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Preface

TheAlpha Architecture Reference Manualis organized as shown in the following table.

Name Symbol Contents

Common Architecture

(I) Describes the architecture that is common to and required of all implem
tations, and contains the following chapters:

• Chapter 1, Introduction to the Common Architecture (I)

• Chapter 2, Basic Architecture (I)

• Chapter 3, Instruction Formats (I)

• Chapter 4, Instruction Descriptions (I)

• Chapter 5, System Architecture and Programming Implications (I

• Chapter 6, Common PALcode Architecture (I)

• Chapter 7, Console Subsystem Overview (I)

• Chapter 8, Input/Output Overview (I)

OpenVMS Operating System PALcode Architecture

(II–A) Describes how the OpenVMS operating system relates to the Alphaarchi-
tecture and contains the following chapters:

• Chapter 9, Introduction to OpenVMS(II–A)

• Chapter 10, PALcode Instruction Descriptions(II–A)

• Chapter 11, Memory Management (II-A)

• Chapter 12, Process Structure (II-A)

• Chapter 13, Internal Processor Registers (II–A)

• Chapter 14, Exceptions, Interrupts, and Machine Checks (II–A)

Tru64 UNIX Operating System PALcode Architecture

(II–B) Describes how the Tru64 UNIX operating system relates to the Alphaarchi-
tecture and contains the following chapters:

• Chapter 15, Introduction to Tru64 UNIX (II–B)

• Chapter 16, PALcode Instruction Descriptions(II–B)

• Chapter 17, Memory Management (II–B)

• Chapter 18, Process Structure (II–B)

• Chapter 19, Exceptions and Interrupts(II–B)
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Alpha Linux Operating System PALcode Architecture

(II–C) Describes how the Alpha Linux operating system relates to the Alphaarchi-
tecture and contains the following chapters:

• Chapter 20, Introduction to Alpha Linux (II–C)

• Chapter 21, PALcode Instruction Descriptions(II–C)

• Chapter 22, Memory Management (II–C)

• Chapter 23, Process Structure (II–C)

• Chapter 24, Exceptions and Interrupts(II–C)

Console Interface Architecture

(III) Describes an architected console firmware implementation and contains th
following chapters:

• Chapter 25, Console Subsystem Overview (III)

• Chapter 26, Console Interface to Operating System Software (III)

• Chapter 27, System Bootstrapping (III)

Appendixes

The following appendixes are included:

• Appendix A, Software Considerations

• Appendix B, IEEE Floating-Point Conformance

• Appendix C, Instruction Summary

• Appendix D, Registered System and Processor Identifiers

• Appendix E, Waivers and Implementation-Dependent Functional

• Appendix F, Windows NT Software

Indexes

The index at the end of the manual is structured like a master index. Ind
entries are called out by the chapter and page, followed by the appropr
Section symbol:(I), (II-A), and so forth. Index entries for the appendixes
are called out by appendix letter and page number. Following the man
index is an index of the instructions. The instruction index is the easiest w
to find primary documentation for the Alpha instruction set and the PAL
code instructions for each operating system.
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Common Architecture (I)

The following chapters describe the common Alpha architecture:

• Chapter 1, Introduction to the Common Architecture (I)

• Chapter 2, Basic Architecture (I)

• Chapter 3, Instruction Formats (I)

• Chapter 4, Instruction Descriptions (I)

• Chapter 5, System Architecture and Programming Implications (I)

• Chapter 6, Common PALcode Architecture (I)

• Chapter 7, Console Subsystem Overview (I)

• Chapter 8, Input/Output Overview (I)
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Chapter 1

Introduction to the Common Architecture (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular emphasis o
three elements that most affect performance: clock speed, multiple instruction issue, and
ple processors.

The Alpha architects examined and analyzed current and theoretical RISC architecture d
elements and developed high-performance alternatives for the Alpha architecture. The
tects adopted only those design elements that appeared valuable for a projected 25-year
horizon. Thus, Alpha becomes the first 21st century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating system o
gramming language. Alpha supports the OpenVMS, Tru64 UNIX, and Alpha Linux opera
systems and supports simple software migration for applications that run on those ope
systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit archite
of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and all o
tions are performed between 64-bit registers. It is not a 32-bit architecture that was
expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations

The instructions are very simple. All instructions are 32 bits in length. Memory operations
either loads or stores. All data manipulation is done between registers.

The Alpha architecture facilitates pipelining multiple instances of the same operations be
there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register or mem
and another instruction reading from the same place. That makes it particularly easy to
implementations that issue multiple instructions every CPU cycle.

Alpha makes it easy to maintain binary compatibility across multiple implementations and
to maintain full speed on multiple-issue implementations. For example, there are no imple
tation-specific pipeline timing hazards, no load-delay slots, and no branch-delay slots.
Introduction to the Common Architecture (I)1–1
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The Alpha Approach to Byte Manipulation

The Alpha architecture reads and writes bytes between registers and memory with the L
and STB instructions. (Alpha also supports word read/writes with the LDWU and S
instructions.)

Byte shifting and masking is performed with normal 64-bit register-to-register instructio
crafted to keep instruction sequences short.

The Alpha Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and
issued by one processor may be arbitrarily reordered by an implementation. This allows im
mentations to use multibank caches, bypassed write buffers, write merging, pipelined w
with retry on error, and so forth. If strict ordering between two accesses must be mainta
explicit memory barrier instructions can be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, mod
store_conditional sequence. If the sequence runs without interrupt, exception, or an inter
write from another processor, then the conditional store succeeds. Otherwise, the store fa
the program eventually must branch back and retry the sequence. This style of interlo
scales well with very fast caches and makes Alpha an especially attractive architectu
building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed

A number of Alpha instructions include hints for implementations, all aimed at achiev
higher speed.

• Calculated jump instructions have a target hint that can allow much faster subro
calls and returns.

• There are prefetching hints for the memory system that can allow much higher cach
rates.

• There are granularity hints for the virtual-address mapping that can allow much m
effective use of translation lookaside buffers for large contiguous structures.

PALcode – Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are specific to a
ticular Alpha operating system implementation. These subroutines provide operating-sy
primitives for context switching, interrupts, exceptions, and memory management. PALco
similar to the BIOS libraries that are provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software CALL_P
instructions.

PALcode is written in standard machine code with some implementation-specific extensio
provide access to low-level hardware.
1–2 Common Architecture (I)
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PALcode lets Alpha implementations run the full OpenVMS, Tru64 UNIX, and Alpha Lin
operating systems. PALcode can provide this functionality with little overhead. For exam
the OpenVMS PALcode instructions let Alpha run OpenVMS with little more hardware th
that found on a conventional RISC machine: the PALmode bit itself, plus four extra protec
bits in each translation buffer entry.

Other versions of PALcode can be developed for real-time, teaching, and other application

PALcode makes Alpha an especially attractive architecture for multiple operating systems

Alpha and Programming Languages

Alpha is an attractive architecture for compiling a large variety of programming langua
Alpha has been carefully designed to avoid bias toward one or two programming langu
For example:

• Alpha does not contain a subroutine call instruction that moves a register window
fixed amount. Thus, Alpha is a good match for programming languages with m
parameters and programming languages with no parameters.

• Alpha does not contain a global integer overflow enable bit. Such a bit would need to
be changed at every subroutine boundary when a FORTRAN program calls a C
gram.

1.2 Data Format Overview

Alpha is a load/store RISC architecture with the following data characteristics:

• All operations are done between 64-bit registers.

• Memory is accessed via 64-bit virtual byte addresses, using the little-endian or, op
ally, the big-endian byte numbering convention.

• There are 32 integer registers and 32 floating-point registers.

• Longword (32-bit) and quadword (64-bit) integers are supported.

• Five floating-point data types are supported:

– VAX F_floating (32-bit)

– VAX G_floating (64-bit)

– IEEE single (32-bit)

– IEEE double (64-bit)

– IEEE extended (128-bit)

1.3 Instruction Format Overview

As shown in Figure 1–1, Alpha instructions are all 32 bits in length. There are four m
instruction format classes that contain 0, 1, 2, or 3 register fields. All formats have a 6
opcode.
Introduction to the Common Architecture (I)1–3
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Figure 1–1: Instruction Format Overview

• PALcode instructions specify, in the function code field, one of a few dozen compl
operations to be performed.

• Conditional branch instructions test register Ra and specify a signed 21-bit PC-re
tive longword target displacement. Subroutine calls put the return address in reg
Ra.

• Load and store instructions move bytes, words, longwords, or quadwords betwe
register Ra and memory, using Rb plus a signed 16-bit displacement as the me
address.

• Operate instructions for floating-point and integer operations are both represented
Figure 1–1 by the operate format illustration and are as follows:

– Word and byte sign-extension operators.

– Floating-point operations use Ra and Rb as source registers and write the res
register Rc. There is an 11-bit extended opcode in the function field.

– Integer operations use Ra and Rb or an 8-bit literal as the source operand, and
the result in register Rc.

– Integer operate instructions can use the Rb field and part of the function fiel
specify an 8-bit literal. There is a 7-bit extended opcode in the function field.

1.4 Instruction Overview

PALcode Instructions

As described in Section 1.1, a Privileged Architecture Library (PALcode) is a set of sub
tines that is specific to a particular Alpha operating-system implementation. These subrou
can be invoked by hardware or by software CALL_PAL instructions, which use the func
field to vector to the specified subroutine.

Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero/non
and they can test integer registers for even/odd. Unconditional branch instructions can w
return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit addres
register.

031 26 25 21 20 16 15 5 4

NumberOpcode

Opcode

Opcode

Opcode

Disp

Disp

Function RCRB

RB

RA

RA

RA

PALcode Format

Branch Format

Memory Format

Operate Format
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Load/Store Instructions

Load and store instructions move 8-bit, 16-bit, 32-bit, or 64-bit aligned quantities from an
memory. Memory addresses are flat 64-bit virtual addresses with no segmentation.

The VAX floating-point load/store instructions swap words to give a consistent register for
for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies o
high bit of the datum. A 32-bit floating-point datum is placed in a register in a canonical fo
that extends the exponent by 3 bits and extends the fraction with 29 low-order zeros. Th
bit operates preserve these canonical forms.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and 64-bit
ations. The Alpha architecture has no 32/64 mode bit.

Integer Operate Instructions

The integer operate instructions manipulate full 64-bit values and include the usual assor
of arithmetic, compare,logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They differ from
64-bit counterparts only in overflow detection and in producing 32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

• Scaled add/subtract instructions for quick subscript calculation

• 128-bit multiply for division by a constant, and multiprecision arithmetic

• Conditional move instructions for avoiding branch instructions

• An extensive set of in-register byte and word manipulation instructions

• A set of multimedia instructions that support graphics and video

Integer overflow trap enable is encoded in the function field of each instruction, rather
kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ opcodes exist for s
ifying 64-bit ADD with and without overflow checking. That makes it easier to pipelin
implementations.

Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and IEEE ar
metic instructions, plus instructions for performing conversions between floating-point
integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha includes co
tional move instructions for avoiding branches and merge sign/exponent instructions for s
field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field of
instruction, rather than kept in global state bi ts. That makes i t easier to pipe
implementations.
Introduction to the Common Architecture (I)1–5
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1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (R0 through R31), each 64 bits wide. R31reads as zero,
and writes to R31 are ignored.

• All integer data manipulation is between integer registers, with up to two variable re
ter source operands (one may be an 8-bit literal) and one register destination oper

• There are 32 floating-point registers (F0 through F31), each 64 bits wide. F31 rea
zero, and writes to F31 are ignored.

• All floating-point data manipulation is between floating-point registers, with up to t
register source operands and one register destination operand.

• Instructions can move data in an integer register file to a floating-point register file,
data in a floating-point register file to an integer register file. The instructions do
interpret bits in the register files and do not access memory.

• All memory reference instructions are of the load/store type that moves data betwe
registers and memory.

• There are no branch condition codes. Branch instructions test an integer or floa
point register value, which may be the result of a previous compare.

• Integer and logical instructions operate on quadwords.

• Floating-point instructions operate on G_floating, F_floating, and IEEE extended, d
ble, and single operands. D_floating "format compatibility," in which binary files
D_floating numbers may be processed, but without the last 3 bits offraction precision,
is also provided.

• A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers
than decimal are indicated with the name of the base in subscript form, for example, 1016.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that allows
tection mechanisms to be bypassed.

Security holes exist when unprivileged software (software running outside of kernel m
can:

• Affect the operation of another process without authorization from the operating sys-
tem;
1–6 Common Architecture (I)



tion

dware
avoid

an-

E-
ver,
or

ssor;
tion

to
hin
ICT-

n-
state
ICT-

arbi-
are

of,
rrent

rent
• Amplify its privilege without authorization from the operating system; or

• Communicate with another process, either overtly or covertly, without authoriza
from the operating system.

The Alpha architecture has been designed to contain no architectural security holes. Har
(processors, buses, controllers, and so on) and software should likewise be designed to
security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book. Their me
ings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger UND
FINED operations. Unprivileged software cannot trigger UNDEFINED operations. Howe
either privileged or unprivileged software can trigger UNPREDICTABLE results
occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the proce
it continues to execute instructions in its normal manner. In contrast, UNDEFINED opera
can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from moment
moment, implementation to implementation, and instruction to instruction wit
implementations. Software can never depend on results specified as UNPRED
ABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few co
straints. Such a result may be an arbitrary function of the input operands or of any
information that is accessible to the process in its current access mode. UNPRED
ABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
trary choice function. The choice function is subject to the same constraints as
UNPREDICTABLE results and, in particular, must not constitute a security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
the contents of memory locations or registers that are inaccessible to the cu
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which the cur
process in the current access mode does not have access, or

– Halt or hang the system or any of its components.
Introduction to the Common Architecture (I)1–7
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For example, a security hole would exist if some UNPREDICTABLE result depen
on the value of a register in another process, on the contents of processor temp
registers left behind by some previously running process, or on a sequence of ac
of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment, impleme
tion to implementation, and instruction to instruction within implementations. T
operation may vary in effect from nothing to stopping system operation.

