,2)
[U2]Pi:R<8>(x,10000000g;) [VZ2]Pj:R<8>(x,200000004¢)

Analysis:
<1> Since U2 reads 1 from x+4, V1 is not visible to U2. ThusUO2V/1.
<2> Similarly, V2O U1.

<3> Ul is visible to U2, but since they are issued by the same processor, it is not neces-
sarily the case that Ull U2.

<4> Similarly, it is not necessarily the case that M1V2.
There is no ordering cycle, so the sequence is permitted.

5.6.2.11 Litmus Test 11 (Impossible Sequence)
For an aligned quadword locatiox,initially 100000003%:

Pi Pj
[U1]Pi:W<4>(x,2) [V1]Pj:R<8>(x,20000000%)

[U2]Pi:MB or WMB
[U3]Pi:W<4>(x+4,2)

Analysis:
<1> Vl1reading 2000000Q%implies U300 V1 O U1 by storage and visibility.

<2> Ul0O U200 U3, by processor issue constraints.

Both <1> and <2> cannot be true.

5.6.3 Implied Barriers

There are no implied barriers in Alpha. If an implied barrier is needed for functionally correct
access to shared data, it must be written as an explicit instruction. (Software must explicitly
include any needed MB, WMB, or CALL_PAL IMB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:
e Entry to PALcode
e Sending and receiving interrupts
* Returning from exceptions, interrupts, or machine checks
e Swapping context

* Invalidating the Translation Buffer (TB)
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Depending on implementation choices for maintaining cache coherency, some PALcode/cache
implementations may have an implied CALL_PAL IMB in the I-stream TB fill routine, but
this is transparent to the non-PALcode programmer.

5.6.4 Implications for Software

Software must explicitly include MB, WMB, or CALL_PAL IMB instructions according to the
following circumstances.

5.6.4.1 Single Processor Data Stream

No barriers are ever needed. A read to physical addc@sB always return the value written
by the immediately preceding write ¥oin the processor issue sequence.

5.6.4.2 Single Processor Instruction Stream

An I-fetch from virtual or physical addressdoes not necessarily return the value written by
the immediately preceding write toin the issue sequence. To make the I-fetch reliably get the
newly written instruction, a CALL_PAL IMB is needed between the write and the I-fetch.

5.6.4.3 Multiprocessor Data Stream (Including Single Processor with DMA 1/0O)

Generally, the only way to reliably communicate shared data is to write the shared data on one

processor or DMA 1/O device, execute an MB (or the logical equivalért is a DMA 1/0

device), then write a flag (equivalently, send an interrupt) signaling the other processor that the
shared data is ready. Each receiving processor must read the new flag (equivalently, receive the
interrupt), execute an MB, then read or update the shared data. In the special case in which data
is communicated through just one location in memory, memory barriers are not necessary.

Software Note:

Note that this section does not describe how to reliably communicate data from a processor
to a DMA device. See Section 5.6.4.7.

Leaving out the first MB removes the assurance that the shared data is written before the flag is
written.

Leaving out the second MB removes the assurance that the shared data is read or updated only
after the flag is seen to change; in this case, an early read could see an old value, and an early
update could be overwritten.

This implies that after a DMA 1/O device has written some data to memory (such as paging in

a page from disk), the DMA device must logically execute an\bBfore posting a comple-

tion interrupt, and the interrupt handler software must execute an MB before the data is
guaranteed to be visible to the interrupted processor. Other processors must also execute MBs
before they are guaranteed to see the new data.

1 Inthis context, the logical equivalent of an MB for a DMA device is whatever is necessary under the applicable I/O subsystem
architecture to ensure that preceding writes will be BEFORE (see Section 5.6.1.2) the subsequent write of a flag or transmission
of an interrupt. Not all I/O devices behave exactly as required by the Alpha architecture. To interoperate properly with those
devices, some special action might be required by the program executing on the CPU. For example, PCI bus devices require that
after the CPU has received an interrupt, the CPU must read a CSR location on the PCI device, execute an MB, then read or
update the shared data. From the perspective of the Alpha architecture, this CSR read can be regarded as a necessary assist to
help the DMA /O device complete its logical equivalent of an MB.
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An important special case occurs when a write is done (perhaps by an 1/O device) to some
physical page frame, then an MB is executed, and then a previously invalid PTE is changed to
be a valid mapping of the physical page frame that was just written. In this case, all processors
that access virtual memory by using the newly valid PTE must guarantee to deliver the newly

written data after the TB miss, for both I-stream and D-stream accesses unless the PTE is
marked to indicate no such ordering is required.

5.6.4.4 Multiprocessor Instruction Stream (Including Single Processor with DMA 1/0)

The only way to update the I-stream reliably is to write the shared I-stream on one processor or
DMA 1/O device, then execute a CALL_PAL IMB (or an MB if the processor is not going to
execute the new I|-stream, or the logical equivalent of an MB if it is a DMA 1/O device), then
write a flag (equivalently, send an interrupt) signaling the other processor that the shared I-
stream is ready. Each receiving processor must read the new flag (equivalently, receive the
interrupt), execute a CALL_PAL IMB, then fetch theaskd I-stream.

Software Note:

Note that this section does not describe how to reliably communicate I-stream from a
processor to a DMA device. See Section 5.6.4.7.

Leaving out the first CALL_PAL IMB (or MB) removes the assurance that the shared I-stream
is written before the flag.

Leaving out the second CALL_PAL IMB removes the assurance that the shared I-stream is
read onlyafterthe flag is seen to change; in this case, an early read could see an old value.

This implies that after a DMA 1/O device has written some I-stream to memory (such as pag-

ing in a page from disk), the DMA device must logically execute an'\bBfore posting a
completion interrupt, and the interrupt handler software must execute a CALL_PAL IMB
before the I-stream is guaranteed to be visible to the interrupted processor. Other processors
must also execute CALL_PAL IMB instructions before they are guaranteed to see the new I-
stream.

An important special case occurs under the following circumstances:
1. Awrite (perhaps by an I/O device) is done to some physical page frame.
2. ACALL_PAL IMB (or MB) is executed.

3. A previously invalid PTE is changed to be a valid mapping of the physical page frame
that was written in step 1.

In this case, all processors that access virtual memory by using the newly valid PTE must guar-
antee to deliver the newly written I-stream after the TB miss.

5.6.4.5 Multiprocessor Context Switch

If a process migrates from executing on one processor to executing on another, the context
switch operating system code must include a number of barriers.

1 See Footnote on page 5-23.
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A process migrates by having its context stored into memory, then eventually having that con-
text reloaded on another processor. In between, some shared mechanism must be used to
communicate that the context saved in memory by the first processor is available to the second
processor. This could be done by using an interrupt, by using a flag bit associated with the
saved context, or by using a shared-memory multiprocessor data structure, as follows:

First Processor Second Processor

Save state of current process.

MB [1]

Pass ownership of process context

data structure memory. =  Pick up ownership of process context data
structure memory.
MB [2]

Restore state of new process context data
structure memory.

Make I-stream coherent [3].

Make TB coherent [4].

Execute code for new process that accesses
memory that is not common to all processes.

MB [1] ensures that the writes done to save the state of theuprocess happen before
the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen after the
ownership is picked up and hence are reliably the values written by the processor saving
the old state. Leaving this MB out makes the code fail if an old value of the context
remains in the second processor’s cache and invalidates from the writes done on the first
processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page tables
that may have occurred on the first processor just before the save of the process state. This
must be done with a series of TB invalidate instructions to remove any nonglobal page
mapping for this process, or by assigning an ASN that is unused on the second processor to
the process. One of these actions must occur sometime before starting execution of the
code for the new process that accesses memory (instruction or data) that is not common to
all processes. A common method is to assign a new ASN after gaining ownership of the
new process and before loading its context, which includes its ASN.

The D-cache on the second processor must be made coherent with any write to the D-
stream that may have occurred on the first processor just before the save of process state.
This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the I-stream
that may have occurred on the first processor just before the save of process state. This can
be done with a CALL_PAL IMB sometime before the execution of any code that is not
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common to all processes. More commonly, this can be done by forcing a TB miss (via the
new ASN or via TB invalidate instructions) and using the TB-fill rule (see Section 5.6.4.3).
This latter approach does not require any additional instruction.

Combining all these considerations gives the following, where, on a single processor, there is
no need for the barriers:

First Processor Second Processor

Pick up ownership of process con-
text data structure memory.

MB

Assign new ASN or invalidate
TBs.

Save state of current process.

Restore state of new process.

MB

Pass ownership of process context

data structure memory. = Pick up ownership of new process context
data structure memory.
MB

Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.

MB

Pass ownership of old process context data
structure memory.

Execute code for new process that accesses
memory that is not common to all processes.

5.6.4.6 Multiprocessor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second processor, and
that processor receives the interrupt, then accesses the shared data, the sequence from Section
5.6.4.3 must be used:

First Processor Second Processor

Write data
MB
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First Processor Second Processor

Send interrupt —  Receive interrupt
MB

Access data

Leaving out the MB at the beginning of the interrupt-receipt routine causes the code to fail if
an old value of the context remains in the second processor’s cache, and invalidates from the
writes done on the first processor are not delivered soon enough.

5.6.4.7 Implications for Memory Mapped I/O

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a processor or
DMA 1/O device to another processor that work reliably in all Alpha systems. Special consid-
erations apply to the communication of data or I-stream from a processor to a DMA 1/O
device. These considerations arise from the use of bridges to connect to I/O buses with devices
that are accessible by memory accesses to non-memory-like regions of physical memory.

The following communication method works in all Alpha systems.

To reliably communicate shared data from a processor to an 1/0O device:
1. Write the shared data to a memory-like physical memory region on the processor.
2. Execute an MB instruction.

3. Write a flag (equivalently, send an interrupt or write a register location implemented in
the 1/0O device).

The receiving I/O device must:

1. Read the flag (equivalently, detect the interrupt or detect the write to the register loca-
tion implemented in the I/O device).

2. Execute the equivalent of an MB
3. Read the shared data.

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance that the
shared data is written before the flag is. Unlike the case in Section 5.6.4tBgutie shared

data to a non-memory-like physical memory region removes the assurance that the I/O device
will detect the writes of the shared data before detecting the flag write, interrupt, or device reg-
ister write.

This implies that after a processor has prepared a data buffer to be read from memory by a
DMA 1/O device (such as writing a buffer to disk), the processor must execute an MB before
starting the 1/0. The I/O device, after receiving the start signal, must logically execute an MB
before reading the data buffer, and the buffer must be located in a memory-like physical mem-
ory region.

1 Inthis context, the logical equivalent of an MB for a DMA device is whatever is necessary under the applicable I/O subsystem
architecture to ensure that preceding writes will be BEFORE (see Section 5.6.1.2) the subsequent reads of shared data. Typi-
cally, this action is defined to be present between every read and write access done by the 1/O device, according to the applicable
1/0O subsystem architecture.
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There are methods of communicating data that may work in some systems but are not guaran-
teed in all systems. Two notable examples are:

1. If an Alpha processor writes a location implemented in a component located on an I/O
bus in the system, then executes a memanyibr, then writes a flag in some memory
location (in a memory-like or non-memory-like region), a device on the I/O bus may be
able to detect (via read access) the result of the flag in memory write and the write of
the location on the I/O bus out of order (that is, in a different order than the order in
which the Alpha processor wrote those locations).

2. If an Alpha processor writes a location that is a control register within an I/O device,
then executes a memory barrier, then writes atiooan memory (in a memory-like or
non-memory-like region), the 1/0O device may be able to detect (via read access) the
result of the memory write befomeceiving and resgnding to the write of its own con-
trol register.

In almost every case, a mechanism that ensures the completion of writes to control register
locations within 1/O devices is provided. The normal and strongly recommended mechanism is
to read a location after writing it, which guarantees that the write is complete. In any case, all

systems that use a particular 1/O device should provide the same mechanism for that device.

5.6.4.8 Multiple Processors Writing to a Single 1/0 Device

Generally, for multiple processors to cooperate in writing to a single 1/0 device, the first pro-
cessor must write to the device, execute an MB, then notify other processors. Another
processor that intends to write the same 1/O device after the first processor must receive the
notification, execute an MB, and then write to the I/O device. For example:

First Processor Second Processor

Write CSR_A

MB

Write flag (in memory) = Read flag (in memory)
MB

Write CSR_B

The MB on the first processor guarantees that the write to CSR_A precedes the write to flag in

memory, as perceived on other processors. (The MB does not guarantee that the write to
CSR_A has completed. See Section 5.6.4.7 for a discussion of how a processoarcamnteg

that a write to an I/O device has completed at that device.) The MB on the second processor
guarantees that the write to CSR_B will reach the 1/O device after the write to CSR_A.

5.6.5 Implications for Hardware

The coherency point for physical addresi the place in the memory subsystem at which
accesses tgare ordered. It may be at a main memory board, or at a cache contaiakau-
sively, or at the point of winning a common bus arbitration.

The coherency point fox may move with time, as exclusive accesstmigrates between
main memory and various caches.
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MB and CALL_PAL IMB force all preceding writes to at least reach their respective coher-
ency points. This does not mean that main-memory writes have been done, just thatehe

of the eventual writes is committed. For example, on the XMI with retry, this means getting the
writes acknowledged as received with good parity at the inputs to memory board queues; the
actual RAM write happens later.

MB and CALL_PAL IMB also force all queued cache invalidates to be delivered to the local
caches before starting any subsequent reads (that may otherwise cache hit on stale data) or
writes (that may otherwise write the cache, only to have the write effectively overwritten by a
late-delivered invalidate).

WMB ensures that the final order of writes to memory-like regions is committed and that the
final order of writes to non-memory-like regions is committed. This does not imply that the
final order of writes to memory-like regions relative to writes to non-memory-like regions is
committed. It also prevents writes that precede the WMB from merging with writes that fol-
low the WMB. For example, an implementation with a write buffer might implement WMB by
closing all valid write buffer entries from further merging and then drain the write buffer
entries in order.

Implementations may allow reads »fo hit (by physical address) on pending writes in a write
buffer, even before the writes toreach the coherency point far If this is done, it is still true

that no earlier value af may subsequently be delivered to the processor that took the hit on the
write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but only if
there cannot be a pending write under a synonym virtual address. Lack of a write-buffer match
on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value when-
ever a PALcode routine is executed that affects the validity, fault behavior, protection
behavior, or virtual-to-physical mapping specified for one or more pages. Becoming coherent
can be delayed until the next subsequent MB instruction or TB fill (using the new mapping) if
the implementation of the PALcode routine always forces a subsequent TB fill.

5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently and to for-
ward results from one instruction to another. Thus, when an arithmetic trap is detected, the PC
may have advanced an arbitrarily large number of instructions past the instruction T (calculat-
ing result R) whose execution triggered the trap.

When the trap is detected, any or all of these subsequent instructions may run to completion
before the trap is actually taken. The set of instructions subsequent to T that complete before
the trap is taken are collectively called the trap shadow of T. The PC pushed on the stack when
the trap is taken is the PC of the first instruction past the trap shadow.

The instructions in the trap shadow of T may use the UNPREDICTABLE result R of T, they
may generate additional traps, and they may completely change the PC (branches, JSR).
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Thus, by the time a trap is taken, the PC pushed on the stack may bear no useful relationship to
the PC of the trigger instruction T, and the state visible to the programmer may have been
updated using the UNPREDICTABLE result R. If an instruction in the trap shadow of T uses

R to calculate a subsequent register value, that register value is UNPREDICTABLE, even
though there may be no trap associated with the subsequent calculation. Similarly:

e If an instruction in the trap shadow of T stores R or any subsequent UNPREDICT-
ABLE result, the stored value is UNPREDICTABLE.

e If aninstruction in the trap shadow of T uses R or any subsequent UNPREDICTABLE
result as the basis of a conditional or calculated branch, the branch target is UNPRE-
DICTABLE.

e If aninstruction in the trap shadow of T uses R or any subsequent UNPREDICTABLE
result as the basis of an address calculation, the memory address actually accessed is
UNPREDICTABLE.

Software can follow the rules in Section 4.7.7.3 to reliably bound how far the PC may advance
before taking a trap, how far an UNPREDICTABLE result may propagate or continue from a
trap by supplying a well-defined result R within an arithmetic trap handler. Arithmetic instruc-
tions that do not use the /S exception completion qualifier can reliably produce that behavior
by inserting TRAPB instructions at appropriate points.
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Chapter 6

Common PALcode Architecture (I)

6.1 PALcode

In a family of machines, both users and operating system developers require functions to be
implemented consistently. When functions conform to a common interface, the code that uses
those functions can be used on sever#kdént implementaons without modification.

These functions range from the binary encoding of the instruction and data to the exception
mechanisms and synchronization primitives. Some of these functions can be implemented cost
effectively in hardware, but others are impractical to implement directly in hardware. These
functions include low-level hardware support functions such as Translation Buffer miss fill
routines, interrupt acknowledge, and vector dispatch. They also include support for privileged
and atomic operations that require long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as a prob-
lem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha architecture is to implement functions consistently without micro-
code. However, it is still desirable to provide an architected interface to these functions that
will be consistent across the entire family of machines. The Privileged Architecture Library
(PALcode) provides a mechanism to implement these functions without microcode.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

* Instructions that require complex sequencing as an atomic operation

* Instructions that require VAX style interlocked memory access

* Privileged instructions

* Memory management control, including translation buffer (TB) management
e Context swapping

* Interrupt and exception dispatching

* Power-upinitialization and booting

* Console functions

* Emulation of instructions with no hardware support

The Alpha architecture lets these functions be implemented in standard machine code that is
resident in main memory. PALcode is written in standard machine code with some implemen-
tation-specific extensions to provide access to low-level hardware. This lets an Alpha
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implementation make various design trade-offs based on the hardware technology being used
to implement the machine. The PALcode can abstract these differences and make them invisi-
ble to system softare.

An Alpha Privileged Architecture Library (PALcode) of routines and environments is supplied
by Compagq. Other systems may use a library supplied by Compaq or architect and implement a
different library of routines. Alpha systems are required to support the replacement of PAL-
code defined by Compag with an operating system-specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following ways:
e Complete control of the machine state.
* Interrupts are disabled.
* Implementation-specific hardware functions are enabled, as described below.

e |-stream memory management traps are prevented (by disabling I-stream mapping,
mapping PALcode with a permanent TB entry, or by other mechanisms).

Complete control of the machine state allows all functions of the machine to be controlled.
Disabling interrupts allows the system to provide multi-instruction sequences as atomic opera-
tions. Enabling implementation-specific hardware functions allows access to low-level system
hardware. Prevating I-stream memory management traps allows PALcode to implement
memory management functions such as translation buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small number of addi-
tional functions are needed to implement the PALcode. Five opcodes are reserved to
implement PALcode functions: PAL19, PAL1B, PAL1D, PAL1E, and PAL1F. These instruc-
tions produce an trap if executed outside the PALcode environment.

e PALcode needs a mechanism to save the current state of the machine and dispatch into
PALcode.

* PALcode needs a set of instructions to access hardware control registers.

e PALcode needs a hardware mechanism to transition the machine from the PALcode
environment to the non-PALcode environment. This mechanism loads the PC, enables
interrupts, enables mapping, and disables PALcode privileges.

An Alpha implementation may also choose to provide additional functions to simplify or
improve performance of some PALcode fucts. The following are some examples:

* An Alpha implementation may include a read/write virtual function that allows PAL-
code to perform mapped memory accesses using the mapping hardware rather than pro-
viding the virtual-to-physical translation in PALcode routines. PALcode may provide a
special function to do physical reads and writes and have the Alpha loads and stores
continue to operate on virtual address in the PALcode environment.
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* An Alpha implementation may include hardware assists for various functions, such as
saving the virtual address of a reference on a memory management error rather than
having to generate it by simulating the effective address calculation in PALcode.

* An Alpha implementation may include private registers so it can function without hav-
ing to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may reside in main memory
and maintain privileged data structures in main memory, the operating system code that allo-
cates physical memory cannot use all of physical memory.

The amount of memory PALcode requires is small, so the loss to the system is negligible.

6.6 PALcode Replacement

Alpha systems are required to support the replacement of PALcode supplied by Compaq with
an operating system-specific version. The following functions must be implemented in PAL-
code,notdirectly in hardware, to facilitate replacement with different versions.

e Translation Bffer fill. Different operating systemwiill want to replace the Translation
Buffer (TB) fill routines. The replacement rtines will use different data structures.
Page tables will not be present in these systems. Therefore, no portion of the TB fill
flow that would change with a change in page tables may be placed in hardware, unless
it is placed in a manner that can be overridden by PALcode.

* Process structure. Different operatiagstems might want to replace the process con-
text switch routines. The replacement routines will usfedént data structures. The
HWPCB or PCB will not be present in these systems. Therefore, no portion of the con-
text switching flows that would change with a change in process structure may be
placed in hardware.

PALcode can be viewed as consisting of the following somewhat intertwined components:
e Chip/architecture component
e Hardware platform component
* Operating system component

PALcode should be written modularly to facilitate the easy replacement or conditional build-
ing of each component. Such a practice simplifies the integration of CPU hardware, system
platform hardware, console firmware, operating system software, and compilers.

PALcode subsections that are commonly subject to modification include:
* Translation Buffer fill
* Process structure and context switch
* Interrupt and exception frame format and routine dispatch
* Privileged PALcode instructions

¢ Transitions to and from console I/O mode
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* Power-up reset

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6—1 and Appendix C must be recognized by mne-
monic and opcode in all operating system implementations, but the effect of each instruction is
dependent on the implementation. Compaqg defines the operation of these PALcode instruc-
tions for operating system implementations supplied by Compag.

Table 6-1: PALcode Instructions that Require Recognition

OpenVMS Tru64 UNIX and Alpha Linux

Mnemonic Mnemonic Operation

BPT bpt Breakpoint trap
BUGCHK bugchk Bugcheck trap
CSERVE cserve Console service
GENTRAP gentrap Generate trap
READ_UNQ rdunique Read unique value
SWPPAL swppal Swap PALcode
WRITE_UNQ wrunique Write unique value

The PALcode instructions listed in Table 6—2 and described in the following sections must be
supported by all Alpha implementations.

Table 6-2: Required PALcode Instructions

OpenVMS Tru64 UNIX and Alpha

Mnemonic Linux Mnemonic Type Operation

DRAINA draina Privileged Drain aborts

HALT halt Privileged Halt processor

IMB imb Unprivileged I-stream memory barrier

6—4 Common Architecture (I)



6.7.1 Drain Aborts

Format:
CALL_PAL DRAINA IPALcode format

Operation:

IF PS<literal>(<)CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL DRAINA Drain Aborts

Description:

If aborts are deliberately generated and handled (such as nonexistent memory aborts while siz-
ing memory or searching for 1/0 devices), the DRAINA instruction forces any outstanding
aborts to be taken before continuing.

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue at least
until all previously issued instructions have completed and any associated aborts have been
signaled, as follows:

* For operate instructions, this usually means stalling until the result register has been
written.

* For branch instructions, this usually means stalling until the result register and PC have
been written.

* For load instructions, this usually means stalling until the result register has been writ-
ten.

* For store instructions, this usually means stalling until at least the first level in a poten-
tially multilevel memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed portions of
a cache block have been transéal error free beforeantinuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate target loca-
tion of the store has received error-free data before continuing. An implementation-specific

technique must be used to guarantee the ultimate completion of a write in implementations that
have multilevel memory hierarchies or store-and-forward bus adapters.
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6.7.2 Halt

Format:
CALL_PAL HALT IPALcode format

Operation:
IF PS<literal>(<)CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF
I Operating System or Platform dependent choice

halt: {halt}
restart/boot/halt: {restart/boot/halt}
boot/halt: {boot/halt}
debugger/halt: {debugger/halt}
restart/halt: {restart/halt}
ENDCASE
Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL HALT Halt Processor

Description:

The HALT instruction stops normal instruction processing and initiates some other operating
system or platform-specific behavior, depending on the HALT action setting. The choice of

behavior typically includes the initiation of a restart sequence, a system bootstrap, or entry into
console mode. See Section 27.5.4.
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6.7.3 Instruction Memory Barrier

Format:

CALL_PAL IMB IPALcode format

Operation:

{Make instruction stream coherent with data stream}
IF PS<CM> NE 0
IF {Tru64 UNIX and Alpha Linux PALcode}
(PCBB+40)<32> <1
IF {OpenVMS PALcode}
(PCBB+56)<32> <- 1

Exceptions:

None

Instruction mnemonics:

CALL_PAL IMB I-stream Memory Barrier

Description:

An IMB instruction must be executed after software or I/O devices write into the instruction
stream or modify the instruction stream virtual address mapping, and before the new value is
fetched as an instruction. An implementation may contain an instruction cache that does not
track either processor or I/O writes into the instruction stream. The instruction cache and mem-
ory are made coherent by an IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an instruction
from the modified location, it is UNPREDICTABLE whether the old or new value is fetched.

Software Note:

In a multiprocessor environment, executing an IMB on one processor doeaffeot
instruction caches on other processors. Thus, a single IMB on one processor is
insufficient to guarantee that all processors see a modification of the instruction stream.
When an IMB is executed in other than kernel mode, that fact is recorded in the operating
system HWPCB (or PCB) at HWPCB<IMB> to help software manage those
multiprocessor events. Software is responsible for clearing the HWPCB<IMB> bit, as
appropriate.

The cache coherency and sharing rules are described in Section 5.4.

Common PALcode Architecture (B-7






Chapter 7

Console Subsystem Overview (1)

On an Alpha system, underlying control of the system platform hardware is provideddry a
sole subsystenThe console subsystem:

Initializes, tests, and prepares the system platform hardware for Alpha system software.
Bootstraps (loads into memory and starts the execution of) system software.

Controls and monitors the state and state transitions of each processor in a multiproces-
sor system.

Provides services to system software that simplify system software control of and
access to platform hardware.

Provides a means for@nsole operatoto monitor and control the system.

The console subsystem interacts with system platform hardware to accomplish the first three
tasks. The actual mechanisms of these interactions are specific to the platform hardware; how-
ever, the net effects are common to all systems.

The console subsystem interacts with system software once control of the system platform
hardware has been transferred to that software.

The console subsystem interacts with the consobrator through a virtual display device or
console terminalThe console operator may be a person or a management application.

Console Subsystem Overview 1






Chapter 8

Input/Output Overview (1)

Conceptually, Alpha systems can consist of processors, memory, a processor-memory inter-
connect (PMI), 1/0 buses, bridges, and I/O devices.

Figure 8-1 shows the Alpha system overview.

Figure 8—1: Alpha System Overview

Processor-Memory Interconnect

I/0 Device Processor Memory Bridge

1/0 Bus

1/0 Device 1/0 Device

As shown in Figure 8-1, processors, memory, and possibly I/O devices, are connected by a
PMI.

A bridge connects an I/O bus to the system, either directly to the PMI or through another 1/0O
bus. The I/O bus address space is available to the processor either directly or indirectly. Indi-
rect access is provided through either an I1/O mailbox or an I/O mapping mechanism. The 1/O
mapping mechanism includes provisions for mapping between PMI and I/O bus addresses and
access to I/0 bus operations.

Alpha I/O operations can include:
* Accesses between the processor and an I/O device across the PMI
* Accesses between the processor and an I/O device across an /O bus
* DMA accesses — I/O devices initiating reads and writes to memory
* Processor irdrrupts requested by devices

* Bus-specific I/0O accesses
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OpenVMS Software (lI-A)

The following chapters describe how the OpenVMS operating system relates to the Alpha
architecture:

e Chapter 9, Introduction to OpenVME-A)

e Chapter 10, PALcode Instruction Descriptidiis-A)
e Chapter 11, Memory Management (lI-A)

e Chapter 12, Process Structure (11-A)

e Chapter 13, Internal Processor Registers (lI-A)

e Chapter 14, Exceptions, Interrupts, and Machine Checks (II-A)






Chapter 9

Introduction to OpenVMS (I1-A)

The goals of this design are to provide a hardware-implementation independeffaceter
between the OpenVMS operating system and the hardware. Further, the design provides the
needed abstractions to minimize the impact between OpenVMS and different hardware imple-
mentations. Finally, the design must contain only that overhead necessary to satisfy those
requirements, while still supporting high-performance systems.

9.1 Register Usage

In addition to those registers described in Chapter 3, OpenVMS defines the registers described
in the following sections.

9.1.1 Processor Status

The Processor Status (PS) is a special register that contains the current status of the processor.
It can be read by the CALL_PAL RD_PS instruction. The software field PS<SW> can be writ-
ten by the CALL_PAL WR_PS_SW routine. See Section 14.2.1 for a description of the PS
register.

9.1.2 Stack Pointer (SP)

Integer register R30 is the Stack Pointer (SP).
The SP contains the address of the top of the stack in the current mode.

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit operand. Dur-

ing such operations, the address value in R30, interpreted as an unsigned 64-bit integer,
decreases (predecrements) when items are pushed onto the stack and increases (postincre-
ments) when they are popped from the stack. After pushing (writing) an item to the stack, SP
points to that item.

9.1.3 Internal Processor Registers (IPRS)
The IPRs provide an architected mapping to internal hardware or provide other specialized

uses. They are available only to privileged software through PALcode routines and allow
OpenVMS to interrogate or modify system state. The IPRs are described in Chapter 13.
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9.1.4 Processor Cycle Counter (PCC)

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an
unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>) are an offset,

PCC_OFF. PCC_OFF is a value that, when added to PCC_CNT, gives the total PCC register
count for this process, modulo 2**32.
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Chapter 10

PALcode Instruction Descriptions (11-A)

This chapter describes the PALcode instructions that are implemented for the OpenVMS envi-
ronment. The PALcode instructions are a set of unprivileged and privileged CALL_PAL

instructions that are used to match specific operating system requirements to the underlying
hardware implementation.

For example, privileged PALcode instructions switch the hardware context of a process struc-
ture. Unprivileged PALcode instructions implement the uninterruptible queue operations. Also,
PALcode instructions provide mechanisms for standareriapt and exception reporting that

are independent of the underlying hardware implementation.

Table 10-1 lists all the unprivileged and privileged OpenVMS PALcode instructions and the
section in which they are described.

Table 10-1: OpenVMS PALcode Instructions

Mnemonic Operation Section
AMOVRM Atomic move register/memory 10.4.1
AMOVRR Atomic move register/register 10.4.1
BPT Breakpoint 10.1.1
BUGCHK Bugcheck 10.1.2
CFLUSH Cache flush 10.6.1
CHME Change mode to executive 10.1.3
CHMK Change mode to kernel 10.1.4
CHMS Change mode to supervisor 10.1.5
CHMU Change mode to user 10.1.6
CLRFEN Clear floating-point enable 10.1.7
CSERVE Console service 10.6.2
DRAINA Drain aborts 6.7.1
GENTRAP Gemrrate software trap 10.1.8
HALT Halt processor 6.7.2
IMB I-stream memory barrier 6.7.3
INSQxxx Insert in specified queue 10.3
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Table 10-1: OpenVMS PALcode Instructions (Continued)

Mnemonic Operation Section
LDQP Load quadword physical 10.6.3
MFPR Move from processor register 10.6.4
MTPR Move to processor register 10.6.5
PROBER Probe read access 10.1.9
PROBEW Probe write access 10.1.9
RD_PS Read processor status 10.1.10
READ_UNQ Read unigue context 10.5.1
REI Return from exception or interrupt 10.1.11
REMQxxx Remove from specified queue 10.3
RSCC Read system cycle counter 10.1.12
STQP Store quadword physical 10.6.6
SWASTEN Swap AST enable 10.1.13
SWPCTX Swap privileged context 10.6.7
SWPPAL Swap PALcode image 10.6.8
WRITE_UNQ  Write unique context 10.5.2
WR_PS_SW Write processor status software field 10.1.14
WTINT Wait for interrupt 10.6.9
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10.1 Unprivileged General PALcode Instructions

The general unprivileged instructions in this section, together with those in Sections 10.3, 10.4,
and 10.5, provide support for the underlying OpenVMS model.

Table 10-2: Unprivileged General PALcode Instruction Summary

Mnemonic Operation

BPT Breakpoint

BUGCHK Bugcheck

CHME Change mode to executive
CHMK Change mode to kernel

CHMS Change mode to supervisor
CHMU Change mode to user

CLRFEN Clear floating-point enable
GENTRAP Gemerate software trap

IMB I-stream memory barrier. See Section 6.7.3.
PROBER Probe read access

PROBEW Probe write access

RD_PS Read processor status

REI Return from exception or interrupt
RSCC Read system cycle counter

SWASTEN Swap AST enable
WR_PS _SW  Write processor status software field
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10.1.1 Breakpoint

Format:

CALL_PAL BPT I PALcode format

Operation:
{iniiate BPT exception with new_mode=kemel}
Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL _PAL BPT Breakpoint

Description:

The BPT instruction is provided for program debugging. It switches to kernel mode and pushes
R2..R7, the updated PC, and PS on the kernel stack. It then dispatches to the address in the
Breakpoint SCB vector. See Section 14.3.3.2.1.
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10.1.2 Bugcheck

Format:
CALL_PAL BUGCHK I PALcode format

Operation:

{iniiate BUGCHK exception with new_mode=kemel}
I R16 contains a value encoding for the bugchk trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL _PAL BUGCHK Bugcheck

Description:

The BUGCHK instruction is provided for error reporting. It switches to kernel mode and
pushes R2..R7, the updated PC, and PS on the kernel stack. It then dispatches to the address in
the Bugcheck SCB vector. See Section 14.3.3.2.2.

The value in R16 identifies the particular bugcheck type. Interpretation of the encoded value
determines the course of action by the operating system.
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10.1.3 Change Mode to Executive

Format:
CALL_PAL CHME I PALcode format

Operation:

tmpl — MINU( 1, PS<CM>)
{iniate CHME exception with new_mode=tmp1}
I R16 contains a value encoding for the trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL PAL CHME Change Mode to Executive

Description:
The CHME instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved, the new
pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack. The saved PC
addresses the instruction following the CHME instruction. Registers R22, R23, R24, and R27
are available for use by PALcode as scratch registers. The contents of these registers are not
preserved across a CHME.

The value in R16 identifies the particular exception type. Interpretation of the encoded value
determines the course of action by the operating system.
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10.1.4 Change Mode to Kernel

Format:
CALL_PAL CHMK I PALcode format

Operation:
{iniiate CHMK exception with new_mode=kemel}

I R16 contains a value encoding for the trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL_PAL CHMK Change Mode to Kernel

Description:
The CHMK instruction lets a process change its mode to kernel in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved, the new
pointer is loaded. R2..R7, PC, and PS are pushed onto the kernel stack. The saved PC
addresses the instruction following the CHMK instruction. Registers R22, R23, R24, and R27
are available for use by PALcode as scratch registers. The contents of these registers are not
preserved across a CHMK.

The value in R16 identifies the particular exception type. Interpretation of the encoded value
determines the course of action by the operating system.
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10.1.5 Change Mode to Supervisor

Format:
CALL_PAL CHMS I PALcode format

Operation:

tmpl — MINU( 2, PS<CM>)
{iniiate CHMS exception with new_mode=tmp1}

I R16 contains a value encoding for the trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL _PAL CHMS Change Mode to Supervisor

Description:
The CHMS instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved, the new
pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack. The saved PC
addresses the instruction following the CHMS instruction.

The value in R16 identifies the particular exception type. Interpretation of the encoded value
determines the course of action by the operating system.
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10.1.6 Change Mode to User

Format:
CALL_PAL CHMU I PALcode format

Operation:
{iniiate CHMU exception with new_mode=PS<CM>}
I R16 contains a value encoding for the trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL PAL CHMU Change Mode to User

Description:
The CHMU instruction lets a process call a routine by using the change mode mechanism.

R2..R7, PC, and PS are pushed onto the current stack. The saved PC addresses the instruction
following the CHMU instruction.

The value in R16 identifies the particular exception type. Interpretation of the encoded value
determines the course of action by the operating system.

The CALL_PAL CHMU instruction is provided for VAX compatibility only.
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10.1.7 Clear Floating-Point Enable

Format:

CALL_PAL CLRFEN I PALcode format

Operation:

FEN O
(HWPCB+56)<0> ~ 0 I Update HWPCB on Write

Exceptions:

None

Instruction mnemonics:

CALL _PAL CLRFEN Clear floating-point enable

Description:

The CLRFEN instruction writes a zero to the floating-point enable register and to the HWPCB
at offset (HWPCB+56)<0>.
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10.1.8 Generate Software Trap

Format:
CALL_PAL GENTRAP ! PALcode format

Operation:
{iniiate GENTRAP exception with new_mode=kermnel}

I R16 contains the value encoding of the software trap
Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL_PAL GENTRAP Generate Software Trap

Description:

The GENTRAP instruction is provided for reporting run-time software conditions. It switches
to kernel mode and pushes R2...R7, the updated PC, and PS on the kernel stack. It then dis-
patches to the address in the GENTRAP SCB Vector. See Section 14.6.

The value in R16 identifies the particular software condition that has occurred. The encoding
for the software trap values is given in the software calling standard for the system.
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10.1.9 Probe Memory Access

Format:
CALL_PAL PROBE I PALcode format

Operation:

I R16 contains the base address

I R17 contains the signed offset

I R18 contains the access mode

I RO receives the completion status
! ~ 1 if success

! < O if failure

first ~ R16
last  — {R16+R17}

IF R18<1:0> GTU PS<CM> THEN
probe_mode ~ R18<1.0>
ELSE
probe_mode . PS<CM>

IF ACCESS(first, probe_mode) AND ACCESS(last, probe mode) THEN
RO - 1

ELSE
RO - 0O

Exceptions:

Translation Not Valid

Instruction mnemonics:

CALL_PAL PROBER Probe for Read Access
CALL _PAL PROBEW Probe for Write Access
Description:

The PROBE instruction checks the read or write accessibility of the first and last byte speci-
fied by the base address and the signed offset; the bytes in between are not checked.

System software must check all pages between the two bytes if they are to be accessed. If both
bytes are accessible, PROBE returns the value 1 in RO; otherwise, PROBE returns 0. The Fault
on Read and Fault on Write PTE bits are not checked. A Translation Not Valid exception is
signaled only if the mapping structures cannot be accessed. A Translation Not Valid exception
is signaled only if a first- or second-level PTE is invalid.

The protection is checked against the less privileged of the modes specified by R18<1:0> and
the Current Mode (PS<CM>). See Section 14.2 for access modeli@ns.

PROBE is only intended to check a single datum for accessibility. It does not cheokeal
vening pages because this could result in excessive interrupt latency.
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10.1.10 Read Processor Status

Format:

CALL_PAL RD_PS ' PALcode format

Operation:
RO — PS

Exceptions:

None

Instruction mnemonics:

CALL_PAL RD_PS Read Processor Status

Description:

The RD_PS instruction returns the Processor Status (PS) in register RO. The Processor Status is
described in Section 14.2. The PS<SP_ALIGN> field is always a zero on a RD_PS.
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10.1.11 Return from Exception or Interrupt

Format:
CALL_PAL REI

Operation:

I See Chapter 14
I for information on interrupted registers

IF SP<5:0> NE 0 THEN
{ilegal operand }

tmpl ~ (SP) | Get saved R2

tmp2 ~ (SP+8) ! Get saved R3

tmp3 ~ (SP+16) | Get saved R4

tmpd ~ (SP+24) I Get saved R5

tmps ~ (SP+32) I Get saved R6

tmp6 ~ (SP+40) I Get saved R7

tmp7 ~ (SP+48) I Get new PC

tmp8 ~ (SP+56) I Get new PS

ps chk ~ tmp8 I Copy new ps
ps_chk<cm> ~ 0O ! Clear cm field
ps_chk<sp_align> ~ 0 I Clear sp_align field
ps_chk<sw> . 0O I Clear Software Field
intr_flag ~ 0 I Clear exceptfinter/mcheck flag

{ clear lock flag}

I If current mode is not kermnel check the new ps is valid.