• UNDEFINED operations may halt the processor or cause it to lose information. H
ever, UNDEFINED operations must not cause the processor to hang, that is, rea
unhalted state from which there is no transition to a normal state in which the mac
executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods and are inclusiv
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon and are
sive. For example, bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used interchang
ably to refer to data objects that are powers of two in size. An aligned datum of size 2**
stored in memory at a byte address that is a multiple of 2**N, that is, one that has N low-o
zeros. Thus, an aligned 64-byte stack frame has a memory address that is a multiple of 64

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it is cal
UNALIGNED.

1.6.6 Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-z
value. These fields may be used at some future time. If the processor encounters a no
value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero value. N
zero values in SBZ fields produce UNPREDICTABLE results and may produce extran
instruction-issue delays.
1–8 Common Architecture (I)
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1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation-sp
purposes. Each implementation must document fully the behavior of all fields marked as
by the Alpha specification.

1.6.11 Illustration Conventions

Illustrations that depict registers or memory follow the convention that increasing addre
run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or Chapter 10, o
stylized code forms found in Appendix A .
Introduction to the Common Architecture (I)1–9





re 64
vir-

by the

,
n 2.3.

bered

d in

ered
Chapter 2

Basic Architecture (I)

2.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. Virtual addresses a
bits long. An implementation may support a smaller virtual address space. The minimum
tual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory addresses
memory management mechanism.

Although the data types in Section 2.2 are described in terms of little-endian byte addressing
implementations may also include big-endian addressing support, as described in Sectio
All current implementations have some big-endian support.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are num
from right to left, 0 through 7, as shown in Figure 2–1.

Figure 2–1: Byte Format

A byte is specified by its address A. A byte is an 8-bit value. The byte is only supporte
Alpha by the load, store, sign-extend, extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are numb
from right to left, 0 through 15, as shown in Figure 2–2.

7 0

:A
Basic Architecture (I)2–1
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Figure 2–2: Word Format

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the load, store, sign-ext
extract, mask, and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits are n
bered from right to left, 0 through 31, as shown in Figure 2–3.

Figure 2–3: Longword Format

A longword is specified by its address A, the address of the byte containing bit 0. A longw
is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits
increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is only s
ported in Alpha by sign-extended load and store instructions and by longword arithm
instructions.

Note:

Alpha implementations will impose a significant performance penalty when acces
longword operands that are not naturally aligned. (A naturally aligned longword has
as the low-order two bits of its address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits are
bered from right to left, 0 through 63, as shown in Figure 2–4.

Figure 2–4 Quadword Format

A quadword is specified by its address A, the address of the byte containing bit 0. A quad
is a 64-bit value. When interpreted arithmetically, a quadword is either a two’s-complem
integer with bits of increasing significance from 0 through 62 and bit 63 as the sign bit, o
unsigned integer with bits of increasing significance from 0 through 63.

015

:A

031

:A

63 0

:A
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Note:

Alpha implementations will impose a significant performance penalty when acces
quadword operands that are not naturally aligned. (A naturally aligned quadword has
as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

VAX floating-point numbers are stored in one set of formats in memory and in a second s
formats in registers. The floating-point load and store instructions convert between thes
mats purely by rearranging bits; no rounding or range-checking is done by the load and
instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary byte bound
The bits are labeled from right to left, 0 through 31, as shown in Figure 2–5.

Figure 2–5: F_floating Datum

An F_floating operand occupies 64 bits in a floating register, left-justified in the 64-bit re
ter, as shown in Figure 2–6.

Figure 2–6 F_floating Register Format

The F_floating load instruction reorders bits on the way in from memory, expands the e
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the reg
an equivalent G_floating number suitable for either F_floating or G_floating operations.
mapping from 8-bit memory-format exponents to 11-bit register-format exponents is show
Table 2–1. This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and doe
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored by
store instruction.

Table 2–1: F_floating Load Exponent Mapping (MAP_F)

Memory <14:7> Register <62:52>

1 1111111 1 000 1111111

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all 1’s)

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0’s)

0 0000000 0 000 0000000

S Frac. HiFraction Lo :AExp.

6 071516 1431

063 62

S

52 51 29 28

Exp. Fraction 0 :Fx
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An F_floating datum is specified by its address A, the address of the byte containing bit 0
memory form of an F_floating datum is sign magnitude with bit 15 the sign bit, bits <14:7>
excess-128 binary exponent, and bits <6:0> and <31:16> a normalized 24-bit fraction wit
redundant most significant fraction bit not represented. Within the fraction, bits of increa
significance are from 16 through 31 and 0 through 6. The 8-bit exponent field encodes the
ues 0 through 255. An exponent value of 0, together with a sign bit of 0, is taken to indi
that the F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the instructi
always produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. E
nent values of 1..255 indicate true binary exponents of –127..127. An exponent value
together with a sign bit of 1, is taken as a reserved operand. Floating-point instructions
cessing a reserved operand take an arithmetic exception. The value of an F_floating datu
the approximate range 0.29*10**–38 through 1.7*10**38. The precision of an F_float
datum is approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when acces
F_floating operands that are not naturally aligned. (A naturally aligned F_floating da
has zero as the low-order two bits of its address.)

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte bound
The bits are labeled from right to left, 0 through 63, as shown in Figure 2–7.

Figure 2–7: G_floating Datum

A G_floating operand occupies 64 bits in a floating register, arranged as shown in Figure 2–8.

Figure 2–8 G_floating Register Format

A G_floating datum is specified by its address A, the address of the byte containing bit 0.
form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits <14:4> an exc
1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-bit fraction with the re
dant most significant fraction bit not represented. Within the fraction, bits of increas
significance are from 48 through 63, 32 through 47, 16 through 31, and 0 through 3. The 1
exponent field encodes the values 0 through 2047. An exponent value of 0, together with
bit of 0, is taken to indicate that the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction always prod
a datum with a sign bit of 0, an exponent of 0, and all fraction bits of 0. Exponent value
1..2047 indicate true binary exponents of –1023..1023. An exponent value of 0, together w

S Exp. Frac.HiFraction Midh :A

:A+4Fraction MidlFraction Lo

4 3 01516 1431

063 62

S

32 31

Exp. Fraction Hi Fraction Lo :Fx

52 51
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sign bit of 1, is taken as a reserved operand. Floating-point instructions processing a res
operand take a user-visible arithmetic exception. The value of a G_floating datum is in
approximate range 0.56*1 0**–308 through 0.9*10**308. The precision of a G_floating da
is approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when acces
G_floating operands that are not naturally aligned. (A naturally aligned G_floating da
has zero as the low-order three bits of its address.)

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte bound
The bits are labeled from right to left, 0 through 63, as shown in Figure 2–9.

Figure 2–9: D_floating Datum

A D_floating operand occupies 64 bits in a floating register, arranged as shown in Figure 2–10

Figure 2–10 D_floating Register Format

The reordering of bits required for a D_floating load or store is identical to that required f
G_floating load or store. The G_floating load and store instructions are therefore used for
ing or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing bit 0.
memory form of a D_floating datum is identical to an F_floating datum except for 32 ad
tional low significance fraction bits. Within the fraction, bits of increasing significance
from 48 through 63, 32 through 47, 16 through 31, and 0 through 6. The exponent conven
and approximate range of values is the same for D_floating as F_floating. The precision
D_floating datum is approximately one part in 2**55, typically 16 decimal digits.

Notes:

D_floating is not a fully supported data type; no D_floating arithmetic operations
provided in the architecture. For backward compatibility, exact D_floating arithmetic m
be provided via software emulation. D_floating "format compatibility"in which binary fil
of D_floating numbers may be processed, but without the last three bits of frac
precision, can be obtained via conversions to G_floating, G arithmetic operations,
conversion back to D_floating.

Alpha implementations will impose a significant performance penalty on acces
D_floating operands that are not naturally aligned. (A naturally aligned D_floating da
has zero as the low-order three bits of its address.)

S Exp. Frac.HiFraction Midh :A

:A+4Fraction MidlFraction Lo

6 071516 1431

063 62

S

48 47 32 31 16 15

Exp. Fraction Midh Fraction Midl Fraction Lo :Fx

55 54

Frac. Hi
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2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, defines f
floating-point formats in two groups, basic and extended, each having two widths, single
double. The Alpha architecture supports the basic single and double formats, with the
double format serving as the extended single format. The values representable within a f
are specified by using three integer parameters:

• P – the number of fraction bits

• Emax – the maximum exponent

• Emin – the minimum exponent

Within each format, only the following entities are permitted:

• Numbers of the form (–1)**S x 2**E x b(0).b(1)b(2)..b(P–1) where:

– S = 0 or 1

– E = any integer between Emin and Emax, inclusive

– b(n) = 0 or 1

• Two infinities – positive and negative

• At least one Signaling NaN

• At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit pattern that rep
sents something other than a number. NaNs come in two forms: Signaling NaNs and
NaNs. Signaling NaNs are used to provide values for uninitialized variables and for arithm
enhancements. Quiet NaNs provide retrospective diagnostic information regarding pre
invalid or unavailable data and results. Signaling NaNs signal an invalid operation when
are an operand to an arithmetic instruction, and may generate an arithmetic exception.
NaNs propagate through almost every operation without generating an arithmetic exceptio

Arithmetic with the infinities is handled as if the operands were of arbitrarily large magnitu
Negative infinity is less than every finite number; positive infinity is greater than every finite
number.

2.2.6.1 S_floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in memory s
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 31
shown in Figure 2–11.

Figure 2–11: S_floating Datum

An S_floating operand occupies 64 bits in a floating register, left-justified in the 64-bit re
ter, as shown in Figure 2–12.

S Exp. Fraction :A

03031 2223
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Figure 2–12 S_floating Register Format

The S_floating load instruction reorders bits on the way in from memory, expanding the e
nent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces in the reg
an equivalent T_floating number, suitable for either S_floating or T_floating operations.
mapping from 8-bit memory-format exponents to 11-bit register-format exponents is show
Table 2–2.

This mapping preserves both normal values and exceptional values. Note that the mapp
all 1’s differs from that of F_floating load, since for S_floating all 1’s is an exceptional va
and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and doe
checking of the low-order fraction bits. Register bits <61:59> and <28:0> are ignored by
store instruction. The S_floating load instruction does no checking of the input.

The S_floating store instruction does no checking of the data; the preceding operation should
have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing bit 0
memory form of an S_floating datum is sign magnitude with bit 31 the sign bit, bits <30:
an excess-127 binary exponent, and bits <22:0> a 23-bitfraction.

The value (V) of an S_floating number is inferred from its constituent sign (S), exponent (E),
and fraction (F) fields as follows:

• If E=255 and F<>0, then V is NaN, regardless of S.

• If E=255 and F=0, then V = (–1)**S x Infinity.

• If 0 < E < 255, then V = (–1)**S x 2**(E–127) x (1.F).

• If E=0 and F<>0, then V = (–1)**S x 2**(–126) x (0.F).

• If E=0 and F=0, then V = (–1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception for a
ety of reasons, including invalid operations, overflow, underflow, division by zero, and ine
results.

Table 2–2: S_floating Load Exponent Mapping (MAP_S)

Memory <30:23> Register <62:52>

1 1111111 1 111 1111111

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all 1’s)

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0’s)

0 0000000 0 000 0000000

063 62

S

52 51 29 28

Exp. Fraction 0 :Fx
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Note:

Alpha implementations will impose a significant performance penalty when acces
S_floating operands that are not naturally aligned. (A naturally aligned S_floating da
has zero as the low-order two bits of its address.)

2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in memory s
ing on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 63
shown in Figure 2–13.

Figure 2–13: T_floating Datum

A T_floating operand occupies 64 bits in a floating register, arranged as shown in Figure 2–14

Figure 2–14 T_floating Register Format

The T_floating load instruction performs no bit reordering on input, nor does it perform ch
ing of the input data.

The T_floating store instruction performs no bit reordering on output. This instruction doe
checking of the data; the preceding operation should have specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte containing bit 0.
form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits <62:52> an exc
1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S), exponent
and fraction (F) fields as follows:

• If E=2047 and F<>0, then V is NaN, regardless of S.

• If E=2047 and F=0, then V = (–1)**S x Infinity.

• If 0 < E < 2047, then V = (–1)**S x 2**(E–1023) x (1.F).

• If E=0 and F<>0, then V = (–1)**S x 2**(–1022) x (0.F).

• If E=0 and F=0, then V = (–1)**S x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception for a
ety of reasons, including invalid operations, overflow, underflow, division by zero, and ine
results.

S

:A

:A+4

Fraction Lo

Fraction HiExponent

031 30 1920

063 62

S

32 31

Exp. Fraction Hi Fraction Lo :Fx

52 51
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Alpha implementations will impose a significant performance penalty when acces
T_floating operands that are not naturally aligned. (A naturally aligned T_floating da
has zero as the low-order three bits of its address.)

2.2.6.3 X_floating

Support for 128-bit IEEE extended-precision (X_float) floating-point is initially provide
entirely through software. This section is included to preserve the intended consisten
implementation with other IEEE floating-point data types, should the X_float data type be
ported in future hardware.

An IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in mem
starting on an arbitrary byte boundary. The bits are labeled from right to left, 0 through 12
shown in Figure 2–15.

Figure 2–15 X_floating Datum

An X_floating datum occupies two consecutive even/odd floating-point registers (suc
F4/F5), as shown in Figure 2–16.

Figure 2–16: X_floating Register Format

An X_floating datum is specified by its address A, the address of the byte containing bit 0.
form of an X_floating datum is sign magnitude with bit 127 the sign bit, bits <126:112>
excess–16383 binary exponent, and bits <111:0> a 112-bit fraction.