IF {ps<cm> NE 0} AND

{{tmp8<cm> LT ps<cm>} OR {ps _chk NE 0} THEN

BEGIN
{llegal operand}
END

sp ~ {sp + 88} OR tmp8<sp_align>
IF {internal registers for stack pointers}

CASE ps<cm> BEGIN

[O]: ipr_ksp - Sp

[1]: ipr_esp - Sp

[2]: ipr_ssp - Sp

[3]: ipr_usp < Sp

ENDCASE

CASE tmp8<cm> BEGIN

[O]: sp — ipr_ksp

[1]: sp ~ ipr_esp

[2]: sp ~ ipr_ssp

[3]: sp — ipr_usp

ENDCASE
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ELSE
(pcbb + 8*ps<cm>)  ~ sp
sp « (pcbb + 8*mp8<cm>)
ENDIF

R2 ~ tmpl
R3 ~ tmp2
R4 — tmp3
R5 - tmp4
R6 — tmp5
R7 — tmp6
PC — tmp7
PS ~ tmp8 <12:.00>

{Initiate interrupts or AST interrupts that are now pending}

Exceptions:
Access Violation
Fault on Read
Illegal Operand
Kernel Stack Not Valid Halt
Translation Not Valid

Instruction mnemonics:

CALL_PAL REI Return from Exception or Interrupt

Description:

The REIl instruction pops the PS, PC, and saved R2...R7 from the current stack and holds them
in temporary registers. The new PS is checked for validity and consistency. If it is invalid or
inconsistent, an illegal operand exception occurs; otherwise the operation continues. A kernel
to nonkernel REI with a new PS<IPL> not equal to zero may yield UNDEFINED results.

The current stack pointer is then saved and a new stack pointer is selected according to the new
PS<CM> field. R2 through R7 are restored using the saved values held in the temporary regis-
ters. A check is made to determine if an AST or other interrupt is pending (see Section 14.7.6).

If the enabling conditions are present for an interrupt or AST interrupt at the completion of this
instruction, the interrupt or AST interrupt occurs before the next instruction.

When an REI is issued, the current stack must be writeable from the current mode or an Access
Violation may occur.
Implementation Note:

This is necessary so that an implementation can choose to clear the lock flag by doing a
STx_C to above the top-of-stack after popping PS, PC, and saved R2..R7 off the current
stack.
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10.1.12 Read System Cycle Counter

Format:

CALL_PAL RSCC I PALcode format

Operation:
RO ~ {System Cycle Counter}

Exceptions:

None

Instruction mnemonics:

CALL_PAL RSCC Read System Cycle Counter

Description:

The RSCC instruction writes register RO with the value of the system cycle counter. This
counter is an unsigned 64-bit integer that increments at the same rate as the process cycle
counter. The cycle counter frequency, which is the number of times the system cycle counter
gets incremented per second rounded to a 64-bit integer, is given in the HWRPB (see Section
26.1).

The system cycle counter is suitable for timing a general range of intervals to within 10% error
and may be used for detailed performance characterization. It is required on all implementa-
tions. SCC is required for every processor, and each processor in a multiprocessor system has
its own private, independent SCC.

Notes:
¢ Processor initialization starts the SCC at 0.

e SCC is monotonically increasing. On the same processor, the values returned by two
successive reads of SCC must either be equal or the value of the second must be greater
(unsigned) than the first.

e SCC ticks are never lost so long as the SCC is accessed at least once per each PCC
overflow period (2**32 PCC increments) during periods when the hardware clock
interrupt remains blocked. The hardware clock interrupt is blocked whenever the IPL is
at or above CLOCK_IPL or whenever the processor enters console I/O mode from pro-
gram 1/0O mode.

* The 64-bit SCC may be constructed from the 32-bit PCC hardware counter and a 32-bit
PALcode software counter. As part of the hardware clock interrupt processing, PAL-
code increments the software counter whenever a PCC wrap is detected. Thus, SCC
ticks may be lost only when PALcode fails to detect PCC wraps. In a machine where
the PCC is incremented at a 1 ns rate, this may occur when hardware clock interrupts
are blocked for greater than 4 seconds.
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An implementation-dependent mechanism must exist so that, when enabled, it causes
the RSCC instruction, as implemented by standard PALcode, always to rezern &

RO. This mechanism must be usable by privileged system software. A similar mecha-
nism must exist for RPCC. Implementations are allowed to have only a single mecha-
nism, which when enabled causes both RSCC and RPCC to =ttwn
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10.1.13 Swap AST Enable

Format:

CALL_PAL SWASTEN I PALcode format

Operation:

RO — ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>>_ R16<0>

{check for pending ASTs}

Exceptions:

None

Instruction mnemonics:

CALL _PAL SWASTEN Swap AST Enable for Current Mode

Description:

The SWASTEN instruction swaps the AST enable bit for the current mode. The new state for
the enable bit is supplied in register R16<0>, and the previous state of the enable bit is
returned, zero extended, in RO.

A check is made to determine if an AST interrupt is pending (see Section 14.7.6.5).

If the enabling conditions are present for an AST interrupt at the completion of this instruc-
tion, the AST occurs before the next instruction.
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10.1.14 Write Processor Status Software Field

Format:

CALL_PAL WR_PS_SW ' PALcode format

Operation:
PS<SW>. R16<1.0>

Exceptions:

None

Instruction mnemonics:

CALL_PAL WR_PS SW Write Processor Status Software Field

Description:

The WR_PS_SW instruction writes the Processor Status software field (PS<SW>) with the
low-order two bits of R16. The Processor Status is described in Section 14.2.
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10.2 Queue Data Types

The following sections describe the queue data types that are manipulated by the OpenVMS
gqueue PALcode. Section 10.3 describes the PALcode instructions that perform the
manipulation.

10.2.1 Absolute Longword Queues

A longword queue is a circular, doubly linked list. A longword queue entry is specified by its
address. Each longword queue entry is linked to the next with a pair of longwords. A queue is
classified by the type of link it uses. Absolute longword queues use absolute addresses as links.

The first (lowest addressed) longword is the forward link; it specifies the address of the suc-
ceeding longword queue entry. The second (highest addressed) longword is the backward link;
it specifies the address of the preceding longword queue entry.

A longword queue is specified by a longword queue header, which is identical to a pair of
longword queue linkage longwords. The forward link of the header is the address of the entry
termed the head of the longword queue. The backward link of the header is the address of the
entry termed the tail of the longword queue. The forward link of the tail points to the header.

An empty longword queue is specified by its header at address H, as shown in Figure 10-1. If

an entry at address B is inserted into an empty longword queue (at either the head or tail), the
longword queue shown in Figure 10-2 results. Figures 10-3, 10—-4, and 10-5, respectively,

illustrate the results of subsequent insertion of an entry at address A at the head, insertion of an
entry at address C at the tail, and removal of the entry at address B.

The queue header and all entries in absolute longword queues need only be byte aligned. For
better performance, quadword alignment (or higher) is recommended.

10.2.2 Self-Relative Longword Queues

Self-relative longword queues use displacements from longword queue entries as links. Long-
word queue entries are linked by a pair of longwords. The first longword (lowest addressed) is
the forward link; it is a displacement of the succeeding longword queue entry from the present
entry. The second longword (highest addressed) is the backward link; it is the displacement of
the preceding longword queue entry from the present entry. A longword queue is specified by a
longword queue header, which also consists of two longword links.

An empty longword queue is specified by its header at address H. Since the longword queue is
empty, the self-reldve links are zero, as shown in Figure 10-6.

Four types of operations can be performed on self-relative queues: insert at head, insert at tail,
remove from head, and remove from tail. Furthermore, these operations are interlocked to

allow cooperating processes in a multiprocessor system to access a shared list without addi-
tional synchronization. A hardware-supported, interlocked memory-access mechanism is used
to modify the queue header. Bit <0> of the queue header is used as a secondary interlock and is
set when the queue is being accessed.
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If an interlocked queue CALL_PAL instruction encounters the secondary interlock set, then, in
the absence of exceptions, it terminates after setting RO to —1 to indicate failure to gain access
to the queue. If the secondary interlock bit is not set, then it is set during the interlocked queue
operation and is cleared upon completion of the operation. This prevents other interlocked
gueue CALL_PAL instructions from operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is UNPREDICT-
ABLE whether the exception will be reported.

The queue header and all entries in self-relative longword queues must be at least quadword
aligned.

Figures 10-7, 10-8, and 10-9, respectively, illustrate the results of subsequent insertion of an
entry at address B at the head, insertion of an entry at address A at the tail, and insertion of an
entry at address C at the talil.

Figures 10-9, 10-8, and 10-7 (in that order) illustrate the effect of removal at the tail and
removal at the head.

Figure 10-1: Empty Absolute Longword Queue
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Figure 10-2: Absolute Longword Queue with One Entry
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Figure 10-3: Absolute Longword Queue with Two Entries
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Figure 10—-4: Absolute Longword Queue with Three Entries
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Figure 10-5: Absolute Longword Queue with Three Entries After Removing the
Second Entry

31 0
A H
C ‘H+4
C A
H :A+4
H :C
A :C+4

Figure 10-6: Empty Self-Relative Longword Queue

31 0

0 ‘H

0 ‘H+4

Figure 10-7: Self-Relative Longword Queue with One Entry

31 0
B-H H
B-H ‘H+4
H-B B
H-B B+4
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Figure 10-8: Self-Relative Longword Queue with Two Entries
31 0

A-H H
B-H ‘H+4
B A
H-A A+4
H-B B
A-B :B+4

Figure 10-9: Self-Relative Longword Queue with Three Entries

31 0

A-H H
C-H ‘H+4
B-A A
H-A A+d
C-B B
A-B :B+4
H-C C
B-C :C+4

10.2.3 Absolute Quadword Queues

A quadword queue is a circular, doubly linked list. A quadword queue entry is specified by its
address. Each quadword queue entry is linked to the next with a pair of quadwords. A queue is
classified by the type of link it uses. Absolute quadword queues use absolute addresses as
links.

The first (lowest addressed) quadword is the forward link; it specifies the address of the suc-
ceeding quadword queue entry. The second (highest addressed) quadword is the backward
link; it specifies the address of the preceding quadword queue entry.

A guadword queue is specified by a quadword queue header, which is identical to a pair of
guadword queue linkage quadwords. The forward link of the header is the address of the entry
termed the head of the quadword queue. The backward link of the header is the address of the
entry termed the tail of the quadword queue. The forward link of the tail points to the header.

An empty quadword queue is specified by its header at address H, as shown in Figure 10-10. If
an entry at address B is inserted into an empty quadword queue (at either the head or tail), the
guadword queue shown in Figure 10-11 results. Figures 10-12, 10-13, and 10-14, respec-
tively, illustrate the results of subsequent insertion of an entry at address A at the head,

insertion of an entry at address C at the tail, and removal of the entry at address B.
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The queue header and all entries in absolute quadword queues must be at least octaword
aligned.

10.2.4 Self-Relative Quadword Queues

Self-relative quadword queues use displacements from quadword queue entries as links. Quad-
word queue entries are linked by a pair of quadwords. The first quadword (lowest addressed) is
the forward link; it is a displacement of the succeeding quadword queue entry from the present
entry. The second quadword (highest addressed) is the backward link; it is the displacement of
the preceding quadword queue entry from the present entry. A quadword queue is specified by
a quadword queue header, which also consists of two quadword links.

An empty quadword queue is specified by its header at address H. Since the quadword queue is
empty, the self-relive links are zero, as shown in Figure 10-15.

Four types of operations can be performed on self-relative queues: insert at head, insert at tail,
remove from head, and remove from tail. Furthermore, these operations are interlocked to

allow cooperating processes in a multiprocessor system to access a shared list without addi-
tional synchronization. A hardware-supported, interlocked memory-access mechanism is used
to modify the queue header. Bit <0> of the queue header is used as a secondary interlock and is
set when the queue is being accessed.

If an interlocked queue CALL_PAL instruction encounters the secondary interlock set, then, in
the absence of exceptions, it terminates after setting RO to —1 to indicate failure to gain access
to the queue. If the secondary interlock bit is not set, it is set during the interlocked queue oper-
ation and is cleared upon completion of the operation. This prevents other interlocked queue
CALL_PAL instructions from operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is UNPREDICT-
ABLE whether the exception will be reported.

The queue header and all entries in self-relative quadword queues must be at least octaword
aligned.

Figures 10-16, 10-17, and 10-18, respectively, illustrate the results of subsequent insertion of
an entry at address B at the head, insertion of an entry at address A at the tail, and insertion of
an entry at address C at the tail.

Figures 10-18, 10-17, and 10-16 (in that order) illustrate the effect of removal at the tail and
removal at the head.

Figure 10-10 Empty Absolute Quadword Queue

63

H ‘H+8
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Figure 10-11 Absolute Quadword Queue with One Entry

63 0
B :H
B :H+8
H B
H :B+8

Figure 10-12 Absolute Quadword Queue with Two Entries

63 0
A H
B ‘H+8
B A
H :A+8
H B
A :B+8

Figure 10-13 Absolute Quadword Queue with Three Entries

63 0
A H
C ‘H+8
B A
H :A+8
‘B
A :B+8
H :C
B :C+8
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Figure 10-14 Absolute Quadword Queue with Three Entries After Removing the Second

Entry

63

0

Figure 10-15 Empty Self-Relative Quadword Queue
63

0

0

Figure 10-16 Absolute Quadword Queue with One Entry

63

Figure 10-17 Self-Relative Quadword Queue with Two Entries

63

A-H

B-H
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:.C+8
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Figure 10-18 Self-Relative Quadword Queue with Three Entries

63 0
A-H :H
C-H ‘H+8
B-A A
H-A :A+8
‘B
A-B :B+8
H-C C
B-C :C+8
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10.3 Unprivileged Queue PALcode Instructions

The following unprivileged PALcode instructions perform atomic modification of the queue
data types that are described in Section 10.2.

Table 10-3: Queue PALcode Instruction Summary

Mnemonic Operation

INSQHIL Insert into longword queue at head, interlocked

INSQHILR Insert into longword queue at head, interlocked, resident
INSQHIQ Insert into quadword queue at head, interlocked
INSQHIQR Insert into quadword queue at head, interlocked, resident
INSQTIL Insert into longword queue at tail, interlocked

INSQTILR Insert into longword queue at tail, interlocked, resident
INSQTIQ Insert into quadword queue at tail, interlocked

INSQTIQR Insert into quadword queue at tail, interlocked, resident
INSQUEL Insert into longword queue

INSQUEQ Insert into quadword queue

REMQHIL Remove from longword queue at head, interlocked
REMQHILR Remove from longword queue at head, interlocked, resident
REMQHIQ Remove from quadword queue at head, interlocked
REMQHIQR Remove from quadword queue at head, interlocked, resident
REMQTIL Remove from longword queue at tail, interlocked
REMQTILR Remove from longword queue at tail, interlocked, resident
REMQTIQ Remove from quadword queue at tail, interlocked
REMQTIQR Remove from quadword queue at tail, interlocked, resident
REMQUEL Remove from longword queue

REMQUEQ Remove from quadword queue
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10.3.1 Insert Entry into Longword Queue at Head Interlocked

Format:

CALL_PAL INSQHIL I PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:
-1 if the secondary interlock was set
0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

|
|
|
|
|
|
|
|
|
|
!
I check entry and header alignment and
| that the header and entry not same location and
I that the header and entry are valid 32 bit addresses
IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R17} THEN

BEGIN
{illegal operand exception}
END
N <- {retry_amount} I Implementation-specific
REPEAT
LOAD_LOCKED (tmp0 — (R16)) Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock
RO ~ -1, {retum} I Already set
done STORE_CONDITIONAL ((R16) ~{tmp0 OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {retumn} ! Retry exceeded

MB
tmpl ~ SEXT(tmp0<31.0>)
IF {tmpl<2:1> NE O} THEN BEGIN ! Check alignment
BEGIN ! Release secondary interlock.
(R16) ~ tmpO
{ilegal operand exception}
END

I Check if following addresses can be written

I without causing a memory management exception:;
! entry

! header + tmpl
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock.
(R16) ~ tmpO
{initiate memory management fault}
END

I All accesses can be done so enqueue the entry

tmp2 ~ SEXT({R16 - R17}<31.0>)

(R17)<31.0> .~ tmpl + tmp2 ! Forward link

(R17 + 4)<31.0> . tmp2 I Backward link

(R16 + tmpl + 4)<31.0> « -mpl - tmp2 Successor back link

MB

(R16)<31.0> .~ -tmp2 I Forward link of header
I Release lock
IF tmpl EQ O THEN
RO - 1 I Queue was empty
ELSE
RO - O I Queue was not empty
END

Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQHIL Insert into Longword Queue at Head Interlocked

Description:

If the secondary interlock is clear, INSQHIL inserts the entry specified in R17 into the self-rel-
ative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise it is set to 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. Before the insertion, the processor validates that the entire opera-
tion can be completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 11 and 14). If the instruction fails to acquire the sec-
ondary interlock after "N" retry attempts, then (in the absence of exceptions) RO is set to —1.
The value "N" is implementation dependent.
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10.3.2 Insert Entry into Longword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHILR I PALcode format

Operation:

I R16 contains the address of the queue header

I R17 contains the address of the new entry

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
|

|

|

|

|

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

All parts of the Queue must be memory resident

N <- {retry_amount} I Implementation-specific
REPEAT
LOAD_LOCKED (tmp0 — (R16)) Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done STORE_CONDITIONAL ((R16)  {tmp0 OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {retumn} ! Retry exceeded

MB

tmpl ~ SEXT(tmp0<31:.0>)

tmp2 ~ SEXT({R16 - R17}<31:0>) Enqueue the entry

R17)<31.0> .~ tmpl + tmp2 ! Forward link of entry.

(R17 + 4)<31.0> . tmp2 I Backward link of entry.

(R16 + tmpl + 4)<31.0> ~ +mpl - tmp2 ! Successor back link

MB

(R16)<31:0> .~ -tmp2 I Forward link of header
I Release the lock

IF tmpl EQ O THEN

RO ~1 I Queue was empty
ELSE

RO - O I Queue was not empty
END
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQHILR Insert Entry into Longword Queue at Head
Interlocked Resident

Description:

If the secondary interlock is clear, INSQHILRserts the entry specified in R17 into the self-
relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. If the instruction fails to acquire the secondary interlock after "N"
retry attempts, then (in the absence of exceptions) RO is setto —1. The value "N" is implemen-
tation dependent.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are quadword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.3 Insert Entry into Quadword Queue at Head Interlocked

Format:

CALL_PAL INSQHIQ ' PALcode format

Operation:

R16 contains the address of the queue header

R17 contains the address of the new entry

RO receives status:
-1 if the secondary interlock was set
0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN

BEGIN
{illegal operand exception}
END
N <- {retry_amount} I Implementation-specific
REPEAT
LOAD LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done . STORE_CONDITIONAL ((R16) {tmpl OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {return} ! Retry exceeded

MB

IF {tmp1<3:1> NE 0} THEN BEGIN ! Check Alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{llegal operand exception}
END

I Check if following addresses can be written

I without causing a memory management exception:
! entry

! header + tmpl

PALcode Instruction Descriptions (ll-Ap-33



IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{initiate memory management fault}
END

I All accesses can be done so enqueue the entry
tmp2 ~ R16 - R17

R17) ~ tmpl + tmp2 I Forward link

R17 + 8) ~ tmpl I Backward link

(R16 + tmpl + 8) .~ -tmpl - tmp2 I Successor back  link
MB

(R16) ~ -tmp2 I Forward link of header

| Release the lock.
IF tmpl EQ 0 THEN

RO - 1 I Queue was empty
ELSE
RO - O I Queue was not empty
END
Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQHIQ Insert into Quadword Queue at Head
Interlocked

Description:

If the secondary interlock is clear, INSQHIQ inserts the entry specified in R17 into theebel
ative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. Before the insertion, the processor validates that the entire opera-
tion can be completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 11 and 14). If the instruction fails to acquire the sec-
ondary interlock after "N" retry attempts, then (in the absence of exceptions) RO is set to —1.
The value "N" is implementation dependent.
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10.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHIQR | PALcode format

Operation:

I R16 contains the address of the queue header

I R17 contains the address of the new entry

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
|

|

|

|

|

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

All parts of the Queue must be memory resident

N <- {retry_amount} I Implementation-specific
REPEAT
LOAD _LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done STORE_CONDITIONAL ((R16) ~{tmpl OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {retumn} ! Retry exceeded

MB

tmp2 — R16 - R17 I Enqueue the entry
R17) ~ tmpl + tmp2 I Forward link of entry.
R17 + 8) ~ tmp2 I Backward link of entry.

(R16 + tmpl + 8) .~ -tmpl - tmp2 ! Successor back link

MB

(R16) ~ -tmp2 I Forward link of header,
I Release the lock

IF tmpl EQ O THEN

RO - 1 I Queue was empty
ELSE

RO - O I Queue was not empty
END
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQHIQR Insert Entry into Quadword Queue at Head
Interlocked Resident

Description:

If the secondary interlock is clear, INSQHIQR inserts the entry specified in R17 into the self-
relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. If the instruction fails to acquire the secondary interlock after "N"
retry attempts, then (in the absence of exceptions) RO is setto —1. The value "N" is implemen-
tation dependent.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are octaword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.5 Insert Entry into Longword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIL I PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:
-1 if the secondary interlock was set
0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and

that the header and entry not same location and

that the header and entry are valid 32 hit addresses

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R16} THEN

BEGIN
{ilegal operand exception}
END
N <- {retry_amount} I Implementation-specific
REPEAT
LOAD _LOCKED (tmp0 — (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16) ~{tmp0 OR 1} )
N-N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {retumn} ! Retry exceeded

MB

tmpl ~ SEXT(tmp0<31:0>)
tmp2 ~ SEXT(tmp0<63:32>)

IF {tmpl<2:1> NE 0} OR {tmp2<2:0> NE 0} THEN ! Check Alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{ilegal operand exception}
END

I Check if following addresses can be written
I without causing a memory management exception:
! entry

! header + (header + 4)
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{initiate memory management fault}
END

I All Accesses can be done so enqueue entry
tmp3 ~ SEXT( {R16 - R17}<31:0>)

(R17)<31.0> .~ tmp3 I Forward link
(R17 + 4)<31.0> . tmp2 + tmp3 ! Backward link
IF {tmp2 NE O} THEN ! Forward link of predecessor
(R16+tmp2)<31:.0> « -mp3 - tmp2
ELSE
tmpl ~ SEXT({tmp3 - tmp2}<31.0>)
(R16+4)<31.0> .~ -tmp3 I Backward link of header
MB
(R16)<31.0> .~ tmpl I Forward link, release lock
IF tmpl EQ -tmp3 THEN
RO - 1 I Queue was empty
ELSE
RO - O I Queue was not empty
END
Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQTIL Insert into Longword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, INSQTIL inserts the entry specified in R17 into the self-rel-
ative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. Before performing any part of the operation, the processor vali-
dates that the insertion can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 11 and 14). If the instruction fails to
acquire the secondary interlock after "N" retry attempts, then (in the absence of exceptions)
RO is set to —1. The value "N" is implementation dependent.
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10.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL INSQTILR I PALcode format

Operation:

I R16 contains the address of the queue header

I R17 contains the address of the new entry

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
|

|

|

|

|

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

All parts of the Queue must be memory resident

N <- {retry_amount} I Implementation-specific
REPEAT
LOAD _LOCKED (tmp0 — (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16)  {tmp0 OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {retumn} ! Retry exceeded

MB
tmpl ~ SEXT(tmp0<31:0>)

tmp2 ~ SEXT(tmp0<63:32>)
tmp3 ~ SEXT( {R16 - R17}<31:0>)

(R17)<31.0> .~ tmp3 I Forward link

(R17 + 4)<3L.0> . tmp2 + tmp3 I Backward link

IF {tmp2 NE 0} THEN ! Forward link of predecessor
(R16+tmp2)<31:.0> « Amp3 - tmp2

ELSE

tmpl ~ < SEXT({-tmp3 - tmp2}<31:0>)

(R16+4)<31:0> .~ -tmp3 I Backward link of header
MB
(R16)<31.0> .~ tmpl I Forward link

| Release the lock
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IF tmpl EQ -tmp3 THEN

RO - 1 I Queue was empty
ELSE
RO - O I Queue was not empty
END
Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQTILR Insert Entry into Longword Queue at Tail
Interlocked Resident

Description:

If the secondary interlock is clear, INSQTILR inserts the entry specified in R17 into the self-
relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. If the instruction fails to acquire the secondary interlock after
"N" retry attempts, then (in the absence of exceptions) RO is setto —1. The value "N" is imple-
mentation dependent.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are quadword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.7 Insert Entry into Quadword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIQ I PALcode format

Operation:

R16 contains the address of the queue header

R17 contains the address of the new entry

RO receives status:
-1 if the secondary interlock was set
0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN

BEGIN
{illegal operand exception}
END
N <- {retry_amount} I' Implementation-specific
REPEAT
LOAD LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16) - {tmpl OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {return} ! Retry exceeded

MB

tmp2 ~ (R16+8)

IF {tmp1<3:1> NE 0} OR {tmp2<3:0> NE 0} THEN ! Check Alignment.
BEGIN ! Release secondary interlock.
(R16) ~ tmpl
{ilegal operand exception}
END

I Check if following addresses can be written
I without causing a memory management exception:
! entry

! header + (header + 8)
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock.
(R16) ~ tmpl
{initiate memory management fault}
END
I All accesses can be done so enqueue the entry
tmp3 - R16 - R17

R17) ~ tmp3 I Forward link

R17 + 8  tmp2 + tmp3 I Backward link

IF {tmp2 NE O} THEN ! Forward link of predecessor
(R16+tmp2) .~ -mp3 - tmp2

ELSE
tmpl — {tmp3 - tmp2}

(R16+8) . -mp3 I Backward link of header

MB

R16) ~ tmpl I Forward link

| Release the lock
IF tmpl EQ -mp3 THEN

RO - 1 I Queue was empty
ELSE
RO - O I Queue was not empty
END
Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQTIQ Insert into Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, INSQTIQ inserts the entry specified in R17 into the self-rel-
ative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. Before performing any part of the operation, the processor vali-
dates that the insertion can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 11 and 14). If the instruction fails to
acquire the secondary interlock after "N" retry attempts, then (in the absence of exceptions)
RO is set to —1. The value "N" is implementation dependent.
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10.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident

Format:

CALL_PAL INSQTIQR I PALcode format

Operation:

I R16 contains the address of the queue header

I R17 contains the address of the new entry

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
|

|

|

|

|

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

All parts of the Queue must be memory resident

N <- {retry_amount} I' Implementation-specific
REPEAT
LOAD _LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16)  {tmpl OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {return} ! Retry exceeded

MB

tmp2 ~ (R16+8)
tmp3 ~ R16 - R17

R17) ~ tmp3 I Forward link
R17 + 8 ~ tmp2 + tmp3 I Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor
(R16+mp2) ~ -tmp3 - tmp2
ELSE
tmpl ~ {tmp3 - tmp2}
(R16+8) .~ -tmp3 I Backward link of header
MB
(R16) ~ tmpl I Forward link and release the lock
IF tmpl EQ -tmp3 THEN
RO - 1 I Queue was empty
ELSE
RO - O I Queue was not empty
END
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQTIQR Insert Entry into Quadword Queue at Talil
Interlocked Resident

Description:

If the secondary interlock is clear, INSQTIQRserts the entry specified in R17 into the self-
relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, itis setto 0. The
insertion is a non-interruptible operation. The insertion is interlocked to prevent concurrent
interlocked insertions or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. If the instruction fails to acquire the secondary interlock after "N"
retry attempts, then (in the absence of exceptions) RO is setto —1. The value "N" is implemen-
tation dependent.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are octaword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.9 Insert Entry into Longword Queue

Format:

CALL_PAL INSQUEL

Operation:

I R16 contains the address of the predecessor entry

or the 32 hit address of the 32 bit address of the
predecessor entry for INSQUEL/D

R17 contains the address of the new entry
RO receives status:

0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

I Header and entries need only be byte aligned
I Must have write access to header and queue entries
IF opcode EQ INSQUEL/D THEN

tmp2 ~ SEXT((R16)<31:0>)! Address of predecessor

ELSE
tmp2 ~ R16
IF {all memory accesses can be completed} THEN
BEGIN
tmpl<31:.0> . SEXT((tmp2)<31:0>) Get Forward Link
(R17)<31.0> .~ tmpl I Set forward link
(R17 + 4)<31.0> .~ tmp2 ! Backward link
(SEXT((tmp2)<31:0>) + 4)<31.0> ~ R17
I Backward link of Successor
(tmp2)<31.0> ~ R17 ! Forward link of Predecessor
IF tmpl EQ tmp2 THEN
RO -~ 1
ELSE
RO - O
END
ELSE
BEGIN
{iniiate fault}
END
END
Exceptions:

Access Violation
Fault on Read

Fault on Write
Translation Not Valid

| PALcode format
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Instruction mnemonics:

CALL_PAL INSQUEL Insert Entry into Longword Queue
CALL_PAL INSQUEL/D Insert Entry into Longword Queue Deferred
Description:

INSQUEL inserts the entry specified in R17 into the absolute queue following the entry speci-
fied by the predecessor addressed by R16. INSQUEL/D performs the same operation on the
entry specified by the contents of the longword addressed by R16. The queue header and entry
need only be byte aligned.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in RO; other-
wise, a 0 is returned in RO. The insertion is a non-interruptible operation. Before performing
any part of the insertion, the processor validates that the entire operation can be completed.
This ensures that if a memory management exception occurs, the queue is left in a consistent
state (see Chapters 11 and 14).
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10.3.10 Insert Entry into Quadword Queue

Format:

CALL_PAL INSQUEQ ' PALcode format

Operation:

R16 contains the address of the predecessor entry
or the address of the address of the
predecessor entry for INSQUEQ/D
R17 contains the address of the new entry
RO receives status:
0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

!
I
!
!
!
!
!
!
I Must have write access to header and queue entries
I Header and entries must be octaword aligned

IF opcode EQ INSQUEQ/D THEN

IF {R16<3:0> NE 0} THEN

BEGIN
{llegal operand exception}
END
tmp2 ~ (R16) ! Address of predecessor
ELSE
tmp2 — R16
END
IF {tmp2<3:.0> NE 0} OR {R17<3:0> NE 0} THEN
BEGIN
{ilegal operand exception}
END
IF {all memory accesses can be completed} THEN
BEGIN
tmpl ~ (tmp2) I Get forward link of entry
IF {tmp1<3:.0> NE 0} THEN
BEGIN ! Check alignment
{llegal operand exception}
END
R17) ~ tmpl I Set forward link of entry
R17 + 8 ~ tmp2 I Backward link of entry
tmpl + 8 ~ R17 ! Backward link of successor
tmp2) ~ R17 ! Forward link of predecessor
IF tmpl EQ tmp2 THEN
RO - 1
ELSE
RO - O
END
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ELSE
BEGIN
{initiate fault}
END
END

Exceptions:
Access Violation
Fault on Read
Fault on Write
Translation Not Valid
Illegal Operand

Instruction mnemonics:

CALL_PAL INSQUEQ Insert Entry into Quadword Queue
CALL_PAL INSQUEQ/D Insert Entry into Quadword Queue Bakd
Description:

INSQUEQ inserts the entry specified in R17 into the absolute queue following the entry speci-
fied by the predecessor addressed by R16. INSQUEQ/D performs the same operation on the
entry specified by the contents of the quadword addressed by R16.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in RO; other-
wise, a 0 is returned in RO. The insertion is a non-interruptible operation. Before performing
any part of the insertion, the processor validates that the entire operation can be completed.
This ensures that if a memory management exception occurs, the queue is left in a consistent
state (see Chapters 11 and 14). RO is UNPREDICTABLE if an exception occurs. The relative
order of reporting memory management and illegal operand exceptions is UNPREDICTABLE.
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10.3.11 Remove Entry from Longword Queue at Head Interlocked

Format:

CALL_PAL REMQHIL I PALcode format

Operation:

I R16 contains the address of the queue header

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was empty

! 1 if entry removed and queue stil not empty
! 2 if entry removed and queue empty

I R1 receives the address of the removed entry
|
|
|
|
|
|

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN

BEGIN
{illegal operand exception}
END
N <- {retry_amount} I' Implementation-specific
REPEAT
LOAD LOCKED (tmp0 — (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16)  {tmp0 OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {return} ! Retry exceeded

MB

tmpl ~ SEXT(tmp0<31:0>)

IF tmpl<2:0> NE O THEN I Check Alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{ilegal operand exception}
END
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I Check if the following can be done without
I causing a memory management exception:
I read contents of header + tmpl {if tmpl NE O}
I write into header + tmpl + (header + tmpl) {if tmpl NE O}
IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{iniiate memory management fault}
END

tmp2 ~ SEXT{R16 + tmpl}<31.0>)
IF {tmpl EQL O} THEN
tmp3 — R16
ELSE
tmp3 ~ SEXT({tmp2 + SEXT((tmp2)<31:0>)})

IF tmp3<2:0> NE 0 THEN I Check Alignment
BEGIN ! Release secondary interlock
(R16) . tmpO
{llegal operand exception}
END

(tmp3 + 4)<31.0> ~ R16 - tmp3 ! Backward link of successor

MB
(R16)<31.0> . tmp3 - R16 ! Forward link of header
I Release lock
IF tmpl EQ O THEN
RO - O I Queue was empty
ELSE
BEGIN
IF {tmp3 - R16} EQ 0 THEN
RO — 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
END
R1 ~ tmp2 I Address of removed entry
Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid
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Instruction mnemonics:

CALL_PAL REMQHIL Remove from Longword Queue at Head
Interlocked

Description:

If the secondary interlock is clear, REMQHIL removes from the self-relative queue the entry
following the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is
returned in RO. If the interlock succeeded and the queue was not empty at the start of the
removal and the queue is empty after the removal, a 2 is returned in RO. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of exceptions)
RO is set to —1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation. Before performing any part of the removal, the processor vali-
dates that the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).

PALcode Instruction Descriptions (ll-Ap-51



10.3.12 Remove Entry from Longword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHILR ' PALcode format

Operation:

I R16 contains the address of the queue header

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was empty

! 1 if entry removed and queue stil not empty
! 2 if entry removed and queue empty

I R1 receives the address of the removed entry

|
|
|
|

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} I' Implementation-specific
REPEAT
LOAD _LOCKED (tmp0 — (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16)  {tmp0 OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO .~ -1, {retumn} ! Retry exceeded

MB
tmpl ~ SEXT(tmp0<31:0>)

tmp2 ~ SEXT({R16 + tmpl}<31.0>)
IF {tmpl EQL O} THEN

tmp3 ~ R16
ELSE

tmp3 ~ SEXT({tmp2 + SEXT((tmp2)<31:0>)})
END
(tmp3 + 4)<31.0> ~ R16 - tmp3 I Backward link of successor
MB
(R16)<31.0> . tmp3 - R16 ! Forward link of header

I Release lock

IF tmpl EQ O THEN

RO - O I Queue was empty
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ELSE
BEGIN
IF {tmp3 - R16} EQ 0 THEN
RO - 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
END
R1 ~ tmp2 I Address of removed entry

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQHILR Remove Entry from Longword Queue at Head
Interlocked Resident

Description:

If the secondary interlock is clear, REMQHILR removes from the self-relative queue the entry
following the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is
returned in RO. If the interlock succeeded and the queue was not empty at the start of the
removal and the queue is empty after the removal, a 2 is returned in RO. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of exceptions)
RO is set to —1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are quadword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.13 Remove Entry from Quadword Queue at Head Interlocked

Format:

CALL_PAL REMQHIQ ' PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:
-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue stil not empty
2 if entry removed and queue empty
R1 receives the address of the removed entry

I
!
!
!
!
!
!
!
I Must have write access to header and queue entries
I Header and entries must be octaword aligned.

I

I Check header alignment

IF {R16<3:0> NE 0} THEN

BEGIN
{ilegal operand exception}
END
N <- {retry_amount} I' Implementation-specific
REPEAT
LOAD LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16) - {tmpl OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {retumn} ! Retry exceeded

MB
IF tmp1<3:0> NE 0 THEN I Check Alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{illegal operand exception}
END

Check if the following can be done without

causing a memory management exception:

read contents of header + tmpl {if tmpl NE O}

write into header + tmpl + (header + tmpl) {if tmpl NE O}
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IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) ~ tmpO

{initiate memory management fault}

END

tmp2 ~ R16 + tmpl

IF {tmpl EQL 0} THEN
tmp3 ~ R16

ELSE
tmp3 ~ tmp2 + (tmp2)

IF tmp3<3:.0> NE 0 THEN I Check Alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{illegal operand exception}

END
(tmp3 + 8 .~ R16 - tmp3 ! Backward link of successor
MB
(R16) ~ tmp3 - R16 I Forward link of header
I Release lock
IF tmpl EQ O THEN
RO - O I Queue was empty
ELSE
BEGIN
IF {tmp3 - R16} EQ 0 THEN
RO - 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
END
R1 o tmp2 I Address of removed entry
Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid
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Instruction mnemonics:

CALL_PAL REMQHIQ Remove from Quadword Queue at Head
Interlocked

Description:

If the secondary interlock is clear, REMQHIQ removes from the self-relative queue the entry
following the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is

returned in RO. If there was an entry to remove and the queue is not empty at the end of this
instruction, RO is set to 1. If the interlock succeeded and the queue was not empty at the start of
the removal, and the queue is empty after the removal, a 2 is returned in RO. If the instruction

fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep-

tions) RO is setto—1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation. Before performing any part of the removal, the processor vali-
dates that the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).
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10.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHIQR | PALcode format

Operation:

I R16 contains the address of the queue header

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was empty

! 1 if entry removed and queue stil not empty
! 2 if entry removed and queue empty

I R1 receives the address of the removed entry

|
|
|
|

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N ~ {retry_amount} I' Implementation-specific
REPEAT
LOAD LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16) - {tmpl OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO ~ -1, {return} ! Retry exceeded

MB

tmp2 — R16 + tmpl
IF {tmpl EQL 0} THEN

tmp3 — R16
ELSE
tmp3 ~ tmp2 + (tmp2)
END
(tmp3 + 8 .~ R16 - tmp3 ! Backward link of successor
MB
(R16) .~ tmp3 - R16 I Forward link of header

| Release lock
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IF tmpl EQ O THEN

RO - O I Queue was empty
ELSE
IF {tmp3 - R16} EQ 0 THEN
RO - 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
R1 ~ tmp2 I Address of removed entry
Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQHIQR Remove Entry from Quadword Queue at Head
Interlocked Resident

Description:

If the secondary interlock is clear, REMQHIQR removes from the self-relative queue the entry
following the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is

returned in RO. If there was an entry to remove and the queue is not empty at the end of this
instruction, RO is set to 1. If the interlock succeeded and the queue was not empty at the start of
the removal, and the queue is empty after the removal, a 2 is returned in RO. If the instruction

fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep-

tions) RO is setto—1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are octaword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.15 Remove Entry from Longword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIL I PALcode format

Operation:

I R16 contains the address of the queue header

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was empty

! 1 if entry removed and queue stil not empty
! 2 if entry removed and queue empty

I R1 receives the address of the removed entry
|
|
|
|
|
|

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN

BEGIN
{illegal operand exception}
END
N <- {retry_amount} I' Implementation-specific
REPEAT
LOAD LOCKED (tmp0 — (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16)  {tmp0 OR 1} )
N N-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO . -1, {return} ! Retry exceeded

MB

tmpl ~ SEXT(tmp0<31:0>)
tmp5 ~ SEXT(tmp0<63:32>)

IF tmp5<2:0> NE O THEN I Check alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{llegal operand exception}
END

ICheck if the following can be done without

I causing a memory management exception:

I read contents of header + (header + 4) {if tmpl NE 0}
I write into header + (header + 4)

I+ (heade r + 4 + (header + 4))if tmpl NE O}
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{initiate memory management fault}
END

addr .~ SEXT( {R16 + tmp5}<31:.0> )
tmp2 ~ SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> )

IF tmp2<2:0> NE 0 THEN I Check alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpO
{llegal operand exception}
END

(R16 + 4)<31.0> . tmp2 - R16 ! Backward link of header
IF {mp2 EQL R16} THEN
R16)<31.0> .~ O ! Forward link, release lock
ELSE
BEGIN
(tmp2)<31:.0> ~ R16 - tmp2 ! Forward link of predecessor
MB
(R16)<31.0> .~ tmpl I Release lock
END
IF tmpl EQ O THEN
RO - O I Queue was empty
ELSE
BEGIN
IF {tmp2 - R16} EQ 0 THEN
RO - 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
R1 ~ addr I Address of removed entry

Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid
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Instruction mnemonics:

CALL _PAL REMQTIL Remove from Longword Queue at Talil
Interlocked

Description:

If the secondary interlock is clear, REMQTIL removes from the self-relative queue the entry
preceding the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is

returned in RO. If there was an entry to remove and the queue is not empty at the end of this
instruction, RO is set to 1. If the interlock succeeded and the queue was not empty at the start of
the removal, and the queue is empty after the removal, a 2 is returned in RO. If the instruction

fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep-

tions) RO is setto—1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation. Before performing any part of the removal, the processor vali-
dates that the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).
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10.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident

Format:
CALL_PAL REMQTILR I PALcode format

Operation:

I R16 contains the address of the queue header

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was empty

! 1 if entry removed and queue stil not empty
! 2 if entry removed and queue empty

I R1 receives the address of the removed entry

|
|
|
|

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N ~ {retry amount} I' Implementation-specific
REPEAT
LOAD _LOCKED (tmp0 — (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16)  {tmp0 OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO .~ -1, {retumn} ! Retry exceeded

MB

tmpl ~ SEXT(tmp0<31.0>)
tmp5 ~ SEXT(tmp0<63:32>)
addr ~ SEXT( {R16 + tmp5}<31.0> )
tmp2 ~ SEXT( {addr + SEXT( (addr+4)<31.0>)}<31:0> )
(R16 + 4)<31.0> . tmp2 - R16 Backward link of header
IF {tmp2 EQL R16} THEN
(R16)<31.0> .~ O ! Forward link, release lock
ELSE
BEGIN
(tmp2)<31.0> ~ R16 - tmp2 ! Forward link of predecessor
MB
(R16)<31.0> .~ tmpl I Release lock
END
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IF tmpl EQ O THEN

RO - O I Queue was empty
ELSE
IF {tmp2 - R16} EQ 0 THEN
RO — 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
END
R1 ~ addr I Address of removed entry
Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQTILR Remove Entry from Longword Queue at Tail
Interlocked Resident

Description:

If the secondary interlock is clear, REMQTILR removes from the self-relative queue the entry
preceding the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is

returned in RO. If there was an entry to remove and the queue is not empty at the end of this
instruction, RO is set to 1. If the interlock succeeded and the queue was not empty at the start of
the removal, and the queue is empty after the removal, a 2 is returned in RO. If the instruction

fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep-

tions) RO is setto—1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are quadword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.

PALcode Instruction Descriptions (ll-Ap-63



10.3.17 Remove Entry from Quadword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIQ ' PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:
-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue stil not empty
2 if entry removed and queue empty
R1 receives the address of the removed entry

I
!
!
!
!
!
!
!
I Must have write access to header and queue entries
I Header and entries must be octaword aligned.

I

I Check header alignment

IF {R16<3:0> NE 0} THEN

BEGIN
{llegal operand exception}
END
N  {retry_amount} I Implementation-specific
REPEAT
LOAD LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16) - {tmpl OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO .~ -1, {retumn} ! Retry exceeded

MB

tmps ~ (R16+8)
IF tmp5<3:0> NE 0 THEN I Check Alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{illegal operand exception}
END
I Check if the following can be done without
causing a memory management exception:
read contents of header + (header + 8) {if tmpl NE O}
write into header + (header + 8)

]
I
!
I+ (heade r + 8 + (header + 8))if tmpl NE O}
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{initiate memory management fault}
END

addr ~ R16 + tmp5

tmp2 ~ addr + (addr + 8)

IF tmp2<3:.0> NE 0 THEN I Check alignment
BEGIN ! Release secondary interlock
(R16) ~ tmpl
{illegal operand exception}

END
(R16 + 8 .~ tmp2 - R16 ! Backward link of header
IF {tmp2 EQL R16} THEN
R16) ~ O ! Forward link, release lock
ELSE
BEGIN
(tmp2) ~ R16 - tmp2 ! Forward link of predecessor
MB
(R16) ~ tmpl I Release lock
END
END
IF tmpl EQ O THEN
RO - O I Queue was empty
ELSE
BEGIN
IF {tmp2 - R16} EQ 0 THEN
RO - 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
END
R1 ~ addr I Address of removed entry
Exceptions:

Access Violation
Fault on Read

Fault on Write

Illegal Operand
Translation Not Valid
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Instruction mnemonics:

CALL_PAL REMQTIQ Remove from Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIQ removes from the self-relative queue the entry
preceding the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is

returned in RO. If there was an entry to remove and the queue is not empty at the end of this
instruction, RO is set to 1. If the interlock succeeded and the queue was not empty at the start of
the removal, and the queue is empty after the removal, a 2 is returned in RO. If the instruction

fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep-

tions) RO is setto—1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation. Before performing any part of the removal, the processor vali-
dates that the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).
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10.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident

Format:
CALL_PAL REMQTIQR ' PALcode format

Operation:

I R16 contains the address of the queue header

I RO receives status:

! -1 if the secondary interlock was set

! 0 if the queue was empty

! 1 if entry removed and queue stil not empty
! 2 if entry removed and queue empty

I R1 receives the address of the removed entry

|
|
|
|

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N  {retry_amount} I' Implementation-specific
REPEAT
LOAD LOCKED (tmpl — (R16)) ! Acquire hardware interlock.
IF tmpl<0> EQ 1 THEN I Try to set secondary interlock.
RO ~ -1, {retum} I Already set
done .~ STORE_CONDITIONAL ((R16) - {tmpl OR 1} )
NoN-1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO ~ -1, {return} ! Retry exceeded

MB

tmps ~ (R16+8)
addr ~ R16 + tmp5
tmp2 ~ addr + (addr + 8)
(R16 + 8 ~ tmp2 - R16 ! Backward link of header
IF {tmp2 EQL R16} THEN
R16) -~ O ! Forward link, release lock
ELSE
BEGIN
tmp2) ~ R16 - tmp2 ! Forward link of predecessor
MB
(R16) ~ tmpl I Release lock
END
END
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IF tmpl EQ O THEN

RO - O I Queue was empty
ELSE
IF {tmp2 - R16} EQ 0 THEN
RO - 2 I Queue now empty
ELSE
RO - 1 I Queue not empty
END
R1 ~ addr I Address of removed entry
Exceptions:

Illegal Operand

Instruction mnemonics:

CALL PAL REMQTIQR Remove Entry from Quadword Queue at Tail
Interlocked Resident

Description:

If the secondary interlock is clear, REMQTIQR removes from the self-relative queue the entry
preceding the header, pointed to by R16, and the address of the removed entry is returned in
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a 0 is

returned in RO. If there was an entry to remove and the queue is not empty at the end of this
instruction, RO is set to 1. If the interlock succeeded and the queue was not empty at the start of
the removal, and the queue is empty after the removal, a 2 is returned in RO. If the instruction

fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep-

tions) RO is setto—1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the head
or tail of the same queue by another process, in a multiprocessor environment. The removal is
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header and ele-
ments are octaword aligned. No alignment or memory management checks are made before
starting queue modifications to verify these requirements. Therefore, if any of these require-
ments are not met, the queue may be leftin an UNPREDICTABLE state and an illegal operand
fault may be reported.
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10.3.19 Remove Entry from Longword Queue

Format:

CALL_PAL REMQUEL I PALcode format

Operation:

I R16 contains the address of the entry to remove
or the address of the 32 bit address of the
entry for REMQUEL/D
RO receives status:
-1 if the queue was empty
0 if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

I
I
!
!
!
!
I R1 receives the address of the removed entry
!

I Header and entries need only be byte aligned

I Must have write access to header and queue entries
IF opcode EQ REMQUEL/D THEN

R1 ~ SEXT((R16)<31.0>)
ELSE

R1 ~ SEXT(R16<31.0>)

IF {all memory accesses can be completed} THEN
BEGIN
tmpl ~ (R1)<31.0> ! Forward Link of Predecessor
((R1+4)<31:0>)<31.0> ~ tmpl
tmp2 ~ (R1+4)<31.0> I Backward Link of Successor
((R1)<31:.0>+4)<31.0> ~ tmp2
RO - 1 I Queue not empty
IF {tmpl EQ tmp2} THEN
RO - O I Queue now empty
IF {R1 EQ tmp2} THEN
RO - -1 I Queue was empty
END
ELSE
BEGIN
{iniiate fault}
END
END

Exceptions:

Access Violation
Fault on Read

Fault on Write
Translation Not Valid
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Instruction mnemonics:

CALL PAL REMQUEL Remove Entry from Longword Queue
CALL PAL REMQUEL/D Remove Entry from Longword Queuesizrred

Description:

REMQUEL removes the entry addressed by R16 from the longword absolute queue. The
address of the removed entry is returned in R1. REMQUEL/D performs the same operation on
the queue entry addressed by the longword addressed by R16. The queue header and entry
need only be byte aligned.

In either case, if there was no entry in the queue to be removed, RO is set to —1. If there was an
entry to remove and the queue is empty at the end of this instruction, RO is set to 0. If there was
an entry to remove and the queue is not empty at the end of this instruction, RO is set to 1. The
removal is a non-interruptible operation. Before performing any part of the removal, the pro-

cessor validates that the entire operation can be completed. This ensures that if a memory
management exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).
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10.3.20 Remove Entry from Quadword Queue

Format:

CALL_PAL REMQUEQ ' PALcode format

Operation:

I R16 contains the address of the entry to remove
! or address of address of entry for REMQUEQ/D
I RO receives status:
! -1 if the queue was empty
! 0 if the queue is empty after removing an entry
! 1 if the queue is not empty after removing an entry
I R1 receives the address of the removed entry
I Must have write access to header and queue entries
| Header and entries must be octaword aligned
IF opcode EQ REMQUEQ/D THEN
IF {R16<3:0> NE 0} THEN
BEGIN
{llegal operand exception}
END
R1 — (R16)
ELSE
R1 -~ R16
IF {R1<3:0> NE 0} THEN I Check alignment
BEGIN
{illegal operand exception}
END
IF {all memory accesses can be completed} THEN
BEGIN
tmpl ~ (R1) ! Forward link of Predecessor
IF {tmpl<3:.0> NE 0} THEN
BEGIN ! Check alignment
{llegal operand exception}
END
tmp2 ~ (R1+8) I Find predecessor
IF {tmp2<3.0> NE O} THEN
BEGIN ! Check alignment
{llegal operand exception}
END
tmp2) ~ tmpl I Update Forward link of predecessor
(R)+8) ~ tmp2
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RO - 1 I Queue not empty
IF {tmpl EQ tmp2} THEN
RO - O I Queue now empty
IF {R1 EQ tmp2} THEN
RO - -1 I Queue was empty
END
ELSE
BEGIN
{initiate fault}
END
END

Exceptions:

Access Violation
Fault on Read

Fault on Write
Translation Not Valid
Illegal Operand

Instruction mnemonics:

CALL_PAL REMQUEQ Remove Entry from Quadword Queue
CALL_PAL REMQUEQ/D Remove Entry from Quadword Queue Breéd

Description:

REMQUEQ removes the queue entry addressed by R16 from the quadword absolute queue.
The address of the removed entry is returned in R1. REMQUEQ/D performs the same opera-
tion on the queue entry addressed by the quadword addressed by R16.

In either case, if there was no entry in the queue to be removed, RO is set to —1. If there was an
entry to remove and the queue is empty at the end of this instruction, RO is set to 0. If there was
an entry to remove and the queue is not empty at the end of this instruction, RO is set to 1. The
removal is a non-interruptible operation. Before performing any part of the removal, the pro-
cessor validates that the entire operation can be completed. This ensures that if a memory
management exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).
RO and R1 are UNPREDICTABLE if an exception occurs. The relative order of reporting
memory management and illegal operand exceptions is UNPREDICTABLE.
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10.4 Unprivileged VAX Compatibility PALcode Instruc-
tions

The Alpha architecture provides the following PALcode instructions for use in translated VAX
code. These instructions are not a permanent part of the architecture and will not be available
in some future implementations. They are provided to help customers preserve VAX instruc-
tion atomicity assumptions in porting code from VAX to Alpha. These calls should be user
mode. They must not be used by any code other than that generated by the VEST software
translator and its supporting run-time code (TIE).
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10.4.1 Atomic Move Operation

Format:
AMOVRR | PALcode format
AMOVRM | PALcode format
Operation:

R16 contains the first source
R17 contains the first destination address
R18 contains the first length
R19 contains the second source
R20 contains the second destination address
R21 contains the second length
CASE
AMOVRR:
IF intr_flag EQ O THEN
R18 - 0
{retum}
END

intr_flag ~ 0
R17) ~ R16 ! length specified by R18<1.0>
(R20) ~ R19 ! length specified by R21<1.0>
IF {both moves successful} THEN
R18 ~ 1
ELSE
R18 - 0
END
AMOVRM:
IF intr_flag EQ 0 THEN
R18 —~ 0
{retum}
END

intr_flag ~ 0
R17) ~ R16 ! length specified by R18<1.0>
IF R21<5:0> NE 0 THEN
BEGIN
IF R19<1:0> NE 0 OR R20<1:0> NE O
{llegal operand exception}
ELSE
(R20) ~ (R19) length specified by R21<5:0>
END
IF {both moves successful} THEN
R18 ~ 1
ELSE
R18 - O
END
ENDCASE
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Exceptions:

AMOVRR: Access Violation
Fault On Write
Translation Not Valid
AMOVRM:  Access Violation
Fault On Read
Fault On Write
Illegal Operand
Translation Not Valid

Instruction mnemonics:

CALL_PAL AMOVRR Atomic Move Register/Register
CALL_PAL AMOVRM Atomic Move Register/Memory
Description:

Note:

The CALL_PAL AMOVxx instructions exisbnly for the support of translated VAX code.
They must be usednlyin translated VAX code and its support routines (TIE).

CALL_PAL AMOVRR

The CALL_PAL AMOVRR instruction specifies two multiprocessor-safe register stores to
arbitrary byte addresses. Either both stores are done or neither store is done. R18 is set to 1 if
both stores are done, and 0 otherwise. The two source registers are R16 and R19. The two des-
tination byte addresses are in R17 and R20. The two lengths are specified in R18<1:0> and
R21<1:0>. The length encoding is as follows: 00 is store byte, 01 is store word, 10 is store
longword, 11 is store quadword. The low 1, 2, 4, or 8 bytes of the source register are used,
respectively. The unused bytes of the source registers are ignored. The unused bits of the
length registers (R18<63:2> and R21<63:2>) should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction sets R18 to
zero and exits, doing no stores. Otherwise, intr_flag is cleared and the PALcode routine pro-
ceeds. This is the same per-processor intr_flag used by the RS and RC instructions.

The AMOVRR memory addresses may be unaligned. If either store would result in a Transla-
tion Not Valid fault, Fault on Write, or Access Violation fault, neither store is done and the
corresponding fault is taken. If both stores would result in faults, it is UNPREDICTABLE
which one is taken.

Note:

A fault does not set R18, because the instruction has not been completed.
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If both stores can be completed without faulting, they are both attempted using multiprocessor-
safe LDQ_L..STQ_C sequences. If all the sequences store successfully with no interruption,
the PALcode routine completes with R18 set to one. Otherwise, the PALcode routine com-
pletes with R18 set to zero. In addition, R16, R17, R19, R20, and R21 are UNPREDICTABLE
upon return from the PALcode routine, even if an exception has occurred.

If the destinations overlap, the stores must appear to be done in the order specified.
CALL_PAL AMOVRM

The CALL_PAL AMOVRM instruction specifies one multiprocessor safe register store to an
arbitrary byte address, plus an atomic memory-to-memory move of 0 to 63 aligned longwords.
Either the store and the move are both done in their entirety or neither is done. R18 is set to
one if both are done, and zero otherwise.

The first source register is R16, the first destination address is in R17, and the first length is in
R18. These three are specified exactly as in AMOVRR.

The second source address is in R19, the second destination address is in R20, and the second
length is in R21<5:0>. The length is a longword length, in the range 0 to 63 longwords (0 to
252 hytes). The unused bytes of the source register R16 are ignored. The unused bits of the
length registers (R18<63:2> and R21<63:6>) should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear, the instruction sets R18 to zero and
exits, doing no stores. Otherwise, intr_flag is cleared and the PALcode routine proceeds. This
is the same per-prossor intr_flag used by the RS and RC instructions.

The memory address in R17 may be unaligned.

If the length for the move is zero, no move is done, no memory accesses are made via R19 and
R20, and no fault checking of these addresses is done. In this case, the move is always consid-
ered to have succeeded in determining the setting of R18.

If the length in R21 is non-zero, the two addresses in R19 and R20 must be aligned longword
addresses; otherwise, an lllegal Operand exception is taken.

If either the store or the move would result in a Translation Not Valid, Fault on Read, Fault on
Write, or Access Violation fault, neither is done and the corresponding fault is taken. If both
would result in faults, it is UNPREDICTABLE which one is taken.

Note:
A fault does not set R18, since the instruction has not been completed.

If both the store and the move can be completed without faulting, they are both attempted,
using multiprocessor-safe LDQ_L..STQ_C sequences for the store. If all the operations store
successfully with no interruption, the PALcode routine completes with R18 set to one. Other-
wise, the PALcode routine completes with R18 set to zero. In addition, R16, R17, R19, R20,
and R21 are UNPREDICTABLE upon return from the PALcode routine, even if an exception
has occurred.

If the memory fields overlap, the store must appear to be done first, followed by the move. The
ordering of the reads and writes of the move is unspecified. Thus, if the move destination over-
laps the move source, the move results are UNPREDICTABLE.

These instructions contain no implicit MB.
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Notes:

Typically, these instructions would be used in a sequence starting with CALL_PAL RS
and ending with CALL_PAL AMOVxx, Bxx R18,label. The failure path from the con-
ditional branch would eventually go back to the RS instruction. When such a sequence
succeeds, it has done everything from the RS up to and including the CALL PAL
AMOVxx completely with no interrupts or exceptions.

The CALL_PAL AMOVxx instruction is typically followed by a conditional branch on
R18. If the CALL_PAL AMOVxx is likely to succeed, the conditional branch should be

a forward branch on failure (BEQ R18,forward_label) or backward branch on success
(BNE R18, backward_label), to match the architected branch-prediction rule.

The CALL_PAL AMOVxXx instruction must either do both stores or neither. If R18=0
upon return, then memory state must be unchanged. If the first STQ_C inside
AMOVRR succeeds (anthus has changed prograrerrvisible state in memory), the
PALcode routine must complete the second STQ_C also, and exit with R18=1. In par-
ticular, if the failure loop around the second STQ_C is executed an excessive number of
times (due to perverse interference from another meeg, the PALcode may not
"give up" and return with R18=0.
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10.5 Unprivileged PALcode Thread Instructions

The PALcode thread instructions provide support for multithread implementations, which
require that a given thread be able to generate a reproducible unique value in a "timely" fash-
ion. This value can then be used to index into a structure or otherwise generate additional
thread unique data.

The two instructions in Table 10—4 are provided to read and write a process unique value from
the process’s hardware context.

Table 10—-4: Unprivileged PALcode Thread Instructions

Mnemonic Operation
READ_UNQ Read unique context
WRITE_UNQ Write unique context

The process-unique value is stored in the HWPCB at [HWPCB+72] when the process is not
active. When the process is active, the process unique value can be cached in harthxare
nal storage or reside in the HWPCB only.
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10.5.1 Read Unique Context

Format:

CALL_PAL READ_UNQ ' PALcode format

Operation:

IF {internal storage for process unique context} THEN
RO  {process unique context}

ELSE
RO — (HWPCB+72)

Exceptions:

None

Instruction mnemonics:

CALL_PAL READ_UNQ Read Unigue Context

Description:

The READ_UNQ instruction causes the hardware process (thread) unique context value to be
placed in RO. If this value has not previously been written using a CALL_PAL WRITE_UNQ

or stored into the quadword in the HWPCB at [HWPCB+72] while the thread was inactive, the
result returned in RO is UNPREDICTABLE. Implementations can cache this unique context
value while the hardware process is active. The unique context may be thought of as a "slow
register." Typically, this value will be used by software to establish a unique context for a
given thread of exadion.
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10.5.2 Write Unique Context

Format:

CALL_PAL WRITE_UNQ

Operation:

IR16 contains value to be written to the hardware process
! unigque context

IF {internal storage for process unique context} THEN
{process unique context} ~ R16

ELSE
(HWPCB+72) ~ R16

Exceptions:

None

Instruction mnemonics:

CALL_PAL WRITE_UNQ  Write Unique Context

Description:

The WRITE_UNQ instruction causes the value of R16 to be stored in internal storage for hard-
ware process (thread) unique context, if implemented, or in the HWPCB at [HWPCB+72], if
the internal storage is not implemented. When the process is context switched, SWPCTX
ensures that this value is stored in the HWPCB at [HWPCB+72]. Implementations can cache
this unique context value in internal storage while the hardware process is active. The unique
context may be thought of as a "slow register." Typically, this value will be used by software to

establish a unique context for a given thread of execution.
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10.6 Privileged PALcode Instructions

Privileged instructions can be called in kernel mode only; otherwise, a privileged instruction
exception occurs. The following privileged instructions are provided:

Table 10-5: PALcode Privileged Instructions Summary

Mnemonic Operation

CFLUSH Cache flush

CSERVE Console service

DRAINA Drain abort. Section 6.7.1.
HALT Halt processor. See Section 6.7.2.
LDQP Load quadword physical
MFPR Move from processor register
MTPR Move to processor register
STQP Store quadword physical
SWPCTX Swap privileged context
SWPPAL Swap PALcode image
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10.6.1 Cache Flush

Format:

CALL_PAL CFLUSH I PALcode format

Operation:

I R16 contains the Page Frame Number (PFN)
I of the page to be flushed

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Flush page out of cache(s)}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL CFLUSH Cache Flush

Description:

The CFLUSH instruction may be used to flush an entire physical page specified by the PFN in
R16 from any data caches associated with the current processor. All processors must imple-
ment this instruction.

On processors that implement a backup power option that maintains only the contents of mem-
ory during a powerfail, this instruction is used by the powerfail interrupt handler to force data
written by the handler to the battery backed-up main memory. After a CFLUSH, the first sub-
sequent load (on the same processor) to an arbitrary address in the target page is either fetched
from physical memory or from the data cache of another processor.

In some multiprocessor systems, CFLUSH is not sufficient to ensure that the data are actually
written to memory and not exchanged between processor caches. Additional platform-specific
cooperation between the powerfail interrupt handlers executing on each processor may be
required.

On systems that implement other backup power options (including none), CFLUSH may return
without affecting the dataache contets. To order CFLUSH properly with respect to preced-
ing writes, an MB instruction is needed before the CFLUSH; to order CFLUSH properly with
respect to subsequent reads, an MB instruction is needed after the CFLUSH.
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10.6.2 Console Service

Format:
CALL_PAL CSERVE I PALcode format

Operation:

I Implementation specific

IF PS<CM> NE 0 THEN
{Privileged instruction exception}

ELSE
{Implementation-dependent action}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL _PAL CSERVE Console Service

Description:

This instruction is specific to each PALcode and console implementation and is not intended
for operating system use.
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10.6.3 Load Quadword Physical

Format:

CALL_PAL LDQP I PALcode format

Operation:

I R16 contains the quadword-aligned physical address
I RO receives the data from memory

IF PS<CM> NE 0 THEN
{Privileged Instruction exception}

RO — (R16) {physical access}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL LDQP Load Quadword Physical

Description:

The LDQP instruction fetches and writes to RO the quadword-aligned memory operand, whose
physical address is in R16.

If the operand address in R16 is not quadword aligned, the resultis UNPREDICTABLE.
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10.6.4 Move from Processor Register

Format:
CALL_PAL MFPR_IPR_Name I PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

I R16 may contain an IPR specific source operand
RO — result of IPR specific function

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL MFPR_xxx Move from Processor Registgrx

Description:

The MFPR_xxx instruction reads the internal processor register specified by the PALcode
function field and writes it to RO.

Registers R1, R16, and R17 contain UNPREDICTABLE results after an MFPR.
See Chapter 13 for a description of each IPR.

PALcode Instruction Descriptions (ll-A)p-85



10.6.5 Move to Processor Register

Format:

CALL_PAL MTPR_IPR_Name ' PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}
I R16 may contain an IPR specific source operand

RO — result of IPR specific function
IPR — result of IPR specific function

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL MTPR_xxx Move to Processor Registexx

Description:

The MTPR_xxx instruction writes the IPR-specific source operands in integer registers R16
and R17 (R17 reserved for future use) to the internal processor register specified by the PAL-
code function field. The effect produced by loading a processor register is guaranteed to be
active on the next instruction.

Registers R1, R16, and R17 contain UNPREDICTABLE results after an MTPR. The MTPR
may return results in RO. If the specific IPR being accessed does not return results in RO, then
RO contains an UNPREDICTABLE result after an MTPR.

See Chapter 13 for a description of each IPR.
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10.6.6 Store Quadword Physical

Format:

CALL_PAL STQP I PALcode format

Operation:

I R16 contains the quadword aligned physical address
I R17 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception}

(R16) ~ R17 {physical access}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL _PAL STQP Store Quadword Physical

Description:

The STQP instruction writes the quadword contents of R17 to the memory location whose
physical address is in R16.

If the operand address in R16 is not quadword aligned, the resultis UNPREDICTABLE.
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10.6.7 Swap Privileged Context

Format:

CALL_PAL SWPCTX

Operation:
I R16 contains the physical address of the new HWPCB.

I check HWPCB alignment

IF R16<6:0> NE 0 THEN
{reserved operand exception}

IF {PS<CM> NE 0} THEN
{privileged instruction exception}

| Store old HWPCB contents

(PR_PCBB + HWPCB_KSP) - SP

IF {internal registers for stack pointers} THEN
BEGIN
(PR_PCBB + HWPCB _ESP) - IPR_ESP
(PR_PCBB + HWPCB_SSP) - IPR_SSP
(PR_PCBB + HWPCB_USP)._ IPR_USP
END

IF {internal registers for ASTxx} THEN
BEGIN
(PR_PCBB + HWPCB_ASTSR). IPR_ASTSR
(PR_PCBB + HWPCB_ASTEN). IPR_ASTEN
END

tmpl ~ PCC

tmp2 ~ ZEXT(tmpl<31:0>)

tmp3 ~ ZEXT(tmpl<63:32>)

(IPR_PCBB + HWPCB_PCC). {tmp2 + tmp3}<31.0>

IF {internal storage for process unique value} THEN
BEGIN
(IPR_PCBB + HWPCB_UNQ)— process unique value
END

| Load new HWPCB contents
IPR_PCBB ~ R16

IF {ASNs not implemented in virtual instruction cache} THEN
{flush instruction cache}
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IF {ASNs not implemented in TB} THEN
IF {IPR_PTBR NE (IPR_PCBB + HWPCB PTBR)} THEN
{invalidate trans. buffer entries with PTE<ASM> EQ 0}
ELSE
IPR_ASN — (IPR_PCBB + HWPCB_ASN)

SP . (IPR_PCBB + HWPCB KSP)

IF {internal registers for stack pointers} THEN
BEGIN
IPR_ESP .~ (IPR_PCBB + HWPCB_ESP)
IPR_SSP .~ (IPR_PCBB + HWPCB_SSP)
IPR_USP . (IPR_PCBB + HWPCB_USP)
END

IPR_ PTBR . (IPR_PCBB + HWPCB_PTBR)

IF {internal registers for ASTxx} THEN
BEGIN
IPR_ASTSR .~ (IPR_PCBB + HWPCB_ASTSR)
IPR_ASTEN . (IPR_PCBB + HWPCB_ASTEN)
END

IPR_FEN ~ (IPR_PCBB + HWPCB_FEN)
tmp4 . ZEXT((IPR_PCBB + HWPCB_PCC)<31.0>)
tmp4d — tmpd - tmp2
PCC<63:32> . tmp4<31.0>
IF {internal storage for process unique value} THEN
BEGIN
process unique value ~ (IPR_PCBB + HWPCB_UNQ)
END
IF {internal storage for Data Alignment trap setting} THEN
BEGIN
DAT — (IPR_PCBB + HWPCB DAT)
END

Exceptions:

Reserved Operand
Privileged Instruction

Instruction mnemonics:

CALL_PAL SWPCTX Swap Privileged Context

Description:

The SWPCTX instruction returns ownership of the current Hardware Privileged Context Block
(HWPCB) to the operating system and passes ownership of the new HWPCB to the processor.
The HWPCB is described in Section 12.2.
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SWPCTX saves the privileged context from the internal processor registers into the HWPCB
specified by the physical address in the PCBB internal processor register. It then loads the
privileged context from the new HWPCB specified by the physical address in R16. The actual
sequence of the save and restore operation is not specified, so any overlap of the current and
new HWPCB storage areas produces UNDEFINED results.

The privileged context includes the four stack pointers, the Page Table Base Register (PTBR),
the Address Space Number (ASN), the AST enable and summary registers, the Floating-point
Enable Register (FEN), the Performance Monitor (PME) register, the Data Alignment Trap
(DAT) register, and the Charged Process Cycles — the number of PCC register counts that are
charged to a process (modulo 2**32).

PTBR is never saved in the HWPCB and it is UNPREDICTABLE whether or not ASN is
saved. These values cannot be changed for a running process. The process integer and floating
registers are saved and restored by the operating system. See Figure 12-1 for the HWPCB
format.

Notes:

* Any change to the current HWPCB while the processor has ownership results in
UNDEFINED operation.

e All the values in the current HWPCB can be readotigh IPRs, except the Charged
Process Cycles.

e |f the HWPCB is read while ownership resides with the processor, it is UNPREDICT-
ABLE whether the original or an updated value of a field is read. The processor can
update an HWPCB field at any time. The decision as to whether or not a field is
updated is made individually for each field.

e If the enabling conditions are present for areimtipt at the completion of this instruc-
tion, the interrupt occurs before the next instruction.

e PALcode sets up the PCBB at boot time to point to the HWPCB storage area in the
Hardware Restart Parameter Block (HWRPB). See Section 26.1.

* The operation is UNDEFINED if SWPCTX accesses a non-memory-like region.

* A reference to nonexistent memory causes ahireccheck. Unimplemented physical
address bits are SBZ. The operation is UNDEFINED if any of these bits are set.

Note:

Processors may keep a copy of each of the per-process stack pointers in internal registers.
In those processors, SWPCTX stores the internal registers into the HWPCB. Processors
that do not keep a copy of the stack pointers in internal registers keep only the stack
pointer for the current access mode in SP awdtch this with the HWPCB contents
whenever the current access mode changes.
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10.6.8 Swap PALcode Image

Format:
CALL_PAL SWPPAL I PALcode format

Operation:

I R16 contains the new PALcode identifier
I R17-R21 contain implementation-specific entry parameters
I RO receives status:
! 0 Success (PALcode was switched)
! 1 Unknown PALcode variant
! 2 Known PALcode variant, but PALcode not loaded
IF (PS<CM> NE 0) then
{Privileged instruction exception}

ELSE
IF {R16 < 256} THEN
BEGIN
IF {R16 invalid} THEN
RO - 1
{Return}
ELSE IF {PALcode not loaded} THEN
RO - 2
{Return}
ELSE
tmpl ~ {PALcode base}
END
ELSE
tmpl = R16

{Flush instruction cache}

{Invalidate all translation buffers}

{Perform additional PALcode variant-specific initialization}
{Transfer control to PALcode entry at physical address in tmpl}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL SWPPAL Swap PALcode Image

Description:

The SWPPAL instruction causes the current (active) PALcode to be replaced by the specified
new PALcode image. This instruction is intended for use by operating systems only during
bootstraps and by consoles during transitions to console 1/0 mode.
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The PALcode descriptor contained in R16 is interpreted as either a PALcode variant or the
base physical address of the new PALcode image. If a variant, the PALcode image must have
been previously loaded. No PALcode loading occurs as a result of this instruction.

After successful PALcode switching, the register contents are determined by the parameters
passed in R17 through R21 or are UNPREDICTABLE. A common parameter is the address of
a new HWPCB. In this case, the stack pointer register and PTBR are determined by the con-
tents of that HWPCB; the contents of other registers such as R16 through R21 may be
UNPREDICTABLE.

See Section 27.3.2, for information on using this instruction.
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10.6.9 Wait for Interrupt

Format:
CALL_PAL WTINT I PALcode format

Operation:

I R16 contains the maximum number of interval clock ticks to skip
I RO receives the number of interval clock ticks actually skipped

IF (implemented)
BEGIN
IF {Implementation supports skipping multiple
clock interrupts} THEN
{Ticks_to_skip ~R16}

{Wait no longer than any non-clock interrupt or the first clock
interrupt after ticks to skip ticks have been skipped}

IF {Implementation supports skipping multiple}
{clock interrupts} THEN
RO — number of interval clock ticks actually skipped
ELSE
RO -0
END
ELSE
RO -0
{return}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL WTINT Wait for Interrupt

Description:

The WTINT instruction requests that, if possible, the PALcode wait for the first of either of the
following conditions before returning:

* Any interrupt other than a clock tick
* The first clock tick after a specified number of clock ticks has been skipped

The WTINT instruction returns in RO the number of clock ticks that are skipped. The number
returned in RO is zero on hardware platforms that implement this instruction, but where it is not
possible to skip clock ticks.
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The operating system can specify a full 64-bit integer value in R16 as the maximum number of
interval clock ticks to skip. A value afero in R16 causes no clock ticks to be skipped.

Note the following if specifying in R16 the maximum number of interval clock ticks to skip:

* Adherence to a specified value in R16 is at the discretion of the PALcode; the PALcode
may complete execution of WTINT and proceed to the next instruction at any time up
to the specified maximum, even if no interrupt or interval-clock tick has occurred. That
is, WTINT may return before all requested clock ticks are skipped.

* The PALcode must complete execution of WTINT if an interrupt occurs or if an inter-
val-clock tick occurs after the requested number of interval-clock ticks has been
skipped.

In a multiprocessor environment, only the issuing processor is affected by an issued WTINT
instruction. The counters, SCC and PCC, may increment at a lower rate or may stop entirely
during WTINT execution. This sideffect is implementidon dependent.
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Chapter 11

Memory Management (I1-A)

11.1 Introduction

Memory management consists of the hardware and software that control the allocation and use
of physical memory. Typically, in a multiprogramming system, several processes may reside in
physical memory at the same time (see Chapter 12). OpenVMS uses memory protection and
multiple address spaces to ensure that one process will not affect other processes or the operat-
ing system.

To further improve software reliability, four hierarchical access modes provide memory access
control. They are, from most to least privileged: kernel, executive, supervisor, and user. Protec-
tion is specified at the individual page level, where a page may be inaccessible, read-only, or
read/write for each of the four access modes. Accessible pages can be restricted to have only
data or instruction access.

A program uses virtual addresses to access its data and instructions. However, before these vir-
tual addresses can be used to access memory, they must be tramdlafed/sical addresses.
Memory management software maintains hierarchical tables of mapping information (page
tables) that keep track of where each virtual page is located in physical memory. The proces-
sor utilizes this mapping information when it translates virtual addresses to physical addresses.

Therefore, memory management provides mechanisms for both memory protection and mem-
ory mapping. The OpenVMS memory management architecture is designed to meet several
goals:

* Provide a large address space for instructions and data

e Allow programs to run on hardware with physical memory smaller than the virtual
memory used

* Provide convenient and efficient sharing of instructions and data
* Allow sparse use of a large address space without excessive page table overhead
e Contribute to software reliability

* Provide independent read and write access protection

11.2 Virtual Address Space

A virtual address is a 64-bit unsigned integer that specifies a byte location within the virtual
address space. Implementations subset the address space supported to one of several sizes, as a
function of page size and page table depth. The minimal virtual address size supported is 43
bits. If an implementation supports less than 64-bit virtual addresses, it must check that all the
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VA<63:VA_SIZE> bits are equal to VA<VA_SIZE-1>. That gives two disjoint ranges for
valid virtual addresses. For example, for a 43-bit virtual address space, valid virtual address
ranges are 0...3FF FFFF FFRfand FFFF FCO0 0000 009§ ..FFFF FFFF FFFF FFF[g.
Accesses to virtual addresses outside of the valid virtual address ranges for an implementation
cause an access violation exception.

The virtual address space is broken into pages, which are the units of relocation, sharing, and
protection. The page size ranges from 8K bytes to 64K bytes. System software should, there-
fore, allocate regions with differing protection on 64K-byte virtual address boundaries to
ensure image compatibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of the virtual address
space to the available physical address space. The operating system controls the virtual-to-
physical address mapping tables and saves the inactive parts of the virtual address space on
external storage media.

11.3 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in memory.
The virtual address consists of three level-number fields and a byte_within_page field, as
shown in Figure 11-1.

Figure 11-1: Virtual Address Format

63 M L 0

SEXT (VA<M>) Levell* : Level2 Level3 byte_within_page

* Levell <M:L+1> contains SEXT(VA<L>), where L is the highest numbered implemented VA bit.

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a particular
implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 32K bytes, and 64K
bytes. Each level-number field contain®its, wheren is, for example, 10 with an 8K-byte
page size.

An implementation may support a smaller virtual address space than the page size allows by
including only a subset of low-order bits in Levell. The smaller virtual address space must be

at least 43 bits and must be large enough that at least two bits of Levell are impIerJnented.

1 OpenVMS requires at least three PTEs in the highest-level page table. The lowest-order PTE must map process space, the high-
est-order PTE must map system space and another PTE maps the page table structure. See Section 11.8.2.

11-2 OpenVMS Software (II-A)



The level-number fields are a function of the page size; all page table entries at any given level
do not exceed one page. The PFN field in the PTE is always 32 bits wide. Thus, as the page
size grows, the virtual and physical address size also grows (Table 11-1).

Table 11-1 Virtual Address Options

Virtual Address Physical Address

Page Size (bytes) Byte Offset (bits) Level Size (bits) (bits) (bits)
8 K 13 10 43 45
16 K 14 11 43-47 46
32K 15 12 43-51 47
64 K 16 13 44-55 48

T Levell page table might be partially utilized for this page size.

11.4 Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to implement a smaller physi-
cal address space by not implementing some number of high-order bits.

The two most significant implemented physical address bits delineate the four regions in the
physical address space. Implementations use these bits as appropriate for their systems. For
example, in a workstation with a 30-bit physical address space, bit <29> might select between
memory and non-memory-like regions, and bit <28> could enable or disable caching. See
Chapter 5.

11.5 Memory Management Control

Memory management is always enabled. Implementations must provide an environment for
PALcode to service exceptions and to initialize and boot the processor. For example, PALcode
might run with I-stream mapping disabled and use the privileged CALL_PAL LDQP and
STQP instructions to access data stored in physical addresses.

11.6 Page Table Entries

The processor uses a quadword Page Table Entry (PTE), as shown in Figure 11-2, to translate
virtual addresses to physical addresses. A PTE contains hardware and software control infor-
mation and the physical Page Frame Number.

Figure 11-2 Page Table Entry

63 32 31 S S 16151413121110 9 8 7 6 5 4 3 2 1 0

LSRN
Reserved USEKUSEK(’\D‘ AlF|F|F
PFN for WWWW|R|R|R|R|S| GH|S|0|0|o|v
Software  |E|E|E|E[E|E[E|E|M|  [MEWR

3

<
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Fields in the page table entry are interpreted as shown in Table 11-2.

Table 11-2 Page Table Entry

Bits Description

63-32 Page Frame Number (PFN)

The PFN field always points to a page boundary. If V is set, the PFN is concatenated with
the byte_within_page bits of the virtual address to obtain the physical address (see Section
11.8). If Vis clear, this field may be used by software.

31-16 Reserved for software.

15 User Write Enable (UWE)

This bit enables writes from user mode. If this bitis a 0 and a STORE is attempted while in
user mode, an Access Violation occurs. This bit is valid even when V=0.

Note:

If a write-enable bit is set and the corresponding read-enable bit is not, the
operation of the processor is UNDEFINED.

14 Supervisor Write Enable (SWE)

This bit enables writes from supervisor mode. If this bitis a 0 and a STORE is attempted
while in supervisor mode, an Access Violation occurs. This bit is valid even when V=0.

13 Executive Write Enable (EWE)

This bit enables writes from executive mode. If this bit is a 0 and a STORE is attempted
while in executive mode, an Access Violation occurs. This bit is valid even when V=0.

12 Kernel Write Enable (KWE)

This bit enables writes from kernel mode. If this bit is a 0 and a STORE is attempted while
in kernel mode, an Access Violation occurs. This bit is valid even when V=0.

11 User Read Enable (URE)

This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction fetch is
attempted while in user mode, an Access Violation occurs. This bit is valid even when V=0.

10 Supervisor Read Enable (SRE)

This bit enables reads frosupervisor mode. If this bit is a 0 and a LOAD or instruction
fetch is attempted while in supervisor mode, an Access Violation occurs. This bit is valid
even when V=0.

9 Executive Read Enable (ERE)

This bit enables reads from executive mode. If this bitis a 0 and a LOAD or instruction fetch
is attempted while in executive mode, an Access Violation occurs. This bit is valid even
when V=0.