The value (V) of an X_floating number is inferred from its constituent sign (S), exponent
and fraction (F) fields as follows:

• If E=32767 and F<>0, then V is a NaN, regardless of S.

• If E=32767 and F=0, then V = (–1)**S x Infinity.

• If 0 < E < 32767, then V = (–1)**S x 2**(E–16383) x (1.F).

• If E=0 and F<> 0, then V = (–1)**S x 2**(–16382) x (0.F).

• If E = 0 and F = 0, then V = (–1)**S x 0 (zero).

Note:

Alpha implementations will impose a significant performance penalty when acces
X_floating operands that are not naturally aligned. (A naturally aligned X_floating da
has zero as the low-order four bits of its address.)

0

S Exponent Fraction_high

Fraction_low

48 4763 62

:A

:A+8

127 064 63

S

126 112 111

Exponent Fraction_high Fraction_low

Fn OR  1  Fn
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Section 2.3 describes Alpha support for big-endian data types. It is intended that softwa
hardware implementation for a big-endian X_float data type comply with that support and
the following formats.

Figure 2–17 X_floating Big-Endian Datum

Figure 2–18: X_floating Big-Endian Register Format

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory,arranged as shown in Figure 2–19.

Figure 2–19: Longword Integer Datum

A longword integer operand occupies 64 bits in a floating register, arranged as shown in
ure 2–20.

Figure 2–20: Longword Integer Floating-Register Format

There is no explicit longword load or store instruction; the S_floating load/store instruct
are used to move longword data into or out of the floating registers. The register bits <61
are set by the S_floating load exponent mapping. They are ignored by S_floating store.
are also ignored in operands of a longword integer operate instruction, and they are set
in the result of a longword operate instruction.

The register format bit <62> "I" in Figure 2–20 is part of the Integer field in Figure 2–19 a
represents the high-order bit of that field.

15

S Exponent Fraction_high

Fraction_low

0

A+8:

A:

Byte

Byte

0 15

S Exponent Fraction_high Fraction_low

Fn OR 1 Fn

Byte Byte

S Integer :A

03031

063 62

S

59 58 29 28

xxx Integer 0 :Fx

61

I
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Alpha implementations will impose a significant performance penalty when acces
longwords that are not naturally aligned. (A naturally aligned longword datum has zer
the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in Figure 2–21.

Figure 2–21: Quadword Integer Datum

A quadword integer operand occupies 64 bits in a floating register, arranged as shown in
ure 2–22.

Figure 2–22 Quadword Integer Floating-Register Format

There is no explicit quadword load or store instruction; the T_floating load/store instruct
are used to move quadword data between memory and the floating registers. (The ITOF
FTOIT are used to move quadword data between integer and floating registers.)

The T_floating load instruction performs no bit reordering on input. The T_floating st
instruction performs no bit reordering on output. This instruction does no checking of the d
when used to store quadwords, the preceding operation should have specified a qua
result.

Note:

Alpha implementations will impose a significant performance penalty when acces
quadwords that are not naturally aligned. (A naturally aligned quadword datum haszero as
the low-order three bits of its address.)

2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha hardware.

• Octaword

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable-Length Bit Field

• Character String

• Trailing Numeric String

S

:A

:A+4

Integer Lo

Integer Hi

031 30

063 62

S

32 31

Integer Hi Integer Lo :Fx
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• Leading Separate Numeric String

• Packed Decimal String

2.3 Big-Endian Addressing Support

Alpha implementations may include optional big-endian addressing support.

In a little-endian machine, the bytes within a quadword are numbered right to left:

Figure 2–23 Little-Endian Byte Addressing

In a big-endian machine, they are numbered left to right:

Figure 2–24 Big-Endian Byte Addressing

Bit numbering within bytes is notaffected by thebyte numbering convention (big-endian or lit
tle-endian).

The format for the X_floating big-endian data type is shown in Section 2.2.6.3.

The byte numbering convention does not matter whenaccessing complete aligned quadword
in memory. However, the numbering convention does matter when accessing smal
unaligned quantities, or when manipulating data in registers, as follows:

• A quadword load or store of data at location 0 moves the same eight bytes under
numbering conventions. However, a longword load or store of data at location 4 m
move the leftmost half of a quadword under the little-endian convention, and the ri
most half under the big-endian convention. Thus, to support both conventions, the
vention being used must be known and it must affect longword load/store operatio

• A byte extract of byte 5 from a quadword of data into the low byte of a register requ
a right shift of 5 bytes under the little-endian convention, but a right shift of 2 by
under the big-endian convention.

• Manipulation of data in a register is almost the same for both conventions. In both,
ger and floating-point data have their sign bits in the leftmost byte and their least sig
icant bit in the rightmost byte, so the same integer and floating-point instructions
used unchanged for both conventions. Big-endian character strings have their mostsig-
nificant character on the left, while little-endian strings have their most significant ch
acter on the right.

• The compare byte (CMPBGE) instruction is neutral about direction, doing eight b
compares in parallel. However, following the CMPBGE instruction, the code is differ-
ent that examines the byte mask to determine which string is larger, dependin
whether the rightmost or leftmost unequal byte is used. Thus, compilers mus
instructed to generate somewhat different code sequences for the two conventions

5 4 3 2 167 0

2 3 4 5 610 7
2–12 Common Architecture (I)
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Implementations that include big-endian support must supply all of the following features:

• A means at boot time to choose the byte numbering convention. The implementati
not required to support dynamically changing the convention during program ex
tion. The chosen convention applies to all code executed, both operating-system
user.

• If the big-endian convention is chosen, the longword-length load/store instruct
(LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2> (bit 2 of the vir-
tual address). This has theeffect of accessing the half of a quadword other than the half
that would be accessed under the little-endian convention.

• If the big-endian convention is chosen, the word-length load and store instructi
LDWU and STW, invert bits va<1:2> (bits 1 and 2 of the virtual address). This has
effect of accessing the half of thelongword that would be accessed under the littl
endian convention.

• If the big-endian convention is chosen, the byte-length load and store instruct
LDBU and STB, invert bits va<0:2> (bits 0 through 2 of the virtual address). This
the effect of accessing the half of the word that would be accessed under the
endian convention.

• If the big-endian convention is chosen, the byte manipulation instructions (EXT
INSxx, MSKxx) invert bits Rbv<2:0>. This has the effect of changing a shift of 5 by
into a shift of 2 bytes, for example.

The instruction stream is always considered to be little-endian, and is independent of the cho
sen byte numbering convention. Compilers, linkers, and debuggers must be aware of this
accessing an instruction stream using data-stream load/store instructions. Thus, the righ
instruction in a quadword is always executed first and always has the instruction-str
address 0 MOD 8. The same bytes accessed by a longword load/store instruction have
stream address 0 MOD 8 under the little-endian convention, and 4 MOD 8 under the
endian convention.

Using either byte numbering convention, it is sometimes necessary to access data that
nated on a machine that used the other convention. When this occurs, it is often necess
swap the bytes within a datum. See Section A.4.3 for a suggested code sequence.
Basic Architecture (I)2–13
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Chapter 3

Instruction Formats (I)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state. If an
system contains multiple Alpha processors, there are multiple per-processor sets of
registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream. A
instruction is decoded, the PC is advanced to the next sequential instruction. This is refer
as theupdated PC. Any instruction that uses the value of the PC will use the updated PC.
PC includes only bits <63:2> with bits <1:0> treated as RAZ/IGN. This quantity is a lo
word-aligned byte address. The PC is an implied operand on conditional branch and subr
jump instructions. The PC is not accessible as an integer register.

3.1.2 Integer Registers

There are 32 integer registers (R0 through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is specif
a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of an instru
that specifies R31 as a destination operand are discarded. Also, it is UNPREDICTA
whether the other destination operands (implicit and explicit) are changed by the instructi
is implementation dependent to what extent the instruction is actually executed once
been fetched. An exception is never signaled for a load that specifies R31 as a destination
ation. For all other operations, it is UNPREDICTABLE whether exceptions are signaled du
the execution of such an instruction. Note, however, that exceptions associated wit
instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Appendix A, certain load instructions to an R31 destination are
preferred method for performing a cacheblock prefetch.
Instruction Formats (I)3–1
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There are some interesting cases involving R31 as a destination:

• STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and rese
lock_flag, this instruction causes the lock_flag and virtual location {Rbv
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag
locked_physical_address to become UNPREDICTABLE.

Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_COROUT
instructions, when R31 is specified as the Ra operand, execute normally and update t
with the target virtual address. Of course, no PC value can be saved in R31.

3.1.3 Floating-Point Registers

There are 32 floating-point registers (F0 through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is supplie
Section 4.7.3 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded an
UNPREDICTABLE whether the other destination operands (implicit and explicit) are chan
by the instruction. In this case, it is implementation-dependent to what extent the instructi
actually executed once it has been fetched.

A memory management exception or alignment exception is never signaled for a load
specifies F31 as a destination register. It is UNPREDICTABLE whether a floating-point
abled exception can be signaled by a load that specifies F31 as a destination register.
other instructions that specify F31 as an output operand, it is UNPREDICTABLE whe
exceptions are signaled during the execution of such an instruction. Note, however, that e
tions associated with the instruction fetch of such an instruction are always signaled.

Implementation note:

As described in Appendix A, certain load instructions to an F31 destination are
preferred method for signalling a cache block prefetch.

A floating-point instruction that operates on single-precision data reads all bits <63:0> of
source floating-point register. A floating-point instruction that produces a single-precis
result writes all bits <63:0> of the destination floating-point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C instruction
lock_flag and the locked_physical_address register. The use of these registers is descr
Section 4.2.
3–2 Common Architecture (I)
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3.1.5 Processor Cycle Counter (PCC) Register

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) ar
unsigned wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF
operating system dependent in their implementation.

PCC_CNT is the base clock register for measuring time intervals and is suitable for tim
intervals on the order of nanoseconds.

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific in
in the range 1..16. The cycle counter frequency is the number of times the processor
counter gets incremented per second. The integer count wraps to 0 from a count of
FFFF16. The counter wraps no more frequently than 1.5 times the implementation’s inte

clock interrupt period (which is two thirds of the interval clock interrupt frequency), whi
guarantees that an interrupt occurs before PCC _CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in a si
implementation. However, if PCC_OFF is used to calculate a per-process or per-thread
count, it must contain a value that, when added to PCC_CNT, returns the total PCC re
count for that process or thread, modulo 2**32.

Implementation Note:

OpenVMS, Tru64 UNIX, and Alpha Linux supply a per-thread value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each proc
on a multiprocessor system has its own private, independent PCC.

The PCC is read by the RPCC instruction. See Section 4.11.9.

3.1.6 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX compatibi
processor registers.

3.1.6.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an implementation
include two sets of state prefetch registers used by those instructions. The use of these
ters is described in Section 4.11. These registers are not directly accessible by software a
listed for completeness.

3.1.6.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as describe
Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence o
trol and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation

Tables 3–1, 3–2, and 3–3 list the notation for the operands, the operand values, and the
expression operands.

3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier no
used in theVAX Architecture Standard. Instruction operands are described as follows:

<name>.<access type><data type>

Table 3–1 Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction

Rb An integer register operand in the Rb field of the instruction

#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Ra field of the instruction

Fb A floating-point register operand in the Rb field of theinstruction

Fc A floating-point register operand in the Rc field of the instruction

Table 3–2 Operand Value Notation

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a z
extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating-point Fa operand. This is the contents of register Fa.

Fbv The value of the floating-point Fb operand. This is the contents of register Fb.

Table 3–3 Expression Operand Notation

Notation Meaning

IPR_x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X
3–4 Common Architecture (I)
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3.2.2.1 Operand Name Notation

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand (integ
floating). It can be one of the following:

3.2.2.2 Operand Access Type Notation

A letter that denotes the operand access type:

Table 3–4 Operand Name Notation

Name Meaning

disp The displacement field of the instruction

fnc The PALcode function field of the instruction

Ra An integer register operand in the Ra field of the instruction

Rb An integer register operand in the Rb field of the instruction

#b An integer literal operand in the Rb field of the instruction

Rc An integer register operand in the Rc field of the instruction

Fa A floating-point register operand in the Ra field of the instruction

Fb A floating-point register operand in the Rb field of theinstruction

Fc A floating-point register operand in the Rc field of the instruction

Table 3–5 Operand Access Type Notation

Access Type Meaning

a The operand is used in an address calculation to form an effective address. The
type code that follows indicates the units of addressability (or scale factor) applie
this operand when the instruction is decoded.

For example:

".al" means scale by 4 (longwords) to get byte units (used in branch displaceme
".ab" means the operand is already in byte units (used in load/store instructions)

i The operand is an immediate literal in the instruction.

r The operand is read only.

m The operand is both read and written.

w The operand is write only.
Instruction Formats (I)3–5
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3.2.2.3 Operand Data Type Notation

A letter that denotes the data type of the operand:

3.2.3 Operators

Table 3–7 describes the operators:

Table 3–6 Operand Data Type Notation

Data Type Meaning

b Byte

f F_floating

g G_floating

l Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

x The data type is specified by the instruction

Table 3–7 Operators

Operator Meaning

! Comment delimiter.

+ Addition.

- Subtraction.

* Signed multiplication.

*U Unsigned multiplication.

** Exponentiation (left argument raised to right argument).

/ Division.

←  Replacement.

|| Bit concatenation.

{} Indicates explicit operator precedence.

(x) Contents of memory location whose address is x.

x <m:n> Contents of bit field of x defined by bits n through m.

x <m> M’th bit of x.

ACCESS(x,y) Accessibility of the location whose address is x using the acc
mode y. Returns a Boolean value TRUE if the address is accessi
else FALSE.
3–6 Common Architecture (I)
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AND Logical product.

ARITH_RIGHT_SHIFT(x,y) Arithmetic right shift of first operand by the second operand. Y is a
unsigned shift value. Bit 63, the sign bit, is copied into vacated b
positions and shifted out bits are discarded.

BYTE_ZAP(x,y) X is a quadword, y is an 8-bit vector in which each bit corresponds
a byte of the result. The y bit to x byte correspondence
y <n> ↔ x <8n+7:8n>. This correspondence also exists between
and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n> of x is
copied to byte <n> of result, and if y <n> is 1 then byte <n> of resu
is forced to all zeros.

CASE The CASE construct selects one of several actions based on the v
of its argument. The form of a case is:

CASE argument OF
argvalue1: action_1
argvalue2: action_2

...
argvaluen:action_n
[otherwise: default_action]

ENDCASE

If the value of argument is argvalue1 then action_1 is executed;
argument = argvalue2, then action_2 is executed, and so forth.

Once a single action is executed, the code stream breaks to the E
CASE (there is an implicit break as in Pascal). Each action m
nonetheless be a sequence of pseudocode operations, one oper
per line.

Optionally, the last argvalue may be the atom ‘otherwise’. The ass
ciated default action will be taken if none of the other argvalue
match the argument.

DIV Integer division (truncates).

LEFT_SHIFT(x,y) Logical left shift of first operand by the second operand.Y is a
unsigned shift value. Zeros are moved into the vacated bit positio
and shifted out bits are discarded.

LOAD_LOCKED The processor records the target physical address in a per-proce
locked_physical_address register and sets the per-proces
lock_flag.

lg Log to the base 2.

MAP_x F_float or S_float memory-to-register exponent mapping function.

MAXS(x,y) Returns the larger of x and y, with x and y interpreted as signed in
gers.

Table 3–7 Operators (Continued)

Operator Meaning
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MAXU(x,y) Returns the larger of x and y, with x and y interpreted as unsign
integers.

MINS(x,y) Returns the smaller of x and y, with x and y interpreted as sign
integers.

MINU(x,y) Returns the smaller of x and y, with x and y interpreted as unsign
integers.

x MOD y x modulo y.

NOT Logical (ones) complement.

OR Logical sum.

PHYSICAL_ADDRESS Translation of a virtual address.

PRIORITY_ENCODE Returns the bit position of most significant set bit, interpreting
argument as a positive integer (=int(lg(x))). For example:

priority_encode( 255 ) = 7

Relational Operators:

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand. Y is a
unsigned shift value. Zeros are moved into vacated bit positions, a
shifted out bits are discarded.

SEXT(x) X is sign-extended to the required size.

STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear
lock_flag.

Table 3–7 Operators (Continued)

Operator Meaning

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned

NE Not equal signed and unsigned

GE Greater or equal signed

GEU Greater or equal unsigned

GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit signed
3–8 Common Architecture (I)
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3.2.4 Notation Conventions

The following conventions are used:

• Only operands that appear on the left side of a replacement operator are modified.

• No operator precedence is assumed other than that replacement (←) has the lowest pre-
cedence. Explicit precedence is indicated by the use of "{}".

• All arithmetic, logical, and relational operators are defined in the context of their op
ands. For example, "+" applied to G_floating operands means a G_floating
whereas "+" applied to quadword operands is an integer add. Similarly, "LT" i
G_floating comparison when applied to G_floating operands and an integer compa
when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26> of t
instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value of 31.

Software Note:

There are several instructions, each formatted as a memory instruction, that do not u
Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch, Fetch_M, Read
Process Cycle Counter, Read and Clear, Read and Set, and Trap Barrier.

TEST(x,cond) The contents of register x are tested for branch condition (cond) t
TEST returns a Boolean value TRUE if x bears the specified relati
to 0, else FALSE is returned. Integer and floating test conditions a
drawn from the preceding list of relational operators.

XOR Logical difference.

ZEXT(x) X is zero-extended to the required size.

Table 3–7 Operators (Continued)

Operator Meaning
Instruction Formats (I)3–9
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3.3.1 Memory Instruction Format

The Memory format is used to transfer data between registers and memory, to load an
tive address, and for subroutine jumps. It has the format shown in Figure 3–1.

Figure 3–1: Memory Instruction Format

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address fields
and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents of re
Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value, depending
specific instruction. The virtual address (va) is computed as follows for all memory for
instructions except the load address high (LDAH):

va ← {Rbv + SEXT(Memory_disp)}

For LDAH the virtual address (va) is computed as follows:

va ← {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement field in
memory instruction format with a function code that designates a set of miscellaneous ins
tions. The format is shown in Figure 3–2.

Figure 3–2: Memory Instruction with Function Code Format

The memory instruction with function code format contains a 6-bit opcode field and a 16
function field. Unused function codes produce UNPREDICTABLE but not UNDEFINE
results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction. Se
tion 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the displacem
field is used to provide branch-prediction hints as described in Section 4.3.

031 26 25 21 20 16 15

Opcode Ra Rb Memory_disp

031 26 25 21 20 16 15

Opcode Ra Rb Function
3–10 Common Architecture (I)
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3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative subrou
jumps. It has the format shown in Figure 3–3.

Figure 3–3: Branch Instruction Format

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address field (
and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bit
address a longword boundary), sign-extended to 64 bits, and added to the updated PC t
the target virtual address. Overflow is ignored in this calculation. The target virtual add
(va) is computed as follows:

va ← PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer reg
operations. The Operate format allows the specification of one destination operand an
source operands. One of the source operands can be a literal constant. The Operate fo
Figure 3–4 shows the two cases when bit <12> of the instruction is 0 and 1.

Figure 3–4: Operate Instruction Format

An Operate format instruction contains a 6-bit opcode field and a 7-bit function code fi
Unused function codes for opcodes defined as reserved in the Version 5 Alpha archite
specification (May 1992) produce an illegal instruction trap. Those opcodes are 01, 02, 0
05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, 1B, 1C, 1D, 1E, and 1F. For other opcodes, unused
tion codes produce UNPREDICTABLE but not UNDEFINED results; they are not secu
holes.

There are three operand fields, Ra, Rb, and Rc.

031 26 25 21 20

Opcode Ra Branch_disp

031 26 25

0

13 12 1121 20 16 15 5 4

Opcode Ra Rb SBZ Function Rc

031 26 25

1

13 12 1121 20 5 4

Opcode Ra LIT Function Rc
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The Ra field specifies a source operand. Symbolically, the integer Rav operand is form
follows:

IF inst<25:21> EQ 31 THEN
Rav ← 0

ELSE
Rav ← Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an in
register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed by
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and
and is zero-extended to 64 bits. Symbolically, the integer Rbv operand is formed as follow

IF inst <12> EQ 1 THEN
Rbv ← ZEXT(inst<20:13>)

ELSE
IF inst <20:16> EQ 31 THEN

Rbv ← 0
ELSE

Rbv ← Rb
END

END

The Rc field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating-point reg
to floating-point register operations. The Floating-point Operate format allows the speci
tion of one destination operand and two source operands. The Floating-point Operate for
shown in Figure 3–5.

Figure 3–5: Floating-Point Operate Instruction Format

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-bit fu
tion field. Unused function codes for those opcodes defined as reserved in the Version 5 A
architecture specification (May 1992) produce an illegal instruction trap. Those opcode
01, 02, 03, 04, 05, 06, 07, 14, 19, 1C, 1B, 1D, 1E, and 1F. For other opcodes, unused fun
codes produce UNPREDICTABLE but not UNDEFINED results; they are not security hole

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either an inte
floating-point operand as defined by the instruction.

031 26 25 21 20 16 15 5 4

Opcode Fa Fb Function Fc
3–12 Common Architecture (I)
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The Fa field specifies a source operand. Symbolically, the Fav operand is formed as follow

IF inst<25:21> EQ 31 THEN
Fav ← 0

ELSE
Fav ← Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as follow

IF inst<20:16> EQ 31 THEN
Fbv ← 0

ELSE
Fbv ← Fb

END

Note:

Neither Fa nor Fb can be a literal in Floating-point Operate instructions.

The Fc field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate format and
form register-to-register conversion operations. The Fb operand specifies the source;
field must be F31.

3.3.4.2 Floating-Point/Integer Register Moves

Instructions that move data between a floating-point register file and an integer register fil
a subset of the Floating-point Operate format. The unused source field must be 31.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended proce
functions. It has the format shown in Figure 3–6.

Figure 3–6: PALcode Instruction Format

The 26-bit PALcode function field specifies the operation. The source and destination o
ands for PALcode instructions are supplied in fixed registers that are specified in the indiv
instruction descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.

031 26 25

Opcode PALcode Function
Instruction Formats (I)3–13
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Chapter 4

Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The instru
set is divided into the following sections:

Within each major section, closely related instructions are combined into groups and desc
together.

The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access type
data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

• Qualifiers specific to the instructions in the group

Instruction Type Section

Integer load and store 4.2

Integer control 4.3

Integer arithmetic 4.4

Logical and shift 4.5

Byte manipulation 4.6

Floating-point load and store 4.7

Floating-point control 4.8

Floating-point branch 4.9

Floating-point operate 4.10

Miscellaneous 4.11

VAX compatibility 4.12

Multimedia (graphics and video) 4.13
Instruction Descriptions (I)4–1
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• A description of the instruction operation

• Optional programming examples and optional notes on the instruction

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture is not
formed in either hardware or PALcode. System software may provide emulation routine
subsetted instructions.

4.1.2 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that supp
floating-point must implement the following:

• The 32 floating-point registers

• The Floating-point Control Register (FPCR) and the instructions to access it

• The floating-point branch instructions

• The floating-point copy sign (CPYSx) instructions

• The floating-point convert instructions

• The floating-point conditional move instruction (FCMOV)

• The S_floating and T_floating memory operations

Software Note:

A system that will not support floating-point operations is still required to provide the
floating-point registers, the Floating-point Control Register (FPCR) and the instruction
access it, and the T_floating memory operations if the system intends to suppor
OpenVMS operating system. This requirement facilitates the implementation of a floa
point emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
implementation can choose to include or omit separately the ability to perform IE
rounding to plus infinity and minus infinity.

Note:

If one instruction in a group is provided, all other instructions in that group must
provided. An implementation with full floating-point support includes both groups
subset floating-point implementation supports only one of these groups. The indivi
instruction descriptions indicate whether an instruction can be subsetted.

4.1.3 Software Emulation Rules

General-purpose layered and application software that executes in User mode may assum
certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores (STL, STQ, ST
STG, STL, and STT) of unaligned data are emulated by system software. General-purpos
4–2 Common Architecture (I)
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ered and application software that executes in User mode may assume that sub
instructions are emulated by system software. Frequent use of emulation may be signific
slower than using alternative code sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need not b
vided in privileged access modes. System software that supports special-purpose ded
applications need not provide emulation in User mode if emulation is not needed for co
execution of the special-purpose applications.

4.1.4 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several variant
example, for the VAX formats, Add F_floating (ADDF) is supported with and without floa
ing underflow enabled and with either chopped or VAX rounding. For IEEE formats, IE
unbiased rounding, chopped, round toward plus infinity, and round toward minus infinity
be selected.

The different variants of such instructions are denoted by opcode qualifiers, which consis
slash (/) followed by a string of selected qualifiers. Each qualifier is denoted by a single c
acter as shown in Table 4–1. The opcodes for each qualifier are listed in Appendix C.

The default values are normal rounding, exception completion disabled, inexact resul
abled, floating underflow disabled, and integer overflow disabled.

Table 4–1: Opcode Qualifiers

Qualifier Meaning

C Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable

S Exception completion enable

U Floating underflow enable

V Integer overflow enable
Instruction Descriptions (I)4–3



4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in Table 4–2.

Table 4–2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA Load Address

LDAH Load Address High

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword

LDL_L Load Sign-Extended Longword Locked

LDQ Load Quadword

LDQ_L Load Quadword Locked

LDQ_U Load Quadword Unaligned

LDWU Load Zero-Extended Word from Memory to Register

STB Store Byte

STL Store Longword

STL_C Store Longword Conditional

STQ Store Quadword

STQ_C Store Quadword Conditional

STQ_U Store Quadword Unaligned

STW Store Word
4–4 Common Architecture (I)
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4.2.1 Load Address

Format:

Operation:
Ra ← Rbv + SEXT(disp) !LDA
Ra ← Rbv + SEXT(disp*65536) !LDAH

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment for LDA, and 65536 times the sign-extended 16-bit displacement for LDAH. The 64
result is written to register Ra.

LDAx Ra.wq,disp.ab(Rb.ab) !Memory format

None

LDA Load Address

LDAH Load Address High

None
Instruction Descriptions (I)4–5
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4.2.2 Load Memory Data into Integer Register

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 0002 !LDQ

big_endian_data: va' ← va XOR 1002 !LDL

big_endian_data: va' ← va XOR 1102 !LDWU

big_endian_data: va' ← va XOR 1112 !LDBU

little_endian_data: va' ← va
ENDCASE

Ra ← (va')<63:0> !LDQ
Ra ← SEXT((va')<31:0>) !LDL
Ra ← ZEXT((va')<15:0>) !LDWU
Ra ← ZEXT((va')<07:0>) !LDBU

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian access, the indicated bits are inverted, and any memory manag
fault is reported for va (not va' ).

LDx Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Read

Translation Not Valid

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

LDWU Load Zero-Extended Word from Memory to Register

None
4–6 Common Architecture (I)



, and

ded,

ed
.

ost
n sec-

truc-

CH

EN

ta-
U
K

ifi-

ead a
ions

gth-
e

In the case of LDQ and LDL, the source operand is fetched from memory, sign-extended
written to register Ra.

In the case of LDWU and LDBU, the source operand is fetched from memory, zero-exten
and written to register Ra.

In all cases, if the data is not naturally aligned, an alignment exception is generated.

Notes:

• The word or byte that the LDWU or LDBU instruction fetches from memory is plac
in the low (rightmost) word or byte of Ra, with the remaining 6 or 7 bytes set to zero

• Accesses have byte granularity.