8 Kernel Read Enable (KRE)

This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or instruction fetch is
attempted while in kernel mode, an Access Violation occurs. This bit is valid even when
V=0.
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Table 11-2 Page Table Entry (Continued)

Bits Description
7 Translation Buffer Miss Memory Barrier (NOMB)
When set, the requirement described in Section 5.6.4.3 is lifted for ensuring that all proces-
sors using a newly valid PTE also see any new contents of the related page. This allows the
TB-miss code to avoid potentially expensive global synchronization. Software is expected to
set this bit on PTEs when it is known that the page contents are already visible to all proces-
sors.
6-5 Granularity hint (GH)
Software may set these bits as follows to supply a hint to translatifiarbmplementéions
that a block of pages can be treated as a single larger page:
Page Size Before GH:
PTE<6:5> |8KB 16KB 32KB 64KB
Resulting Page Size:
00 8KB 1 KB 32KB 64KB
01 64KB 128KB 256KB 2MB
10 512KB 1MB 2MB 64MB
11 AMB 8MB 16MB 512MB
Note:

1. The block is a group of physically contiguous pages that are naturally aligned both
virtually and physically. Within the block, the PFN field in each PTE must map the
correct physical page for the virtual page to which the PTE corresponds.

2. Within the block, all PTEs have the same values for bits <15:0>, that is, protection,
fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry.
Itis UNPREDICTABLE which PTE values within the block are used if the granularity bits
are set inconsistently.
Programming Note:
A granularity hint might be appropriate for a large memory structure such as a
frame buffer ornonpaged pool that, in fact, is mapped into contiguous virtual
pages with identical protection, fault, and valid bits.
4 Address Space Match (ASM)
When set, this PTE matches all Address Space Numbers. For a given VA, ASM must be set
consistently in all processes; otherwise, the address mapping is UNPREDICTABLE.
3 Fault on Execute (FOE)

When set, a Fault on Execute exception occurs on an attempt to execute an instruction in the
page.
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Table 11-2 Page Table Entry (Continued)

Bits Description
2 Fault on Write (FOW)

When set, a Fault on Write exception occurs on an attempt to write any location in the page.
1 Fault on Read (FOR)

When set, a Fault on Read exception occurs on an attempt to read any location in the page.
0 Valid (V)

Indicates the validity of the PFN field. When V is set, the PFN field is valid for use by hard-
ware. When V is clear, the PFN field is reserved for use by software. The V bit does not
affect the validity of PTE<15:1> hits.

11.6.1 Changes to Page Table Entries

The operating system changes PTESs as part of its memory management functions. For exam-
ple, the operating system may set or clear the valid bit, change the PFN field as pages are
moved to and from external storage media, or modify the software bits. The processor hard-

ware never changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing a PTE one
field at a time may give incorrect system operation, for example, setting PTE<V> with one
instruction before establishing PTE<PFN> with another. Execution of an interrupt service rou-
tine between the two instructions could use an address that would map using the inconsistent
PTE. Software can solve this problem by building a complete new PTE in a register and then
moving the new PTE to the page table using a Store Quadword instruction (STQ).

Multiprocessing complicates the problem. Another processor could be reading (or even chang-
ing) the same PTE that the first processor is changing. Such concurrent access must produce
consistent results. Software must use some form of software synchronization to modify PTEs
that are already valid. Once a processor has modified a valid PTE, it is possible that other pro-
cessors in a multiprocessor system may have old copies of that PTE in their Translation Buffer.
When software changes a PTE, each processor may use either the old or the new PTE until
software performs a TB inviaate on that processor (after which, the processor may use only
the new PTE). An example of a case where either the old or new PTE could usefully be used is
when the PTE<NOMB?> bit is transitioned from zero to one.

Software may write new values into invalid PTEs using quadword store instructions (STQ).
Hardware must ensure that aligned quadword reads and writes are atomic operations. The fol-
lowing procedure must be used to change any of the PTE bits <15:0> of a shared valid PTE
(PTE<0>=1) such that an access that was allowed before the change is not allowed after the
change.

1. The PTE<O0> is cleared without changing any of the PTE bits <63:32> and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed. The VA used in
the TBIS must assume that the PTE granularity hint bits are zero.

3. After all processors have done the TBIS, the new PTE may be written changing any or
all fields.
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Programming Note:

The procedure above allows queue instructions that have probed in order to check that all
can complete, to service a TB miss. The queue instructions use the PTE even though the V
bit is clear, if the V bit was set during thastruction’s initial probe flow.

11.7 Memory Protection

Memory protection is the function of validating whether a particular typecokas is dbwed
to a specific page from a particular access mode. Access to each page is controlled by a protec-
tion code that specifies, for each access mode, whether read or write references are allowed.

The processor uses the following to determine whether an intended access is allowed:
* The virtual address, which is used to index page tables
* Theintendediccess type (read data, write data, or instruction fetch)
* The current access mode from the Prsmw Status

If the access is allowed and the address can be mapped (the Page Table Entry is valid), the
result is the physical address that corresponds to the specified virtual address.

For protection checks, the intended access is read for data loads and instruction fetch, and write
for data stores.

If an operand is an address operand, then no reference is made to memory. Hence, the page
need not be accessible nor map to a physical page.

11.7.1 Processor Access Modes

There are four processor modes:
* Kernel
* Executive
e Supervisor
e User

The access mode of a running process is stored in the Current Mode bits of the Processor Sta-
tus (PS) (see Section 14-2).

11.7.2 Protection Code

Every page in the virtual address space is protected according to its use. A program may be

prevented from reading or writing portions of its address space. Each page has an associated
protection code that describes the accessibility of the page for each processor mode. The code
allows a choice of read or write protection for each processor mode.

e Each mode’s access can be read/write, read-only, @ccess.
* Read and write accessibility are specified independently.
* The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE (see Table 11-2).
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The OpenVMS architecture allows a page to be designated as execute only by setting the read
enable bit for the access mode and by setting the fault on read and write bits in the PTE.

11.7.3 Access Violation Fault

An Access Violation fault occurs if an illegal access is attempted, as determined by the current
processor mode and the page’s protection field.

11.8 Address Translation

The page tables can be accessed from physical memory, or (to reduce overhead) through a self-
mapping to a linear region of the virtual address space. All implementations must support the
virtual access method and are expected to use it as the primary access method to enhance
performance.

Additionally, an optional reduced page table (RPT) mode is defined, which allows more effi-
cient mapping of very large blocks of memory.

The following sections describe the@ss mihods.

11.8.1 Physical Access for Page Table Entries

Physical address translation is performed by accessing entries in a multilevel page table struc-
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number (PFN)
of the highest-level page table.

In systems that implement the Virtual Address Boundary (VIRBND) register, the System Page
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page table. In
such systems, the virtual address to be translated is compared against the address stored in
VIRBND. Translations of lower addresses begin with the PFN in PTBR as the highest-level
page table. Translations of higher or equal addresses use the PFN in SYSPTBR as the highest-
level page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.24 and
13.3.18, respectively.

Levell is the highest-level page table. Bits <Levell> of the virtual address are used to index
into the Levell page table to obtain the physical PFN of the base of the next level (Level2)
page table. Bits <Level2> of the virtual address are used to index into the Level2 page table to
obtain the physical PFN of the base of the next level (Level3) page table. Bits <Level3> of the
virtual address are used to index into the Level3 page table to obtain the physical PFN of the
page being referenced. The PFN is concatenated with virtual address bits <byte within_page>
to obtain the physical address of the location being accessed.

If part of any page table resides in I/O space, or in nonexistent memory, the operation of the
processor is UNDEFINED.

If all the higher-level PTEs (those PTEs that map higher-significance portions of the virtual
address space than is mapped by Level3) are valid, the protection bits are ignored; the protec-
tion code in the Level3 PTE is used to determine accessibility. If a higher-level PTE is invalid,
an access-violation fault occurs if the PTE<KRE> equals zero. An Access-Violation fault on
any higher-level PTE implies that all lower-level page tables mapped by that PTE do not exist.
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Programming Note:

This mapping scheme does not require multiple contiguous physical pages. There are no
length registers. With a page size of 8KB, 3 pages (24KB) map 8MB of virtual address
space; 1026 pages (approximately 8MB) map an 8GB address space; and 1,049,601 pages
(approximately 8GB) map the entire 8TB 2**43 byte address space.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63.VA_SIZE>) NEQ SEXT(VA<VA SIZE-1>} THEN
{iniiate Access Violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN
ptor_value <- PTBR
ELSE
ptor_value <- SYSPTBR
ELSE
ptor value <- PTBR

! Read Physical
levell pte « ( { ptbr_value * page_size }+ {8 * VA <levell} )

IF levell pte<v> EQ 0 THEN
IF levell pte<KkRE> EQ 0 THEN
{iniiate Access Violation fault}
ELSE
{iniiate Translation Not Valid fault}

! Read Physical
level2_pte « ({levell pte<PFN> * page_size} + {8 * VA<level2>})

IF level2_pte<v> EQ 0 THEN
IF level2_pte<KRE> EQ 0 THEN
{iniiate Access Violation fault}
ELSE
{iniiate Translation Not Valid fault}

! Read Physical
level3 pte « ({level2_pte<PFN> * page_size} + {8 * VA<level3>})

IF {level3_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 3}} OR
{{level3_pte<URE> EQ 0} AND {read access} AND {PS<CM> EQ 3}} OR
{{level3_pte<SWE> EQ 0} AND {write access} AND {PS<CM> EQ 2}} OR
{{level3_pte<SRE> EQ 0} AND {read access} AND {PS<CM> EQ 2}} OR
{{level3_pte<EWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR
{{level3_pte<ERE> EQ 0} AND {read access} AND {PS<CM> EQ 1}} OR
{{level3_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR
{{level3_pte<KRE> EQ 0} AND {read access} AND {PS<CM> EQ O}}}

THEN

{iniiate Access Violation fault}

ELSE
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IF level3 pte<v> EQ 0 THEN
{iniiate Translation Not Valid fault}

IF {level3 _pte<FOW> EQ 1} AND {write access} THEN
{iniiate Fault On Write fault}

IF {level3 pte<FOR> EQ 1} AND {read access} THEN
{iniiate Fault On Read fault}

IF {level3 pte<FOE> EQ 1} AND {execute access} THEN
{iniiate Fault On Execute fault}

Physical_Address ~ {level3_pte<PFN> * page_size} OR VA<byte within_page>
11.8.2 Virtual Access for Page Table Entries

To reduce the overhead associated with the address translation in a multilevel page table struc-
ture, the page tables are mapped into a linear region of the virtual address space. The virtual

address of the base of the page table structure is set on a system-wide basis and is contained in
the VPTB IPR.

When a native mode DTB or ITB miss occurs, the TBMISS flows attempt to load the Level3
page table entry using a single virtual mode load instruction.

The algorithm involving the manipulation of the missing VA follows, wh@i®represents

pageSize:
tmp — LEFT_SHIFT (va, {64 - {lg(pS) * 4} - 9 })
tmp ~ RIGHT_SHIFT (tmp, {64 - {lg(PS) * 4} - 9} + lg(pS)-3})
tmp ~ VPTB OR tmp
tmp<2.0> ~ 0

At this point,tmpcontains the VA of the Level3 page table entry. A LDQ from that VA will
result in the acquisition of the PTE needed to satisfy the initial TBMISS condition.

However, in the PALcode environment, if a TBMISS occurs during an attempt to fetch the
Level3 PTE, it is necessary to use the longer sequence of multiple dependent loads described in
Section 11.8.1.

Section 13.3.25 contains the description of the VPTB IPR used to contain the virtual address of
the base of the page table structure.

The necessary mapping of the page tables for the correct function of the algorithm is done as
follows.

1. Select a §719(pageSize/8))+3hyta_aligned region (an address with 3*Ig(pageSize/8)+3)
low-order zeros) in the virtual address space. This value will be written into the VPTB
register.

2. Create one or two PTEs to map the page tables. Only one is required unless SYSPTBR
is implemented and software intends to use it (that is, VIRBND is to be set to a value
other than -1). Each PTE is initialized as follows:

PTE =0 ! Initialize all fields to zero
PTE<63:32> = PFN of Levell pagetable
| Set to the PFN from either the
I PTBR or SYSPTBR
1 I Set the kemel read enable bit
1 ! Set the valid bit

PTE<8>
PTE<O>
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3. Write the resulting PTE(S) into the page table entries thatespond to the VPTB
value. The PTE that contains the PTBR’s PFN is written to the page indicated by PTBR.
If SYSPTBR is in use, the PTE that contains the SYSPTBR'’s PFN is written to the page
indicated by SYSPTBR.

In either case, these are the Levell page tables.
4. Setall Levell and Level2 Valid PTEs to allow kernel read access.

5. Write the VPTB register with the selected base value.

Notes:

No validity checks need be made on the value stored in the VPTB in a running system.
Therefore, if the VPTB contains an invalid address, the operation is UNDEFINED.

SYSPTBR allows software to replicate portions of virtual memory contents in physical
memory. For example, in systems exhibiting non-uniform memory access times, read-only
portions of the operating system may be @epely instatiated in portions of physical
memory, which provides the fastest access time to a given processor. An identical virtual
address reference executed by multiple processors would translate by using each respective
processor's SYSPTBR to the physical memory instance that is local to that processor,
thereby increasing performance.

The physical page tables indicated by PTBR and SYSPTBR together map a single 64-bit
virtual address space. They also map themselves into a single linear region of the address
space, presenting to software one virtually accessible page table that maps the entire
address space. The set of Level3 PTEs contributed by each physical page table are
essentially disjoint from each other, with only the set indicated by PTBR being context-
switched.

11.8.3 Reduced Page Table (RPT) Mode

The reduced page table (RPT) mode is an optional extension of 64KB page size mode. A por-
tion of the address space is mapped by one fewer page table levels, allowing each of the entries
in the lowest-level page table to map a 512MB page. In implementations that support granular-
ity hints in hardware, applications can use these hints to make more efficient use of the
translation buffer. Applications that can use the 512MB granularity hint in 64KB page size
mode can use RPT mode for additional benefits.

With the 512MB granularity hint but without RPT, every entry in the Level3 page table maps
the same 512MB page. With RPT, that Level3 page table is eliminated entirely, and the Level2
PTE that would normally point to that Level3 page table is used to directly map the 512MB
page.

Therefore, in an RPT region, there is elimtioa of redundant page table pages and compres-
sion of page table space. The compressed PTEs are more likely to fit in hardware caches. If
there is locality of reference, a new PTE that is needed to satisfy a mapping is more likely to be
present in the cache. Additionally, a single TB entry that maps the VA of the lowest-level page
table now allows access to PTEs mapping 4 TB, rather than 512 MB, of memory.

In order to use RPT mode, the feature must be available and enabled in the implementation,
and:

* Use the 64KB page size.
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* Every L2 PTE in the reduced page table region must RAVE<GH>=1}%, that is, a
512MB page size.

* The PFN field of the PTE must refer to a 512MB aligned page.
* The RPT region is selected by usings VAs such thedvaSize-1:vaSize-2>=01 .

11.8.3.1 Physical Access for Page Table Entries in Reduced Page Table Mode

Physical address translation is performed by accessing entries in a two-level page table struc-
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number (PFN)
of the highest-level (Levell) page table.

In systems that implement the Virtual Address Boundary register (VIRBND), the System Page
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page table. In
such systems, the virtual address to be translated is compared against the address stored in
VIRBND. Translations of Level2 addresses begin with the PFN in PTBR as the highest-level
page table. Translations of Levell addresses use the PFN in SYSPTBR as the highest-level
page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.24 and
13.3.18, respectively.

Levell is the highest-level page table. Bits <Levell> of the virtual address are used to index
into the Levell page table to obtain the physical PFN of the base of the next level (Level2)

page table. Bits <Level2> of the virtual address are used to index into the Level2 page table to
obtain the physical PFN of the page being referenced. The PFN is concatenated with virtual
address bits <byte_within_page> to obtain the physical address of the location being accessed.

If part of any page table resides in I/O space, or in nonexistent memory, the operation of the
processor is UNDEFINED.

If the Levell PTE is valid, the protection bits are ignored; the protection code in the Level2
PTE is used to determine accessibility. If a Levell PTE is invalid, an access-violation fault
occurs if the PTE<KRE> equals zero. An access-violation fault on any Levell PTE implies
that all Level2 page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63.VA_SIZE>) NEQ SEXT(VA<VA SIZE-1>} THEN
{iniiate Access Violation fault}
IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN
ptor_value <- PTRB
ELSE
ptor_value <- SYSPTBR
ELSE
ptor_value <- PTBR

! Read Physical
levell pte « ( { ptbr_value * page size} + { 8 * VA<levell} )
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IF levell pte<v> EQ 0 THEN
IF levell pte<KRE> EQ 0 THEN
{iniiate Access Violation fault}
ELSE
{iniiate Translation Not Valid fault}

! Read Physical
level2_pte « ({levell_pte<PFN> * page_size} + {8 * VA<level2>})

IF {level2_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 3}} OR
{{level2_pte<URE> EQ 0} AND {read access} AND {PS<CM> EQ 3}} OR
{{level2_pte<SWE> EQ 0} AND {write access} AND {PS<CM> EQ 2}} OR
{{level2_pte<SRE> EQ 0} AND {read access} AND {PS<CM> EQ 2}} OR
{{level2_pte<EWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR
{{level2_pte<ERE> EQ 0} AND {read access} AND {PS<CM> EQ 1}} OR
{{level2_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR
{{level2_pte<KRE> EQ 0} AND {read access} AND {PS<CM> EQ O}}

THEN

{iniiate Access Violation fault}
ELSE
IF level2_pte<v> EQ 0 THEN
{iniiate Translation Not Valid fault}

IF {level2_pte<FOW> EQ 1} AND {write access} THEN
{iniiate Fault On Write fault}

IF {level2_pte<FOR> EQ 1} AND f{read access} THEN
{iniiate Fault On Read fault}

IF {level2_pte<FOE> EQ 1} AND {execute access} THEN
{iniiate Fault On Execute fault}

Physical Address « {level2_pte<PFN> * page size} OR VA<byte within_RPT_page 1>
11.8.3.2 Virtual Access for Page Table Entries in Reduced Page Table Mode

To reduce overhead associated with the address translation in a multilevel page table structure,
the page tables are mapped into a linear region of the virtual address space. The virtual address
of the base of the page table structure is set on a system-wide basis and is contained in the
VPTB IPR.

When a native mode DTB or ITB miss occurs, it is desirable that the TBMISS flow attempt to
load the lowest-level PTE by using a single virtual load instruction without regard to whether
the missing VA is mapped by two levels (RPT) or three levels of page table. (See Section E.2.2
for the 21364 implementation.)

11.9 Translation Buffer

In order to save actual memory references when repeatedly referencing the same pages, hard-
ware implementations include a translation buffer to remember successful virtual address
translations and page states.

1 byte_within_RPT_page contains those bits that would have been VA<Level3>, concatenated with the VA<byte_within_page>
field for 64 KB page table mode .
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When the process context is changed, a new value is loaded into the Address Space Number
(ASN) internal processor register with a Swap Privileged Context instruction (CALL_PAL
SWPCTX). (See Section 10.6 and Chapter 12.) This causes address translations for pages with
PTE<ASM> clear to be invalidated on a processor that does not implement address space nhum-
bers. Additionally, when the software changes any part (except for the Software field) of a
valid Page Table Entry, it must also move a virtual address within the corresponding page to
the Translation Buffer Invalidate Single (TBIS) internal processor register with the MTPR
instruction (see Section 13.3.22). Changes to PTE<NOMB> are also an exception to this
requirement. This bit only has an effect when a PTE is loaded into the translation buffer. Thus,
there is no need to invalidate the TB when the bit changes.

Implementation Note:

Some implementations may invalidate the entire Translation Buffer on an MTPR to TBIS.
In general, implementations may invalidate more than the required translations in the TB.

The entire Translation Buffer can be invalidated by doing a write to Translation Buffer Invali-
date All register (CALL_PAL MTPR_TBIA), and all ASM=0 entries can be invalidated by
doing a write to Translation Buffer Invalidate All Process register (CAPAL
MTPR_TBIAP). See Section 13.3.21.

The Translation Buffer must not store invalid PTEs. Therefore, the software is not required to
invalidate Translation Buffer entries when making changes for PTEs that are already invalid.

After software changes a valid Levell or Level2 PTE, software must flush the translation for
the corresponding page in the virtual page table. Then software must flush the translations of
all valid pages mapped by that page. In the case of a change to a Levell PTE, this action must
be taken through a second iteration.

The TBCHK internal processor register is available for interrogating the presence of a valid
translation in the Translation Buffer (see Section 13.3.19).

Implementation Note:

Hardware implementors should be aware that a single, direct-mapped TB has a potential
problem when a load/store instruction and its data map to the same TB location. If TB
misses are handled in PALcode, there could be an endless loop unless the instruction is
held in an instruction buffer or a translated physical PC is maintained by the hardware.

11.10 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space numbers
(process tags) to reduce the need for invalidation of cached address translations for process
specific addresses when a context switch occurs. The supported ASN range is 0...MAX_ASN.
MAX_ASN is provided in the HWRPB MAX_ASN field. See Section 26.1 for a detailed
description of the HWRPB.

Note:

If an ASN outside of the range 0...MAX_ASN is assigned to a process, the operation of
the processor is UNDEFINED.
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The address space number for the current process is loaded by software in the Address Space
Number (ASN) internal processor register with a Swap Privileged Context instruction. ASNs
are processor specific and the hardware makes no attempt to maintain coherency across multi-
ple processors. In a multiprocessor system, software is responsible for ensuring the consistency
of TB entries for processes that might be rescheduled on different processors.

Systems that support ASNs should have MAX_ASN in the range 13...65535. The number of
ASNs should be determined by the market a system is targeting.

Programming Note:

System software should not assume that the number of ASNs is a power of two. This
allows, for example, hardware to use N TB tag bits to encode (2*8NASN values, one
value for ASM=1 PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several complications in a
multiprocessor system. Consider the case in which a process that executed on processor 1
is rescheduled on processor 2. If a page is deleted or its protection is changed, the TB in
processor 1 has stale data. One solution is to send an interprocessonghto all the
processors on which this process could have run and cause them to invalidate the changed
PTE. That results in significant overhead in a system with several processors. Another
solution is to have software invalidate all TB entries for a process on a new processor
before it can begin execution, if the process executed on another processor during its
previous execution. That ensures the deletion of possibly stale TB entries on the new
processor. A third solution is to assign a new ASN whenever a process is run on a
processor that is not the same as the last processor on which it ran.

11.11 Memory Management Faults

Five types of faults are associated with memory access and protection:
* Access Control Violation (ACV)

Taken when the protection field of the Level3 PTE that maps the data indicates that the
intended page referenagould be illegal in the specified access mode. An Access
Control Violation fault is also taken if the KRE bit iBero in aninvalid Levell, or
Level2 PTE.

For reduced page table regions, ACV taken when the protection field of the Level2
PTE that maps the data indicates that the intended page reference would be illegal in
the specified access mode. An Access Control Violation fault is also taken if the KRE
bit is zero in arinvalid Levell PTE.

* Faulton Read (FOR)

Occurs when a read is attempted with PTE<FOR> set.
* Fault on Write (FOW)

Occurs when a write is attempted with PTE<FOW> set.
* Fault on Execute (FOE)

Occurs when instruction execution is attempted with PTE<FOE> set.
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e Translation Not Valid (TNV)

Taken when a read or write reference is attemptedudih an invalid PTE in a Levell,
Level2, or Level3 page table.

See Section 14.3.1 for a detailed description of these faults.

Those five faults have distinct vectors in the System Control Block. The Access Violation
(ACV) fault takes precedence over the faults TNV, FOR, FOW, and FOE. The Translation Not
Valid (TNV) fault takes precedence over the faults FOR, FOW, and FOE.

The faults FOR and FOW can occur simultaneously in the CALL_PAL queue instructions, in
which case the order that the exceptions are taken is UNPREDICTABLE (see Section 10.1).
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Chapter 12

Process Structure (11-A)

12.1 Process Definition

A process is the basic entity that is scheduled for execution by the processor. A process repre-
sents a single thread of execution and consists of an address space and both hardware and
software context.

The hardware context of a process is defined by:
* Thirty-one integer registers and 31 floating-point registers
* Processor Status (PS)
e Program Counter (PC)
* Four stack pointers
e Asynchronous System Trap Enable and summary registers (ASTEN, ASTSR)
* Process Page Table Base Register (PTBR)
e Address Space Number (ASN)
* Floating Enable Register (FEN)
e Charged Process Cycles
* Process Unique value
e Data Alignment Trap (DAT)
* Performance Monitoring Enable Register (PME)

The software context of a process is defined by operating system software and is system
dependent.

A process may share the same address space with other processes or have an address space of
its own. There is, however, no separate address space for system software, and therefore, the
operating system must be mapped into the address space of each process (see Chapter 11).

In order for a process to execute, its hardware context must be loaded into the integer regis-
ters, floating-point registers, and internal processor registers. When a process is being
executed, its hardware context is continuously updated. When a process is not being executed,
its hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed by loading the hard-
ware context for a new process, is termed context switching. Context switching occurs as one
process after another is scheduled by the operating system for execution.
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12.2 Hardware Privileged Process Context

The hardware context of a process is defined by a privileged part that is context switched with
the Swap Privileged Context instruction (SWPCTX) (see Section 10.6), and a nonprivileged
part that is context switched by operating system software.

When a process is not executing, its privileged context is stored in a 128-byte naturally aligned
memory structure called the Hardware Privileged Context Block BGRB). (See Figure 12—
1)

Figure 12-1 Hardware Privileged Context Block

63 62 61 32 31 16 15 8 7 4310

Kernel Stack Pointer (KSP) ‘HWPCB
Executive Stack Pointer (ESP) +8
Supervisor Stack Pointer (SSP) +16
User Stack Pointer (USP) +24
Page Table Base Register (PTBR) +32
ASN +40
D|P | F
AM M E|:+56
T|E B N
Charged Process Cycles +64
Process Unique Value +72
PALcode Scratch Area of 6 Quadwords +80

The Hardware Privileged Context Block (HWPCB) for the current process is specified by the
Privileged Context Block Base register (PCBB). (See Section 13.3.11.)

The Swap Privileged Context instruction (SWPCTX) saves the privileged context of the cur-
rent process into the HWPCB specified BLBB, loads a new value into PCBB, and then
loads the privileged context of the new process into the appropriate hardware registers.

The new value loaded into PCBB, as well as the contents of the Privileged Context Block,
must satisfy certain constraints or an UNDEFINED operation results:

* The physical address loaded into PCBB must be 128-byte aligned and describes 16
contiguous quadwords that are in a memory-like region. (See Section 5.2.4.)

* The value of PTBR must be the Page Frame Number of an existent page that is in a
memory-like region.

It is the responsibility of the operating system to save and load the nonprivileged part of the
hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to operating system soft-
ware and passes ownership of the new HWPCB from the operating system to the processor.
Any attempt to write a HWPCB while ownership resides with the processor has UNDE-
FINED results. If the HWPCB is read while ownership resides with the processor, it is
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UNPREDICTABLE whether the original or an updated value of a field is read. The processor
can update an HWPCB field at any time. The decision as to whether or not a field is updated is
made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by PALcode.
The FEN bit reflects the setting of the FEN IPR.

Setting the PME bit alerts any performance hardware or software in the system to monitor the
performance of this process.

The IMB bit records that an IMB was issued in user mode.

The DAT bit controls whether data alignment traps that are fixed up in PALcode are reported
to the operating system. If the bit is clear, the trap is reported. If the bit is set, after the fixup,
return is to the user. See Section 14.6.

The Charged Process Cycles is the total number of PCC register counts that are charged to the
process (modulo 2**32). When a process context is loaded by the SWPCTX instructions, the
contents of the PCC count field (PCC_CNT) are subtracted from the contents of
HWPCB[64]<31:0> and the result is written to the PCC offset field (PCC_OFF):

PCC<63:32> . (HWPCB[B4]<310> - PCC<31:0>)

When a process context is saved by the SWPCTX instruction, the charged process cycles is
computed by performing an unsigned add of PCC<63:32> and PCC<31:0>. That value is writ-
ten to HWPCB[64]<31:0>.

Software Programming Note:

The following example returns in RO the current PCC register count (modulo 2**32) for a
process. Care is taken not to cause an unwanted sign extension.

RPCC RO ; Read the processor cycle counter
SLL RO, #32, R1 ; Line up the offset and count fields
ADDQ RO, R1, RO ; Do add

SRL RO, #32, RO ; Zero extend the cycle count to 64 bits

The Process Unique value is that value used in support of multithread implementations. The
value is stored in the HWPCB when the process is not active. When the process is active, the
value may be cached in hardware internal storage or kept only in the HWPCB.

12.3 Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of events that are not
synchronized with its execution but that must be dealt with in the context of the process with
minimum delay.

Asynchronous System Traps (ASTS) interrupt process execution and are controlled by the AST
Enable (ASTEN) and AST Summary (ASTSR) internal processor registers. (See Sections
13.3.2 and 13.3.3, respectively.)
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The AST Enable register (ASTEN) contains an enable bit for each of the four processor access
modes. When the bit corresponding to an access mode is set, ASTs for that mode are enabled.
The AST enable bit for an access mode may be changed by executing a Swap AST Enable
instruction (SWASTEN; see Section 10.1.13), or by executing a Move to Processor Register
instruction specifying ASTEN (MTPR ASTEN; see Section 13.3.2).

The AST Summary Register (ASTSR) contains a pending bit for each of the four processor
access modes. When the bit corresponding to an access mode is set, an AST is pending for that
mode.

Kernel mode software may request an AST for a particular access mode by executing a Move
to Processor Register instruction specifying ASTSR (MTPR ASTSR; see Section 13.3.3).

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>, and PS<IPL>. If
PS<IPL> is less than 2, and there is an AST pending and enabled for an access mode that is
less than or equal to PS<CM> (that is, an equal or more privileged access mode), an AST is
initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are not allowed to inter-
rupt execution in a more privileged access mode.

12.4 Process Context Switching

Process context switching occurs as one process after another is scheduled for execution by
operating system software. Context switching requires the hardware context of one process to
be saved in memory followed by the loading of the hardware context for another process into
the hardware registers.

The privileged hardware context is swapped with the CALL_PAL Swap Privileged Context
instruction (SWPCTX). Other hardware context must be saved and restored by operating sys-
tem software.

The sequence in which process context is changed is important because the SWPCTX instruc-
tion changes the environment in which the context switching software itself is executing. Also,
although hardware does not enforce this, it is advisable to execute the actual context switching
software in an environment that cannot be context switched (that is, at an IPL high enough that
rescheduling cannot occur).

The SWPCTX instruction is the only method provided for loading certain internal processor
registers. The SWPCTX instruction always saves the privileged context of the old process and
loads the privileged context of a new process. Therefore, a valid HWPCB must be available to
save the privileged context of the old process as well as load the privileged context of the new
process.

At system initialization, a valid HWPCB is constructed in the Hardware Restart Parameter
Block (HWRPB) for the primary processor. (See Section 26.1.) Thereafter, it is the responsibil-
ity of operating system software to ensure a valid HWPCB when executing a SWPCTX
instruction.
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Chapter 13

Internal Processor Registers (I+A)

13.1 Internal Processor Registers

This chapter describes the OpenVMS Internal Processor Registers (IPRs). These registers are
read and written with Move from Processor RegistddFPR) and Move to Processor gster
(MTPR) instructions. See Section 10.6.

Those instructions accept an inputaspnd in R16 and return agselt, if any, in RO. Registers
R1, R16, and R17 are UNPREDICTABLE after a CALL_PAL MxPR routine. If a CALL_PAL
MxPR routine does not return a result in RO, then RO is also UNPREDICTABLE on return.

Some IPRs (for example, ASTSR, ASTEN, IPL) may be both read and written in a combined
operation by performing an MTPR instruction.

Internal Processor Registers may or may not be implemented as actual hardware registers. An
implementation may choose any combination of PALcode and hardware to produce the archi-
tecturally specified function. Internal Processor Registers are only accessible from kernel
mode.

13.2 Stack Pointer Internal Processor Registers

The stack pointers for user, supervisor, and executive stacks are accessible as IPRs through the
CALL_PAL MTPR and MFPR instructions. An implementation may retain some or all of
these stack pointers only in the HWPCB. In this case, MTPR and MFPR for these registers
must access the corresponding PCB locations. However, implementations that have these stack
pointers in internal hardware registers are not required to access the corresponding HWPCB
locations for MTPR and MFPR. The HWPCB locations get updated when a SWPCTX instruc-
tion is executed.

An implementation may also choose to keep the kernel stack pointer (KSP) in an internal hard-
ware register (labeled IPR_KSP); however, this register is not directly accessible through
MTPR and MFPR instructions. Because access to the KSP requires kernel mode, the actual
KSP is the current mode stack pointer (R30); thus access to KSP is provided through R30, and
no MTPR or MFPR access isqaired. PALcode routines can directly access IPR_KSP as
needed.

At system initialization, the value of the KSP is taken from the initial HWPCB (see Section
12.2). Table 13-1 summarizes the IPRs.
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13.3 IPR Summary

Table 13-1 Internal Processor Register (IPR) Summary

Input Output Context
Register Name Mnemonic Access T R16 RO Switched
Address Space Number ASN R — Number Yes
AST Enable ASTEN R/W* Mask Mask Yes
AST Summary Register ASTSR R/W* Mask Mask Yes
Data Alignment Trap Fixup DATFX W Value — Yes
Executive Stack Pointer ESP R/W Address Address  Yes
Floating-point Enable FEN R/W Value Value Yes
Interprocessor Int. Request IPIR W Number — No
Interrupt Priority Level IPL R/W* Value Value No
Kernel Stack Pointer KSP None — — Yes
Machine Check Error Summary MCES R/W Value Value No
Performance Monitoring PERFMON W* IMP IMP No
Privileged Context Block Base PCBB R — Address No
Processor Base Register PRBR R/W Value Value No
Page Table Base Register PTBR R — Frame Yes
System Control Block Base SCBB R/W Frame Frame No
Software Int. Request Register SIRR Level — No
Software Int. Summary Register SISR R — Mask No
Supervisor Stack Pointer SSP R/W Address Address Yes
System Page Table Base SYSPTBR R/W Value Value Yes
TB Check TBCHK R Number Status No
TB Invalid. All TBIA w — — No
TB Invalid. All Process TBIAP w — — No
TB Invalid. Single TBIS W Address — No
TB Invalid. Single Data TBISD W Address — No
TB Invalid. Single Instruct. TBISI W Address — No
User Stack Pointer USP R/W Address Address  Yes
Virtual Address Boundary VIRBND R/W Address Address Yes
Virtual Page Table Base VPTB R/W Address Address No
Who-Am-| WHAMI R — Number No

T Access symbols are defined in Table 13-2.
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Table 13-2 Internal Processor Register (IPR) Access Summary

Access Type Meaning

R Access by MFPR only.

w Access by MTPR only.

R/W Access by MFPR or MTPR.

W* Read and Write access accomplished by MTPR. See Section 13.1 for details.

R/W* Access by MFPR or MTPR. Read and Write access accomplished by MTPR. See

Section 13.1 for details.
None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed.
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13.3.1 Address Space Number (ASN)

Access:

Read

Operation:

IF {ASN are implemented} THEN
RO ~ ZEXT(ASN)

ELSE
RO - O

Value at System Initialization:
Zero
Format:

Figure 13-1: Address Space Number (ASN) Register

63 0

Address Space Number

RO

Description:

Address Space Numbers (ASNs) are used to further qualify Translation Buffer references. See
Section 11.9. If ASNs are implemented, the current ASN may be read byitrgan MFPR
instruction specifying ASN.

As processes are scheduled for execution, the ASN for the next process to execute is loaded
using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and Chapter 12.

The ASN register is an implicit operand to the CALL_PMFPR_IPR, TBCHK, and TBISx
PALcode instructions, in which it is used to qualify the virtual address supplied in R16.
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13.3.2 AST Enable (ASTEN)

Access:
Read
Write*
Operation:
RO — ZEXT (ASTEN<3.0>) ! Read (MFPR)
RO — ZEXT (ASTEN<3.0>) I Write* (MTPR)

ASTEN<3.0> ~ {{ASTEN<3:0> AND R16<3.0>} OR R16<7:4>}
{check for pending ASTSs}

Value at System Initialization:
Zero
Format:

Figure 13-2: AST Enable (ASTEN) Register

63 8

IGN

Z0C |~
ZOoWw |o
Z0om |«
ZOX |»
rOC |w
roOowm |~
—rOm |~
—OX |o

Format of RO:

63 4

ZMC |»
Zmwm |~
Zmm |+~
ZMX |o

RAZ

Description:

The AST Enable Register records the AST enable state for each of the modes: kernel (KEN),
executive (EEN), supervisor (SEN), and user (UEN). By writing R16 appropriately and then
executing an MTPR instruction specifying ASTEN, the value of ASTEN may be simulta-
neously read and modified. R16 contains bit masks that are used to determine the new value of
ASTEN:

* Bits R16<0> and R16<4> control the new state of kernel enable.
* Bits R16<1> and R16<5> control the new state of executive enable.
* Bits R16<2> and R16<6> control the new state of supervisor enable.
* Bits R16<3> and R16<7> control the new state of user enable.
An MFPR to ASTEN reads the current value of the ASTEN and returns this value in RO.

An MTPR to ASTEN begins by reading the current value of ASTEN and returthirsgvalue
in RO. The current value of ASTEN is then ANDed with bits R16<3:0>; these bits preserve (if
set to 1) or clear (if equal to 0) the current state of their corresponding enable modes. The value
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produced by this operation is then ORed with bits R16<7:4>; these bits turn on (if setto 1) or
do not affect (if equal to 0) their corresponding enable modes. The resulting value is then writ-
ten to the ASTEN.

Note:

All AST enables can be cleared by loading a zero into R16 and executing an MTPR
instruction specifying ASTEN. To enable an AST for a given mode, load R16 with a mask
that has bits <3:0> set and one of the bits <7:4> corresponding to the AST mode to be set.
Then execute an MTPR instruction specifying ASTEN.

As processes are scheduled for execution, the state of the AST enables for the next process to
execute is loaded using the Swap Privileged Context (SWPCTX) instruction. The Swap AST
Enable (SWASTEN) instruction can be used to change the enable state for the current access
mode. See Section 10.1.13 and Chapter 12.
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13.3.3 AST Summary Register (ASTSR)

Access:
Read
Write*
Operation:
RO — ZEXT(ASTSR<3.0>) ! Read (MFPR)
RO  ZEXT(ASTSR<3.0>) I Write* (MTPR)

ASTSR<3.0> ~ {{ASTSR<3:0> AND R16<3.0>} OR R16<7:4>}
{check for pending ASTSs}

Value at System Initialization:
Zero
Format:

Figure 13-3: AST Summary Register (ASTSR)

63 8

IGN

Z0OC |~
Z0Ww |o
ZOom |o
ZOX |+~
rOC |w
roOwm |~
—Om |+~
rOX |o

R16

63 4

RAZ

OUC |»
Oow;m |~
oTom |+~
OTUTX |o

RO

Description:

The AST Summary Registgecords the AST pending state for each of the modes: kernel
(KPD), executive (EPD), supervisor (SPD), and user (UPD).

By writing R16 appropriately and then executing an MTPR instruction specifying ASTSR, the
value of ASTSR may be simultaneously read and modified. R16 contains bit masks used to
determine the new value of ASTSR:

* Bits R16<0> and R16<4> control the new state of kernel pending.
* Bits R16<1> and R16<5> control the new state of executive pending.
* Bits R16<2> and R16<6> control the new state of supervisor pending.
* Bits R16<3> and R16<7> control the new state of user pending.

An MFPR reads the current value of ASTSR and returns this value in RO.

An MTPR to ASTSR begins by reading the current value of ASTSR and returning this value in
RO. The current value of ASTSR is then ANDed with bits R16<3:0>; these bits preserve (if set
to 1) or clear (if equal to 0) the current state of their corresponding pending modes. The value
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produced by this operation is then ORed with bits R16<7:4>; these bits turn on (if setto 1) or
do not affect (if equal to 0) their corresponding pending modes. The resulting value is then
written to the ASTSR.

Note:

All AST requests can be cleared by loading a zero in R16 andutixecan MTPR
instruction specifying ASTSR. To request an AST for a given mode, load R16 with a mask
that has bits <3:0> set and one of the bits <7:4> corresponding to the AST mode to be set.
Then execute an MTPR instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for the next process to exe-
cute is loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7
and Chapter 12.

When the processor IPL is less than 2, and proper enabling conditions are present, an AST
interrupt is initiated at IPL 2 and the corresponding access mode bitin ASTSR is cleared. See
Section 14.7.6.
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13.3.4 Data Alignment Trap Fixup (DATFX)

Access:

Write

Operation:

DATFX ~ R16<0>
(HWPCB+56)<63> ~ DATFX

Value at System Initialization:

Zero

Format:

Figure 13—4: Data Alignment Trap Fixup (DATFX)

63 210

>0

Description:

Data Alignment traps are fixed up in PALcode and are reported to the operating system under
the control of the DAT bit. If the bit is zero, the trap is reported. For the LDx_L and STx_C
instructions, no fixup is possible and an illegal operand exception isrgéad.