• For big-endian access with LDWU or LDBU, the word/byte remains in the rightm
part of Ra, but the va sent to memory has the indicated bits inverted. See Operatio
tion, above.

• No sparse address space mechanisms are allowed with the LDWU and LDBU ins
tions.

• An LDL instruction for which the Ra operand is 31 is executed as a PREFET
instruction, described in Section 4.11.8.

• An LDQ instruction for which the Ra operand is 31 is executed as a PREFETCH_
instruction, described in Section 4.11.8.

Implementation Notes:

• The LDWU and LDBU instructions are supported in hardware on Alpha implemen
tions for which the AMASK instruction clears feature mask bit 0. LDWU and LDB
are supported with software emulation in Alpha implementations for which AMAS
does not clear feature mask bit 0. Software emulation of LDWU and LDBU is sign
cantly slower than hardware support.

• Depending on an address space region’s caching policy, implementations may r
(partial) cache block in order to do word/byte stores. This may only be done in reg
that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and len
of-access information to devices on I/Obuses. But, strictly speaking, this is outside th
scope of architecture.
Instruction Descriptions (I)4–7
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4.2.3 Load Unaligned Memory Data into Integer Register

Format:

Operation:
va ← {{Rbv + SEXT(disp)} AND NOT 7}
Ra ← (va)<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment, then the low-order three bits are cleared. The source operand is fetched from me
and written to register Ra.

LDQ_U Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Read

Translation Not Valid

LDQ_U Load Unaligned Quadword from Memory to Register

None
4–8 Common Architecture (I)
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4.2.4 Load Memory Data into Integer Register Locked

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 0002 ! LDQ_L

big_endian_data: va' ← va XOR 1002 ! LDL_L

little_endian_data: va' ← va ! LDL_L
ENDCASE

lock_flag ← 1
locked_physical_address ← PHYSICAL_ADDRESS(va)

Ra ← SEXT((va')<31:0>) ! LDL_L
Ra ← (va')<63:0> ! LDQ_L

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian longword access, va' is computed from va by inverting va<2> (bit 2 o
the virtual address), but any memory management fault is reported for the original va
va' ). The source operand is fetched from memory, sign-extended for LDL_L, and writte
register Ra.

LDx_L Ra.wq,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Read

Translation Not Valid

LDL_L Load Sign-Extended Longword from Memory to Register
Locked

LDQ_L Load Quadword from Memory to Register Locked

None
Instruction Descriptions (I)4–9
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When a LDx_L instruction is executed without faulting, the processor records the target p
cal address in a per-processor locked_physical_address register and sets the per-pro
lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed (acces
within the same 16-byte naturally aligned block as the LDx_L), the store occurs; otherwis
does not occur, as described for the STx_C instructions. The behavior of an STx_C instru
is UNPREDICTABLE, as described in Section 4.2.5, when it does not access the same 16
naturally aligned block as the LDx_L.

ProcessorA causes the clearing of a set lock_flag in processorB by doing any of the following
in B’s locked range of physical addresses:

• A successful store

• A successful store_condition

• Executing a WH64x instruction that modifies data on processorB

A processor’s locked range is the aligned block of 2**N bytes that includes
locked_physical_address. The 2**N value is implementation dependent. It is at least 16 (
mum lock range is an aligned 16-byte block) and is at most the page size for
implementation (maximum lock range is one physical page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL R
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or not a pro
cessor’s lock_flag is cleared on any other CALL_PAL instruction. It is UNPREDICTABL
whether a processor’s lock_flag is cleared by that processor executing a normal load or
instruction. It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that proc
sor executing a taken branch (including BR, BSR, and Jumps); conditional branches tha
through do not clear the lock_flag. It is UNPREDICTABLE whether a processor’s lock_fla
cleared by that processor executing a WH64x or ECB instruction.

In addition, a set lock_flag on processorB can be unpredictably cleared by unspecified even
on processorA. But, processorA will guarantee that such events are rare enough that they
not interferewith the forward progress of the system.

Implementation Note:

ProcessorA can, at the implementation’s option, cause the clearing of a set lock_fla
processorB by executing a PREFETCH_M or PREFETCH_MEN inB’s locked ranges of
physical addresses.

The sequence:

LDx_L

Modify

STx_C

BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum in s
memory if the branch falls through. If the branch is taken, the store did not modify mem
and the sequence may be repeated until it succeeds. See Section 5.5 for more information
4–10 Common Architecture (I)
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Notes:

• LDx_L instructions do not check for write access; hence a matching STx_C may
an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any architecturally
visible state on another processor, and in particular cannot cause an STx_C on a
processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may
followed by a conditional branch: on the fall-through path an STx_C is execu
whereas on the taken path no matching STx_C is executed.

If two LDx_L instructions execute with no intervening STx_C, the second o
overwrites the state of the first one. If two STx_C instructions execute with
intervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emulate unaligned LDx_L instructions.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are not w
the same naturally aligned 16-byte sections of virtual and physical memory,
sequence may always fail, or may succeed despite another processor’s store to th
range; hence, no useful program should do this.

• If any other memory access (ECB, LDx, LDQ_U, STx_C, STQ_U, WH64x) is exe-
cuted on the given processor between the LDx_L and the STx_C, the sequence
may always fail on some implementations; hence, no useful program should do thi

• If a branch is taken between the LDx_L and the STx_C, the sequence above
always fail on some implementations; hence, no useful program should do
(CMOVxx may be used to avoid branching.)

• If a subsetted instruction (for example, floating-point) is executed between the LD
and the STx_C, the sequence above may always fail on some implementations be
of the Illegal Instruction Trap; hence, no useful program should do this.

• If an instruction with an unused function code is executed between the LDx_L and
STx_C, the sequence above may always fail on some implementations becau
instruction with an unused function code is UNPREDICTABLE.

• If a large number of instructions are executed between the LDx_L and the STx_C
sequence above may always fail on some implementations because of a timer interrupt
always clearing the lock_flag before the sequence completes; hence, no useful pro
should do this.

• Hardware implementations are encouraged to lock no more than 128 bytes. Sof
implementations are encouraged to separate locked locations by at least 128 bytes from
other locations that could potentially be written by another processor while the
location is locked.

• Execution of a WH64x instruction on processorA to a region within the lock range of
processorB, where the execution of the WH64x changes the contents of memory
causes the lock_flag on processorB to be cleared. If the WH64x does not change the
contents of memory on processorB, it need not clear the lock_flag.
Instruction Descriptions (I)4–11
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Implementation Notes:

Implementations that impede the mobility of a cache block on LDx_L, such as that w
may occur in a Read for Ownership cache coherency protocol, may release the cache
and make the subsequent STx_C fail if a branch-taken or memory instruction is exe
on that processor.

All implementations should guarantee that at least 40 non-subsetted operateinstructions
can be executed between timer interrupts.
4–12 Common Architecture (I)
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Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 0002 ! STQ_C

big_endian_data: va' ← va XOR 1002 ! STL_C

little_endian_data: va' ← va ! STL_C
ENDCASE

IF lock_flag EQ 1 THEN
(va')<31:0> ← Rav<31:0> ! STL_C
(va') ← Rav ! STQ_C

Ra ← lock_flag
lock_flag ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian longword access, va' is computed from va by inverting va<2> (bit 2 o
the virtual address), but any memory management fault is reported for the original va
va' ).

STx_C Ra.mx,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Write

Alignment

Translation Not Valid

STL_C Store Longword from Register to Memory Conditional

STQ_C Store Quadword from Register to Memory Conditional

None
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If the lock_flag is set and the address meets the following constraints relative to the ad
specified by the preceding LDx_L instruction, the Ra operand is written to memory at
address. If the address meets the following constraints but the lock_flag is not set, a z
returned in Ra and no write to memory occurs. The constraints are:

• The computed virtual address must specify a location within the naturally aligned
byte block in virtual memory accessed by the preceding LDx_L instruction.

• The resultant physical address must specify a location within the naturally aligned
byte block in physical memory accessed by the preceding LDx_L instruction.

If those addressing constraints are not met, it is UNPREDICTABLE whether the ST
instruction succeeds or fails, regardless of the state of the lock_flag, unless the lock_f
cleared as described in the next paragraph.

Whether or not the addressing constraints are met, a zero is returned and no write to m
occurs if the lock_flag was cleared by execution on a processor of a CALL_PAL R
CALL_PAL rti, CALL_PAL rfe, or STx_C, after the most recent execution on that proces
of a LDx_L instruction (in processor issue sequence).

In all cases, the lock_flag is set to zero at the end of the operation.

Notes:

• Software will not emulate unaligned STx_C instructions.

• Each implementation must do the test and store atomically, as illustrated in the fol
ing two examples. (See Section 5.6.1 for complete information.)

– If two processors attempt STx_C instructions to the same lock range and that
range was accessed by both processors’ preceding LDx_L instructions, exactl
of the stores succeeds.

– A processor executes a LDx_L/STx_C sequence and includes an MB betwee
LDx_L to a particular address and thesuccessfulSTx_C to a different address (one
that meets the constraints required for predictable behavior). That instruc
sequence establishes an access order under which a store operation by anoth
cessor to that lock range occurs before the LDx_L or after the STx_C.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are not w
the same naturally aligned 16-byte sections of virtual and physical memory,
sequence may always fail, or may succeed despite another processor’s store to th
range; hence, no useful program should do this.

• The following sequence should not be used:

try_again: LDQ_L R1, x
<modify R1>
STQ_C R1, x
BEQ R1, try_again
4–14 Common Architecture (I)
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That sequence penalizes performance when the STQ_C succeeds, becau
sequence contains a backward branch, which is predicted to be taken in the A
architecture. In the case where the STQ_C succeeds and the branchwill actually fall
through, that sequence incurs unnecessary delay due to a mispredicted bac
branch. Instead, a forward branch should be used to handle the failure case, as
in Section 5.5.2.

Software Note:

If the address specified by a STx_C instruction does not match the one given in
preceding LDx_L instruction, an MB is required to guarantee ordering between the
instructions.

Hardware/Software Implementation Note:

STQ_C is used in the first Alpha implementations to access the MailBox Pointer Reg
(MBPR). In this special case, the effect of the STQ_C is well defined (that is,
UNPREDICTABLE) even though the preceding LDx_L did not specify the address of
MBPR. The effect of STx_C in this special case may vary from implementation
implementation.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to preven
other store from changing the state of the lock bit, before its outcome can be determin

If an implementation could encounter a TB or cache miss on the datareference of the
STx_C in the sequence above (as might occur in some shared I- and D-stream d
mapped TBs/caches), it must be able to resolve the miss and complete the store w
always failing.
Instruction Descriptions (I)4–15



lace-
ement
4.2.6 Store Integer Register Data into Memory

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 0002 !STQ

big_endian_data: va' ← va XOR 1002 !STL

big_endian_data: va' ← va XOR 1102 !STW

big_endian_data: va' ← va XOR 1112 !STB

little_endian_data: va' ← va
ENDCASE

(va') ← Rav !STQ
(va')<31:00> ← Rav<31:0> !STL
(va')<15:00> ← Rav<15:0> !STW
(va')<07:00> ← Rav<07:0> !STB

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian access, the indicated bits are inverted, and any memory manag
fault is reported for va (not va' ).

STx Ra.rx,disp.ab(Rb.ab) !Memory format

Access Violation

Alignment

Fault on Write

Translation Not Valid

STB Store Byte from Register to Memory

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

STW Store Word from Register to Memory

None
4–16 Common Architecture (I)
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The Ra operand is written to memory at this address. If the data is not naturally aligne
alignment exception is generated.

Notes:

• The word or byte that the STB or STW instruction stores to memory comes from
low (rightmost) byte or word of Ra.

• Accesses have byte granularity.

• For big-endian access with STB or STW, the byte/word remains in the rightmost pa
Ra, but the va sent to memory has the indicated bits inverted. See Operation se
above.

• No sparse address space mechanisms are allowed with the STB and STW instruc

Implementation Notes:

• The STB and STW instructions are supported in hardware on Alpha implementa
for which the AMASK instruction clearsfeature mask bit 0. STB and STW are sup
ported with software emulation in Alpha implementations for which AMASK does n
clear feature mask bit 0. Software emulation of STB and STW is significantly slo
than hardware support.

• Depending on an address space region’s caching policy, implementations may r
(partial) cache block in order to do byte/word stores. This may only be done in reg
that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and len
of-access information to devices on I/Obuses. But, strictly speaking, this is outside th
scope of architecture.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:

Operation:
va ← {{Rbv + SEXT(disp)} AND NOT 7}
(va)<63:0> ← Rav<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment, then clearing the low-order three bits. The Ra operand is written to memory at this
address.

STQ_U Ra.rq,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Write

Translation Not Valid

STQ_U Store Unaligned Quadword from Register to Memory

None
4–18 Common Architecture (I)
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to subroutine
jump instructions. The PC used in these instructions is the updated PC, as described in S
3.1.1.

To allow implementations to achieve high performance, the Alpha architecture inclu
explicit hints based on a branch-prediction model:

• For many implementations of computed branches (JSR/RET/JMP), there is a sub
tial performance gain in forming a good guess of the expected target I-cache address
before register Rb is accessed.

• For many implementations, the first-level (or only) I-cache is no bigger than a pag
KB to 64 KB).

• Correctly predicting subroutine returns is important for good performance. So
implementations will therefore keep a small stack of predictedsubroutine return I-
cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target add
return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
(JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that statically specifie
16 low bits of the most likely target address. The PC-relative calculation using these bits
be exactly the PC-relative calculation used in unconditional branches. The low 16 bit
enough to specify an I-cache block within the largest possible Alpha page and henc
expected to be enough for branch-prediction logic to start an early I-cache access for the
likely target.

For all branches, hint or opcode bits are used to distinguish simple branches, subroutine
subroutine returns, and coroutine links. These distinctions allow branch-predict logic to m
tain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken/fall-th
hint. The instructions are summarized in Table 4–3.