For the description of the data alignment traps, see Section 14.6.
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13.3.5 Executive Stack Pointer (ESP)

Access:

Read/Write

Operation:

IF {interal registers for stack pointers} THEN
RO - ESP

ELSE
RO ~ (IPR_PCBB + HWPCB _ESP)

IF {interal registers for stack pointers} THEN
ESP ~ RI16

ELSE
(IPR_PCBB + HWPCB_ESP). R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 13-5: Executive Stack Pointer (ESP)
63

! Read

I Write

Stack Address

Description:

This register allows the stack pointer for executive mode (ESP) to be read and written via

MFPR and MTPR instructions that specify ESP.

The current stack pointer may be read and written directly by specifying scalar register SP

(R30).

As processes are scheduled for execution, the stack pointers for the next process to execute are
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and

Chapter 12.
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13.3.6 Floating Enable (FEN)

Access:
Read/Write
Operation:
RO — ZEXT(FEN) | Read
FEN — R16<0> I Write
(HWPCB+56)<0> ~ FEN ! Update PCB on Write

Value at System Initialization:

Zero

Format:

Figure 13-6: Floating Enable (FEN) Register

63 1 0

Zmm

Description:

The floating-point unit can be disabled with the CALL_PAL CLRFEN instruction. If the Float-
ing Enable Register (FEN) is zero, all instructions that have floating registers as operands
cause a floating-point disabled fault. See Section 14.3.1.1.
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13.3.7 Interprocessor Interrupt Request (IPIR)

Access:

Write

Operation:
IPR ~ R16

Value at System Initialization:

Not applicable

Format:

Figure 13-7: Interprocessor Interrupt Request (IPIR) Register

63 0
Processor Number

R16

Description:

An interprocessor interrupt can be requested on a specified processor by writing that proces-
sor’s number into the IPIR register through an MTPR instruction. The interrupt request is
recorded on the target processor and is initiated when proper enabling conditions are present.

Programming Note:
The interrupt need not be initiated before the next instruction is executed on the requesting
processor, even if the requesting processor is also the target processor for the request.

For additional information on interprocessor interrupts, see Section 14.4.6.
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13.3.8 Interrupt Priority Level (IPL)

Access:
Read/Write*

Operation:
RO — ZEXT(PS<IPL>) ! Read
RO — ZEXT(PS<IPL>) ! Write*
PS<IPL> ~ RI16<4:0> I Write

{check for pending ASTs or interrupts}

Value at System Initialization:

31

Format:

Figure 13-8: Interrupt Priority Level (IPL)
63

SBZ IPL

Description:

An MFPR IPL returns the current interrupt priority level in RO. An MTPR IPL returns the cur-
rent interrupt priority level in RO and sets the interrupt priority level to the value in R16. If
proper enabling conditions are present, an interrupt or AST is initiated prior to issuing the next
instruction. See Sections 14.4.2 and 14.7.6. R16<63:5> are defined as RAZ/SBZ. Therefore,
the presence of nonzero bits upon write in R16<63:5> may cause UNDEFINED results.
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13.3.9 Machine Check Error Summary Register (MCES)

Access:
Read/Write

Operation:
RO — ZEXT(MCES) ! Read
IF {R16<0> EQ 1} THEN MCES<0> — 0 I Write

IF {R16<1> EQ 1} THEN MCES<1> 0
IF {R16<2> EQ 1} THEN MCES<2> 0
MCES<3> . R16<3>
MCES<4> . R16<4>

Value at System Initialization:

Zero

Format:

Figure 13-9: Machine Check Error Summary (MCES) Register

63 3231 543210
D|D|P|S|M

IMP Reserved S|P|C|C|C

C|C|E|E[K

Description:
The use of the MCES IPR is described in Section 14.5.

MCK (MCES<0>) is set by the hardware or PALcode when a processor or system machine

check occurs. SCE (MCES<1>) is set by the hardware or PALcode when a system correctable
error occurs. PCE (MCES<2>) is set by the hardware or PALcode when a processor correct-
able error occurs.

Setting the corresponding bit(s) in R16 clears MCK, SCE, and PCE. MCK is cleared by the
operating system machine check error handler and used by the hardware or PALcode to detect
double machine checks. SCE and PCE are cleared by the operating system or processor sys-
tem correctable error handlers; these bits are used to indicate that the associated correctable
error logout area may be reused by hardware or PALcode. In the event of double correctable
errors, PALcode does not overwrite the logout area and does not force the processor to enter
console I/0O mode. See Section 14.5.1.

DPC (MCES<3>) and DSC (MCES<4>) are used to disable reporting of correctable errors to
system software. The generation and correction of the machine check are not affected; only the
report to system software is disabled. Setting DPC disables reporting of processor-correctable
machine checks. Setting DSC disables reporting of system-correctable machine checks. Imple-
mentation-dependent (IMP) bits may be used to report implementation-specific errors.
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13.3.10 Performance Monitoring Register (PERFMON)

Access:

Write*

Operation:

R16 contains implementation specific input values
R17 contains implementation specific imput values
RO may return implementation specific values

!
!
!
I Operations and actions taken are implementation specific

Value at System Initialization:

Implementation Dependent

Format:

Figure 13-10: Performance Monitoring (PERFMON) Register

63 0

IMP

Description:

The arguments and actions of this performance monitoring function are platform and chip
dependent. The functions, when defined for an implementation, are described in Appendix E.

R16 and R17 contain implementation-dependent input values. Implementation-specific values
may be returned in RO.
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13.3.11 Privileged Context Block Base (PCBB)

Access:

Read

Operation:
RO — ZEXT(PCBB)

Value at System Initialization:

Address of processor’s bootstrap HWPCB

Format:

48 47

Figure 13-11: Privileged Context Block Base (PCBB) Register
63

RAZ

Physical Address

RO

Description:

The Privileged Context Block Base Register contains the physical address of the privileged
context block for the current process. It may be read by executing an MFPR instruction speci-

fying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7

and Chapter 12.
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13.3.12 Processor Base Register (PRBR)

Access:
Read/Write

Operation:
RO —~ PRBR | Read
PRBR — R16 I Write

Value at System Initialization:

UNPREDICTABLE

Format:

Figure 13-12: Processor Base Register (PRBR)

63 0

Operating System-Dependent Value

Description:

In a multiprocessor system, it is desirable for the operating system to be able to locate a proces-

sor-specific data structure in a simple and straightforward manner. The Processor Base

Register provides a quadword of operating system-dependent state that can be read and written
via MFPR and MTPR instructions that specify PRBR.
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13.3.13 Page Table Base Register (PTBR)

Access:

Read

Operation:
RO — PTBR

Value at System Initialization:
Value in the bootstrap HWPCB
Format:

Figure 13-13: Page Table Base Register (PTBR)
63

3231 0

RAZ Page Frame Number

RO

Description:

The Page Table Base Register contains the page frame number of the first-level page table for
the current process. It may be read by executing an MFPR instruction specifying PTBR. See
Chapter 11.

As processes are scheduled for execution, the PTBR for the next process to execute is loaded
using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and Chapter 12.
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13.3.14 System Control Block Base (SCBB)

Access:
Read/Write

Operation:
RO — ZEXT(SCBB) | Read
SCBB ~ R16 I Write

Value at System Initialization:
UNPREDICTABLE
Format:

Figure 13-14: System Control Block Base (SCBB) Register

63 32 31 0

IGN/RAZ Page Frame Number

Description:

The System Control Block Base Register holds the Page Frame Number (PFN) of the System
Control Block, which is used to dispatch exceptions and interrupts, and may be read and writ-
ten by executing MFPR and MTPR instructions that specify SCBB. See Section 14.6.

When SCBB is written, the specified physical address must be the PFN of a page that is nei-
ther in 1/O space nor nonexistent memory, or UNDEFINED operation will result.
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13.3.15 Software Interrupt Request Register (SIRR)

Access:

Write

Operation:

IF R16<3:0> NE 0 THEN
SISR<R16<3.0>> ~ 1

Value at System Initialization:

Not applicable

Format:

Figure 13-15: Software Interrupt Request Register (SIRR)
63

IGN LVL

R16

Description:

A software interrupt may be requested for a particular Interrupt Priority Level (IPL) by execut-
ing an MTPR instruction specifying SIRR. Software interrupts may be requested at levels 0
through 15 (requests at level 0 are ignored).

An MTPR SIRR sets the bit corresponding to the specified interrupt level in the Software
Interrupt Summary Register (SISR).

If proper enabling conditions are present, a software interrupt is initiated prior to issuing the
next instruction. See Sections 14.4.1 and 14.7.6.
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13.3.16 Software Interrupt Summary Register (SISR)

Access:

Read

Operation:
RO — ZEXT(SISR<15:0>)

Value at System Initialization:

Zero

Format:

Figure 13-16: Software Interrupt Summary Register (SISR)

63 161514131211109 8 76 54 3 2 1 0
LU e efep{ R
RAZ R|R[R|R|R|R[R|R|R|R[R|R|R|R|R|A
FIE|D|C|B|A|9|8|7|6(5|4|3|2|1|Z

Description:

The Software Interrupt Summary Register records the interrupt pending state for each of the
interrupt levels 1 through 15. The current interrupt pending state may be read by executing an
MFPR instruction specifying SISR.

MTPR SIRR (see SIRR) requests an interrupt at a particular interrupt level and sets the corre-
sponding pending bit in SISR.

When the processor IPL falls below the level of a pending request, an interrupt is initiated and
the corresponding bit in SISR isedred. See Sections 14.4.1 and 14.7.6.
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13.3.17 Supervisor Stack Pointer (SSP)

Access:

Read/Write

Operation:

IF {interal registers for stack pointers} THEN
RO ~ SSP

ELSE
RO ~ (IPR_PCBB + HWPCB_SSP)

IF {interal registers for stack pointers} THEN
SSP ~ RI16

ELSE
(IPR_PCBB + HWPCB_SSP). R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 13-17: Supervisor Stack Pointer (SSP)
63

! Read

I Write

Stack Address

Description:

The Supervisor Stack Pointer register allows the stack pointer for supervisor mode (SSP) to be
read and written by using MFPR and MTPR instructions that specify SSP.

The current stack pointer may be read and written directly by specifying scalar register SP

(R30).

As processes are scheduled for execution, the stack pointers for the next process to execute are
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and

Chapter 12.
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13.3.18 System Page Table Base Register (SYSPTBR)

Access:
Read/Write

Operation:
RO <- SYSPTBR | Read
SYSPTBR <- R16 I Write

Value at System Initialization:
UNPREDICTABLE
Format:

Figure 13-18: System Page Table Base Register (SYSPTBR)

63 32 31 0

RAZ Page Frame Number

Description:

The System Page Table Base Register contains the page frame number of the highest-level
page table to be used for translating addresses equal to or above the value stored in the Virtual
Address Boundary register. It may be read and written by executing MFPR and MTPR
instructions that specify SYSPTBR. Section 11.8 further describes the use of this register.

Implementation of VIRBND and SYSPTBR is optional. If not implemented, only PTBR is
used as a base during address translation.

In contrast to the PTBR register, the contents of SYSPTBR are not modified as process con-
texts are switched by the Swap Privileged Context (SWPCTX) instruction.
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13.3.19 Translation Buffer Check (TBCHK)

Access:

Read

Operation:

RO - 0O
IF {implemented} THEN
R0<0> ~ {indicator that VA in R16 is in TB}

ELSE
R0<63> ~ 1

Value at System Initialization:
Correct results are always returned
Format:

Figure 13-19: Translation Buffer Check Register (TBCHK)

63

Virtual Address

R16

6362 1 0
| P
M RAZ R
P S
RO

Description:

The Translation Buffer Check Register provides the capability to determine if a virtual address
is present in the Translation Buffer by executing an MFPR instruction specifying TBCHK. See
Section 11.9.

The virtual address to be checked is specified in R16 and may be any address within the
desired page. If ASNs are implemented, only those Translation Buffer entries that are associ-
ated with the current value of the ASN IPR will be checked for the virtual address. The value
read contains an indication of whether the function is implemented and whether the virtual
address is present in the Translation Buffer.

If the function is not implemented, a one is returned in bit <63> and bit <0> is clear. Other-
wise, bit <63> is clear and bit <0> indicates the presence or absence of the virtual address in
the Translation Buffer. Bit <0> set indicates the virtual address is present; bit <0> clear indi-

cates it is absent.
The TBCHK register can be used by system software for working set management.
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13.3.20 Translation Buffer Invalidate All (TBIA)

Access:

Write

Operation:
{Invalidate all TB entries}

Value at System Initialization:

Not applicable

Format:

Figure 13-20: Translation Buffer Invalidate All (TBIA) Register

63 0
Unused

R16

Description:

The Translation Buffer Invalidate All Register provides the capability to invalidate all entries
in the Translation Buffer by executing an MTPR instruction specifying TBIA. See Section 11.9

for information on translation buffers.
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13.3.21 Translation Buffer Invalidate All Process (TBIAP)

Access:

Write

Operation:
{Invalidate all TB entries with PTE<ASM> clear}

Value at System Initialization:

Not applicable

Format:

Figure 13-21: Translation Buffer Invalidate All Process (TBIAP) Register
63

Unused

R16

Description:

The Translation Buffer Invalidate All Process Register provides the capability to invalidate all

entries in the Translation Buffer that do not have the ASM bit set by executing an MTPR

instruction specifying TBIAP. See Section 11.9 for information on translation buffers and Sec-
tion 11.10 for information on address space numbers (ASNs), because ASNs can implicitly
modify TB operations.

Notes:

More entries may be invalidated by this erption. For example, some implementations
may flush the entire TB on a TBIAP.
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13.3.22 Translation Buffer Invalidate Single (TBISX)

Access:

Write

Operation:

TBIS:

{Invalidate single Data TB entry using R16}

{Invalidate single Instruction TB entry using R16}
TBISD:

{Invalidate single Data TB entry using R16}
TBISI:

{Invalidate single Instruction TB entry using R16}

Value at System Initialization:

Not applicable

Format:

Figure 13-22: Translation Buffer Invalidate Single (TBIS)
63

Virtual Address

R16

Description:

The Translation Buffer Invalidate Single Registers provide the capability to invalidate a single
entry in the Instruction Translation Buffer (TBISI), the Data Translation Buffer (TBISD), or
both translation buffers (TBIS). The virtual address to be invalidated is passed in R16 and may
be any address within the desired page. See Section 11.9 for information on translation buffers
and Section 11.10 for information on address space numbers (ASBsyube ASNs can
implicitly modify TB operations.

Notes:

* More than the single entry may be invalidated by this operation. For example some
implementations may flush the entire TB on a TBIS. As a result, if the specified address
does not match any entry in the Translation Buffer, then it is implementation dependent
whether the state of the Translationfiu is affected by the operation.
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13.3.23 User Stack Pointer (USP)

Access:

Read/Write

Operation:

IF {interal registers for stack pointers} THEN ! Read
RO ~ USP

ELSE
RO ~ (IPR_PCBB + HWPCB_USP)

IF {interal registers for stack pointers} THEN I Write
USP ~ RI16

ELSE
(IPR_PCBB + HWPCB_USP) R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 13-23: User Stack Pointer (USP)
63

Stack Address

Description:

This register allows the stack pointer for user mode (USP) to be read and written via MFPR
and MTPR instructions that specify USP.

The current stack pointer may be read and written directly by specifying scalar register SP
(R30).

As processes are scheduled for execution, the stack pointers for the next process to execute are
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and
Chapter 12.
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13.3.24 Virtual Address Boundary Register (VIRBND)

Access:
Read/Write

Operation:
RO <- VIRBND | Read
VIRBND <- R16 I Write

Value at System Initialization:
-1
Format:

Figure 13-24: Virtual Address Boundary (VIRBND) Register

63 0

Virtual Address

Description:

The Virtual Address Boundary Register holds the address used to determine which page table
physical base register is used during address translation, either PTBR or SYSPTBR. It may be
read and written by executing MFPR and MTPR instructions that specify VIRBND.

UNPREDICTABLE operations result if the address is not 64-bit aligned. At Processor Initial-
ization, VIRBND is initialized to a value of -1, thereby forcing all translations to use PTBR.
The value in SYSPTBR is effectively ignored. Section 11.8 further describes the use of this
register.

Implementation of VIRBND and SYSPTBR is optional. If not implemented, only PTBR is
used as a base during address translation.
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13.3.25 Virtual Page Table Base (VPTB)

Access:
Read/Write

Operation:
RO — VPTB | Read
VPTB -~ RI16 I Write

Value at System Initialization:
Initialized by the console in the bootstrap address space.

Format:

Figure 13-25: Virtual Page Table Base (VPTB) Register
63

VA of Page Table Structure

RO

Description:

The Virtual Page Table Base Register contains the virtual address of the base of the entire
three-level page table structure. It may be read by executing an MFPR instruction specifying
VPTB. It is written at system initialization using an MTPR instruction specifying VPTB. See

Section 11.8.2 and Section 27.4 for initialization coesadions.
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13.3.26 Who-Am-I (WHAMI)

Access:

Read

Operation:
RO — WHAMI

Value at System Initialization:

Processor number

Format:

Figure 13-26: Who-Am-I (WHAMI) Register
63

Processor Number

RO

Description:

The Who-Am-I Register provides the capability to read the current processor number by exe-
cuting anMFPR instruction specifying WHAMI. The processor number returned is in the
range 0 to the number of processors minus one that can be configured in the system. Processor
number FFFF FFFF FFFF FFIEs reserved.

The current processor number is useful in a multiprocessing system to index arrays that store
per processor information. Such information is operating system dependent.
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Chapter 14

Exceptions, Interrupts, and Machine Checks (l1I-A)

14.1 Introduction

At certain times during the operation of a system, events within the system require the execu-
tion of software outside the explicit flow of control. When such an exceptional event occurs, an
Alpha processor forces a change in control flow from that indicated by themtinstruction
stream. The notification process for such events is of one of three types:

e Exceptions

These events are relevant primarily to the currently executing process and normally
invoke software in the context of the mant process. The three types of exieps are

faults, arithmetic traps, and synchronous traps. Exceptions are described in Section
14.3.

* Interrupts

These events are primarily relevant to other processes or to the system as a whole and
are typically serviced in a system-wide context.

Some interrupts are of such urgency that they require high-priority service, while
others must be synchronized with independent events. To meet these needs, each
processor has priority logic that grants interrupt service to the highest priority event at
any point in time. Interrupts are described in Section 14.4.

¢ Machine Checks

These events are generally the result of serious hardware failure. The registers and
memory are potentially in an indeterminate state such that the instruction execution
cannot necessarily be correctly restarted, completed, simulated, or undone. Machine
checks are described in Section 14.5.

For all such events, the change in flow of control involves changing the Program Counter (PC),
possibly changing the execution mode (current mode) and/or interrupt priority level (IPL) in

the Processor Status (PS), and saving the old values of the PC and PS. The old values are saved
on the target stack as part of an Exception, Interrupt, or Machine Check Stack Frame. Collec-
tively, those elements are described in Section 14.2.

The service routines that handle exceptions, interrupts, and machine checks are specified by
entry points in the System Control Block (SCB), described in Section 14.6.

Return from an exception, interrupt, or machine check is done via the CALL_PAL REI instruc-
tion. As part of its work, CALL_PAL REI restores the saved values of PC and PS and pops
them off the stack.
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14.1.1 Differences Between Exceptions, Interrupts, and Machine Checks

Generally, exceptions, interrupts, and machine checks are similar. However, there are four
important differences:

1. An exception is caused by the execution of an instruction. An interrupt is caused by

some activity in the system that may be independent of any instruction. A machine
check is associated with a hardware error condition.

The IPL of the processor is not changed when the processor initiates an exception. The
IPL is always raised when an interrupt is initiated. The IPL is always raised when a
machine check is initiated, and for all machine checks other than system correctable, is
raised to 31 (highest priority level). (For systenteetable machine checks, the IPL is
raised to 20.)

Exceptions are always initiated immediately, no matter what the processor IPL is. Inter-
rupts are dierreduntil the processor IPL drops below the IPL of the requestingeau
Machine checks can be initiated immediately oretedéd, depeding on error condi-
tions.

Some exceptions can be selectively disabled by selecting instructions that do not check
for exception conditions. If an exception condition occurs in such an instruction, the
condition is totally ignored and no state is saved to signal that condition at a later time.

If an interrupt request occurs while the processor IPL is equal to or greater than that of
the interrupting source, the condition will eventually initiate an interrupt if the
interrupt request is still present and the processor IPL is lowered below that of the
interrupting source.

Machine checks cannot be disabled. Machine checks can be initiated immediately or
deferred, depading on the error condition. Also, they can be deliberately generated by
software.

14.1.2 Exceptions, Interrupts, and Machine Checks Summary

Table 14-1 summarizes the actions taken on an exception, interrupt, or machine check. The
remaining sections in this chapter describe those actions in greater detail.

The "SavedPC" column describes what is saved in the "PC" field of the exception or
interrupt or machine check stack frame.

1. "Current" indicates the PC of the instruction at which the exception or interrupt or
machine check was taken,

2. "Next" indicates the PC of the successor instruction.

The "NewMode" column specifies the mode and stack that the exception or interrupt or
machine check routine will start with. For change mode traps, "MostPrv" indicates the
more privileged of the auent and new modes.

The "R2" column specifies the value with which R2 is loaded, after its original value
has been saved in the exception or interrupt or machine check stack frame. The SCB
vector quadword, "SCBvV", is loaded into R2 for all interrupts and exceptions and
machine checks.
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* The "R3" column specifies the value with which R3 is loaded, after its original value
has been saved in the exception or interrupt or machine check stack frame. The SCB
parameter quadword, "SCBp", is loaded into R3 for alemipts and exceptions and

machine checks.

* The "R4" column specifies the value with which R4 is loaded, after its original value
has been saved in the exception or interrupt or machine check stack frame. If the "R4"
column is blank, the value in R4 is UNPREDICTABLE on entry to an interrupt or

exception.

1. "VA"indicates the exact virtual address that triggered a memory management fault

or data alignment trap.

"Mask" indicates the Register Write Mask.
"LAOff" indicates the offset from the base of the logout area in the HWRPB (see

Section 14.5.2).

* The "R5" column specifies the value with which R5 is loaded, after its original value
has been saved in the exception or interrupt or machine check stack frame. If the "R5"
column is blank, the value in R5 is UNPREDICTABLE on entry to an interrupt or
exception or machine check.

1. "MMF" indicates the Memory Management Flags.

2. "Exc"indicates the Exception Summary parameter.

3. "RW"indicates Read/Load =0 Write/Store =1 for data alignment traps

Table 14-1 Exceptions, Interrupts, and Machine Checks Summary

SavedPC  NewMode R2 R3 R4 R5
Exceptions — Faults :
Floating Disabled Fault Current Kernel SCBv SCBp
Memory Management Faults :
Access Control Violation Current Kernel SCBv SCBp VA MMF
Translation Not Valid Current Kernel SCBv SCBp VA MMF
Fault on Read Current Kernel SCBv SCBp VA MMF
Fault on Write Current Kernel SCBv SCBp VA MMF
Fault on Execute Current Kernel SCBv SCBp VA MMF
Exceptions — Arithmetic Traps:
Arithmetic Traps Next Kernel SCBv SCBp Mask Exc
Exceptions - Synchronous Traps :
Breakpoint Trap Next Kernel SCBv SCBp
Bugcheck Trap Next Kernel SCBv  SCBp
Change Mode to K/E/S/U Next MostPrv SCBv  SCBp
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Table 14-1 Exceptions, Interrupts, and Machine Checks Summary (Continued)

SavedPC  NewMode R2 R3 R4 R5
Exceptions - Synchronous Traps, Continued :
Illegal Instruction Next Kernel SCBv  SCBp
Illegal Operand Next Kernel SCBv  SCBp
Data Alignment Trap Next Kernel SCBv SCBp VA RW
Interrupts :
Asynch System Trap (4) Current Kernel SCBv  SCBp
Interval Clock Current Kernel SCBv  SCBp
Interprocessor Interrupt Current Kernel SCBv  SCBp
Software Interrupts Current Kernel SCBv  SCBp
Performance monitor Current Kernel SCBv SCBp IMP IMP
Passive Release Current Kernel SCBv  SCBp
Powerfail Current Kernel SCBv  SCBp
I/0 Device Current Kernel SCBv  SCBp
Machine Checks :
Processor Correctable Current Kernel SCBv SCBp LAOff
System Correctable Current Kernel SCBv SCBp LAOff
System Current Kernel SCBv SCBp LAOff
Processor Current Kernel SCBv SCBp LAOff

14.2

Processor State and Exception/Interrupt/Machine
Check Stack Frame

Processor state consists of a quadword of privileged information called the Processor Status
(PS) and a quadword containing the Program Counter (PC), which is the virtual address of the
next instruction.

When an exception, interrupt, or machine check is initiated, the current processor state during
the exception, interrupt, or machine check must be preserved. This is accomplished by auto-
matically pushing the PS and the PC on the target stack.

Subsequently, instruction execution can be continued at the point of the exception, interrupt, or
machine check by executing a CALL_PAL REI instruction (see Section 10.1.11).

Process context such as memory mapping information is not saved or restored on each excep-
tion, interrupt, or machine check. Instead, it is saved and restored when process context
switching is performed. Other processor status is changed even less frequently (see Chapter
12).
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14.2.1 Processor Status

The PS can be explicitly read with the CALL_PAL RD_PS instruction. The PS<SW> field can
be explicitly written with the CALL_PAL WR_PS_SW instruction. See Section 10.1.

The terms current PS and saved PS are used to distinguish between this status information
when it is stored internal to the processor and when copies of it are materialized in memory.
The current PS is shown in Figure 14-1, the saved PS in Figure 14-2, and the bits for both are
described in Table 14-2.

Figure 14-1: Current Processor S tatus (PS Register)

63 1312 8 765 43 210
V| M |
MBZ IPL [M| B [CM|5[SW
M| Z
Figure 14-2: Saved Processor Status (PS on Stack)
636261 56 55 1312 8 765 43 210
M1 sp VI
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Table 14-2 Processor Status Register Summary

Bits Description
63—-62 Reserved to Compag, MBZ.
61-56 Stack alignment (SP_ALIGN)
The previous stack byte alignment within a 64-byte aligned area, in the range 0 to 63. This
field is set in the saved PS during the act of taking an exception or interrupt; it is used by the
CALL_PAL REl instruction to restore the previous stack byte alignment.
55-13 Reserved to Compaq, MBZ.
12-8 Interrupt priority level (IPL)
The current processor priority, in the range 0 to 31.
7 Virtual machine monitor (VMM).
When set, the processor is executing in a virtual machine monitor. When clear, the processor
is running in either real or virtual machine mode.
Programming Note:
This bit is only meaningful when running with PALcode that implements virtual
machine capabilities.
6-5 Reserved to Compaq, MBZ.
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Table 14-2 Processor Status Register Summary (Continued)

Bits

Description

4-3

1-0

Current mode (CM)
The access mode of the currently executing process as follows:

0 Kernel

1 Executive
2 Supervisor
3 User

Interrupt pending (IP)

Set when an interrupt (software or hardware but not AST) is initiated; indicates an interrupt
is in progress.

Reserved for Software (SW)

These bits are reserved for software use and can be read and written at any time by the soft-
ware, regardless of the current mode. The value of these bits is ignored by the hardware. The
software field is set to zero at the initiation of either an exception or an interrupt.

At bootstrap, the initial value of PS is set to 1R@0Previous stack alignment is zero, IPL is
31, VMM is clear, CM is kernel, and the SW and IP fields are zero.

14.2.2 Program Counter

The PC (Figure 14-3) is a 64-bit virtual address. All instructions are aligned on longword
boundaries and, therefore, hardware can assume zero for the two low-order PC bits. The PC is
discussed in Section 14.2.6.

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All branching
instructions also load a new value into the PC.

Figure 14-3: Program Counter (PC)
63

Instruction Virtual Address <63:2>

zZ0O—

14.2.3 Processor Interrupt Priority Level (IPL)

Each processor has 32 interrupt priority levels (IPLs) divided into 16 software levels (num-
bered 0 to 15), and 16 hardware levels (numbered 16 to 31). User applications and most
operating system software run at IPL 0, which may be thought of as process level. Higher num-
bered interrupt levels have higher priority; that is, any request at an interrupt level higher than
the processor’s current IPL will interrupt immediately, but requests at lower or equal levels are
deferred.
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Interrupt levels 0 to 15 exist solely for use by software. No hardware event can request an
interrupt on these levels. Conversely, interrupt levels 16 to 31 exist solely for use by hardware.
Serious system failures, such as a machine check abort, however, raise the IPL to the highest
level (31) to minimize processor interruption until the problem is corrected, and execute in ker-
nel mode on the kernel stack.

14.2.4 Protection Modes

Each processor has four protection modes: kernel, executive, supervisor, and user. Per-page
memory protection varies as a function of mode (for example, a page can be made read-only in
user mode, but read-write in supervisor, executive, or kernel mode).

For each process, a separate stack is assooidteegach mode. Coription of one stack does
not affect use of the other stacks.

Some instructions, termed privileged instructions, may be executed only in kernel mode.

14.2.5 Processor Stacks

Each processor has four stacks. There are four process-specific stacks associated with the four
modes of the current process. At any given time, only one of these stacks is actively used as the
current stack.

14.2.6 Stack Frames

When an exception, interrupt, or machine check occurs, a stack frame (Figure 14-3) is pushed
on the target stack. Regardless of the type of event notification, this stack frame consists of a
64-byte-aligned structure that contains the saved contents of registers R2..R7, the Program
Counter (PC), and the Processor Status (PS). Registers R2 and R3 are then loaded with vector
and parameter from the SCB for the exdept interrupt, or machine check. Registers R4 and

R5 may be loaded with data pertaining to the exception, interrupt, or machine check. The spe-
cific data loaded is described below in conjunction with each exception, interrupt, or machine
check; if no specific data is specified, the contents of R4 and R5 are UNPREDICTABLE.
After the stack is built, the contents of registers R6 and R7 are UNPREDICTABLE.

The Program Counter value that is saved in the stack frame is:
* For faults, the instruction that encountered the exception
e For traps, the next instruction

* For interrupts and (on a besffort basis) machine checks, the instruction tatld
have been issued if the grrupt or machine-check condition had not occurred.

Return from an exception, interrupt, or machine check is done via the CALL_PAL REI instruc-
tion, which restores the saved values of PC, PS, and R2..R7. Thus, the CALL_PAL REI
instruction:

* For faults, re-executes the faulting instruction
* For traps, executes the next instruction

* For interrupts, executes the instruction that would have been executed if ¢naupit
had not occurred
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For machine checks, continues execution from the point at which the machine check
was taken

Table 14-3 Stack Frame

63

R2 :SP
R3 :+08
R4 +16
RS +24
R6 +32
R7 +40
Program Counter (PC) +48
Processor Status (PS) :+56

14.3 Exceptions

Exception service routines execute in response to exception conditions caused by software.
Most exception service routines execute in kernel mode, on the kernel stack; all exception ser-
vice routines execute at the current processor IPL. Change mode exception routines for
CHMU/CHMS/CHME execute in the more privileged of the current mode or the target mode
(U/S/E) on the matching stack. Exception service routines are usually coded to avoid excep-
tions; however, nested exceptions can occur.

Types of Exceptions

There are three types of exceptions:

A fault is an exception condition that occurs during an instruction and leaves the regis-

ters and memory in a consistent state such that elimination of the fault condition and

subsequent re-execution of the instruction will give correct results. Faults are not guar-

anteed to leave the machine in exactly the same state it was in immediately prior to the
fault, but rather in a state such that the instruction can be correctly executed if the fault

condition is removed. The PC saved in the exception stack frame is the address of the
faulting instruction. A CALL_PAL REI instruction to this PC will reexecute the fault-

ing instruction.

An arithmetic trap is an exception condition that occurs at the completion of the opera-
tion that caused the exception. Because several instructions may be in various stages of
execution at any time, it is possible for multiple arithmetic traps to occur simulta-
neously. The PC that is saved in the exception frame on traps is that of the next instruc-
tion that would have been issued if the trapping condition(s) had not occurred. This is
not necessarily the address of the instruction immediately following the one(s) that
encountered the trap condition, and the intervening instructions are collectively called
thetrap shadowSee Section 4.7.7.3, for information.

The intervening instructions may have changed operands or other state used by the
instruction(s) encountering the trap condition(s). If such is the case, a CALL_PAL REI
instruction to this PC does not reexecute the trapping instruction(s), nor does it
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reexecute any intervening instructions; it simply continues execution from the point at
which the trap was taken.

In general, it is difficult to fix up results and continue program execution at the point
of an arithmetic trap. Software can force a trap to be continued more easily without the
need for complicated fixup code. This is accomplished by specifying any valid
gualifier combination that includes the /S qualifier with each such instruction and
following a set of code-generation restrictions in the code that could cause arithmetic
traps, allowing those traps to be completed by an OS completion handler.

The AND of all the exception completion qualifiers for trapping instructions is
provided to the OS completion handler in the exception summary SWC bit. If SWC is
set, the OS completion handler may find the trigger instruction by scanning backward
from the trap PC until each register in the register write mask has been an instruction
destination. The trigger instruction is the last instruction in I-stream order to get a trap
before the trap shadow. If the SWC bit is clear, no fixup is possible. (The trigger
instruction may have been followed by a taken branch, so the trap PC cannot be used
to find it.)

* A synchronous trap is an exception condition that occurs at the completion of the oper-
ation that caused the exception (or, if the operation can only be partetiedout, at
the completion of that part of the operation), and no subsequent instruction is issued
before the trap occurs.

Synchronous traps are divided into data alignment traps and all other synchronous
traps.

14.3.1 Faults

The six types of faults signal that an instruction or its operands are in some way illegal. These
faults are all initiated in kernel mode and push an exception stack frame onto the stack. Upon
entry to the exception routine, the saved PC (in the exception stack frame) is the virtual address
of the faulting instruction.

The six faults include the Floating Disable Fault described in the next section and five mem-
ory management faults.

Memory management faults occur when a virtual address translation encounters an exception
condition. This can occur as the result of instruction fetch or during a load or store operation.

Immediately following a memory management fault, register R4 contains the exact virtual
address encountering the fault condition.

The register R5 contains the "MM Flag" quadword.
"MM Flag" is set as follows:

0000 0000 0000 00Q@  for a faulting data read
0000 0000 0000 00Q}  for a faulting I-fetch operation
8000 0000 0000 00Q@  for a faulting write operation

The faulting instruction is the instruction whose fetch faulted, or the load, store, or PALcode
instruction that encountered the fault condition.

Chapter 11 describes the Alpha memory management architecture in more detail.
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14.3.1.1 Floating Disabled Fault

A Floating Disabled Fault is an exception that occurs when an attempt is made to execute a
floating-point instruction and the floating-point enable (FEN) bit in the HWPCB is not set.

14.3.1.2 Access Control Violation (ACV) Fault

An ACV fault is a memory management fault that indicates that an attempted access to a vir-
tual address was not allowed in the current mode.

ACV faults usually indicate program errors, but in some cases, such as automatic stack expan-
sion, can indicate implicit operating system functions.

ACYV faults take precedence over Translation Not Valid, Fault on Read, Fault on Write, and
Fault on Execute faults.

ACV faults take precedence over Translation Not Valid faults so that a malicious user could
not degrade system performance by causing spurious page faults to pages for which no access
is allowed.

14.3.1.3 Translation Not Valid (TNV)

A TNV fault is a memory management fault that indicates that an attempted access was made
to a virtual address whose Page Table Entry (PTE) was not valid.

Software may use TNV faults to implement virtual memory capabilities.

14.3.1.4 Fault on Read (FOR)

An FOR fault is a memory management fault that indicates that an attempted data read access
was made to a virtual address whose Page Table Entry (PTE) had the Fault on Read bit set.

As a part of initiating the FOR fault, the processor invalidates the Translation Buffer entry that
caused the fault to be generated.

Implementation Note:

This allows an implementation to invalidate entries only from the Data-stream Translation
Buffer on Fault on Read faults.

The Translation Buffer may reload and cache the old PTE value between the time the FOR
fault invalidates the old value from the Translation Buffer and the time software updates the
PTE in memory. Software that depends on the processor-provided invalidate must thus be pre-
pared to take another FOR fault on a page after clearing the page’'s PTE<FOR> bit. The second
fault will invalidate the stale PTE from the Translation Buffer, and the processor cannot load
another stale copy. Thus, in the worst case, a multiprocessor system will take an initial FOR
fault and then an additional FOR fault on each processor. In practice, even a single repetition is
unlikely.

Software may use FOR faults to implement watchpoints, to collect page usage statistics, and to
implement execute-only pages.

14.3.1.5 Fault on Write (FOW)

A FOW fault is a memory management fault that indicates that an attempted data write access
was made to a virtual address whose Page Table Entry (PTE) had the Fault On Write bit set.
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As a part of initiating the FOW fault, the processor invalidates the Translation Buffer entry that
caused the fault to be generated.

Implementation Note:

This allows an implementation to invalidate entries only from the Data-stream Translation
Buffer on Fault on Write faults.

Note that the Translation Buffer may reload and cache the old PTE value between the time the
FOW fault invalidates the old value from the Translation Buffer and the time software updates
the PTE in memory. Software that depends on the processor-provided invalidate must thus be
prepared to take another FOW fault on a page after clearing the page’'s PTE<FOW> hit. The
second fault will invalidate the stale PTE from the Translation Buffer, and the processor can-
not load another stale copy. Thus, in the worst case, a multiprocessor system will take an initial
FOW fault and then an additional FOW fault on each processor. In practice, even a single repe-
tition is unlikely.

Software may use FOW faults to maintain modified page information, to implement copy on
write and watchpoint capabilities, and to collect page usage statistics.

14.3.1.6 Fault on Execute (FOE)

An FOE fault is a memory management fault that indicates that an attempted instruction stream
access was made to a virtual address whose Page Table Entry (PTE) had the Fault On Execute
bit set.

As a part of initiating the FOE fault, the processor invalidates the Translation Buffer entry that
caused the fault to be generated.

Implementation Note:

This allows an implementation to invalidate entries only from the Instruction-stream
Translation Buffer on Fault on Execute faults.

Note that the Translation Buffer may reload and cache the old PTE value between the time the
FOE fault invalidates the old value from the Translation Buffer and the time software updates
the PTE in memory. Software that depends on the processor-provided invalidate must thus be
prepared to take another FOE fault on a page after clearing the page’s PTE<FOE> bit. The sec-
ond fault will invalidate the stale PTE from the Translation Buffer, and the processor cannot
load another stale copy. Thus, in the worst case, a multiprocessor system will take an initial
FOE fault and then an additional FOE fault on each processor. In practice, even a single repeti-
tion is unlikely.

Software may use FOE faults to implement access mode changes and protected entry to kernel
mode, to collect page usage statistics, and to detect programming errors that try to execute
data.

14.3.2 Arithmetic Traps

An arithmetic trap is an exception that occurs as the result of performing an arithmetic or con-
version operation.
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If integer register R31 or floating-point register F31 is specified as the destination of an opera-
tion that can cause an arithmetic trap, it is UNPREDICTABLE whether the trap will actually
occur, even if the operation would definitely produce an exceptional result. If the operation
causes an arithmetic trap, the bit that corresponds to R31 or F31 in the Register Write Mask is
UNPREDICTABLE.

Arithmetic traps are initiated in kernel mode and push the exception stack frame on the kernel
stack. The Register Write Mask is saved in R4, and the Exception Summary parameter is saved
in R5. These are described in Section 14.3.2.1.

14.3.2.1 Exception Summary Parameter

The Exception Summary parameter shown in Figure 14—4 and described in Table 14—4 records
the various types of arithmetic traps that can occur together. These types of traps are described
in subsections below.

Figure 14—4: Exception Summary
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Table 14—-4 Exception Summary

Bit Description
63-7  Zero.
6 Integer Overflow (I0V)

An integer arithmetic operation or a conversion from floating to integer overflowed the desti-
nation precision.

5 Inexact Result (INE)

A floating arithmetic or conversion operation gave a result that differed from the mathemati-
cally exact result.

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.
3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.
2 Division by Zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.
1 Invalid Operation (INV)

An attempt was made to perform a floating arithmetigneersion, or comparison operation,
and one or more of the operand values were illegal.

0 Software Completion (SWC)

Set when all of the other arithmetic exception bits were set by floating-operate instructions
with the /S exception completion qualifier set. See Section 4.7.7.3 for rules about setting the
/S qualifier in code that may cause an arithmetic trap, and Section 14.3 for rules about using
the SWC bit in a trap handler.
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14.3.2.2 Register Write Mask

The Register Write Mask parameter records all registers that were targets of instructions that
set the bits in the exception summary register. There is a one-to-one correspondence between
bits in the Register Write Mask quadword and the register numbers. The quadword records,
starting at bit 0 and proceeding right to left, which of the registers RO through R31, then FO
through F31, received an exceptional result.

Note:
For a sequence such as:

ADDF F1,F2,F3
MULF F4,F5,F3

If the add overflows and the multiply does not, the OVF bhit is set in the exception
summary, and the F3 bit is set in the register mask, even though the overflowed sum in F3
can be overwritten with an in-range product by the time the trap is taken. (This code
violates the destination reuse rule for software completion. See Section 4.7.7.3 for the
destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next instruction.
This is defined as the virtual address of the first instruction not executed after the trap condi-
tion was recognized.

14.3.2.3 Invalid Operation (INV) Trap

An INV trap is reported for most floating-point operate instructions with an input operand that
is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity, or IEEE denormal.

Floating INV traps are always enabled. If this trap occurs, the result register is written with an
UNPREDICTABLE value.

14.3.2.4 Division by Zero (DZE) Trap

A DZE trap is reported when a finite number is divided by zero. Floating DZE traps are always
enabled. If this trap occurs, the result register is written with an UNPREDICTABLE value.

14.3.2.5 Overflow (OVF) Trap

An OVF trap is reported when the destination’s largest finite number is exceeded in magni-
tude by the rounded true result. Floating OVF traps are always enabled. If this trap occurs, the
result register is written with an UNPREDICTABLE value.

14.3.2.6 Underflow (UNF) Trap

A UNF trap is reported when the destination’s smallest finite number exceeds in magnitude the
non-zero rounded true result. Floating UNF trap enable can be specified in each floating-point
operate instruodn. If underflow occurs, the result register is written with a true zero.

14.3.2.7 Inexact Result (INE) Trap

An INE trap is reported if the rounded result of an IEEE operation is not exact. INE trap enable
can be specified in each IEEE floating-point operate instruction. The unchanged result value is
stored in all cases.

Exceptions, Interrupts, and Machine Checks (lI-4A)13



14.3.2.8 Integer Overflow (I0V) Trap

An IOV trap is reported for any integer operation whose true result exceeds the destination reg-
ister size. IOV trap enable can be specified in each arithmetic integer operate instruction and
each floating-point convert-to-integer instruction. If integer overflow occurs, the result register
is written with the truncated true result.

14.3.3 Synchronous Traps

A synchronous trap is an exception condition that occurs at the completion of the operation
that caused the exception (or, if the operation can only be partially carried out, at the comple-
tion of that part of the operation), but no successor instruction is allowed to start. All traps that
are not arithmetic traps are synchronous traps.

Some synchronous traps are caused by PALcode instructions: BPT, BUGCHK, CHMU,
CHMS, CHME, and CHMK. For synchronous traps, the PC saved in the exception stack frame
is the address of the instruction immediately following the one causing the trap condition. A
CALL_PAL REl instruction to this PC will continue without reexecuting the trapping instruc-
tion. The following subsections describe the synchronous traps in detail.

14.3.3.1 Data Alignment Trap

All data must be naturally aligned or an alignment trap may be generated. Natural alignment
means that data bytes are on byte boundaries, data words are on word boundaries, data long-
words are on longword boundaries, and data quadwords are on quadword boundaries.

A Data Alignment trap is generated by the hardware when an attempt is made to load or store a
word, a longword, or a quadword to/from a register using an address that does not have the nat-
ural alignment of the particular data reference.

Data Alignment traps are fixed up by the PALcode and are optionally reported to the operating
system under the control of the DAT bit. If the bit is zero, the trap will be reported. If the bit is
set, after the alignment is corrected, control is returned to the user. In either case, if the PAL-
code detects a LDx_L or STx_C instruction, no correction is possible and an illegal operand
exception is generated.

Note:

In the case of concurrently pending data alignment and arithmetic traps, it is assumed that
the arithmetic trap is reported before PALcode data alignment fixup eisopmed.
Otherwise, it would not be possible to back up the PC for the synchronous data alignment
trap as required by Section 14.7.4.

The system software is notified via the generation of a kernel mode exception through the
Unaligned_Access SCB vector (28) The virtual address of the unaligned data being

accessed is stored in R4. R5 indicates whether the operation was a read or a write (0 =
read/load 1 = write/store).

PALcode may write partial results to memory without probing to make sure all writes will suc-
ceed when dealing with unaligned store operations.

If a memory management exception condition occurs while reading or writing part of the
unaligned data, the appropriate memory management fault is generated.
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Software should avoid data misalignment whenever possible since the emulation performance
penalty may be as large as 100-to-1.

The Data Alignment trap control bit is included in the HWPCB at offset HWPCBI[56], bit 63.
In order to change this bit for the currently executing process, the DATFX IPR may be written
by using a CALL_PAL MTPR_DATFX instruction. This operation will also update the value
in the HWPCB.

14.3.3.2 Other Synchronous Traps

With the traps described in this subsection, the SCB vector quadword is saved in R2 and the
SCB parameter quadword is saved in R3. The change mode traps are initiated in the more priv-
ileged of the current mode and the target mode, while the other traps are initiated in kernel

mode.

14.3.3.2.1 Breakpoint Trap

A Breakpoint trap is an exception that occurs when a CALL_PAL BPT instruction is executed
(see Section 10.1.1). Breakpoint traps are intended for use by debuggers and can be used to
place breakpoints in a program.

Breakpoint traps are initiated in kernel mode so that system debuggers can capture breakpoint
traps that occur while the user is executing system code.

14.3.3.2.2 Bugcheck Trap

A Bugcheck trap is an exception that occurs when a CALL_PAL BUGCHK instruction is exe-
cuted (see Section 10.1.2). Bugchecks are used to log errors detected by software.

14.3.3.2.3 lllegal Instruction Trap

An lllegal Instruction trap is an exception that occurs when an attempt is made to execute an
instruction when:

* Ithas an opcode that is reserved to Compaq or reserved to PALcode.
* |tis a subsetted opcode that requires emulation on the host implementation.
e ltis a privileged instruction and the current mode is not kernel.

* |t has an unused function code for those opcodes defined as reserved in the Version 5
Alpha architecture specification (May 1992).

14.3.3.2.4 lllegal Operand Trap

An lllegal Operand trap occurs when an attempt is made to execute PALcode with operand
values that are illegal or reserved for future use by Compagq. lllegal operands include:

* Aninvalid combination of bits in the PS restored by the CALL_PAL REI instruction.

* Anunaligned operand passed to PALcode.

14.3.3.2.5 Generate Software Trap

A Generate Software trap is an exception that occurs when a CALL_PAL GENTRAP instruc-
tion is executed (see Section 10.1.8). The intended use is for low-level compiler-generated
code that detects conditions such as divide-by-zero, range errors, subscript bounds, and nega-
tive string lengths.
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14.3.3.2.6 Change Mode to Kernel Trap

A Change Mode to Kernel trap is an exception that occurs when a CALL_PAL CHMK instruc-
tion is executed (see Section 10.1.4). Change Mode to Kernel traps are initiated in kernel mode
and push the exception frame on the kernel stack.

14.3.3.2.7 Change Mode to Executive Trap

A Change Mode to Executive trap is an exception that occurs when a CALL_PAL CHME
instruction is executed (see Section 10.1.3). Change Mode to Executive traps are initiated in
the more privileged of the current mode and Executive mode, and push the exception frame on
the target stack.

14.3.3.2.8 Change Mode to Supervisor Trap

A Change Mode to Supervisor trap is an exception that occurs when a CALL_PAL CHMS
instruction is executed (see Section 10.1.5). Change Mode to Supervisor traps are initiated in
the more privileged of the current mode and supervisor mode, and push the exception frame on
the target stack.

14.3.3.2.9 Change Mode to User Trap

A Change Mode to User trap is an exception that occurs when a CALL_PAL CHMU instruc-
tion is executed (see Section 10.1.6). Change Mode to User traps are initiated in the more
privileged of the current mode and user mode, and push the exception frame on the target
stack.

14.4 Interrupts

The processor arbitrates interrupt requests according to priority. When the priority of an inter-
rupt request is higher than the current processor IPL, the processor will raise the IPL and
service the interrupt request. The interrupt service routine is entered at the IPL of the interrupt-
ing source, in kernel mode, and on the kernel stack. Interrupt requests can come from 1/O
devices, memory controllers, other processors, or the processor itself.

The priority level of one processor does not affect the priority level of other processors. Thus,
in a multiprocessor system, interrupt levels alone cannot be used to synchronize access to
shared resources.

Synchronization with other processors in a multiprocessor system involves a combination of
raising the IPL and executing an interlocking instruction sequence. Raising the IPL prevents
the synchronization sequence itself from being interrupted on a single processor while the
interlock sequence guarantees mutual exclusion with other processors. Alternately, one proces-
sor can issue explicit interprocessor interrupts (and wait for acknowledgment) to put other
processors in a known software state, thus achieving mutual exclusion.

In some implementations, several instructions may be in various stages of execution simulta-
neously. Before the processor can service an interrupt request, all active instructions must be
allowed to complete without exception. Thus, when an exception occurs in a currently active
instruction, the exception is initiated and the exception stack frame built immediately before
the interrupt is initiated and its stadlame built.
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The following events will cause an interrupt:
e Software interrupts — IPL 1 to 15
e Asynchronous System Traps — IPL 2
* Passive Release interrupts — IPL 20 to 23
e |/O Device interrupts — IPL 20 to 23
e Interval Clock interrupt — IPL 22
* Interprocessor interrupt — IPL 22
e Performance Monitor interrupt — IPL 29
e Powerfail interrupt — IPL 30

Interrupts are initiated in kernel mode and push the interrupt stack frame of eight quadwords
onto the kernel stack. The PC saved in the interrupt stack frame is the virtual address of the
first instruction not executed after the interrupt condition was recognized. A CALL_PAL REI
instruction to the saved PC/PS will continue execution at the point of interrupt.

Each interrupt source has a separate vector location (offset) within the System Control Block
(SCB). (See Sdion 14.6.) With the exception of I/O device interrupts, each of the above
events has a unique fixed vector. I/O device interrupts occupy a range of vectors that can be
both statically and dynamically assigned. Upon entry to the interrupt service routine, R2 con-
tains the SCB vector quadword and R3 contains the SCB parameter quadword. For Corrected
Error interrupts, R4 optionally locates additional information (see Section 14.5.2).

In order to reduce interrupt overhead, no memory mapping information is changed when an
interrupt occurs. Therefore, the instructions, data, and the contents of the interrupt vector for
the interrupt service routine must be present in every process at the same virtual address.

Interrupt service routines should follow the discipline of not lowering IPL below their initial
level. Lowering IPL in this way could result in an interrupt at an intermediate level, which
would cause the stack nesting to be incorrect.

Kernel mode software may need to raise and lower IPL during certain instruction sequences
that must synchronize with possible interrupt conditions (such as powerfail). This can be
accomplished by specifying the desired IPL and executing a CALL_PAL MTPR_IPL instruc-
tion or by executing a CALL_PAL REIl instruction that restores a PS that contains the desired
IPL (see Section 10.6.5).

14.4.1 Software Interrupts — IPLs 1 to 15

14.4.1.1 Software Interrupt Summary Register

The architecture provides 15 priority interrupt levels for use by software (level 0 is also avail-
able for use by software but interrupts can never occur at this level). The Software Interrupt
Summary Register (SISR) stores a mask of pending software interrupts. Bit positions in this
mask that contain a 1 correspond to the levels on which software interrupts are pending.

When the processor IPL drops below that of the highest requested software interrupt, a soft-
ware interrupt is initiated and the corresponding bit in the SISR is cleared.

The SISR is a read-only internal processor register that may be read by kernel mode software
by executing a CALL_PAL MFPR_SISR instruction (see Section 13.3).
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14.4.1.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only internal processor register used
for making software interrupt requests.

Kernel mode software may request a software interrupt at a particular level by executing a
CALL_PAL MTPR_SIRR instruction (see Section 13.3).

If the requested interrupt level is greater than the current IPL, the interrupt will occur before
the execution of the next instruction. If, however, the requested level is equal to or less than the
current processor IPL, the interrupt request will be recorded in the Software Interrupt Sum-
mary Register (SISR) and deferred until the processor IPL drops to the appropriate level.

Note that no indication is given if there is already a request at the specified level. Therefore,
the respective interrupt service routine must not assume that there is a one-to-one correspon-
dence between interrupts requested and interrupts generated. A valid protocol for generating
this correspondence is:

1. Therequester places information in a control block and then inserts the control block in
a queue associated with the respective software interrupt level.

2. The requester uses CALL_PAL MTPR_SIRR to request an interrupt at the appropriate
level.

3. When enabling conditions arise, processor HW clears the appropriate SISR bit as part
of initiating the software interrupt.

4. The interrupt service routine attempts to remove a control block from the request queue.
If there are no control blocks in the queue, the interrupt is dismissed with a CALL_PAL
REI instruction.

5. If avalid control block is removed from the queue, the requested service is performed
and step 3 is repeated.

14.4.2 Asynchronous System Trap — IPL 2

Asynchronous System Traps (ASTs) are a means of notifying a process of events that are not
synchronized with its execution, but that must be dealt with in the context of the process. An
AST is initiated in kernel mode at IPL 2 when the current mode is less privileged than or equal
to a mode for which an AST is pending and not disabled, with PS<IPL> less than 2 (see Sec-
tions 14.7.6 and 12.3).

There are four separate per-mode SCB vectors, one for each of kernel, executive, supervisor,
and user modes.

On encountering an AST, the interrupt stack frame is pushed on the kernel stack. The value of
the PC saved in this stack frame is the address of the next instruction to have been executed if
the interrupt had not occurred. The SCB vector quadword is saved in R2 and the SCB parame-
ter quadword in R3.
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14.4.3 Passive Release Interrupts — IPLs 20 to 23

Passive releases occur when the source of an interrupt granted by a processor cannot be deter-
mined. This can happen when the requesting I/O device determines that it no longer requires an
interrupt after requesting one or when a previously requested interrupt has already been ser-
viced by another processor in some multiprocessor configurations. The interrupt handler for
passive releases executes at the priority level of the interrupt request.

14.4.4 1/O Device Interrupts — IPLs 20 to 23

The architecture provides four priority levels for use by 1/0 devices. I/O device interrupts are
requested when the device encounters a completion, attention, or error condition and the
respective interrupt is enabled. See Section 26.3.5 for more information.

14.4.5 Interval Clock Interrupt — IPL 22

The interval clock requests an interrupt periodically.

At least 1000 interval clock interrupts occur per second. An entry in the HWRPB contains the
number of interval clock interrupts per second that occur in an actual Alpha implementation,
scaled up by 4096, and rounded to a 64-bit integer. (See Section 26.1.)

The accuracy of the interval clock must be at least 50 parts per million (ppm).

Hardware/Software Note:

For example, an interval of 819.2 usec derived from a 10 MHz Ethernet clock and a 13-bit
counter is acceptable.

To guarantee software progress, the interval clock interrupt should be no more frequent
than the time it takes to do 500 main memory accesses. Over the life of the architecture,
this interval may well decrease much more slowly than CPU cycle time decreases.

Other constraints may apply to secure kernel systems.

14.4.6 Interprocessor Interrupt — IPL 22

Interprocessor interrupts are provided to enable operating system software running on one pro-
cessor to interrupt activity on another processor and cause operating system-dependent actions
to be performed.

14.4.6.1 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only internal processor register
used for making a request to interrupt a specific processor.

Kernel mode software may request to interrupt a particular processor by executing a
CALL_PAL MTPR_IPIR instruction (see Section 13.3).

If the specified processor is the same as the current processor and the current IPL is less than
22, then the interrupt may be delayed and not initiated before the execution of the next
instruction.
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Note that, as with software interrupts, no indication is given as to whether there is already an
interprocessor interrupt pending when one is requested. Therefore, the interprocessor interrupt
service routine must not assume there is a one-to-one correspondence between interrupts
requested and interrupts generated. A valid protocol similar to the one for software interrupts
for generating this correspondence is:

1. Therequester places information in a control block and then inserts the control block in
a queue associated with the target processor.

2. The requester uses CALL_PAL MTPR_IPIR to request an interprocessor interrupt on
the target processor.

3. The interprocessor interrupt service routine on the target processor attempts to remove a
control block from its request queue. If there are no control blocks remaining, the inter-
rupt is dismissed with a CALL_PAL REI instruction.

4. If a valid control block is removed from the queue, the specified action is performed
and step 3 is repeated.

14.4.7 Performance Monitor Interrupts — IPL 29

These interrupts provide some of the support for processor or system performance measure-
ments. The implementation is processor or system specific.

14.4.8 Powerfail Interrupt — IPL 30

If the system power supply backup option permits powerfail recovery, a powerfail interrupt is
generated to each processor when power is about to fail. See Section 27.5 for a description of
powerfail recovery requirements and for a description of the interactions between system soft-
ware and the console during system restarts.

In systems in which the backup option maintains only the contents of memory and keeps sys-
tem time with the BB_WATCH, the power supply requests a powerfail interrupt to permit
volatile system state to be saved. Prior to dispatching to the powerfail interrupt service routine,
PALcode is responsible for saving all system state that is not visible to system software. Such
state includes, but is not limited to, processor internal registers and PALcode temporary
variables.

PALcode is also responsible for saving the contents of any write-back caches or buffers,
including the powerfail interrupt stack frame. System software is responsible for saving all
other system state. Such state includes, but is not limited to, processor registers and write-back
cache contents. State can be saved by forcing all written data to a backed-up part of the mem-
ory subsystem; software may use the CALL_PAL CFLUSH instruction.

The powerfail interrupt will not bénitiated until the processor IPL drops below 30. Thus, criti-

cal code sequences can block the power-down sequence by raising the IPL to 31. Software,
however, must take extra care not to lock out the power-down sequence for an extended period
of time. The time interval is platform specific.

Explicit state is not provided by the architecture for software to directly determine whether
there were outstanding interrupts when powerfail occurred. It is the responsibility of software
to leave sufficient information in memory so that it may determine the proper action on power-

up.
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14.5 Machine Checks

A machine check, or mcheck, indicates that a hardware error condition was detected and may
or may not be successfully corrected by hardware or PALcode. Such error conditions can occur
either synchronously or asynchronously with respect to instruction execution. There are four

types:
1. System Machine Check (IPL 31)

These machine checks are generated by error conditions that are detected
asynchronously to processor execution but are not successfutlycted by hardware

or PALcode. Examples of system machine check conditions include pratomsk on

the processor-memory-interconnect (PMI) and unrecoverable memory errors.

System machine checks are always maskable afiered until processor IPL drops
below IPL 31.

2. Processor Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected and not
successfully corrected by hardware or PALcode. Examples of processor machine

check conditions include processor internal cache errors, translation buffer parity

errors, or read access to a nonexistent local I/O space location (NXM).

Processor machine checks may be nonmaskable or maskable. If nonmaskable, they are
initiated immediately, even if the processor IPL is 31. If maskable, they derrdd
until processor IPL drops below IPL 31.

3. System Correctable Machine Check (IPL 20)

These machine checks are generated by error conditions that are detected
asynchronously to processor execution and are successfuligcted by hardware or
PALcode. Examples of system correctable machine check conditions include single-bit
errors within the memory subsystem.

System carectable machine checks are always maskable and deferred untispooce
IPL drops below IPL 20.

4. Processor GQoectable Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected and
successfully coected by hardware or PALcode. Examples of processor correctable
machine check conditions include reected procssor internal cache errors and
corrected translation buffer table errors.

Processor correctable machine checks may be nonmaskable or maskable. If
nonmaskable, they are initiated immediately, even if the processor IPL is 31. If
maskable, they are deferredtil processor IPL drops below IPL 31.

Machine checks are initiated in kernel mode, on the kernel stack, and cannot be disabled.

Correctable machine checks permit the pattern and frequency of certain errors to be captured.
The delivery of these machine checks to system software can be disabled by setting IPR
MCES<4:3>, as described in Section 13.3.9. Note that setting IPR MCES<4:3> does not dis-
able the generation of the machine check or the correction of the error, but rather suppresses
the reporting of that correction to system scdte.
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The PC in the machine check stack frame is that of the next instruction that would have issued
if the machine check condition had not occurred. This is not necessarily the address of the
instruction immediately following the one encountering the error, and intervening instructions
may have changed operands or other state used by the instruction encountering the error condi-
tion. A CALL_PAL REI instruction to this PC will simply continue execution from the point at
which the machine check was taken.

Note:

On machine checks, a meaningful PC is delivered on adifstt basis. The mdigne state,
processor registers, memory, and 1/O devices may be indeterminate.

Machine checks may be deliberately generated by software, such as by probing nonexistent
memory during memory sizing or searching for local I/0O devices. In such a case, the DRAINA
PALcode instruction can be called to force any outstanding machine checks to be taken before
continuing.

14.5.1 Software Response

The reaction of system software to machine checks is specific to the characteristics of the pro-
cessor, platform, and system software. System software must determine if operation should be
discontinued on an implementation-specific basis.

To assist system software, PALcode provides a retry flag in the machine check logout frame
(see Figure 14-5). If the retry flag is set, the state of the processor and platform hardware has
not been compromised; system software operation should be able to continue.

If the retry flag is clear, the state of the processor is either unknown or is known to have been
updated during partial execution of one or more instructions. System software operation can
continue only after system software determines that the hardware state change permits and/or
takes corrective dion.

PALcode should take appropriate implementation-specific actions prior to setting the retry
flag. PALcode should also attempt to ensure that each encountered error condition generates
only one machine check.

Implementation Note:

An important example of using the retry flag is read NXM. Also, a read NXM should not
generate both a Processor Machine Check and a System Machine Check.

PALcode sets an internal Machine-Check-In-Progress flag in the Machine Check Error Sum-
mary (MCES) register prior to initiating a system or processor machine check. System
software must clear that flag to dismiss the machine check. If a second uncorrectable machine
check hardware error coitibn is detected while the flag is set, or if PALcode cannot deliver

the machine check, PALcode forces the processor to enter console 1/O mode, and subsequent
actions, such as processor restart, are taken by the console. The REASON FOR HALT code is
"doubleerror abort enocuntered." See Sections 26.1.3 and 27.5.

Similarly, PALcode sets an internal correctable Machine-Check-In-Progress flag in the
Machine Check Error Summary (MCES) register prior to initiating a systemectable error
interrupt or processor-correctable miae check. System software must clear that flag to dis-
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miss the condition and permit the reuse of the logout area. If a second correctable hardware
error condition is detected while the flag is set, the error is corrected, but not reported. PAL-
code does not overwrite the logout area and the processor remains in program 1/O mode.

14.5.2 Logout Areas

When a hardware error condition is encountered, PALcode optionally builds a logout frame
prior to passing control to the machine check service routine. The logout frame is shown in
Figure 14-5 and described in Table 14-5. The logout frame is built in the logout area located
by the processor’s per-CPU slot in the HWRPB (see Section 26.1).

Figure 14-5: Corrected Error and Machine Check Logout Frame

6362 61 32 31 0
R|S SBZ Frame Size :FRAME
System Offset CPU Offset +8
PALcode-Specific Information +16
CPU-Specific Information :+CPU Offset
System-Specific Information :+SYS Offset
+FRAME_SIZ

Table 14-5 Corrected Error and Machine Check Logout Frame Fields

Offset Description
FRAME FRAME SIZE — Size in bytes of the logout frame, including the FRAME SIZE
longword.
+04 FRAME FLAGS — Informational flags.
Bit Description
31 RETRY FLAG — Indicates whether execution can be resumed after dismissing
this machine check. Set on Corrected Error interrupts; may be set on machine
checks.

30 SECOND ERROR FLAG — Indicates that a second correctable error was
encountered. Set on Corrected Error interrupts when a correctable error was
encountered while the relevant correctable error bit (PCE or SCE) is set in the
MCES register. Clear on machine checks.

29-0 SBZ.

+08 CPU OFFSET — Offset in bytes from the base of the logout frame to the CPU-spe-
cific information. If CPU OFFSET is equal to 16, the frame contains no PALcode-
specific information. If CPU OFFSET is equal to SYS OFFSET, the frame contains
no CPU-specific information.

+12 SYS OFFSET — Offset in bytes from the base of the logmme to the system-
specific information. If SYS OFFSET is equal to FRAME SIZE, the frame contains
no system-specific information.
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Table 14-5 Corrected Error and Machine Check Logout Frame Fields (Continued)

Offset Description

+16 PALCODE INFORMATION — PALcode-specific logout information.
+CPU OFFSET CPU INFORMATION — CPU-specific logout information.

+SYS OFFSET SYS INFORMATION — System platform-specific logout information.

The logout frame is optional; the service routine uses R4 to locate the frame, if any. Upon
entry to the service routine, R4 contains the byte offset of the logout frame from the base of the
logout aea. If no frame wasbuilt, R4 contains —1.

14.6 System Control Block

The System Control Block (SCB) specifies the entry points for exioa, interrupt, and
machine check service routines. The block is from 8K to 32K bytes long, must be page
aligned, and must be physically contiguous. The PFN is specified by the value of the System
Control Block Base (SCBB) internal register.

The SCB, shown in Figure 14—6, consists of from 512 to 2048 entries, each 16 bytes long. The

first eight bytes of an entry, the vector, specify the virtual address of the service routine associ-

ated with that entry. The second eight bytes, the parameter, are an arbitrary quadword value to
be passed to the service routine.

Table 14—6 System Control Block Summary

Faults 000-0F0
Arithmetic Traps 200-230
Asynchronous System Traps 240-270
Data Alignment Traps 280-3F0
Other Synchronous Traps 400-4F0
Software Interrupts 500-5F0
Processor Hardware Interrupts and Machine Checks 600-6F0
Unused 700-7F0
I/0 Hardware Interrupts 800-7FF0

The SCB entries are grouped as follows:
* Faults
* Arithmetic traps
e Asynchronous system traps
e Data alignment trap
e Other synchronous traps
* Processor software ietrupts

* Processor hardware interrupts and machine checks
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e |/O device interrupts

The first 512 entries (offsets 0000 through §g0contain all architecturally defined and any

statically allocated entries. All remaining SCB entries, if any, are used only for those 1/O
device interrupt vectors that are assigned dynamically by system software. It is the responsibil-
ity of that software to ensure the consistency of the assigned vector and the SCB entry.

14.6.1 SCB Entries for Faults

The exception handler for a fault executes with the IPL unchanged, in kernel mode, on the ker-
nel stack. Table 147 lists the SCB entries for faults.

Table 14-7: SCB Entries for Faults

Byte Offset 14 Entry Name

000 Unused

010 Floating Disabled fault
020-070 Unused

080 Access Control Violation fault
090 Translation Not Valid fault
0AO Fault on Read fault

0BO Fault on Write fault

0CO Fault on Execute fault
0A0-0FO0 Unused

14.6.2 SCB Entries for Arithmetic Traps

The exception handler for an arithmetic trap executes with the IPL unchanged, in kernel mode,
on the kernel stack. Table 14-8 lists the SCB entries for arithmetic traps.

Table 14-8: SCB Entries for Arithmetic Traps

Byte Offset 14 Entry Name
200 Arithmetic Trap
210-230 Unused
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14.6.3 SCB Entries for Asynchronous System Traps (ASTS)

The interrupt handler for an asynchronous system trap executes at IPL 2, in kernel mode, on
the kernel stack. Table 14-9 lists the SCB entries for asynchronous system traps.

Table 14-9: SCB Entries for Asynchronous System Traps

Byte Offset 14 Entry Name

240 Kernel Mode AST
250 Executive Mode AST
260 Supervisor Mode AST
270 User Mode AST

14.6.4 SCB Entries for Data Alignment Traps

The exception handler for a data alignment trap executes with the IPL unchanged in kernel
mode, on the kernel stack. Table 14-10 lists the SCB entries for data alignment traps.

Table 14-10: SCB Entries for Data Alignment Trap

Byte Offset 44 Entry Name

280 Unaligned_Access
290-3F0 Unused

14.6.5 SCB Entries for Other Synchronous Traps

The exception handler for a synchronous trap, other than those described above, executes with
the IPL unchanged, in the mode and on the stack indicated below. "MostPriv" indicates that the
handler executes in either the original mode or the new mode, whichever is the most privi-
leged. Table 14-11 lists the SCB entries for other synchronous traps.

Table 14-11: SCB Entries for Other Synchronous Traps

Byte Offset 14 Entry Name Mode

400 Breakpoint Trap Kernel
410 Bugcheck Trap Kernel
420 lllegal Instruction Trap Kernel
430 lllegal Operand Trap Kernel
440 Generate Software Trap Kernel
450 Unused

460 Unused

470 Unused

480 Change Mode to Kernel Kernel
490 Change Mode to Executive  MostPriv
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Table 14-11: SCB Entries for Other Synchronous Traps (Continued)

Byte Offset 14 Entry Name Mode

4A0 Change Mode to Supervisor MostPriv
4B0 Change Mode to User Current
4C0-4F0 Reserved for Compaq

14.6.6 SCB Entries for Processor Software Interrupts

The exception handler for a processor software interrupt executes at the target IPL, in kernel
mode, on the kernel stack. Table 14-12 lists the SCB entries for processor softweanepirst.

Table 14-12: SCB Entries for Processor Software Interrupts

Byte Offset 14 Entry Name Target IPL 1o
500 Unused

510 Software interrupt level 1 1
520 Software interrupt level 2 2
530 Software interrupt level 3 3
540 Software interrupt level 4 4
550 Software interrupt level 5 5
560 Software interrupt level 6 6
570 Software interrupt level 7 7
580 Software interrupt level 8 8
590 Software interrupt level 9 9
5A0 Software interrupt level 10 10
5B0 Software interrupt level 11 11
5CO0 Software interrupt level 12 12
5D0 Software interrupt level 13 13
5EQ Software interrupt level 14 14
5F0 Software interrupt level 15 15

14.6.7 SCB Entries for Processor Hardware Interrupts and Machine Checks

The interrupt handler for a processor hardware interrupt executes at the target IPL, in kernel
mode, on the kernel stack.
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The handler for machine checks executes in kernel mode, on the kernel stack. The handler for
system-correctable machine checks executes at IPL 20; the handler for all other machine
checks executes at IPL 31. Table 14-13 lists the SCB entries for processor hardware interrupts
and machine checks.

Table 14-13 SCB Entries for Processor Hardware Interrupts and Machine Checks

Byte Offset 14 Entry Name Target IPL 1o
600 Interval clock interrupt 22

610 Interprocessor interrupt 22
620 System correctable machine check 20
630 Processor correctable machine check 31
640 Powerfail interrupt 30

650 Performance monitor 29
660 System machine check 31
670 Processor machine check 31
680-6E0 Reserved — processor specific

6F0 Passive release 20-23

Processor-specific SCB entries include those used by console devices (if any) or other periph-
erals dedicated to system support functions.

14.6.8 SCB Entries for I/O Device Interrupts

The interrupt handler for an I/O device interrupt executes at the target IPL, in kernel mode, on
the kernel stack. SCB entries for offsets of §through 7FFQg are reserved for 1/0 device

interrupts.

14.7 PALcode Support

14.7.1 Stack Writeability

In response to various exceptions, interrupts, and machine checks, PALcode pushes informa-
tion on the kernel stack. PALcode may write this information without first probing to ensure
that all such writes to the kernel stack will succeed. If a memory management exception occurs
while pushing information, PALcode forces the processor to enter console I/O mode, and sub-
sequent actions, such as processor restart, are taken by the console. The REASON FOR HALT
code is "processor halted due to kernel-stack-not-valid." See Sections 26.1.3 and 27.5.

14.7.2 Stack Residency

The user, supervisor, and executive stacks for the current process do not need to be resident.
Software running in kernel mode can bring in or allocate stack pages as TNV faults occur.
However, since this activity is taking place in kernel mode, the kernel stack must be fully
resident.
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When the faults TNV, ACV, FOR, and FOW occur on kernel mode references to the kernel
stack, they are considered serious system failures from which recovery is not possible. If any
of those faults occur, PALcode forces the processor to enter console I/O mode, and subsequent
actions, such as processor restart, are taken by the console. The REASON FOR HALT code is
"processor halted due to kernel-stack-not-valid." See Sections 26.1.3 and 27.5.

14.7.3 Stack Alignment

Stacks may have arbitrary byte alignment, but performance may suffer if at least octaword
alignment is not maintained by software.

PALcode creates stack frames in response to exceptions and interrupts. Before doing so, the
target stack is aligned to a 64-byte boundary by setting the six low bits of the target SP to
00000G. The previous value of these bits is stored in the SP_ALIGN field of the saved PS in

memory, for use by a CALL_PAL REI instruction.

Software-constructed stack frames must be 64-byte aligned and have SP_ALIGN properly set;
otherwise, a CALL_PAL REI instruction will take an illegal operand trap.

14.7.4 Initiate Exception or Interrupt or Machine Check

Exceptions, interrupts, and machine checks are initiated by PALcode with interrupts disabled.
When an exception, interrupt, or machine check is initiated, the associated SCB vector is read
to determine the address of the service routine. PALcode then attempts to push the PC, PS, and
R2..R7 onto the target stack. When an interrupt (software or hardware but not AST) is initi-
ated, PS<IP> is set to 1 to indicate an interrupt is in progress. Additional parameters may be
passed in R4 and R5 on exceptions and machine checks.

During the attempt to push this information, the exceptions (faults) TNV, ACV, and FOW can
occur:

* If any of those faults occur when the target stack is user, supervisor, or executive, then
the fault is taken on the kernel stack.

* If any of those faults occur when the target stack is the kernel stack, PALcomsfthe
processor to enter console /0 mode, and subsequent actions, such as processor restart,
are taken by the console. The REASON FOR HALT code is "processor halted due to
kernel-stack-not-valid." See Sections 26.1.3 and 27.5.

14.7.5 Initiate Exception or Interrupt or Machine Check Model

check _for_exception_or_interrupt_or_mcheck:
IF NOT {ready to initiate_exception OR
ready to initiate_interrupt OR
ready to initiate_mcheck} THEN
BEGIN
{fetch next instruction}
{decode and execute instruction}
END
ELSE
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BEGIN
{wait for instructions in progress to complete}
I clear interrupt pending
tmp « O
IF {exception pending} THEN
BEGIN
{back up implementation specific state if necessary,
this includes the PC if synchronous trap pending}
new_ipl ~ PS<IPL>
new_mode — Kemel
END

ELSE IF {unmaskable mcheck pending} THEN
BEGIN
{back up implementation specific state if necessary}
{attempt correction if appropriate}
IF {uncorrectable AND MCES<0> = 1} THEN
{enter console}
ELSE IF {uncorrectable} THEN
new_mode — Kemel
new ipl « 31
I set mcheck error flag
MCES<0> ~ 1
ELSE IF {reporting enabled} THEN
new_mode ~ Kemel
new ipl < 31
MCES<2> - 1
END
END

ELSE IF {data alignment trap} THEN
new_mode ~ Kemel

ELSE IF {synchronous trap} THEN

CASE {opcode} OF
{back up implementation specific state if necessary}
CHME: new_mode — min(PS<CM>,Executive)
CHMS: new_mode — min(PS<CM>,Supervisor)
CHMU: new_mode — min(PS<CM>,User)
otherwise: new_mode ~ Kemel

ENDCASE

ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN
BEGIN
{back up implementation specific state if necessary}
IF {MCES<0> = 1} THEN
{enter console}
ELSE
new_mode ~ Kemel
new_ipl < 31
MCES<0> ~ 1 ! set mcheck error flag
END
END
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ELSE IF {interrupt pending} THEN
new_ipl ~ {interrupt source IPL}
tmp ~ 1! set interrupt pending
new_mode ~ Kemel

ELSE IF {maskable correctable mcheck pending AND
reporting enabled} THEN
new ipl ~ 20
MCES<1>~ 1
new_mode ~ Kemel
END

IPR_SP|PS<CM>] ~ SP
new sp ~ IPR_SP[hew_mode]
save_align ~ new_sp<5:.0>
new sp<6:0> ~ O

PUSH(PS OR LEFT_SHIFT(save _align,56), old pc, new_mode)
PUSH(R7, R6, new_mode)
PUSH(R5, R4, new_mode)
PUSH(R3, R2, new_mode)

PS<SW>~ 0
PS<CM> ~ new_mode
PS<IP> ~ tmp
PS<IPL> ~ new_ipl
SP < new_sp

IF {memory management fault} THEN
R4 ~ VA
R5 « MMF

END

IF {data alignment trap} THEN

R4 ~ VA

R5 « {0 if readload 1 if write/store }
END

IF {mcheck or correctable error interrupt} THEN
IF {logout frame built}
R4 — logout_area offset
ELSE
R4 ~ -1
END
END

IF {arithmetic Trap} THEN
R4 — register write mask
R5 « exception summary
END

IF {software interrupt} THEN

SISR — SISR AND NOT{ 2*{ PRIORITY_ENCODE(SISR) } }
END
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vector — {exception or interrupt or mcheck SCB offset}

R2 ~ (SCBB + vector)
R3 ~ (SCBB + vector + 8)
PC -« R2

END
GOTO check_for_exception_or_interrupt_or_mcheck

PROCEDURE PUSH(first, last, mode)
BEGIN
IF ACCESS(new_sp - 16, mode) THEN
BEGIN
(new sp - 8) ~ first
(new sp - 16) ~ last
new_sp — new_sp - 16
RETURN
END
ELSE
{iniiate ACV, TNV, or FOW fault, or
Kernel Stack Not Valid restart sequence}
END
END

14.7.6 PALcode Interrupt Arbitration

The following sections describe the logic for the interrupt conditions produced by the speci-
fied operation.

14.7.6.1 Writing the AST Summary Register

Writing the ASTSR internal processor register (Section 13.3) requests an AST for any of the
four processor modes. This operation may request an AST on a formerly inactive level and
thus cause an AST interrupt. The logic required to check for this condition is:

ASTSR<3:.0> ~ {ASTSR<3.0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<0> AND {PS<IPL> LT 2} THEN
{iniiate AST interrupt at IPL 2}

14.7.6.2 Writing the AST Enable Register

Writing the ASTEN internal processor register (Section 13.3) enables ASTs for any of the four
processor modes. This operation may enable an AST on a formerly inactive level and thus
cause an AST interrupt. The logic required to check for this condition is:

ASTEN<3:.0> ~ {ASTEN<3.0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<0> AND {PS<IPL> LT 2} THEN
{iniiate AST interrupt at IPL 2}

14.7.6.3 Writing the IPL Register

Writing the IPL internal processor register (Section 13.3) changes the current IPL. This opera-
tion may enable an AST or software interrupt on a formerly inactive level and thus cause an
AST or software interrupt. The logic required to check for this condition is:
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PS<IPL> ~ R16<4.0>
I check for software interrupt at level 2.15

IF {RIGHT_SHIFT{SISR AND FFFC 14 }, PS<IPL> + 1) NE O} THEN
{initiate software interrupt at IPL of high bit set in SISR}

I check for AST

IF ASTEN<O> AND ASTSR<0> AND {PS<IPL> LT 2} THEN
{iniiate AST interrupt at IPL 2}

I check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}

14.7.6.4 Writing the Software Interrupt Request Register

Writing the SIRR internal processor register (Section 13.3) requests a software interrupt at one
of the 15 software interrupt levels. This operation may cause a formerly inactive level to cause
a software interrupt. The logic required to check for this condition is:

SISR<level> ~ 1
IF level GT PS<IPL> THEN
{iniiate software interrupt at IPL level}

14.7.6.4.1 Return from Exception or Interrupt

The CALL_PAL REI instruction (Section 10.1.11) writes both the Current Mode and IPL
fields of the PS (see Section 14.2). This may enable a formerly disabled AST or software inter-
rupt to occur. The logic required to check for this condition is:

PS —« New PS
I check for software interrupt at level 2..15

IF {RIGHT_SHIFT{SISR AND FFFC 14 }, PS<IPL> + 1) NE O} THEN
{initiate software interrupt at IPL of high bit set in SISR}

I check for AST

tmp < NOT LEFT_SHIFT(1110(bin), PS<CM>)

IF {{tmp AND ASTEN AND ASTSR}<3.0> NE 0} AND {PS<IPL> LT 2} THEN
{iniiate AST interrupt at IPL 2}

I check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}
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14.7.6.5 Swap AST Enable

Swapping the AST enable state for the Current Mode results in writing the ASTEN internal
processor register (see Section 13.3). This operation may enable a formerly disabled AST to
cause an AST interrupt. The logic required to check for this condition is:

RO — ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>>— R16<0>

IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> LT 2} THEN
{iniiate AST interrupt at IPL 2}

14.7.7 Processor State Transition Table

Table 14-14 shows the operations that can produce a state transition and the specific transition
produced. For example, if a processor’s initial state is supervisor mode, it is not possible for
the processor to transition to a program halt condition. A processor can only transition to pro-
gram halt from kernel mode.