Table 4–3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero
Instruction Descriptions (I)4–19



BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Table 4–3: Control Instructions Summary (Continued)

Mnemonic Operation
4–20 Common Architecture (I)
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4.3.1 Conditional Branch

Format:

Operation:
{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Rav, Condition_based_on_Opcode) THEN

PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with the targe
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means it is shifted left two
(to address a longword boundary), sign-extended to 64 bits, and added to the updated
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement
a forward/backward branch distance of +/– 1M instructions.

The test is on the signed quadword integer interpretation of the register contents; all 64 bi
tested.

Bxx Ra.rq,disp.al !Branch format

None

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

None
Instruction Descriptions (I)4–21



PC

bits
PC to

ives a

on a
4.3.2 Unconditional Branch

Format:

Operation:
{update PC}
Ra ← PC
PC ← PC + {4*SEXT(disp)}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The PC of the following instruction (the updated PC) is written to register Ra and then the
is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted left two
(to address a longword boundary), sign-extended to 64 bits, and added to the updated
form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed displacement g
forward/backward branch distance of +/– 1M instructions.

PC-relative addressability can be established by:

BR Rx,L1
L1:

Notes:

• BR and BSR do identical operations. They only differ in hints topossible branch-pre-
diction logic. BSR is predicted as a subroutine call (pushes the return address
branch-prediction stack), whereas BR is predicted as a branch (no push).

BxR Ra.wq,disp.al !Branch format

None

BR Unconditional Branch

BSR Branch to Subroutine

None
4–22 Common Architecture (I)
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4.3.3 Jumps

Format:

Operation:
{update PC}
va ← Rbv AND {NOT 3}
Ra ← PC
PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written to reg
Ra and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra and Rb
specify the same register; the target calculation using the old value is done before the
value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible branch-
diction logic. The displacement field of the instruction is used to pass this information.
four different "opcodes" set different bit patterns in disp<15:14>, and the hint operand
disp<13:0>.

mnemonic Ra.wq,(Rb.ab),hint !Memory format

None

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

None
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These bits are intended to be used as shown in Table 4–4.

The design in Table 4–4 allows specification of the low 16 bits of a likely longword tar
address (enough bits to start a useful I-cache access early), and also allows distinguishi
from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits can im
performance but is not needed for correct operation. See Section A.2.3 for more informati
branch prediction.

An unconditional long jump can be performed by:

JMP R31,(Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra an
operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE) (that is, the
get address prediction, if any, would come from a predictor implementation stack), then
<13:0> are reserved for software and must be ignored by all implementations. All encod
for bits <13:0> are used by Compaq software or Reserved to Compaq, as follows:

Table 4–4: Jump Instructions Branch Prediction

disp<15:14> Meaning
Predicted
Target<15:0>

Prediction
Stack Action

00 JMP PC + {4*disp<13:0>} –

01 JSR PC + {4*disp<13:0>} Push PC

10 RET Prediction stack Pop

11 JSR_COROUTINE Prediction stack Pop, push PC

Encoding Meaning

000016 Indicates non-procedure return

000116 Indicates procedure return

All other encodings are reserved to Compaq.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, signed and unsigned
pare, and bit count operations.

The integer instructions are summarized in Table 4–5.

There is no integer divide instruction. Division by a constant can be done by using UMU
division by a variable can be done by using a subroutine. See Section A.4.2.

Table 4–5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD Add Quadword/Longword

S4ADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal

CTLZ Count leading zero

CTPOP Count population

CTTZ Count trailing zero

CMPULT Compare Unsigned Quadword Less Than

CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword

S4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8
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4.4.1 Longword Add

Format:

Operation:
Rc ← SEXT( (Rav + Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is added to register Rb or a literal and the sign-extended 32-bit sum is writt
Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the trun
32-bit sum. Overflow detection is based on the longword sum Rav<31:0> + Rbv<31:0>.

ADDL Ra.rl,Rb.rl,Rc.wq !Operate format

ADDL Ra.rl,#b.ib,Rc.wq !Operate format

Integer Overflow

ADDL Add Longword

Integer Overflow Enable (/V)
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4.4.2 Scaled Longword Add

Format:

Operation:
CASE

S4ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
S8ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register Rb
literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
sum.

SxADDL Ra.rl,Rb.rq,Rc.wq !Operate format

SxADDL Ra.rl,#b.ib,Rc.wq !Operate format

None

S4ADDL Scaled Add Longword by 4

S8ADDL Scaled Add Longword by 8

None
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Format:

Operation:
Rc ← Rav + Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is added to register Rb or a literal and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destina
register.

The unsigned compare instructions can be used to generate carry. After adding two val
the sum is less unsigned than either one of the inputs, there was a carry out of the most s
cant bit.

ADDQ Ra.rq,Rb.rq,Rc.wq !Operate format

ADDQ Ra.rq,#b.ib,Rc.wq !Operate format

Integer Overflow

ADDQ Add Quadword

Integer Overflow Enable (/V)
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4.4.4 Scaled Quadword Add

Format:

Operation:
CASE

S4ADDQ: Rc ← LEFT_SHIFT(Rav,2) + Rbv
S8ADDQ: Rc ← LEFT_SHIFT(Rav,3) + Rbv

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register Rb
literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the destina
register.

SxADDQ Ra.rq,Rb.rq,Rc.wq !Operate format

SxADDQ Ra.rq,#b.ib,Rc.wq !Operate format

None

S4ADDQ Scaled Add Quadword by 4
S8ADDQ Scaled Add Quadword by 8

None
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4.4.5 Integer Signed Compare

Format:

Operation:
IF Rav SIGNED_RELATION Rbv THEN

Rc ← 1
ELSE

Rc ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is true
value one is written to register Rc; otherwise, zero is written to Rc.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore,only
the less-than operations are included.

CMPxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMPxx Ra.rq,#b.ib,Rc.wq !Operate format

None

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal

CMPLT Compare Signed Quadword Less Than

None
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4.4.6 Integer Unsigned Compare

Format:

Operation:
IF Rav UNSIGNED_RELATION Rbv THEN

Rc ← 1
ELSE

Rc ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is true
value one is written to register Rc; otherwise, zero is written to Rc.

CMPUxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMPUxx Ra.rq,#b.ib,Rc.wq !Operate format

None

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than

None
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4.4.7 Count Leading Zero

Format:

Operation:
temp = 0
FOR i FROM 63 DOWN TO 0

IF { Rbv<i> E Q 1 } THEN BREAK
temp = temp + 1

END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The number of leading zeros in Rb, starting at the most significant bit position, is written to Rc
Ra must be R31.

Implementation Notes:

• The CTLZ instruction is supported in hardware on Alpha implementations for wh
the AMASK instruction clears feature mask bit 2. CTLZ is supported with softwa
emulation in Alpha implementations for which AMASK does not clear feature mask
2. Software emulation of CTLZ is significantly slower than hardware support.

CTLZ Rb.rq,Rc.wq ! Operate format

None

CTLZ Count Leading Zero

None
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4.4.8 Count Population

Format:

Operation:
temp = 0
FOR i FROM 0 TO 63

IF { Rbv<i> E Q 1 } THEN temp = temp + 1
END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The number of ones in Rb is written to Rc. Ra must be R31.

Implementation Notes:

• The CTPOP instruction is supported in hardware on Alpha implementations for w
the AMASK instruction clears feature mask bit 2. CTPOP is supported with softw
emulation in Alpha implementations for which AMASK does not clear feature mask
2. Software emulation of CTPOP is significantly slower than hardware support.

CTPOP Rb.rq,Rc.wq ! Operate format

None

CTPOP Count Population

None
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4.4.9 Count Trailing Zero

Format:

Operation:
temp = 0
FOR i FROM 0 TO 63

IF { Rbv<i> E Q 1 } THEN BREAK
temp = temp + 1

END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The number of trailing zeros in Rb, starting at the least significant bit position, is written to
Ra must be R31.

Implementation Notes:

• The CTTZ instruction is supported in hardware on Alpha implementations for wh
the AMASK instruction clears feature mask bit 2. CTTZ is supported with softw
emulation in Alpha implementations for which AMASK does not clear feature mask
2. Software emulation of CTTZ is significantly slower than hardware support.

CTTZ Rb.rq,Rc.wq ! Operate format

None

CTTZ Count Trailing Zero

None
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4.4.10 Longword Multiply

Format:

Operation:
Rc ← SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is multiplied by register Rb or a literal and the sign-extended 32-bit produ
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
product. Overflow detection is based on the longword product Rav<31:0> * Rbv<31:0>
overflow, the proper sign extension of the least significant 32 bits of the true result is writte
the destination register.

The MULQ instruction can be used to return the full 64-bit product.

MULL Ra.rl,Rb.rl,Rc.wq !Operate format

MULL Ra.rl,#b.ib,Rc.wq !Operate format

Integer Overflow

MULL Multiply Longword

Integer Overflow Enable (/V)
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4.4.11 Quadword Multiply

Format:

Operation:
Rc ← Rav * Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is multiplied by register Rb or a literal and the 64-bit product is written to reg
Rc. Overflow detection is based on considering the operands and the result as signed q
ties. On overflow, the least significant 64 bits of the true result are written to the destina
register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit result w
an overflow occurs.

MULQ Ra.rq,Rb.rq,Rc.wq !Operate format

MULQ Ra.Rq,#b.ib,Rc.wq !Operate format

Integer Overflow

MULQ Multiply Quadword

Integer Overflow Enable (/V)
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4.4.12 Unsigned Quadword Multiply High

Format:

Operation:
Rc ← {Rav * U Rbv}<127:64>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a 128-bit r
The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit resu
follows:

Ra and Rb are unsigned: result of UMULH

Ra and Rb are signed: (result of UMULH) – Ra<63>*Rb – Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.

UMULH Ra.rq,Rb.rq,Rc.wq !Operate format

UMULH Ra.rq,#b.ib,Rc.wq !Operate format

None

UMULH Unsigned Multiply Quadword High

None
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4.4.13 Longword Subtract

Format:

Operation:
Rc ← SEXT ((Rav - Rbv)<31:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from register Ra and the sign-extended 32-bit differe
written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
difference. Overflow detection is based on the longword difference Rav<31:0> – Rbv<31:0>.

SUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SUBL Ra.rl,#b.ib,Rc.wq !Operate format

Integer Overflow

SUBL Subtract Longword

Integer Overflow Enable (/V)
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4.4.14 Scaled Longword Subtract

Format:

Operation:
CASE

S4SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled
(for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the truncated
difference.

SxSUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SxSUBL Ra.rl,#b.ib,Rc.wq !Operate format

None

S4SUBL Scaled Subtract Longword by 4

S8SUBL Scaled Subtract Longword by 8

None
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4.4.15 Quadword Subtract

Format:

Operation:
Rc ← Rav - Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from register Ra and the 64-bit difference is written to
ister Rc. On overflow, the least significant 64 bits of the true result are written to
destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend (R
less unsigned than the subtrahend (Rbv), a borrow will occur.

SUBQ Ra.rq,Rb.rq,Rc.wq !Operate format

SUBQ Ra.rq,#b.ib,Rc.wq !Operate format

Integer Overflow

SUBQ Subtract Quadword

Integer Overflow Enable (/V)
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4.4.16 Scaled Quadword Subtract

Format:

Operation:
CASE

S4SUBQ: Rc ← LEFT_SHIFT(Rav,2) - Rbv
S8SUBQ: Rc ← LEFT_SHIFT(Rav,3) - Rbv

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is scaled
(for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to Rc.

SxSUBQ Ra.rq,Rb.rq,Rc.wq !Operate format

SxSUBQ Ra.rq,#b.ib,Rc.wq !Operate format

None

S4SUBQ Scaled Subtract Quadword by 4

S8SUBQ Scaled Subtract Quadword by 8

None
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move int
instructions perform conditionals without a branch. The shift instructions perform left and r
logical shift and right arithmetic shift. These are summarized in Table 4–6.

Software Note:

There is no arithmetic left shift instruction. Where an arithmetic left shift would be use
logical shift will do. For multiplying by a small power of two in address computation
logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done with a
logical shift and a right arithmetic shift.

Table 4–6: Logical and Shift Instructions Summary

Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical
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4.5.1 Logical Functions

Format:

Operation:
Rc ← Rav AND Rbv !AND
Rc ← Rav OR Rbv !BIS
Rc ← Rav XOR Rbv !XOR
Rc ← Rav AND {NOT Rbv} !BIC
Rc ← Rav OR {NOT Rbv} !ORNOT
Rc ← Rav XOR {NOT Rbv} !EQV

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

These instructions perform the designated Boolean function between register Ra and re
Rb or a literal. The result is written to register Rc.

The NOT function can be performed by doing an ORNOT with zero (Ra = R31).

mnemonic Ra.rq,Rb.rq,Rc.wq !Operate format

mnemonic Ra.rq,#b.ib,Rc.wq !Operate format

None

AND Logical Product
BIC Logical Product with Complement

BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement
XOR Logical Difference

None
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4.5.2 Conditional Move Integer

Format:

Operation:
IF TEST(Rav, Condition_based_on_Opcode) THEN

Rc ← Rbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is tested. If the specified relationship is true, the value Rbv is written to reg
Rc.

Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc

label: ...

CMOVxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMOVxx Ra.rq,#b.ib,Rc.wq !Operate format

None

CMOVEQ CMOVE if Register Equal to Zero
CMOVGE CMOVE if Register Greater Than or Equal to Zero

CMOVGT CMOVE if Register Greater Than Zero
CMOVLBC CMOVE if Register Low Bit Clear

CMOVLBS CMOVE if Register Low Bit Set
CMOVLE CMOVE if Register Less Than or Equal to Zero

CMOVLT CMOVE if Register Less Than Zero
CMOVNE CMOVE if Register Not Equal to Zero

None
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For example, a branchless sequence for:

R1=MAX(R1,R2)

is:

CMPLT R1,R2,R3 ! R3=1 if R1<R2
CMOVNE R3,R2,R1 ! Move R2 to R1 if R1<R2
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Format:

Operation:
Rc ← LEFT_SHIFT(Rav, Rbv<5:0>) !SLL
Rc ← RIGHT_SHIFT(Rav, Rbv<5:0>) !SRL

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb or a lite
The result is written to register Rc. Zero bits are propagated into the vacated bit positions.

SxL Ra.rq,Rb.rq,Rc.wq !Operate format

SxL Ra.rq,#b.ib,Rc.wq !Operate format

None

SLL Shift Left Logical
SRL Shift Right Logical

None
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4.5.4 Shift Arithmetic

Format:

Operation:
Rc ← ARITH_RIGHT_SHIFT(Rav, Rbv<5:0>)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or a lite
The result is written to register Rc. The sign bit (Rav<63>) is propagated into the vacate
positions.

SRA Ra.rq,Rb.rq,Rc.wq !Operate format

SRA Ra.rq,#b.ib,Rc.wq !Operate format

None

SRA Shift Right Arithmetic

None
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4.6 Byte Manipulation Instructions

Alpha implementations that support the BWX extension provide the following instructions
loading, sign-extending, and storing bytes and words between a register and memory:

The AMASK and IMPLVER instructions report whether a particular Alpha implementat
supports the BWX extension. AMASK and IMPLVER are described in Sections 4.11.1
4.11.6, respectively, and in Appendix D.

LDBU and STB are the recommended way to perform byte load and store operations on A
implementations that support them; use them rather than the extract, insert, and mas
instructions described in this section. In particular, the implementation examples in this
tion that illustrate byte operations are not appropriate for Alpha implementations that supp
the BWX extension – instead use the recommendations in Appendix A.

In addition to LDBU and STB, Alpha provides the instructions in Table 4–7 for operating
byte operands within registers.

Instruction Meaning Described in Section

LDBU/LDWU Load byte/word unaligned 4.2.2

SEXTB/SEXTW Sign-extend byte/word 4.6.5

STB/STW Store byte/word 4.2.6

Table 4–7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High
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INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

SEXTB Sign Extend Byte

SEXTW Sign Extend Word

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Table 4–7: Byte-Within-Register Manipulation Instructions Summary

Mnemonic Operation
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4.6.1 Compare Byte

Format:

Operation:
FOR i FROM 0 TO 7

temp<8:0> ← 0 || Rav<i*8+7:i*8>} + {0 || NOT Rbv<i*8+7:i*8>} + 1
Rc<i> ← temp<8>

END
Rc<63:8> ← 0

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding bytes o
and Rbv, storing the eight results in the low eight bits of Rc. The high 56 bits of Rc are s
zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc corresponds to byte 1, and so forth. A r
bit is set in Rc if the corresponding byte of Rav is greater than or equal to Rbv (unsigned).

Notes:

The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize R1 to aligned QW address of string>
LOOP:

LDQ R2, 0(R1) ; Pick up 8 bytes
LDA R1, 8(R1) ; Increment string pointer
CMPBGE R31, R2,R3 ; If NO bytes of zero, R3<7:0>=0
BEQ R3, LOOP ; Loop if no terminator byte found
... ; At this point, R3 can be used to

; determine which byte terminated

CMPBGE Ra.rq,Rb.rq,Rc.wq !Operate format

CMPBGE Ra.rq,#b.ib,Rc.wq !Operate format

None

CMPBGE Compare Byte

None
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To compare two character strings for greater/equal/less:

<initialize R1 to aligned QW address of string1>
<initialize R2 to aligned QW address of string2>
LOOP:

LDQ R3, 0(R1) ; Pick up 8 bytes of string1
LDA R1, 8(R1) ; Increment string1 pointer
LDQ R4, 0(R2) ; Pick up 8 bytes of string2
LDA R2, 8(R2) ; Increment string2 pointer
CMPBGE R31, R3, R6 ; Test for zeros in string1
XOR R3, R4, R5 ; Test for all equal bytes
BNE R6, DONE ; Exit if a zero found
BEQ R5, LOOP ; Loop if all equal

DONE: CMPBGE R31, R5, R5 ;
...

; At this point, R5 can be used to determine the first not-equal
; byte position (if any), and R6 can be used to determine the
; position of the terminating zero in string1 (if any).

To range-check a string of characters in R1 for ‘0’…‘9’:

LDQ R2, lit0s ; Pick up 8 bytes of the character
; BELOW ‘0’ ‘////////’

LDQ R3, lit9s ; Pick up 8 bytes of the character
; ABOVE ‘9’ ‘::::::::’

CMPBGE R2, R1, R4 ; Some R4<i>=1 if character is LT ‘0’
CMPBGE R1, R3, R5 ; Some R5<i>=1 if character is GT ‘9’
BNE R4, ERROR ; Branch if some char too low
BNE R5, ERROR ; Branch if some char too high
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4.6.2 Extract Byte

Format:

Operation:
CASE

big_endian_data: Rbv' ← Rbv XOR 1112
little_endian_data: Rbv' ← Rbv

ENDCASE

CASE
EXTBL: byte_mask ← 0000 0001 2

EXTWx: byte_mask ← 0000 0011 2

EXTLx: byte_mask ← 0000 1111 2

EXTQx: byte_mask ← 1111 1111 2

ENDCASE

CASE
EXTxL:

byte_loc ← Rbv'<2:0>*8
temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask) )

EXTxH:
byte_loc ← 64 - Rbv'<2:0>*8
temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask) )

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

EXTxx Ra.rq,Rb.rq,Rc.wq !Operate format

EXTxx Ra.rq,#b.ib,Rc.wq !Operate format

None

EXTBL Extract Byte Low
EXTWL Extract Word Low

EXTLL Extract Longword Low
EXTQL Extract Quadword Low

EXTWH Extract Word High
EXTLH Extract Longword High

EXTQH Extract Quadword High

None
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Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions, and
extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left by 0 to 7 by
inserts zeros into vacated bit positions, and then extracts 2, 4, or 8 bytes into register Rc. T
number of bytes to shift is specified by Rbv' <2:0>. The number of bytes to extract is spec
fied in the function code. Remaining bytes are filled with zeros.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) i
that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is CBAx xxxx,
the value of the aligned quadword containing X+7(R11) is yyyH GFED, and the datum is li
endian.

The examples below are the most general case unless otherwise noted; if more informa
known about the value or intended alignment of X, shorter sequences can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
LDQ_U R2, X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
EXTQL R1, R3, R1 ; R1 = 0000 0CBA
EXTQH R2, R3, R2 ; R2 = HGFE D000
OR R2, R1, R1 ; R1 = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned addr
is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
LDQ_U R2, X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
EXTLL R1, R3, R1 ; R1 = 0000 0CBA
EXTLH R2, R3, R2 ; R2 = 0000 D000
OR R2, R1, R1 ; R1 = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned addr
is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
LDQ_U R2, X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
EXTLL R1, R3, R1 ; R1 = 0000 0CBA
EXTLH R2, R3, R2 ; R2 = 0000 D000
OR R2, R1, R1 ; R1 = 0000 DCBA
ADDL R31, R1, R1 ; R1 = ssss DCBA
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For software that is not designed to use the BWX extension, the intended sequence for lo
and zero-extending a word from unaligned address X is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
LDQ_U R2, X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
EXTWL R1, R3, R1 ; R1 = 0000 00BA
EXTWH R2, R3, R2 ; R2 = 0000 0000
OR R2, R1, R1 ; R1 = 0000 00BA

For software that is not designed to use the BWX extension, the intended sequence for lo
and sign-extending a word from unaligned address X is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
LDQ_U R2, X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDA R3, X+1+1(R11) ; R3<2:0> = 5+1+1 = 7
EXTQL R1, R3, R1 ; R1 = 0000 000y
EXTQH R2, R3, R2 ; R2 = BAxx xxx0
OR R2, R1, R1 ; R1 = BAxx xxxy
SRA R1, #48, R1 ; R1 = ssss ssBA

For software that is not designed to use the BWX extension, the intended sequence for lo
and zero-extending a byte from address X is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
LDA R3, X(R11) ; R3<2:0> = (X mod 8) = 5
EXTBL R1, R3, R1 ; R1 = 0000 000A

For software that is not designed to use the BWX extension, the intended sequence for lo
and sign-extending a byte from address X is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
LDA R3, X+1(R11) ; R3<2:0> = (X + 1) mod 8, i.e.,

; convert byte position within
; quadword to one-origin based

EXTQH R1, R3, R1 ; Places the desired byte into byte 7
; of R1.final by left shifting
; R1.initial by ( 8 - R3<2:0> ) byte
; positions

SRA R1, #56, R1 ; Arithmetic Shift of byte 7 down
; into byte 0,

Optimized examples:

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain a longw
aligned address. The optimized sequences below take advantage of the known constant
and the longword alignment (hence a single aligned longword contains the entire word)
sequences generate a Data Alignment Fault if R3 does not contain a longword-aligned ad
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For software that is not designed to use the BWX extension, the intended sequence for lo
and zero-extending an aligned word from 10(R3) is:

LDL R1, 8(R3) ; R1 = ssss BAxx
; Faults if R3 is not longword aligned

EXTWL R1, #2, R1 ; R1 = 0000 00BA

For software that is not designed to use the BWX extension, the intended sequence for lo
and sign-extending an aligned word from 10(R3) is:

LDL R1, 8(R3) ; R1 = ssss BAxx
; Faults if R3 is not longword aligned

SRA R1, #16, R1 ; R1 = ssss ssBA

Big-endian examples:

For software that is not designed to use the BWX extension, the intended sequence for lo
and zero-extending a byte from address X is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = xxxx xAyy
LDA R3, X(R11) ; R3<2:0> = 5, shift will be 2 bytes
EXTBL R1, R3, R1 ; R1 = 0000 000A

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = xxxxxABC
LDQ_U R2, X+7(R11) ; Ignores va<2:0>, R2 = DEFGHyyy
LDA R3, X+7(R11) ; R3<2:0> = 4, shift will be 3 bytes
EXTQH R1, R3, R1 ; R1 = ABC0 0000
EXTQL R2, R3, R2 ; R2 = 000D EFGH
OR R1, R2, R1 ; R1 = ABCD EFGH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for longwo
is X+3, and for words is X+1; for little-endian, these are all just X. Also note that the EXTQ
and EXTQL instructions are reversed with respect to the little-endian sequence.
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4.6.3 Byte Insert

Format:

Operation:
CASE

big_endian_data: Rbv' ← Rbv XOR 1112
little_endian_data: Rbv' ← Rbv

ENDCASE

CASE
INSBL: byte_mask ← 0000 0000 0000 0001 2

INSWx: byte_mask ← 0000 0000 0000 0011 2

INSLx: byte_mask ← 0000 0000 0000 1111 2

INSQx: byte_mask ← 0000 0000 1111 1111 2

ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv'<2:0>)

CASE
INSxL:

byte_loc ← Rbv'<2:0>*8
temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask<7:0>))

INSxH:
byte_loc ← 64 - Rbv'<2:0>*8
temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask<15:8>))

ENDCASE

Exceptions:

Instruction mnemonics:

INSxx Ra.rq,Rb.rq,Rc.wq !Operate format

INSxx Ra.rq,#b.ib,Rc.wq !Operate format

None

INSBL Insert Byte Low
INSWL Insert Word Low

INSLL Insert Longword Low
INSQL Insert Quadword Low

INSWH Insert Word High
INSLH Insert Longword High

INSQH Insert Quadword High
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Qualifiers:

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros, storing
result in register Rc. Register Rbv' <2:0> selects the shift amount, and the function co
selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions can generate a
word, longword, or quadword datum that is spread across two registers at an arbitrary
alignment.

None
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4.6.4 Byte Mask

Format:

Operation:
CASE

big_endian_data: Rbv' ← Rbv XOR 1112
little_endian_data: Rbv' ← Rbv

ENDCASE

CASE
MSKBL: byte_mask ← 0000 0000 0000 0001 2

MSKWx: byte_mask ← 0000 0000 0000 0011 2

MSKLx: byte_mask ← 0000 0000 0000 1111 2

MSKQx: byte_mask ← 0000 0000 1111 1111 2

ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv'<2:0>)

CASE
MSKxL:

Rc ← BYTE_ZAP(Rav, byte_mask<7:0>)
MSKxH:

Rc ← BYTE_ZAP(Rav, byte_mask<15:8>)
ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

MSKxx Ra.rq,Rb.rq,Rc.wq !Operate format

MSKxx Ra.rq,#b.ib,Rc.wq !Operate format

None

MSKBL Mask Byte Low
MSKWL Mask Word Low

MSKLL Mask Longword Low
MSKQL Mask Quadword Low

MSKWH Mask Word High
MSKLH Mask Longword High

MSKQH Mask Quadword High

None
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Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result in registe
Register Rbv' <2:0> selects the starting position of the field of zero bytes, and the func
code selects the maximum width: 1, 2, 4, or 8 bytes. The instructions generate a byte,
longword, or quadword field of zeros that can spread across two registers at an arbitrary
alignment.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11) i
that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is CBAx xxxx,
value of the aligned quadword containing X+7(R11) is yyyH GFED, the value to be sto
from R5 is HGFE DCBA, and the datum is little-endian. Slight modifications similar to tho
in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about the
or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R2, X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
INSQH R5, R6, R4 ; R4 = 000H GFED
INSQL R5, R6, R3 ; R3 = CBA0 0000
MSKQH R2, R6, R2 ; R2 = yyy0 0000
MSKQL R1, R6, R1 ; R1 = 000x xxxx
OR R2, R4, R2 ; R2 = yyyH GFED
OR R1, R3, R1 ; R1 = CBAx xxxx
STQ_U R2, X+7(R11) ; Must store high then low for
STQ_U R1, X(R11) ; degenerate case of aligned QW

The intended sequence for storing an unaligned longword R5 at X is:

LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R2, X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
INSLH R5, R6, R4 ; R4 = 0000 000D
INSLL R5, R6, R3 ; R3 = CBA0 0000
MSKLH R2, R6, R2 ; R2 = yyyy yyy0
MSKLL R1, R6, R1 ; R1 = 000x xxxx
OR R2, R4, R2 ; R2 = yyyy yyyD
OR R1, R3, R1 ; R1 = CBAx xxxx
STQ_U R2, X+3(R11) ; Must store high then low for
STQ_U R1, X(R11) ; degenerate case of aligned
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For software that is not designed to use the BWX extension, the intended sequence for s
an unaligned word R5 at X is:

LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R2, X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
INSWH R5, R6, R4 ; R4 = 0000 0000
INSWL R5, R6, R3 ; R3 = 0BA0 0000
MSKWH R2, R6, R2 ; R2 = yBAx xxxx
MSKWL R1, R6, R1 ; R1 = y00x xxxx
OR R2, R4, R2 ; R2 = yBAx xxxx
OR R1, R3, R1 ; R1 = yBAx xxxx
STQ_U R2, X+1(R11) ; Must store high then low for
STQ_U R1, X(R11) ; degenerate case of aligned

For software that is not designed to use the BWX extension, the intended sequence for s
a byte R5 at X is:

LDA R6, X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
INSBL R5, R6, R3 ; R3 = 00A0 0000
MSKBL R1, R6, R1 ; R1 = yy0x xxxx
OR R1, R3, R1 ; R1 = yyAx xxxx
STQ_U R1, X(R11) ;
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4.6.5 Sign Extend

Format:

Operation:
CASE

SEXTB: Rc ← SEXT(Rbv<07:0>)
SEXTW: Rc ← SEXT(Rbv<15:0>)

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The byte or word in register Rb is sign-extended to 64 bits and written to register Rc. Ra
be R31.