In Table 14-14:

"REI" increases mode or lowers IPL.

"MTPR" changes IPL or is a CALL _PAL MTPR_ASTSR or CALL_PAL
MTPR_ASTEN instruction that causes andmupt request.

"Exc" is a state change caused by an exception.
"Int" is a state change caused by an interrupt.

"Mcheck" is a state change caused by a machine check
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Table 14-14 Processor State Transitions

Initial State: Final State:

User Super. Exec. Kernel Program Halt

User

Supervisor

Executive

Kernel

CHMU

REI

REI

REI

REI

CHMS

CHMS

REI

REI

REI

CHME

CHME

CHME

REI

REI

CHMK
Exc
Int

Mcheck
SWASTEN

CHMK
Exc
Int

Mcheck
SWASTEN

CHMK
Exc
Int

Mcheck
SWASTEN

CHMK
REI
Exc

Int
Mcheck

MTPR
SWASTEN

Not Possible

Not Possible

Not Possible

HALT
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Tru64 UNIX Software (1I-B)

The following chapters describe how the Tru64 UNIX operating system relates to the Alpha
architecture:

e Chapter 15, Introduction to Tru64 UNIX (1I-B)

e Chapter 16, PALcode Instruction Descriptidtis-B)
e Chapter 17, Memory Management (11-B)

e Chapter 18, Process Structure (I1I-B)

e Chapter 19, Exceptions and Interruiis-B)






The goals of this design are to provide a hardware interface between the hardware and

Chapter 15

Introduction to Tru64 UNIX (1I-B)

Tru64 UNIX that is implementation independent. The interface needs to provide the required
abstractions to minimize the impact of different hardware implementations on the operating

system. The interface also needs to be low in overhead to support high-performance systems.

Finally, the interface needs to support only features used by Tru64 UNIX.

The register usage in this interface is based on the current calling standard used by Tru64

UNIX. If the calling standard changes, this interface will be changed accordingly. The current
calling standard register usage is shown in Table 15-1.

Table 15-1: Tru64 UNIX Register Usage

Register Software

Name Name Use and Linkage

ro vO Used for expression evaluations and to hold integer func-
tion results.

rl...r8 t0...t7 Temporary registers; not preserved across procedure
calls.

ro...rl4 sQ..sb Saved registers; their values must be preserved across
procedure calls.

ris FP or s6 Frame pointer or a saved register.

rleé...r21 aQ..ab Argument registers; used to pass the first six integer type
arguments; their values are not preserved across proce-
dure calls.

r22...r25 t8...111 Temporary registers; not preserved across procedure
calls.

r26 ra Contains the return address; used for expression evalua-
tion.

r27 pv ortl2 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across pro-
cedure calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r3l Zero Always has the value 0.
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15.1 Programming Model

The programming model of the machine is the combination of the state visible either directly
via instructions, or indirectly via actions of the machine. Tables 15-2 and 15-3 define code
flow constants, state variables, terms, subroutines, and code flow terms that are used in the rest
of the document.

15.1.1 Code Flow Constants and Terms

Tru64 UNIX uses the following constants and terms

Table 15-2 Code Flow Constants and Terms

Term Meaning and Value

IPL=2:0 Therange 2:0 used in the PS to access the IPL field of the PS (PS <IPL>).
maxCPU The maximum number of processors in a given system.
mode =3  Used as a subscript in PS to select current mode (PS <mode>).

opDec An attempt was made to execute a reserved instruction or execute a privileged instruction
in user mode.

pageSize Size of a page in an implementation in bytes.

vaSize Size of virtual address in bits in a given implementation.

15.1.2 Machine State Terms

Table 15-3 Machine State Terms

Term Meaning

ASN An implementation-dependent size register to hold the current address space
number (ASN). The size and existence of ASN is an implementation choice.

entArith <63:0> The arithmetic trap entry address register. The entArith is an internal processor
register that holds the dispatch address on an arithmetic trap. There can be a
hardware register for the entArith or the PALcode can use private scratch mem-
ory.

entlF <63:0> The instruction fault or synchronous trap entry address register. The entlF is an
internal processor register that holds the dispatch address on an instruction fault
or synchronous trap. There can be a hardware register for the entlF or the PAL-
code can use private scratch memory.

entint <63:0> The irdrrupt entry address register. The entint is an internal processor register
that holds the dispatch address on an interrupt. There can be a hardware register
for the entint or the PALcode can use private scratch memory.

entMM <63:0> The memory-management fault entry address register. The entMM is an internal
processor register that holds the dispatch address on a memory-management
fault. There can be a hardware register for the entMM or the PALcode can use
private scratch memory.
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Table 15-3 Machine State Terms (Continued)

Term

Meaning

entSys <63:0>

entUna <63:0>

FEN <0>

instruction <31:0>

intr_flag

KGP <63:0>

KSP <63:0>

lock flag <0>

MCES <2:0>

PC <63:0>

PCB

PCBB <63:0>

PCC

The system call entry address register. The entSys is an internal processor regis-
ter that holds the dispatch address on an callsys instruction. There can be a hard-
ware register for the entSys or the PALcode can use private scratch memory.

The unaligned fault entry address register. The entUna is an internal processor
register that holds the dispatch address on an unaligned fault. There can be a
hardware register for the entUna or the PALcode can use private scratch mem-
ory.

The floating-point enable register. The FEN is a one-bit register, located at bit O
of PCBJ[40], that is used to enable or disable floating-point instructions. If a
floating-point instruction is executed with FEN equal to zero, a FEN fault is ini-
tiated.

The current instruction being executed. This is a fake register used in the flows
to CASE on differeninstructions.

A per-processor state bit. The intr_flag bit is cleared if that processor executes an
rti or retsys instruction.

The kernel global pointer. The KGP is an internal processor register that holds
the kernel global pointer that is loaded into R15, the GP, when an exception is
initiated. There can be a hardware register for the KGP or the PALcode can use
private scratch memory.

The kernel stack pointer. The KSP is an internal processor register that holds the
kernel stack pointer while in user mode. There can be a hardware register for the
KSP or the storage space in the PCB can be used.

A one-bit register that is used by the load locked and store conditional instruc-
tions.

The machine check error summary register. The MCES is a 3-bit register that
contains controls for machine check and system-correctabbe handling.

The program counter. The PC is a pointer to the next instruction in the flows.
The low-order two bits of the PC always read as zero and writes to them are
ignored.

The process control block. The PCB holds the state of the process.

The process control block base address register. The PCBB holds the address of
the PCB for the current process.

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC
<31:0>) are an unsigned, wrapping counter, PCC_CNT. The high-order 32 bits
(PCC <63:32>) are an offset, PCC_OFF. PCC_OFF is a value that, when added
to PCC_CNT, gives the total PCC register count for this process, modulo 2**32.
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Table 15-3 Machine State Terms (Continued)

Term

Meaning

PME <62>

PS <3:0>

PTBR <63:0>

SP <63:0>

SYSPTBR

sysvalue <63:0>

unique <63:0>

USP <63:0>

The performance monitoring enable bit. The PME is a one-bit register, located at
bit 62 of PCBJ[40], that alerts any performance monitoring software/hardware in
the system that this process is to have its performance monitored. The imple-
mentation mechanism for this bit is not specified; it is implementation dependent
(IMP).

The processor status. The PS is a four-bit register that stores the current mode in
bit <3> and stores the three-bit IPL in bits <2:0>. The mode is O for kernel and 1
for user.

The page table base register. The PTBR contains the physical page frame num-
ber (PFN) of the highest level page table.

Another name for R30. The SP points to the top of the current stack.

PALcode only accesses the kernel stack. The kernel stack must be quadword
aligned whenever PALcode reads or writes it. If the PALcode accesses the ker-
nel stack and the stack is not aligned, a kernel-stack-not-valid halt is initiated.
Although PALcode does not access the user stack, that stack should also be at
least quadword aligned for best performance.

The system page table physical base register.

Contains the page frame number (pfn) of the highest-level page table to be used
for system-wide addresses equal to or above the value of the virtual address
boundary register.

Not saved in a context switch.

The system value register. The sysvalue holds the per-processor unigue value.
There can be a hardware register for the sysvalue register or the storage space in
the PALcode scratch memory can be used.

The sysvalue register can only be accessed by kernel mode code and there is one
sysvalue register per CPU.

The process unique value register. The unique register holds the per-process
unique value. There can be a hardware register for the unique register or the stor-
age space in the PCB can be used.

The unique register can be accessed by both user and kernel code and there is
one unique register per process.

The user stack pointer. The USP is an internal processor register that holds the
user stack pointer while in kernel mode. There can be a hardware register for the
USP or the storage space in the PCB can be used.
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Table 15-3 Machine State Terms (Continued)

Term Meaning

VIRBND The virtual address boundary register. Used to determine which page table phys-
ical base register is used. At processor initialization, VIRBND is initialized to a
value of -1, which results in all translations using PTBR.

VPTPTR <63:0> The virtual page table pointer. The VPTPTR holds the virtual address of the first
level page table.

whami <63:0> The processor number of the current processor. This number is in the range
0...maxCPU-1.
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Chapter 16

PALcode Instruction Descriptions (11-B)

16.1 Unprivileged PALcode Instructions

Table 16-1 lists the Tru64 UNIX PALcode unprivileged instruction mnemonics, names, and
the environment from which they can be called.

Table 16-1: Unprivileged PALcode Instructions

Mnemonic Name Calling Environment

bpt Breakpoint trap Kernel and user modes

bugchk Bugcheck trap Kernel and user modes
callsys System call User mode

clrfen Clear floating-point enable User mode

gentrap Generate trap Kernel and user modes
imb I-stream memory barrier Kernel and user modes

Described in Section 6.7.3.

rdunique Read unique Kernel and user modes
urti Return from user mode trap ~ User mode
wrunique Write unique Kernel and user modes
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16.1.1 Breakpoint Trap

Format:
bpt ! PALcode format

Operation:

temp ~ PS

if (ps<mode> NE 0) then
USP - SP I Mode is user so switch to kernel
SP .~ KSP
PS ~ 0

endif

SP . SP-{6*8

(SP+00) ~ temp

(SP+08) .~ PC

(SP+16) ~ GP

(SP+24) - a0

(SP+32) .~ al

(SP+40) .~ a2

a0 - 0

GP - KGP

PC — entlF

Exceptions:

Kernel stack not valid

Instruction Mnemonics:

bpt Breakpoint trap

Description:

The breakpoint trap (bpt) instruction switches mode to kernel, builds a stackframe on the ker-
nel stack, loads the GP with the KGP, loads a value of 0 into a0, and dispatches to the
breakpoint code pointed to by the entlF register. The registers.a2lare UNPREDICT-
ABLE on entry to the trap handler. The saved PC at (SP+08) is the address of the instruction
following the trap instruction that caused the trap.
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16.1.2 Bugcheck Trap

Format:

bugchk I PALcode format

Operation:

temp ~ PS

if (PS<mode> NE 0) then
USP - SP I Mode is user so switch to kernel
SP .~ KSP
PS ~ 0

endif

SP . SP-{6*8

(SP+00) ~ temp

(SP+08) .~ PC

(SP+16) ~ GP

(SP+24) - a0

(SP+32) .~ al

(SP+40) .~ a2

a0 1

GP - KGP

PC — entlF

Exceptions:

Kernel stack not valid

Instruction Mnemonics:

bugchk Bugcheck trap

Description:

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe on the
kernel stack, loads the GP with the KGP, loads a value of 1 into a0, and dispatches to the
breakpoint code pointed to by the entlF register. The registers.a2lare UNPREDICT-
ABLE on entry to the trap handler. The saved PC at (SP+08) is the address of the instruction
following the trap instruction that caused the trap.
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16.1.3 System Call

Format:

callsys I PALcode format

Operation:

if (PS<mode> EQ 0) then
machineCheck
endif
USP - SP
SP . KSP
PS —~ 0 I Mode=kernel
SP . SP - {6*8}
(SP+00) .~ 8 I PS of mode=user, IPL=0
(SP+08) .~ PC
(SP+08) .~ GP
GP - KGP
PC — entSys

Exceptions:

Machine check — invalid kernel mode callsys
Kernel stack not valid

Instruction Mnemonics:

callsys System call

Description:

The system call (callsys) instruction is supported only from user mode. (Issuing a callsys from
kernel mode causes a machine check exception.)

The callsys instruction switches mode to kernel and builds a callsys stack frame. The GP is
loaded with the KGP. The exception then dispatches to the system call code pointed to by the
entSys register. On entry to the callsys code, the scratch registers t0 antd 18are
UNPREDICTABLE.
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16.1.4 Clear Floating-Point Enable

Format:

clrfen ! PALcode format

Operation:

FEN . 0
(PCBB+40)<0> . 0

Exceptions:

None

Instruction Mnemonics:

clrfen Clear floating-point enable

Description:

The clear floating-point enable (clrfen) instruction writes a zero to the floating-point enable
register and to the PCB at offset (PCBB+40)<0>. On return from the clrfen instruction, the
scratch rgisters t0 and t8.t11 are UNPREDICTABLE.
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16.1.5 Generate Trap

Format:

gentrap I PALcode format

Operation:

temp ~ PS

if (PS<mode> NE 0) then
USP - SP I Mode is user so switch to kernel
SP .~ KSP
PS ~ 0

endif

SP . SP-{6*8

(SP+00) ~ temp

(SP+08) .~ PC

(SP+16) ~ GP

(SP+24) - a0

(SP+32) .~ al

(SP+40) .~ a2

a0 - 2

GP - KGP

PC — entlF

Exceptions:

Kernel stack not valid

Instruction Mnemonics:

gentrap Generate trap

Description:

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe on the
kernel stack, loads the GP with the KGP, loads a value of 2 into a0, and dispatches to the
breakpoint code pointed to by the entlF register. The registers.a2lare UNPREDICT-
ABLE on entry to the trap handler. The saved PC at (SP+08) is the address of the instruction
following the trap instruction that caused the trap.
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16.1.6 Read Unique Value

Format:

rdunique I PALcode format

Operation:
vO — unique
Exceptions:

None

Instruction Mnemonics:

rdunique Read unique value

Description:

The read unique value (rdunique) instruction returns the process unique value in v0. The write
unique value (wrunique) instruction, described in Section 16.1.8, sets the process unique value
register.
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16.1.7 Return from User Mode Trap

Format:
urti I PALcode format
Operation:
if (PS<mode> EQ 0) then
{machineCheck}
endif

if (SP<5.0> NE 0)

{Initiate illegal operand exception}
endif
tempps ~ (SP+16)

if (( tempps<mode> E Q 0 ) OR ( tempps<IPL> NE 0 )) then
{Initiate illegal operand exception}
endif

at ~ (SP+0)
tempsp ~ (SP+8)
temppc ~ (SP+24)
GP ~ (SP+32)

a0 ~ (SP+40)

al ~ (SP+48)

a2 ~ (SP+56)

intr flag = 0 I Clear the interrupt flag
lock flag = 0 I Clear the load lock flag

SP ~ tempsp
PC ~ temppc

Exceptions:

Machine check - invalid kernel mode urti
Illegal operand

Translation not valid

Access violation

Fault on read

Instruction Mnemonics:

urti Return from user mode trap

Description:

The return from user trap (urti) instruction pops registers.(@2, and GP), the new user at,
SP, PC, and the PS, from the user stack.
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16.1.8 Write Unique Value

Format:

wrunique I PALcode format

Operation:
unique ~ a0

Exceptions:

None

Instruction Mnemonics:

wrunigue Write unique value

Description:

The write unique value (wrunigque) instruction sets the process unique register to the value
passed in a0. The read unique value (rdunique) instruction, described in Section 16.1.6, returns
the process unigue value.
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16.2 Privileged PALcode Instructions

The Privileged Tru64 UNIX PALcode instructions (Table 16-2) provide an abstracted inter-

face to control the privileged state of the machine.

Table 16-2: Privileged PALcode Instructions

Mnemonic Name

cflush Cache flush

cserve Console service

draina Drain aborts. Described in Section 6.7.1.

halt Halt the processor. Described in Section 6.7.2.
rdmces Read machine check error summary register
rdps Read processor status

rdusp Read user stack pointer

rdval Read system value

retsys Return from system call

rti Return from trap, fault, or interrupt

swpctx Swap process context

swppal Swap PALcode image

swpipl Swap IPL

tbi TB (translation buffer) invalidate

whami Who am |

wrasn Write ASN

wrent Write system entry address

wrfen Write floating-point enable

wripir Write interprocessor imrrupt request

wrkgp Write kernal global pointer

wrmces Write machine check error summary register

wrperfmon Performance monitoring function

wrsysptb Write system page table base
wrusp Write user stack pointer

wrval Write system value

wrvirbnd Write virtual address boundary
wrvptptr Write virtual page table pointer
wtint Wait for interrupt
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16.2.1 Cache Flush

Format:

cflush IPALcode format

Operation:

I a0 contains the page frame number (PFN)
! of the page to be flushed

IF PS<mode> EQ 1 THEN
{Initiate opDec fault}

{Flush page out of cache(s)}

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

cflush Cache flush

Description:

The cflush instruction may be used to flush an entire physical page specified by the PFN in a0
from any data caches associated with the current processor. All processors must implement this
instruction.

On processors that implement a backup power option that maintains only the contents of mem-
ory if a powerfail occurs, this instruction is used by the powerfail interrupt handler to force
data written by the handler to the battery backed-up main memory. After a cflush, the first sub-
sequent load (on the same processor) to an arbitrary address in the target page is either fetched
from physical memory or from the data cache of another processor.

In some multiprocessor systems, cflush is not sufficient to ensure that the data are actually
written to memory and not exchanged between processor caches. Additional platform-specific
cooperation between the powerfail interrupt handlers executing on each processor may be
required.

On systems that implement other backup power options (including none), cflush may return
without affecting the data cache contents.

To order cflush properly with respect to preceding writes, an MB instruction is needed before
the cflush; to order cflush properly with respect to subsequent reads, an MB instruction is
needed after the cflush.
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16.2.2 Console Service
Format:

cserve IPALcode format

Operation:
I implementation specific

if PS<mode> EQ 1 then
{initiate opDec fault}

else
{implementation-dependent action}

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

cserve Console service

Description:

This instruction is specific to each PALcode and console implementation and is not intended
for operating system use.
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16.2.3 Read Machine Check Error Summary

Format:

rdmces | PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

v0 ~ MCES

Exceptions:

Opcode reserved to Compagq

Instruction Mnemonics:

rdmces Read machine check error summary

Description:

The read machine check error summary (rdmces) instruction returns the MCES (machine
check error summary) register in v0. On return from the rdmces instruction, registers t0 and
t8...t11 are UNPREDICTABLE.
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16.2.4 Read Processor Status

Format:
rdps I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

vO ~ PS

Exceptions:

Opcode reserved to Compagq

Instruction Mnemonics:

rdps Read processor status

Description:

The read processor status (rdps) instruction returns the PS in v0. On return from the rdps
instruction, registers t0 and.t8t11 are UNPREDICTABLE.
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16.2.5 Read User Stack Pointer

Format:

rdusp I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

vO ~ USP

Exceptions:

Opcode reserved to Compagq

Instruction Mnemonics:

rdusp Read user stack pointer

Description:

The read user stack pointer (rdusp) instruction returns the user stack pointer in v0. The user
stack pointer is written by the wrusp instruction, described in Section 16.2.22. On return from
the rdusp instruction, registers t0 and.t8L1 are UNPREDICTABLE.
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16.2.6 Read System Value

Format:

rdval IPALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

vO .~ sysvalue

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

rdval Read system value

Description:

The read system value (rdval) instruction returns the sysvalue in v0, allowing access to a 64-bit
per-processor value for use by the operating system. On return from the rdval instruction, reg-
isters t0 and t8.t11 are UNPREDICTABLE.
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16.2.7 Return from System Call
Format:

retsys I PALcode format

Operation:

if {PS<mode> EQ 1} then
{Initiate opDec fault}

endif

tmp ~ (SP+08)

GP . (SP+16)

KSP - SP + {6*8}

SP - USP
intr flag = 0 I Clear the interrupt flag
lock flag = O I Clear the load lock flag
PS _ 8 I Mode=user
PC — tmp

Exceptions:

Opcode reserved to Compaq
Kernel stack not valid (halt)

Instruction Mnemonics:

retsys Return from system call

Description:

The return from system call (retsys) instruction pops the return address and the user mode glo-
bal pointer from the kernel stack. It then saves the kernel stack pointer, sets the mode to user,
sets the IPL to zero, and enters the user mode code at the address popped off the stack. On
return from the retsys instruction, registers t0 and.t81 are UNPREDICTABLE.
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16.2.8 Return from Trap, Fault or Interrupt

Format:

rti ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

tempps ~ (SP+0)

temppc ~ (SP+8)

GP — (SP+16)

a0 — (SP+24)

al — (SP+32)

a2 ~ (SP+40)

SP - SP + {6 * 8}

if { tempps<3> EQ 1} then

KSP - SP I New mode is user
SP . USP
tempps ~ 8
endif
intr flag = 0 I Clear the interrupt flag
lock flag = 0 I Clear the load lock flag
PS — tempps<3.0> I Set new PS
PC — temppc
Exceptions:

Opcode reserved to Compaq

Kernel stack not valid (halt)

Instruction Mnemonics:

rti Return from trap, fault, or interrupt

Description:

The return from fault, trap, or interrupt (rti) instruction pops registers.(a@, and GP), the
PC, and the PS, from the kernel stack. If the new mode is user, the kernel stack is saved and
the user stack is restored.
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16.2.9 Swap Process Context

Format:

swpctx

Operation:

if (PS<mode> EQ 1)
{Initiate opDec fault}
endif
(PCBB) ~ SP
(PCBB+8) .~ USP
tmp ~ PCC

tmpl ~ tmp<3l.0> + tmp<63:32>
(PCBB+24)<31:0> . tmpl<31l:0>

v0 ~ PCBB
PCBB ~ a0

SP _ (PCBB)

USP . (PCBB+8)
odPTBR ~ PTBR
PTBR — (PCBB+16)
tmpl ~ (PCBB+24)

PCC<63:32> .~ {tmpl - tmp}<31.0>

FEN . (PCBB+40)

| PALcode format

I Save current state

I Retum old PCBB
I Switch PCBB
I Restore new state

if {process unique register implemented} then

(VO+32)  ~ unique
unigue ~ (PCBB+32)
endif
if {ASN implemented}
ASN  tmpl<63:32>

{Invalidate all TB entries with ASM=0}

else
if (OdPTBR NE PTBR)
endif
endif
Exceptions:

Opcode reserved to Compaq
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Instruction Mnemonics:

swpctx Swap process context

Description:

The swap process context (swpctx) instruction saves the current process data in the current
PCB. Then swpctx switches to the PCB passed in a0 and loads the new process context. The
old PCBB is returned in vO.

The process context and the PCB are described in Chapter 12.

On return from the swpctx instruction, registers tQ, 8.1, and a0 are UNPREDICTABLE.
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16.2.10 Swap IPL
Format:

swpipl I PALcode format

Operation:
if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif
V0O ~ PS<IPL>
PS<IPL> . a0<2:.0>
Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

swpipl Swap IPL

Description:

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in vO and sets
the IPL to the value passed in a0. On return from the swpipl instruction, registers.t0118
and a0 are UNPREDICTABLE.
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16.2.11 Swap PALcode Image

Format:
swppal IPALcode format

Operation:

I a0 contains the new PALcode identifier

I al:a5 contain implementation-specific entry parameters

! VO receives the following status:

! 0 success (PALcode was switched)

! 1 unknown PALcode variant

! 2 known PALcode variant, but PALcode not loaded

if (PS<mode> EQ 1) then
(Initiate opDec faulf)

else
if {a0 < 256} then
begin
if {a0 invalid} then
vo 1
{return}
else if {PALcode not loaded} then
vO ~ 2
{return}
else
tmpl ~ {PALcode base}
end
else
tmpl = a0
{flush instruction cache}
{invalidate all translation buffers}
{perform additional PALcode variant-specific initialization}
{transfer control to PALcode entry at physical address in tmpl}

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

swppal Swap PALcode image
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Description:

The swap PALcode image (swppal) instruction causes the current (active) PALcode to be
replaced by the specified new PALcode image. The swppal instruction is intended for use by

operating systems only during bootstraps and by consoles during transitions to console 1/O
mode.

The PALcode descriptor contained in a0 is interpreted as either a PALcode variant or the base
physical address of the new PALcode image. If a variant, the PALcode image must have been
loaded previously. No PALcode loading occurs as a result of this instruction.

After successful PALcode switching, the register contents are determined by the parameters
passed in al.a5 or are UNPREDICTABLE. A common parameter is the address of a new
PCB. In this case, the stack pointer register and PTBR are determined by the contents of that
PCB; the contents of other registers such as.a6 may be UNPREDICTABLE.

See Section 27.3.2 for information on using this instruction.
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16.2.12 TB Invalidate

Format:

tbi

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case a0 begin
1: ! thisi
{Invalidate ITB entry for va=al l}
break;
2: | thisd
{Invalidate DTB entry for va=al l}
break;
3. ! this
{Invalidate both ITB and DTB entry for va=al
break;
-1: ! thiap
{Invalidate all TB entries with ASM=0}
break;
-2: | thia
{Flush all TBs}
break;
otherwise:
break;
endcase
Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

tbi TB (translation buffer) invalidate

Description:

| PALcode format

Y

The TB invalidate (tbi) instruction removes specified entries from the | and D translation buff-
ers (TBs) when the mapping changes. The tbi instruction removes specific entry types based
on a CASE selection of the value passed in register a0. On return from the tbi instruction, reg-
isters t0, t8..t11, a0, and al are UNPREDICTABLE. See Section 17.7 for information on
translation buffers and Section 17.8 for information on address space numbers (ASNSs),

because ASNs can implicitly modify TB operations.

1 Operation assumes no behavior modification from ASNs.
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16.2.13 Who Am |
Format:

whami | PALcode format

Operation:
if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif
vO ~ whami
Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

whami Who am |

Description:

The who am | (whami) instruction returns the processor number for the current processor in
v0. The processor number is in the range 0 to the number of processors minus.omexe
CPU-1) that can be configured in the system. On return from the whami instruction, registers
t0 and t8..t111 are UNPREDICTABLE.
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16.2.14 Write ASN

Format:

wrasn ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif

ASN <- a0<31.0>
(PCBB+24)<63:32> <- a0<31.0>

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrasn Write ASN

Description:

The write ASN (wrasn) instruction writes a new ASN. It also writes the value for ASN to the
PCB at offset (PCBB+24)83:32>. On return from the wrasn instruction, registers t0, t8 ...t11,
and a0 are UNPREDICTABLE.
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16.2.15 Write System Entry Address

Format:

wrent | PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif
case al begin
0. ! Write the Entint:
entint <~ a0
break;
1. | Write the EntArith:
entArith ~ a0

break;

2. | Write the EntMM:
entMM ~ a0
break;

3. | Write the EntlF:
enlF ~ a0
break;

4 ! Write the EntUna:
entUna ~ a0
break;

5: | Write the EntSys:
entSys -~ a0
break;

otherwise:
break;

endcase;
Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrent Write system entry address

Description:

The write system entry address (wrent) instruction determines the specific system entry point
based on a CASE selection of the value passed in register al. The wrent instruction then sets
the virtual address of the specified system entry point to the value passed in a0.

For best performance, all the addresses should be kseg addresses. (See Section 17.1 for a defi-
nition of kseg addresses.) On return from the wrent instruction, registers.t@118 a0, and
al are UNPREDICTABLE.
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16.2.16 Write Floating-Point Enable
Format:

wrfen | PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

FEN ~ a0<0>

(PCBB+40)<0> . a0 AND 1

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrfen Write floating-point enable

Description:

The write floating-point enable (wrfen) instruction writes bit zero of the value passed in a0 to
the floating-point enable register. The wrfen instruction also writes the value for FEN to the
PCB at offset (PCBB+40)<0>. On return from the wrfen instruction, registers 10{1&, and

a0 are UNPREDICTABLE.
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16.2.17 Write Interprocessor Interrupt Request

Format:

wripir I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

IPR ~ a0

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

Wripir Write interprocessor imrrupt request

Description:

The write interprocessor interrupt request (wripir) instruction generates an interprocessor

interrupt on the processor number passed in register a0. The interrupt request is recorded on
the target processor and is initiated when the proper enabling conditions are present. On
return from wripir, registers t0, t8t11, and a0 are UNPREDICTABLE.

Programming Note:

The interrupt need not be initiated before the next instruction is executed on the requesting
processor, even if the requesting processor is also the target processor for the request.
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16.2.18 Write Kernel Global Pointer

Format:

wrkgp I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

KGP - a0

Exceptions:

Opcode reserved to Compagq

Instruction Mnemonics:

wrkgp Write kernal global pointer

Description:

The write kernel global pointer (wrkgp) instruction writes the value passed in a0 to the kernel
global pointer (KGP) internal register. The KGP is used to load the GP on exceptions. On
return from the wrkgp instruction, registers t0,.t811, and a0 are UNPREDICTABLE.
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16.2.19 Write Machine Check Error Summary

Format:

wrmces | PALcode format

Operation:

if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
if (@0<0> EQ 1) then MCES<0> ~ 0
if (@0<1> EQ 1) then MCES<1> ~ 0
if (@0<2> EQ 1) then MCES<2> ~ 0
MCES<3> . a0<3>
MCES<4> _ a0<4>

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrmces Write machine check error summary

Description:

The write machine check error summary (wrmces) instruction clears the machine check in
progress bit and clears the processor- or system-correctable error in progress bit in the MCES
register. The instruction also sets or clears the processor- or system-correctable error reporting
enabled bit in the MCES register. On return from the wrmces instruction, registers.t@118

are UNPREDICTABLE.
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16.2.20 Performance Monitoring Function

Format:

wrperfmon I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}
I a0 contains implementation specific input values
I al contains implementation specific output values
I vO may return implementation specific values
I Operations and actions taken are implementation specific

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrperfmon Performance monitoring

Description:

The performance monitoring instruction (wrperfmon) alerts any performance monitoring soft-
ware/hardware in the system to monitor therfprmance of this process. The wrperfmon
function arguments and actions are platform and chip dependent, and when defined for an
implementation, are described in Appendix E.

Registers a0 and al contain implementation-specific input values. Implementation-specific val-
ues may be returned in register v0. On return from the wrperfmon instruction, registers a0, al,
t0, and t8..t11 are UNPREDICTABLE.
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16.2.21 Write System Page Table Base

Format:
wrsysptb I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif

SYSPTBR<- a0

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrsysptb Write system page table base

Description:

The write system page table base (wrsysptb) instruction writes the System Page Table Physi-
cal Base (SYSPTBR) register. It contains the page frame number (pfn) of the highest level
page table to be used for system-wide addresses equal to or above the value of the Virtual
Address Boundary Register. The System Page Table and Virtual Address Boundary base reg-
isters are described in Section 17.6.

On return from the wrsysptb instruction, registers t0, t8..t11, and a0 are UNPREDICTABLE.

Note that this register is not context switched.
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16.2.22 Write User Stack Pointer

Format:
wrusp I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

USP - a0

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrusp Write user stack pointer

Description:

The write user stack pointer (wrusp) instruction writes the value passed in a0 to the user stack
pointer. On return from the wrusp instruction, registers t0...181, and a0 are
UNPREDICTABLE.
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16.2.23 Write System Value
Format:

wrval IPALcode format

Operation:
if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif
sysvalue .~ a0
Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrval Write system value

Description:

The write system value (wrval) instruction writes the value passed in a0 to a 64-bit system
value register. The combination of wrval with the rdval instruction, described in Section
16.2.6, allows access by the operating system to a 64-bit per-processor value. On return from
the wrval instruction, registers t0,.t8t11, and a0 are UNPREDICTABLE.
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16.2.24 Write Virtual Address Boundary
Format:

wrvirbnd | PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}
endif

VIRBND <- a0

Exceptions:

Opcode reserved to Compaq

Instruction Mnemonics:

wrvirbnd Write virtual address boundary

Description:

The write virtual address boundary (wrvirbnd) instruction writes the virtual address boundary
register (VIRBND), used to determine which page table physical base register is used. The
System Page Table and Virtual Address Boundary base registers are described in Section 17.6.
UNPREDICTABLE operations result if the address is not 64-bit aligned.

On return from the wrvirbnd instruction, registers t0, t8..t11, and a0 are UNPREDICTABLE.

At processor initialization, VIRBND is initialized to a value of -1, which results in all transla-
tions using PTBR. The value in SYSPTBR is thidfeetively ignored.
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16.2.25 Write Virtual Page Table Pointer

Format:

wrvptptr I PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif

VPTPTR - a0

Exceptions:

Opcode reserved to Compagq

Instruction Mnemonics:

wrvptptr Write virtual page table pointer

Description:

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed in a0 to the
virtual page table pointer register (VPTPTR). The VPTPTR is described in Section 17.6.2. On
return from the wrvptptr instruction, registers t0,.t811, and a0 are UNPREDICTABLE.
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16.2.26 Wait For Interrupt
Format:

wtint | PALcode format

Operation:

I a0 contains the maximum number of interval clock ticks to skip
I vO receives the number of interval clock ticks actually skipped

IF (implemented)
BEGIN
IF {Implementation supports skipping multiple
clock interrupts} THEN
{Ticks_to_skip ~ ao}

{Wait no longer than any non-clock interrupt or the first clock
interrupt after ticks to skip ticks have been skipped}

IF {Implementation supports skipping multiple
clock interrupts} THEN
vO —number of interval clock ticks actually skipped
ELSE
vO -0
END
ELSE
vO -0
{return}

Exceptions:

Opcode reserved to Compagq

Instruction Mnemonics:

wtint Wait for interrupt

Description:

The wait for interrupt instruction (wtint) requests that, if possible, the PALcode wait for the
first of either of the following conditions before returning:

* Any interrupt other than a clock tick
* The first clock tick after a specified number of clock ticks has been skipped

The wtint instruction returns in vO the number of clock ticks that are skipped. The number
returned in vO is zero on hardware platforms that implement this instruction, but where it is
not possible to skip clock ticks.



The operating system can specify a full 64-bit integer value in a0 as the maximum number of
interval clock ticks to skip. A value of zero in a0 causes no clock ticks to be skipped.

Note the following if specifying in a0 the maximum number of interval clock ticks to skip:

* Adherence to a specified value in a0 is at the discretion of the PALcode; the PALcode
may complete execution of wtint and proceed to the next instruction at any time up to
the specified maximum, even if no interrupt or interval-clock tick has occurred. Thatis,
wtint may return before all requested clock ticks are skipped.

* The PALcode must complete execution of wtint if an interrupt occurs or if an inter-
val-clock tick occurs after the requested number of interval-clock ticks has been
skipped.

In a multiprocessor environment, only the issuing processor is affected by an issued wtint
instruction.

The counter, PCC, may increment at a lower rate or may stop entirely during wtint execution.
This side effect is implementation dependent.
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Chapter 17

Memory Management (11-B)

17.1 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location within the virtual
address space. Implementations subset the supported address space to one of several sizes, as a
function of page size and page table depth. The minimal supported virtual address size is 43
bits. If an implementation supports less than 64-bit virtual addresses, it must check that all the
VA<63:vaSize> bits are equal to VA<vaSize—1>. This gives two disjoint ranges for valid vir-

tual addresses. For example, for a 43-bit virtual address space, valid virtual address ranges are

0-.-3FFFFFFFFFIs and FFFFFC0000000099 - FFFFFFFFFFFFFFRE. Access to virtual
addresses outside an implementation’s valid virtual address range cause an access-violation
faulth.

The virtual address space is divided into three segments: seg0, segl, and kseg.

The two bits, va<vaSize-1:vaSize—-2>, select a segment as shown in Table 17-1.

Table 17-1: Virtual Address Space Segments

VA<vaSize-1:vaSize—

2> Name  Mapping Access Control

00 seg0 Mapped via 3 levels of PTEs Programmed in PTE
01 seg0 Mapped via 2 levels of PTEs Programmed in PTE
10 kseg PA_ SEXT(VA<(vaSize-3):0>) Kernel Read/Write

11 segl Mapped via the TB Programmed in PTE

For kseg, the relocation, sharing, and protection are fixed. The base of kseg is located at
LEFT_SHIFT(FFFFFC000000008§), (vaSize—43)).

For seg0 and segl, the virtual address space is broken into pages, which are the units of relo-
cation, sharing, and protection. The page size ranges from 8K bytes to 64K bytes. Therefore,
system software should allocate regions with differing protection on 64K-byte virtual address
boundaries to ensure image compatibility across all Alpha implementations.

1 The highest physical address that can be addressed by kseg in 43-bit addressing mode can be extended, under certain circum-
stances, by an optional 48-bit/43-bit virtual addressing mode, described in Section E.2.1
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Memory management provides the mechanism to map the active part of the virtual address
space to the available physical address space. The operating system controls the vir-
tual-to-physical address mapping tables and saves the inactive (but used) parts of the virtual
address space on external storage media.

17.1.1 Segment Seg0 and Seg1l Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in memory.
A seg0 or segl virtual address consists of three level-number fields and a byte_within_page
field, as shown in Figure 17-1.

Figure 17-1: Virtual Address Format

63 M L 0

SEXT (VA<M>) Levell* Level2 Level3 byte_within_page

* Levell <M:L+1> contains SEXT(VA<L>), where L is the highest numbered implemented VA bit.

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a particular
implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 32K bytes, and 64K
bytes. The low-order bit in each level-number field is 0 and each field-is ®its, where for
examplenis 9 for an 8K page size.

An implementation may support a smaller virtual address space than the page size allows by
including only a subset of low-order bits in Levell. The smaller virtual address space must be
at least 43 bits and must be large enough that at least two bits of Levell are implemented.

The level-number fields are a function of the page size; all page table entries at any given
level do not exceed one page. The PFN field in the PTE is always 32 bits wide. Thus, as the
page size grows, the virtual and physical address size also grows.

Table 17-2 shows the virtual address options and physical address size (in bits) calculations.
The physical address (bits) column is the maximum physical address allowed by the smaller of
the kseg size or available physical address bits for a given page size. The available physical
address bits is calculated by combining the number of bits in the PFN (always 32) with the
number of bits in the byte_within_page field. The kseg segment size is calculated from the vir-
tual address size minus 2.

Table 17-2 Virtual Address Options

Virtual Maximum Physical
Page Size Byte_within_page Level Size Address Physical Address
(bytes) (bits) (bits) (bits) Address (bits) Limited by
8K 13 10 43 41 kseg
16K 14 11 43-47 45 kseg
32K 15 12 43-51 47 seg0/segl
64K 16 13 44-55 48 seg0/segl

1 Levell page table might be partially utilized for this page size.
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17.1.2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in memory. A
kseg virtual address consists of a segment select field with a valuecdrid a physical

address field. The segment select field is the two bits va<vaSize-1:vaSize-2>. The physical
address field is va<vaSize—3:0>.

Figure 17-2: Kseg Virtual Address Format

63 0

SEXT (segment_select<1>) Segment Select=10, Physical Address

17.2 Physical Address Space

Physical addresses are at most vaSize-2 bhits. This allows all of physical memory to be
accessed via kseg. A processor may choose to implement a smaller physical address space by
not implementing some number of high-order bits.

The two most significant implemented physical address bits delineate the four regions in the
physical address space. Implementations use these bits as appropriate for their systems. For
example, in a workstation with a 30-bit physical addresscspbit<29> might select between
memory and non-memory-like regions, and bit <28> could enable or disable cacheing (see
Section 5.2.4).

17.3 Memory Management Control

Memory management is always enabled. Implementations must provide an environment for
PALcode to service exceptions and to initialize and boot the processor. For example PALcode
might run with I-stream mapping disabled.

17.4 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate seg0 and segl virtual
addresses to physical addresses. A PTE contains hardware and software control information
and the physical page frame number (PFN). A PTE is a quadword with fields as shown in Fig-
ure 17-3 and described in Table 17-3.
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Figure 17-3 Page Table Entry (PTE)
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Table 17-3 Page Table Entry (PTE) Bit Summary

Bits Name Meaning

63-32 PFN Page frame number
The PFN field always points to a page boundary. If V is set, the PFN is concate-
nated with the byte_within_page bits of the virtual address to obtain the physical
address.

31-16 SW Reserved for software.

15-14 RSVO0 Reserved for hardware; SBZ.

13 UWE User write enable.
Enables writes from user mode. If this bit is 0 and a store is attempted while in
user mode, an access-violation fault occurs. This bit is valid even when V=0.

Note:
If a write enable bit is set and the corresponding read enable bit is
not, the operation of the processor is UNDEFINED.

12 KWE Kernel write enable.
Enables writes from kernel mode. If this bit is 0 and a store is attempted while in
kernel mode, an access-violation fault occurs. This bit is valid even when V=0.

11-10 RSV1 Reserved for hardware; SBZ.

9 URE User read enable.
Enables reads from user mode. If this bit is O and a load or instruction fetch is
attempted while in user mode, an Access Violation occurs. This bit is valid even
when V=0.

8 KRE Kernel read enable.
Enables reads from kernel mode. If this bit is 0 and a load or instruction fetch is
attempted while in kernel mode, an access-violation fault occurs. This bit is valid
even when V=0.

7 NOMB Translation bffer miss memory barrier.

When set, the requirement described in Section 5.6.4.3 is lifted for ensuring that
all processors using a newly valid PTE also see any new contents of the related
page. This allows the TB-miss code to avoid potentially expensive global syn-
chronization. Software is expected to set this bit on PTEs when it is known that
the page contents are already visible to all processors.
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Table 17-3 Page Table Entry (PTE) Bit Summary (Continued)

Bits Name Meaning
6-5 GH Granularity hint (GH).
Software may set these bits as follows to supply a hint to translation buffer imple-
mentations that a block of pages can be treated as a single larger page:
Page Size Before GH:
PTE<6:5> |8KB 16KB 32KB 64KB
Resulting Page Size:
00 8KB 16KB 32KB 64KB
01 64KB 128KB 256KB 2MB
10 512KB 1MB 2MB 64MB
11 ANMB 8MB 16MB 512MB
Notes:

1. The block is a group of physically contiguous pages that are naturally
aligned both virtually and physically. Within the block, the PFN field in
each PTE must map the correct physical page for the virtual page to
which the PTE corresponds.

2. Within the block, all PTEs have the same values for bits <15:0>, that is,
protection, fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry.
Itis UNPREDICTABLE which PTE values within the block are used if the gran-
ularity bits are set inconsistently.
Programming Note:
A granularity hint might be appropriate for a large memaory structure
such as a frame buffer or nonpaged pool that, in fact, is mapped into
contiguous virtual pages with identical protection, fault, and valid
bits.
4 ASM Address space match.
When set, this PTE matches all address space numbers. For a given VA, ASM
must be set consistently in all processes; otherwise, the address mapping is
UNPREDICTABLE.
3 FOE Fault on execute.

When set, a Fault on Execute exception occurs on an attempt to execute any loca-
tion in the page.
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Table 17-3 Page Table Entry (PTE) Bit Summary (Continued)

Bits Name Meaning

2 FOW Fault on write.
When set, a Fault on Write exception occurs on an attempt to write any location
in the page.

1 FOR Fault on read.
When set, a Fault on Read exception occurs on an attempt to read any location in
the page.

0 Y, Valid.

Indicates the validity of the PFN field. When V is set, the PFN field is valid for
use by hardware. When V is clear, the PFN field is reserved for use by software.
The V bit does not affect the lidity of PTE<15:1> bits.

17.4.1 Changes to Page Table Entries

The operating system changes PTESs as part of its memory management functions. For exam-
ple, the operating system may set or clear the V bit, change the PFN field as pages are moved
to and from external storage media, or modify the software bits. The processor hardware never
changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing a PTE one
field at a time can cause incorrect system operation, such as setting PTE<V> with one instruc-
tion before establishing PTE<PFN> with another. Execution of an interrupt service routine
between the two instructions could use an address that would map using the inconsistent PTE.
Software can solve this problem by building a complete new PTE in a register and then mov-
ing the new PTE to the page table by using an STQ instruction.

Multiprocessing complicates the problem. Another processor could be reading (or even chang-
ing) the same PTE that the first processor is changing. Such concurrent access must produce
consistent results. Software must use some form of software synchronization to modify PTEs
that are already valid. Whenever a processor modifies a valid PTE, it is possible that other pro-
cessors in a multiprocessor system may have old copies of that PTE in their translation buffer.
When software changes a PTE, each processor may use either the old or the new PTE until
software performs a TB inviaate on that processor (after which, the processor may use only
the new PTE). An example of a case where either the old or new PTE could usefully be used is
when the NOMB bit is transitioned from zero to one. Hardware must ensure that aligned quad-
word reads and writes are atomic operations. Hardware must not cache invalid PTEs (PTEs
with the V bit equal to 0) in translation buffers. See Section 17.7 for more information.

17.5 Memory Protection

Memory protection is the function of validating whether a particular typecokas is dbwed

to a specific page from a particular access mode. Access to each page is controlled by a protec-
tion code that specifies, for each access mode, whether read or write references are allowed.
The processor uses the following to determine whether an intended access is allowed:

* The virtual address, which is used to either select kseg mapping or provide the index
into the page tables.

17-6 Tru64 UNIX Software (1I-B)



* The intendedaccess type (read or write).
* The current access mode base on processor mode.

For protection checks, the intended access is read for data loads and instruction fetches, and
write for data stores.

17.5.1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a running process is
stored in the processor status mode bit (PS<mode>).

17.5.2 Protection Code

Every page in the virtual address space is protected according to its use. A program may be
prevented from reading or writing portions of its addresacgp A protection code associated
with each page describes the accessibility of the page for each processor mode.

For seg0 and segl, the code allows a choice of read or write protection for each processor
mode. For each mode, access can be read/write, read-only, or no-access. Read and write acces-
sibility and the protection for each mode are specified independently.

For kseg, the protection code is kernel read/write, user no-access.

17.5.3 Access-Violation Faults

An access-violation memory-management fault occurs if an illegal access is attempted, as
determined by the current processor mode and the page’s protection.

17.6 Address Translation for Seg0 and Segl

The page tables can be accessed from physical memory, or (to reduce overhead) can be
mapped to a linear region of the virtual address space.

Additionally, an optional reduced page table (RPT) mode is defined, which allows more effi-
cient mapping of very large blocks of memory.

The following sections describe the@ss mihods.

17.6.1 Physical Access for Seg0 and Segl PTEs

In systems with Virtual Address Boundary and System Page Table Base registers, the virtual-
address is compared against the Virtual Address Boundary register. Lower addresses use the
PTBR as a physical page table base; higher or equal addresses use the SYSPTBR register.

Seg0 and segl address translation can be performed by accessing entriestiteaghphge
table structure. The page table base register (PTBR or SYSPTBR) contains the physical page
frame number (PFN) of the highest-level (Level 1) page table.

Bits <Levell> of the virtual address are used to index into the Level 1 page table to obtain the
physical PFN of the base of the next level (Level 2) page table. Bits <Level2> of the virtual
address are used to index into the Level 2 page table to obtain the physical PFN of the base of
the next level (Level 3) page table. Bits <Level3> of the virtual address are used to index the
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Level 3 page table to obtain the physical PFN of the page being referenced. The PFN is concat-
enated with virtual address bits <byte_ within_page> to obtain the physical address of the
location being accessed.

If part of any page table does not reside in a memory-like region, or does reside in nonexistent
memory, the operation of the processor is UNDEFINED.

If all the first- and second-level PTEs are valid, the protection bits are ignored; the protection
code in the Level 3 PTE is used to determine accessibility. If a higher-level PTE (numerically,
any below Level 3) is invalid, an access-violation fault occurs if the PTE<KRE> equals zero.
An access-violation fault on any higher-level PTE implies that all lower-level page tables
mapped by that PTE do not exist.

The algorithm to generate a physical address from a seg0 or segl virtual address follows:

IF {SEXT(VA<(vaSize-1):0>) neq VA} THEN
{ initiate access-violation fault}
IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN
ptor_value <- PTBR
ELSE
ptor_value <- SYSPTBR
ELSE
ptor_value <- PTBR

! Read Physical
levell pte « ( { ptbr_value * page size} + { 8 * VA<levell} )

IF levell pte<v> EQ 0 THEN
IF levell pte<KRE> eq 0 THEN
{ initiate access-violation fault}
ELSE
{ initiate translation-not-valid fault}
I Read physical:
level2_pte " ({levell_pte<PFN> * page size} + {8 * VA<level2>} )
IF level2 pte<v> EQ 0 THEN
IF level2_pte<KRE> eq 0 THEN
{ initiate access-violation fault}
ELSE
{ initiate translation-not-valid fault}
I Read physical:
level3 PTE  ~ ({level2_pte<PFN> * page_size} + {8 * VA<level3>} )

IF {{level3_pte<UWE> eq O}AND {write access} AND {ps<mode> EQ 1}} OR
{{level3_pte<URE> eq 0} AND {read access} AND {ps<mode> EQ 1}} OR
{{level3_pte<KWE> eq OJAND {write access} AND {ps<mode> EQ O} OR
{{level3_pte<KRE> eq O}AND {read access} AND {ps<mode> EQ O}}}

THEN
{iniiate  memory-management fault}
ELSE
IF level3_pte<v> EQ 0 THEN
{initiate memory-management fault}
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IF { level3_pte<FOW> eq 1} AND {write access} THEN
{iniiate  memory-management fault}

IF { level3_pte<FOR> eq 1} AND {read access} THEN
{iniiate  memory-management fault}

IF { level3_pte<FOE> eq 1} AND {execute access} THEN
{iniiate memory-management fault}

Physical_address ~ {level3 pte<PFN> * page size} OR VA<byte within_page>

17.6.2 Virtual Access for Seg0 or Segl PTEs

The page tables can be mapped into a linear region of the virtual address space, reducing the
overhead for seg0 and segl PTE accesses. If SYSPTBR and VIRBND are implemented, care
must be taken to ensure that the Level 3 page tables defined by both PTBR and SYSPTBR are
mapped at the same virtual address. This is required so a single VPTPTR can be used regard-
less of which base register is determined to be used based on the value in VIRBND. (The
physical PTE fetch defined in Section 17.6.1 enter the proper mappings into the TB.) The
SYSPTBR and VIRBND registers are written by the wrsysptb and wrvirbnd PALcode instruc-
tions, described in Sections 16.2.21 and 16.2.24, respectively.

The mapping must bereated exactly as follows because PALcode implementations may
depend on details of the mapping.

1. Select a §"9(pageSize/l8)+3) pytegligned region (an  address  with
3*lg(pageSize/8)+3 low-order zeros) in the seg0 or segl address space.

2. Create a PTE in each of the page tables defined by PTBR and SYSPTBR (if imple-
mented) to map the page tables as follows.

PTE =0 I Initialize all fields to zero

I Set the PFN to the Level 1 pagetable:

PTE<63:32> = PFN of Level 1 pagetable

PTE<8> =1 ! Set the kemel read enable bit
PTE<O> =1 ! Set the valid bit

3. Setthe page table entry that corresponds to the VPTPTR to the created Level 1 PTE.

Set all Level 1 and Level 2 valid PTEs to allow kernel read access. With this setup in
place, the algorithm to fetch a seg0 or segl PTE is as follows, witrepresents pag-
eSize:

tmp ~ LEFT_SHIFT (va, {64 - {lg(pS)* 4} - 9})

tmp ~ RIGHT_SHIFT (tmp, {64 - {{logES)* 4} - 9} + lg(pS)-3})

tmp ~ VPTB OR tmp

tmp<2.0> ~ 0

level3 PTE ~ (tmp) I Load PTE using its virtual address

5. Set the virtual page table pointer (VPTPTR) with a write virtual page table pointer
instruction (wrvptptr) to the selected value.

The virtual access method is used by PALcode for most TB fills.

Implementation Note:
Assume the following:

* A system with a 52-bit virtual address size.
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* VPTB is the index of the Level 1 PTE, which is self-referamg

e The virtual address is in seg0 or segl.

For a virtual address B, the address to virtually access the Level 3 PTE is as follows. The
double-miss TB fill flow is a three-leveldw.

Figure 17-4: Three-Level Page Table Mapping

63 43 42 33 32 23 22 13 12 03 02 0

SEXT (VPTB) VPTB B<42:33> B<32:23> B<22:13> 0

17.6.3 Reduced Page Table (RPT) Mode

The reduced page table (RPT) mode is an optional extension of 64KB page size mode. A por-
tion of the address space is mapped by one fewer page table levels, allowing each of the entries
in the lowest-level page table to map a 512MB page. In implementations that support granular-
ity hints in hardware, applications can use these hints to make more efficient use of the
translation buffer. Applications that can use the 512MB granularity hint in 64KB page size
mode can use RPT mode for additional benefits.

With the 512MB granularity hint but without RPT, every entry in the Level3 page table maps
the same 512MB page. With RPT, that Level3 page table is eliminated entirely, and the Level2
PTE that would normally point to that Level3 page table is used to directly map the 512MB
page.

Therefore, in an RPT region, there is elimtioa of redundant page table pages and compres-
sion of page table space. The compressed PTEs are more likely to fit in hardware caches. If
there is locality of reference, a new PTE that is needed to satisfy a mapping is more likely to be
present in the cache. Additionally, a single TB entry that maps the VA of the lowest-level page
table now allows access to PTEs mapping 4 TB, rather than 512 MB, of memory.

In order to use RPT mode, the feature must be available and enabled in the implementation,
and:

e Use the 64KB page size.

* Every L2 PTE in the reduced page table region must FRVE<GH>=11, that is, a
512MB page size.

e The PFN field of the PTE must refer to a 512 MB aligned page.
* The RPT region is selected by usings VAs such thedvaSize-1:vaSize-2>=01 .

17.6.3.1 Physical Access for Page Table Entries in Reduced Page Table Mode

Physical address translation is performed by accessing entries in a two-level page table struc-
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number (PFN)
of the highest-level (Levell) page table.

In systems that implement the Virtual Address Boundary register (VIRBND), the System Page
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page table. In
such systems, the virtual address to be translated is compared against the address stored in
VIRBND. Translations of Level2 addresses begin with the PFN in PTBR as the highest-level
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page table. Translations of Levell addresses use the PFN in SYSPTBR as the highest-level
page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.24 and
13.3.18, respectively.

Levell is the highest-level page table. Bits <Levell> of the virtual address are used to index
into the Levell page table to obtain the physical PFN of the base of the next level (Level2)

page table. Bits <Level2> of the virtual address are used to index into the Level2 page table to
obtain the physical PFN of the page being referenced. The PFN is concatenated with virtual
address bits <byte_within_page> to obtain the physical address of the location being accessed.

If part of any page table resides in I/O space, or in nonexistent memory, the operation of the
processor is UNDEFINED.

If the Levell PTE is valid, the protection bits are ignored; the protection code in the Level2
PTE is used to determine accessibility. If a Levell PTE is invalid, an access-violation fault
occurs if the PTE<KRE> equals zero. An Access-Violation fault on any Levell PTE implies
that all Level2 page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<(vaSize-1):0>) neq VA} THEN
{ initiate access-violation fault}
IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN
ptor_value <- PTBR
ELSE
ptor_value <- SYSPTBR
ELSE
ptor_value <- PTBR

! Read Physical
levell pte « ( { ptbr_value * page size} + { 8 * VA<levell} )

IF levell pte<v> EQ 0 THEN
IF levell pte<KRE> eq 0 THEN
{ initiate access-violation fault}
ELSE
{ initiate translation-not-valid fault}
I Read physical:
level2_pte " ({levell_pte<PFN> * page size} + {8 * VA<level2>} )

IF {{level2_pte<UWE> eq O}AND {write access} AND {ps<mode> EQ 1}} OR
{{level2_pte<URE> eq 0} AND {read access} AND {ps<mode> EQ 1}} OR
{{level2_pte<KWE> eq OJAND {write access} AND {ps<mode> EQ O}} OR
{{level2_pte<KRE> eq O}AND {read access} AND {ps<mode> EQ O}}}

THEN
{iniiate  memory-management fault}
ELSE
IF level2_pte<v> EQ 0 THEN
{initiate memory-management fault}

IF { level2_pte<FOW> eq 1} AND {write access} THEN
{iniiate memory-management fault}

IF { level2_pte<FOR> eq 1} AND {read access} THEN
{iniiate memory-management fault}
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IF { level2_pte<FOE> eq 1} AND {execute access} THEN
{iniiate memory-management fault}

Physical Address ~ {level2_pte<PFN> * page size} OR VA<byte within_RPT_page 1>
17.6.3.2 Virtual Access for Page Table Entries in Reduced Page Table Mode

To reduce overhead associated with the address translation in a multilevel page table structure,
the page tables are mapped into a linear region of the virtual address space. The virtual address
of the base of the page table structure is set on a system-wide basis and is contained in the
VPTB IPR.

When a native mode DTB or ITB miss occurs, it is desirable that the TBMISS flow attempt to
load the lowest-level PTE by using a single virtual load instruction without regard to whether
the missing VA is mapped by two levels (RPT) or three levels of page table. (See Section E.2.2
for the 21364 implementation.)

17.7 Translation Buffer

In order to save actual memory references when repeatedly referencing the same pages, hard-
ware implementations include a translation buffer to remember successful virtual address
translations and page states.

When the process context is changed, a new value is loaded into the address space number
(ASN) internal processor register with a swap process context (swpctx) instruction. This causes
address translations for pages with PTE<ASM> clear to be invalidated on a processor that does
not implement address space numbers.

Additionally, when the software changes any part (except the software field) of a valid PTE, it
must also execute a thi instruction. The entire translation buffer can be invalidated by tbia, and
all ASM=0 entries can be invalidated by tbiap. The translation buffer must not store invalid
PTEs. Therefore, the software is not required to invalidate translation buffer entries when mak-
ing changes for PTEs that are already invalid. Changes to PTE<NOMB> are also an exception
to this requirement. This bit only has an effect when a PTE is loaded into the translation buffer.
Thus, there is no need to invalidate the TB when the bit changes.

After software changes a valid first-, or second-level PTE, software must flush the translation
for the corresponding page in the virtual page table. Then software must flush the translations
of all valid pages mapped by that page. In the case of a change to a first-level PTE, this action
must be taken through a second iteration.

17.8 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space numbers
(process tags) to reduce the need for invalidation of cached address translations for pro-
cess-specific addresses when a context switch occurs. The supported address space number

(ASN) range is 0--MAX_ASN; MAX_ASN is provided in the HWRPB MAX_ASN field.

1 byte_within_RPT_page contains those bits that would have been VA<Level3>, concatenated with the
VA<byte_within_page> field for 64KB page table mode.
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The address space number for the current process is loaded by software in the address space
number (ASN) with a swpctx instruction. ASNs are processor specific and the hardware makes
no attempt to maintain coherency across multiple processors. In a multiprocessor system, soft-
ware is responsible for ensuring the consistency of TB entries for processes that might be
rescheduled on different processors.

Systems that support ASNs should have MAX_ASN in the range 83535. The number of
ASNSs should be determined by the market a system is targeting.

Programming Note:

System software should not assume that the number of ASNs is a power of two. This
allows hardware, for example, to use N TB tag bits to encode (2**N)-3 ASN values, one
value for ASM=1 PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several complications in a
multiprocessor system. Consider the case where a process that executed on processor—1 is
rescheduled on processor-2. If a page is deleted or its protection is changed, the TB in
processor—1 has stale data.

* One solution is to send an interprocessor interrupt to all the processors on which this
process could have run and cause them to invalidate the changed PTE. That results in
significant overhead in a system with several processors.

* Another solution is to have software invalidate all TB entries for a process on a new
processor before it can begin execution, if the process executed on another processor
during its previous execution. This ensures the deletion of possibly stale TB entries on
the new processor.

e Athird solution is to assign a new ASN whenever a process is run on a processor that is
not the same as the last processor on which it ran.

17.9 Memory-Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in al to specify the type
of fault encountered, as shown in Table 17-4.

Table 17-4: Memory-Management Fault Type Codes

Fault MMCSR Value

Translation not valid 0
Access-violation 1
Fault on read 2
Fault on execute 3

Fault on write 4

* A translation-not-valid fault is taken when a read or write reference is attempted
through an invalid PTE in a zero (if one exists), first, second, or third-level page table.
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An access-violation (ACV) fault is taken under the following circumstances:

— An ACV fault is taken on a reference to a seg0 or segl address when the protection
field of the third-level PTE that maps the data indicates that the intended page refer-
ence would be illegal in the specified access mode.

— An ACV fault is taken if the KRE bit is a zero in an invalid first-, or second-level
PTE. An access-violation fault is generated for any access to a kseg address when
the mode is user (PS<mode> EQ 1).

— For reduced page table regions:

An ACYV fault is taken when the protection field of the Level2 PTE that maps
the data indicates that the intended pagferencavould be illegal in the speci-
fied access mode.

An ACYV fault is also taken if the KRE bit is zero in an invalid Levell PTE.
A fault-on-read (FOR) fault occurs when a read is attempted with PTE<FOR> set.

A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted with
PTE<FOE> set.

A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW> set.



Chapter 18

Process Structure (I11-B)

18.1 Process Definition

A process is a single thread of execution. It is the basic entity that can be scheduled and is exe-
cuted by the processor. A process consists of an address space and both software and hardware
context. The hardware context of a process is defined by the following:

e Thirty integer registers (excludes R31 and SP)

* Thirty-one floating-point registers (excludes F31)

e The program counter (PC)

* The two per-process stack pointers (USP/KSP)

* The processor status (PS)

* The address space number (ASN)

* The charged process cycles

* The page table base register (PTBR)

* The process unique value (unique)

* The floating-point enable register (FEN)

* The performance monitoring enable bit (PME)
This information must be loaded if a process is to execute.

While a process is executing, some of its hardware context is being updated in the internal reg-
isters. When a process is not being executed, its hardware context is stored in memory in a
software structure called the process control block (PCB). Saving the process context in the
PCB and loading new values from another PCB for a new context is called context switching.
Context switching occurs as one process after another is scheduled for execution.
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18.2 Process Control Block (PCB)

As shown in Figure 18-1, the PCB holds the state of a process.

Figure 18—-1 Process Control Block (PCB)

63 62 61

32 31 10

Kernel Stack Pointer (KSP) :00
User Stack Pointer (USP) :08
Page Table Base Register (PTBR) 16
Address Space Number (ASN) Charged Process Cycles 24
Process Unique Value (unique) :32
P [ F
M M E|:40
E B N
Reserved to Compaq 48
Reserved to Compaq :56

The contents of the PCB are loaded and saved by the swap process context (swpctx) instruc-
tion. The PCB must be quadword aligned and lie within a single page of physical memory. It
should be 64-byte aligned for best performance.

The PCB for the current process is specified by the process control block base address register
(PCBB); see Table 15-3.

The swap privileged context instruction (swpctx) saves the privileged context of the current
process into the PCB specified by PCBB, loads a new value into PCBB, and then loads the
privileged context of the new process into the appropriate hardware registers.

The new value loaded intoGBB, as well as theantents of the PCB, must satisfy certain con-
straints or an UNDEFINED operation results:

1. The physical address loaded into PCBB must be quadword aligned and describes eight
contiguous quadwords that are in a memory-like region (see Section 5.2.4).

2. The value of PTBR must be the page frame number (PFN) of an existent page thatis in
a memory-like region.

It is the responsibility of the operating system to save and load the non-privileged part of the
hardware context.

The swpctx instruction returns ownership of the current PCB to operating system software and
passes ownership of the new PCB from the operating system to the processor. Any attempt to
write a PCB while ownership resides with the processor has UNDEFINED results. If the PCB
is read while ownership resides with the processor, itis UNPREDICTABLE whether the origi-
nal or an updated value of a field is read. The processor is free to update a PCB field at any
time. The decision as to whether or not a field is updated is made individually for each field.

The charged process cycles is the total number of PCC register counts that are charged to the
process (modulo 2**32). When a process context is loaded by the swpctx instructions, the con-
tents of the PCC count field (PCC_CNT) is subtracted from the contents of PCB[24]<31:0>
and the result is written to the PCC offset field (PCC_OFF):
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PCC<63:32> ~ (PCB[24]<31:0> — PCC<31.0>)

When a process context is saved by the swpctx instruction, the charged process cycles is com-
puted by performing an unsigned add of PCC<63:32> and PCC<31:0>. That value is written to
PCB[24]<31:0>.

Software Programming Note:

The following example returns in RO the current PCC register count (modulo 2**32) for a
process. Notice the care taken not to cause an unwanted sign extension.

RPCC RO ; Read the processor cycle counter
SLL RO, #32, R1 ; Line up the offset and count fields
ADDQ RO, R1, RO ; Do add

SRL RO, #32, RO ; Zero extend the cycle count to 64 bits

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The process unique value is that value used in support of multithread implementations. The
value is stored in the PCB when the process is not active. When the process is active, the value
may be cached in hardware internal storage or kept in the PCB only.

The FEN bit reflects the setting of the FEN IPR.
The IMB bit records that an IMB was issued in user mode.

Setting the PME bit alerts any performance hardware or software in the system to monitor the
performance of this process.

Kernel mode code must use the rdusp/wrusp instructions to access the USP. Kernel mode code
can read the PTBR, the ASN, the FEN, and the PME for the current process from the PCB. The
unique value can be accessed with the rdunique and wrunique instructions.

Process Structure (II-BB-3






Chapter 19

Exceptions and Interrupts (1I-B)

19.1 Introduction

At certain times during the operation of a system, events within the system require the execu-
tion of software outside the explicit flow of control. When such an event occurs, an Alpha
processor forces a change in control flow from that indicated by the current instruction stream.
The notification process for such an event is either an exception or an interrupt.

19.1.1 Exceptions

Exceptions occur primarily in relation to the currently executing process. Exception service
routines execute in response to exception conditions caused by software. All exception service
routines execute in kernel mode on the kernel stack. Exception conditions consist of faults,
arithmetic traps, and synchronous traps:

A fault occurs during an instruction and leaves the registers and memory in a consistent
state such that elimination of the fault condition and subsequent reexecution of the
instruction gives correct results. Faults are not guaranteed to leave the machine in
exactly the same state it was in immediately prior to the fault, but rather in a state such
that the instruction can be mectly executed if the faultandition is removed. The PC
saved in the exception stack frame is the address of the faulting instruction. An rti
instruction to that PC reexecutes the faulting instruction.

An arithmetic trap occurs at the completion of the operation that caused the exception.
Since several instructions may be in various stages of execution at any point in time, it
is possible for multiple arithmetic traps to occur simultaneously.

The PC that is saved in the exception frame on traps is that of the next instruction that
would have been issued if the trapping conditions had not occurred. However, that PC
is not necessarily the address of the instruction immediately following the instruction

that encountered the trap condition, and the intervening instructions are collectively
called thetrap shadow See Section 4.7.7.3 for information.

The intervening instructions may have changed operands or other state used by the
instructions encountering the trap conditions. If such is the case, an rti instruction to
that PC does not reexecute the trapping instructions, nor does it reexecute any
intervening instructions; it simply continues execution from the point at which the trap
was taken.

In general, it is difficult to fix up results and continue program execution at the point
of an arithmetic trap. Software can force a trap to be continued more easily without
the need for complicated fixup code. This is accomplished by specifying any valid
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gualifier combination that includes the /S qualifier with each such instruction and
following a set of code-generation restrictions in the code that could cause arithmetic
traps, allowing those traps to be completed by an OS completion handler.

The AND of all the exception completion qualifiers for trapping instructions is
provided to the OS completion handler in the exception summary SWC bit. If SWC is
set, a completion handler may find the trigger instruction by scanning backward from
the trap PC until each register in the register write mask has been an instruction
destination. The trigger instruction is the last instruction in I-stream order to get a trap
before the trap shadow. If the SWC bit is clear, no fixup is possible.

* A synchronous trap occurs at the completion of the operation that caused the exception.
No instructions can be issued between the completion of the operation that caused the
exception and the trap.

19.1.2 Interrupts

The processor arbitrates interrupt requests. When the interrupt priority level (IPL) of an out-
standing interrupt is greater than the current IPL, the processor raises IPL to the level of the
interrupt and dispatches to entint, the interrupt entry to the OS. Interrupts are serviced in ker-
nel mode on the kernel stack. Interrupts can come from one of five sources: interprocessor
interrupts, I/O devices, the clock, performance counters, or machine checks.

19.2 Processor Status

The processor status (PS) is a four-bit register that contains the current mode (PS<mode>) in
bit <3> and a three-bit interrupt priority level (PS<IPL>) in bits.<P>. The PS<mode> bit is

zero for kernel mode and one for user mode. The PS<IPL> bits are always zero if the mode is
user and can be zero to 7 if the mode is kernel. The PS is changed when an interrupt or excep-
tion is initiated and by the rti, retsys, and swpipl instructions.

The uses of the PS values are shown in Table 19-1.

Table 19-1: Processor Status Summary

PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts
0 4 Kernel High priority device interrupts
0 5 Kernel Clock, and interprocessor interrupts
0 6 Kernel Real-time devices

0 6 Kernel Correctable error reporting

0 7 Kernel Machine checks
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19.3 Stack Frames

There are three types of system entries: entries for the callsys instruction from user mode,
entries for exceptions and interrupts from kernel mode, and entries for interrupts from user
mode.

Those three types of system entries use one of two stack frame layouts, as follows.

Entries for the callsys instruction from user mode, and entries for exceptions and interrupts
from kernel mode use the same stack frame layout, as shown in Figure 19-1. The stack frame
contains space for the PC, the PS, the saved GP, and the saved registers a0, al, a2. On entry,
the SP points to the saved PS.

The callsys entry saves the PC, the PS, and the GP. The exception and interrupt entries save the
PC, the PS, the GP, and also save the registersa@0

Figure 19-1 Stack Frame Layout for callsys and rti
63 0

PS :00
PC .08
GP 116
a0 24
al 132
a2 140

Entries for interrupts from user mode use the stack frame layout as shown in Figure 19-2. The
stack frame must be aligned on a 64-byte boundary and contains the registers, at, SP, PS, PC,
GP, and saved registers a0, al, and a2.

Figure 19-2 Stack Frame Layout for urti

63 0

at :00
Sp :08
PS 116
PC 24
GP 132
a0 40
al 148
a2 :56
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19.4 System Entry Addresses

All system entries are in kernel mode. The interrupt priority PS bits (PS<IPL>) are set as
shown in the following table. The system entry point address is set by the wrent instruction, as
described in Section 16.2.15.

Table 19-2 Entry Point Address Registers

Entry Point Value in a0 Value in al Value in a2 PS<IPL>

entArith Exception summary Register mask UNPREDICTABLE Unchanged

entlF Fault or trap type code UNPREDICTABLE UNPREDICTABLE Unchanged

entint Interrupt type Vector Interrupt parameter Priority of interrupt
entMM VA MMCSR Cause Unchanged

entSys pOo pl p2 Unchanged

entUna VA Opcode Src/Dst Unchanged

19.4.1 System Entry Arithmetic Trap (entArith)

The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On entry, a0 con-
tains the exception summary register and al contains the exception register write mask. Section
19.4.1.1 describes the exception summary register and Section 19.4.1.2 describes the register
write mask.

19.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 19-3 and described in Table 19-3, records
the various types of arithmetic exceptions that can occur together.
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Figure 19-3 Exception Summary Register
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Table 19-3 Exception Summary Register Bit Definitions

Bit Description

63-7 Zero.

6 Integer overflow (I0V)
An integer arithmetic operation or a conversion from floating to integerftawed the desti-
nation precision.
An IOV trap is reported for any integer operation whose true result exceeds the destination
register size. Integer overflow trap enable can be specified in each arithmetic integer operate
instruction and each floating-point convert-to-integer instruction. If integerftoxw occurs,
the result register is written with the truncated true result.

5 Inexact result (INE)
A floating arithmetic or conversion operation gave a result thif¢idid from the mathemati-
cally exact result.
An INE trap is reported if the rounded result of an IEEEemgtion is not exact. Inexact result
trap enable can be specified in each IEEE floating-point operate instruction. The rounded
result value is stored in all cases.

4 Underflow (UNF)
A floating arithmetic or conversion operation wrflowed the destination exponent.
An UNF trap is reported when the destination’s smallest finite number exceeds in magnitude
the non-zero rounded true result. Floating underflow trap enable can be specified in each
floating-point operate instruction. If underflow occurs, the result register is written with a
true zero.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

An OVF trap is reported when the destination’s largest finite number is exceeded in magni-
tude by the rounded true result. Floating overflow traps are always enabled. If this trap
occurs, the result register is written with an UNPREDICTABLE value.
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Table 19-3 Exception Summary Register Bit Definitions (Continued)

Bit Description

2 Division by zero (DZE)
An attempt was made to perform a floatidiyide operation with a divisor of zero.

A DZE trap is reported when a finite number is dividedz®ro. Floating divide by zero traps
are always enabled. If this trap occurs, the result register is written with an UNPREDICT-
ABLE value.

1 Invalid operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison operation,
and one or more of the operand values were illegal.

An INV trap is reported for most floating-point operate instructions with an input operand
that is an IEEE NaN, IEEE infinity, or IEEE denormal.

Floating invalid operation traps are always enabled. If this trap occurs, the result register is
written with an UNPREDICTABLE value.

0 Software completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate instructions
with the /S qualifier set. See Section 4.7.7.3 for rules about setting the /S qualifier in code
that may cause an arithmetic trap, and Section 19.1.1 for rules about using the SWC bit in a
trap handler.

19.4.1.2 Exception Register Write Mask

The exception register write mask parameter records all registers that were targets of instruc-
tions that set the bits in the exception summary register. There is a one-to-one correspondence
between bits in the register write mask quadword and the register numbers. The quadword,
starting at bit 0 and proceeding right to left, records which of the registers r0 through r31, then
fO through f31, received an exceptional result.

Note:

For a sequence such as:

ADDF F1,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF bit is set in the exception
summary, and the F3 bit is set in the register mask, even though the overflowed sum in F3
can be overwritten with an in-range product by the time the trap is taken. (This code
violates the destination reuse rule for exception completion. See Section 4.7.7.3 for the
destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next instruction.
This is defined as the virtual address of the first instruction not executed after the trap condi-
tion was recognized.

19.4.2 System Entry Instruction Fault (entlF)

The instruction fault or synchronous trap entry is called for bpt, bugchk, gentrap, and opDec
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synchronous traps, and for a FEN fault (floating-point instruction when the floating-point unit
is disabled, FEN EQ 0). On entry, a0 contains a 0 for a bpt, a 1 for bugchk, a 2 for gentrap, a 3
for FEN fault, and a 4 for opDec. No additional data is passed in.a2. The saved PC at
(SP+00) is the address of the instruction that caused the fault for FEN faults. The saved PC at
(SP+00) is the address of the instruction after the instruction that caused the bpt, bugchk, gen-
trap, and opDec synchronous traps.

19.4.3 System Entry Hardware Interrupts (entint)

The interrupt entry is called to service a hardware interrupt or a machine check. Table 19-4
shows what is passed in aa2 and the PS<IPL> setting for various interrupts.

Table 19-4 System Entry Hardware Interrupts

Entry Type Valueina0 Valueinal Value in a2 PS<IPL>
Interprocessor interrupt 0 UNPREDICTABLE UNPREDICTABLE 5

Clock 1 UNPREDICTABLE UNPREDICTABLE 5

Correctable error 2 Interrupt vector Pointer to Logout Area 7

Machine check 2 Interrupt vector Pointer to Logout Area 7

I/0 device 3 Interrupt vector UNPREDICTABLE Level of device
interrupt

Performance counter 4 Interrupt vector UNPREDICTABLE 6

On entry to the hardware interrupt routine, the IPL has been set to the level of the interrupt. For
hardware interrupts, register al contains a platform-specific interrupt vector. That plat-
form-specific interrupt vector is typically the same value as the SCB offset value that would be
returned if the platform was running OpenVMS PALcode.

For a correctable error or machine check interrupt, al contains a platform-specific interrupt

vector and a2 contains the kseg address of the platform-specific logout area. The interrupt vec-
tor value and logout area format are typically the same as those used by the platform when
running OpenVMS PALcode.

The machine check error summary (MCES) register, shown in Figure 19—4 and described in
Table 19-5, records the gectable error and mame check interrupts in progress.
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Figure 19-4 Machine Check Error Status (MCES) Register
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Table 19-5 Machine Check Error Status (MCES) Register Bit Definitions

Bit Symbol Description

63-32 IMP.

31-5 Reserved.

4 DSC Disable system correctable error in progress.

Set to disable system correctable error reporting.

3 DPC Disable processor correctable error in progress.
Set to disable processor correctable error répgrt

2 PCE Processor correctable error in progress.

Set when a processor correctable error is detected. Should be cleared by the pro-
cessor correctable error handler when the logout frame may be reused.

1 SCE System coectable error in progress.

Set when a system correctable error is detected. Should be cleared by the system
correctable error hadler when the logout frame may be reused.

0 MIP Machine check in progress.

Set when a machine check occurs. Must be cleared by the machine check han-
dler when a subsequent machine check can be handled. Used to detect double
machine checks.

The MIP flag in the MCES register is set prior to invoking the machine check handler. If the
MIP flag is set when a machine check is being initiated, a double machine check halt is initi-
ated instead. The machine check handler needs to clear the MIP flag when it can handle a new
machine check.

Similarly, the SCE or PCE flag in the MCES register is set prior to invoking the appropriate
correctable error handler. That error handler should clear the appropriate correctable error in
progress when the logout area can be reused by hardware or PALcode. PALcode does not
overwrite the logout area.

Correctable processor or system error reporting may be suppressed by setting the respective
DPC or DSC flag in the MCES register. When the DPC or DSC flag is set, the corresponding
error is corrected, but no correctable error interrupt is generated.

19.4.4 System Entry MM Fault (entMM)

The memory-management fault entry is called when a memory management exception occurs.
On entry, a0 contains the faulting virtual address and al contains the MMCSR (see Section
17.9). On entry, a2 is set to a minus one (-1) for an instruction fetch fault, to a plus one (+1)
for a fault caused by a store instruction, or to a 0 for a fault caused by a load instruction.
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19.4.5 System Entry Call System (entSys)

The system call entry is called when a callsys instruction is executed in user mode. On entry,
only registers (t8.t11) have been modified. The PC+4 of the callsys instruction, the user glo-
bal pointer, and the current PS are saved on the kernel stack. Additional space.faRa®
allocated. After completion of the system service routine, the kernel code executes a
CALL_PAL retsys instruction.

19.4.6 System Entry Unaligned Access (entUna)

The unaligned access entry is called when a load or store access is not aligned. On entry, a0
contains the faulting virtual address, al contains the zero extended six-bit opcode (bits
<31:26>) of the faulting instruction, and a2 contains the zero extended data source or destina-
tion register number (bits<25:21>) of the faulting instruction.

19.5 PALcode Support

19.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack that would
produce a memory-management fault will result in a kernel-stack-not-valid halt. The stack
pointer must always point to a quadword-aligned address. If the kernel stack is not quadword
aligned on a PALcode access, a kernel-stack-not-valid halt is initiated.
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Alpha Linux Software (I1I-C)

The following chapters describe how the Alpha Linux operating system relates to the Alpha
architecture:

e Chapter 20, Introduction to Alpha Linux (1I-C)

e Chapter 21, PALcode Instruction Descriptidiis-C)
e Chapter 22, Memory Management (1I-C)

e Chapter 23, Process Structure (I1I-C)

e Chapter 24, Exceptions and Interrufits-C)






Chapter 20

Introduction to Alpha Linux (l1I-C)

The goals of this design are to provide a hardware interface between the hardware and
Alpha Linux that is implementation independent. The interface needs to provide the required
abstractions to minimize the impact of different hardware implementations on the operating
system. The interface also needs to be low in overhead to support high-performance systems.
Finally, the interface needs to support only features used by Alpha Linux.

The register usage in this interface is based on the current calling standard used by Alpha
Linux. If the calling standard changes, this interface will be changed accordingly. The current
calling standard register usage is shown in Table 20-1.

Table 20-1 Alpha Linux Register Usage

Eggqizter ﬁg;v;are Use and Linkage

ro vO Used for expression evaluations and to hold integer function results.

rl...r8 t0...t7 Temporary registers; not preserved across procedure calls.

ro...rl4 sQ..sb Saved registers; their values must be preserved across procedure calls.

ris FP or s6 Frame pointer or a saved register.

rle...r21 aQ..ab Argument registers; used to pass the first six integer type arguments; their
values are not preserved across procedure calls.

r22...r25 t8...t11 Temporary registers; not preserved across procedure calls.

r26 ra Contains the return address; used for expression evaluation.

r27 pv ortl2 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across procedure calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r3l Zero Always has the value 0.
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20.1 Programming Model

The programming model of the machine is the combination of the state visible either directly
via instructions, or indirectly via actions of the machine. Tables 20-2 and 20-3 define code
flow constants, state variables, terms, subroutines, and code flow terms that are used in the rest
of the document.

20.1.1 Code Flow Constants and 