Implementation Note:

The SEXTB and SEXTW instructions are supported in hardware on Alp
implementations for which the AMASK instruction clears feature mask bit 0. SEXTB a
SEXTW are supported with software emulation in Alpha implementations for wh
AMASK does not clear feature mask bit 0. Software emulation of SEXTB and SEXTW
significantly slower than hardware support.

SEXTx Rb.rq,Rc.wq !Operate format

SEXTx #b.ib,Rc.wq !Operate format

None

SEXTB Sign Extend Byte
SEXTW Sign Extend Word

None
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4.6.6 Zero Bytes

Format:

Operation:
CASE

ZAP:
Rc ← BYTE_ZAP(Rav, Rbv<7:0>)

ZAPNOT:
Rc ← BYTE_ZAP(Rav, NOT Rbv<7:0>)

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero and store the result in registe
Register Rb<7:0> selects the bytes to be zeroed. Bit 0 of Rbv corresponds to byte 0, bi
Rbv corresponds to byte 1, and so on. A result byte is set to zero if the corresponding
Rbv is a one for ZAP and a zero for ZAPNOT.

ZAPx Ra.rq,Rb.rq,Rc.wq !Operate format

ZAPx Ra.rq,#b.ib,Rc.wq !Operate format

None

ZAP Zero Bytes
ZAPNOT Zero Bytes Not

None
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4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four data
formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-poin
quadword integer formats, between double and single floating, and between quadwor
longword integers.

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations
provided in the architecture. For backward compatibility, exact D_floating arithmetic m
be provided via software emulation. D_floating "format compatibility," in which bina
files of D_floating numbers may be processed but without the last 3 bits of frac
precision, can be obtained via conversions to G_floating, G arithmetic operations,
conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also encod
choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (not including loads or stores) that yield an F_floating o
G_floating zero result must materialize a true zero.

4.7.1 Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point registe
canonical form, as subsets of double-precision values, with 11-bit exponents restricted
corresponding single-precision range, and with the 29 low-order fraction bits restricted to b
zero.

Single-precision operations applied to canonical single-precision values give single-precision
results. Floating-point operations applied to non-canonical single-precision operands
UNPREDICTABLE results.

Longword integer values in floating-point registers are stored in bits <63:62,58:29>, with
<61:59> ignored and zeros in bits <28:0>. Floating-point operations applied to longword
ger operations, where the operand register contains a non-zero value in bits <28:0>
UNPREDICTABLE results.

4.7.2 Subsets and Faults

All floating-point operations may take floating disabled faults. Any subsetted floating-po
instruction may take an Illegal Instruction Trap. These faults are not explicitly listed in
description of each instruction.
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All floating-point loads and stores may take memory management faults (access control
tion, translation not valid, fault onread/write, data alignment).

The floating-point enable (FEN) internal processor register (IPR) allows system softwa
restrict access to the floating-point registers.

If a floating-point instruction is implemented and FEN = 0, attempts to execute the instruc
cause a floating disabled fault.

If a floating-point instruction is not implemented, attempts to execute the instruction caus
Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations, eith
or none.

Some floating-point instructions are common to the VAX and IEEE subsets, some are V
only, and some are IEEE only. These are designated in the descriptions that follow. If e
subset is implemented, all the common instructions must be implemented.

An implementation that includes IEEE floating-point may subset the ability to perform rou
ing to plus infinity and minus infinity. If not implemented, instructions requesting the
rounding modes take Illegal Instruction Trap.

An implementation that includes IEEE floating-point may implement any subset of the T
Disable flags (DNOD, DZED, INED, INVD, OVFD, and UNFD) and Denormal Control flag
(DNZ and UNDZ) in the FPCR:

• If a Trap Disable flag is not implemented, then the corresponding trap occurs as us

• If DNZ is not implemented, then any IEEE operation with a denormal input must t
an Invalid Operation Trap.

• If UNDZ is not implemented, then any IEEE operation that includes a /S qualifier t
underflows must take an Underflow Trap.

• If DZED is implemented, then IEEE division of 0/0 must be treated as an invalid op
tion instead of a division by zero.

Any unimplemented bits in the FPCR are read as zero and ignored when set.

4.7.3 Definitions

The following definitions apply to Alpha floating-point support.

Alpha finite number

A floating-point number with a definite, in-range value. Specifically, all numbers in the inc
sive ranges –MAX through –MIN, zero, and +MIN through +MAX, where MAX is the large
non-infinite representable floating-point number and MIN is the smallest non-zero repre
able normalized floating-point number.

For VAX floating-point, finites do not include reserved operands or dirty zeros (this diff
from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-point, finites
not include infinites, NaNs, or denormals, but do include minus zero.
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denormal

An IEEE floating-point bit pattern that represents a number whose magnitude lies betw
zero and the smallest finite number.

dirty zero

A VAX floating-point bit pattern that represents a zero value, but not in true-zero form.

infinity

An IEEE floating-point bit pattern that represents plus or minus infinity.

LSB

The least significant bit. For a positive finite representable number A, A + 1 LSB is the n
larger representative number, and A + ½ LSB is exactly halfway between A and the next l
representable number. For a positive representable number A whose fraction field is n
zeros, A – 1 LSB is the next smaller representable number, and A – ½ LSB is exactly hal
betweenA and the next smaller representable number.

non-finite number

An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand.

Not-a-Number

An IEEE floating-point bit pattern that represents something other than a number. This c
in two forms: signaling NaNs (for Alpha, those with an initial fraction bit of 0) and quiet Na
(for Alpha, those with an initial fraction bit of 1).

representable result

A real number that can be represented exactly as a VAX or IEEE floating-point number,
finite precision and bounded exponent range.

reserved operand

A VAX floating-point bit pattern that represents an illegal value.

trap shadow

The set of instructions potentially executed after an instruction that signals an arithmetic
but before the trap is actually taken.

true result

The mathematically correct result of an operation, assuming that the input operand values a
exact. The true result is typically rounded to the nearest representable result.
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The value +0, represented as exactly 64 zeros in a floating-point register.

4.7.4 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and fraction. Th
is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is 23, 52, 55, or 112 bits. S
encodings represent special values:

The values of MIN and MAX for each of the five floating-point data formatsare:

Sign Exponent Fraction VAX Meaning VAX Finite
IEEE
Meaning

IEEE
Finite

x All-1’s Non-zero Finite Yes +/–NaN No

x All-1’s 0 Finite Yes +/–Infinity No

0 0 Non-zero Dirty zero No +Denormal No

1 0 Non-zero Resv. operand No –Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No –0 Yes

x Other x Finite Yes Finite Yes

Data
Format

MIN MAX

F_floating 2**–127 * 0.5 2**127 *(1.0 – 2**–24)
(0.293873588e–38) (1.7014117e38)

G_floating 2**–1023 * 0.5 2**1023 * (1.0 – 2**–53)

(0.5562684646268004e–308) (0.89884656743115785407e308)

S_floating 2**–126 * 1.0 2**127 * (2.0 – 2**–23)
(1.17549435e–38) (3.40282347e38)

T_floating 2**–1022 * 1.0 2**1023 * (2.0 – 2**–52)

(2.2250738585072013e–308) (1.7976931348623158e308)

X_floating 2**–16382*1.0 2**16383*(2.0–2**–112)

(See below†)

† (1.18973149535723176508575932662800702e4932)

(See below‡)

‡ (3.36210314311209350626267781732175260e–4932)
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4.7.5 Rounding Modes

All rounding modes map a true result that is exactly representable to that representable va

VAX Rounding Modes

For VAX floating-point operations, two rounding modes are provided and are specified in
instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable results,
true results exactly halfway between mapped to the larger in absolute value (sometimes
biased rounding away from zero); maps true results≥ MAX + 1/2 LSB in magnitude to an
overflow; maps non-zero true results < MIN – 1/4 LSB in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two surroun
representable results; maps true results≥ MAX + 1 LSB in magnitude to an overflow; maps
non-zero true results < MIN in magnitude to an underflow.

IEEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal rounding (u
ased round to nearest), rounding toward minus infinity, round toward zero, and roun
toward plus infinity. The first three can be specified in the instruction. Rounding toward p
infinity can be obtained by setting the Floating-point Control Register (FPCR) to select it and
then specifying dynamic rounding mode in the instruction (see Section 4.7.8). Alpha IE
arithmetic does rounding before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable results
true results exactly halfway between mapped to the one whose fraction ends in 0 (some
called unbiased rounding to even); maps true results≥ MAX + 1/2 LSB in magnitude to an
overflow; maps non-zero true results < MIN – 1/2 LSB in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding represen
results; maps positive true results > MAX to an overflow; maps negative true results < –M
– 1 LSB to an overflow; maps true results≤ +MIN – 1 LSB to an underflow; and maps nega
tive true results > –MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding repres
able results; maps positive true results > MAX + 1 LSB to an overflow; maps negative
results < –MAX to an overflow; maps positive true results < +MIN to an underflow; and m
negative true results≥ –MIN + 1 LSB to an underflow.

Chopped IEEE rounding maps the true result to the smaller in magnitude of two surroun
representable results; maps true results≥ MAX + 1 LSB in magnitude to an overflow; and
maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
described in more detail in Section 4.7.8.
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The following tables summarize the floating-point rounding modes:

4.7.6 Computational Models

The Alpha architecture provides a choice of floating-point computational models.

There are two computational models available on systems that implement the VAX floa
point subset:

• VAX-format arithmetic with precise exceptions

• High-performance VAX-format arithmetic

There are three computational models available on systems that implement the IEEE flo
point subset:

• IEEE compliant arithmetic

• IEEE compliant arithmetic without inexact exception

• High-performance IEEE-format arithmetic

4.7.6.1 VAX-Format Arithmetic with Precise Exceptions

This model provides floating-point arithmetic that is fully compatible with the floating-po
arithmetic provided by the VAX architecture. It provides support for VAX non-finites a
gives precise exceptions.

This model is implemented by using VAX floating-point instructions with the /S, /SU, and /
trap qualifiers. Each instruction can determine whether it also takes an exception on unde
or integer overflow. The performance of this model depends on how often computat
involve non-finite operands. Performance also depends on how an Alpha system choo
trade off implementation complexity between hardware and operating system completion
dlers (see Section 4.7.7.3).

4.7.6.2 High-Performance VAX-Format Arithmetic

This model provides arithmetic operations on VAX finite numbers. An imprecise arithm
trap is generated by any operation that involves non-finite numbers, floating overflow,
divide-by-zero exceptions.

VAX Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Chopped /C

IEEE Rounding Mode Instruction Notation

Normal rounding (No qualifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’

Minus infinity /M

Chopped /C
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This model is implemented by using VAX floating-point instructions with a trap qualifier oth
than /S, /SU, or /SV. Each instruction can determine whether it also traps on underflow or
ger overflow. This model does not require the overhead of an operating system compl
handler and can be the faster of the two VAX models.

4.7.6.3 IEEE-Compliant Arithmetic

This model provides floating-point arithmetic that fully complies with the IEEE Standard
Binary Floating-Point Arithmetic. It provides all of the exception status flags that are in
standard. It provides a default where all traps and faults are disabled and where IEEE
finite values are used in lieu of exceptions.

Alpha operating systems provide additional mechanisms that allow the user to specify dyn
cally which exception conditions should trap and which should proceed without trapping.
operating systems also include mechanisms that allow alternative handling of denorma
ues. See Appendix B and the appropriate operating system documentation for a descrip
these mechanisms.

This model is implemented by using IEEE floating-point instructions with the /S
or /SVI trap qualifiers. The performance of this model depends on how often computat
involve inexact results and non-finite operands and results. Performance also depends o
the Alpha system chooses to trade off implementation complexity between hardware and
ating system completion handlers (see Section 4.7.7.3). This model provides accep
performance on Alpha systems that implement the inexact disable (INED) bit in the FP
Performance may be slow if the INED bit is not implemented.

4.7.6.4 IEEE-Compliant Arithmetic Without Inexact Exception

This model is similar to the model in Section 4.7.6.3, except this model does not signal ine
results either by the inexact status flag or by trapping. Combining routines that are com
with this model and routines that are compiled with the model in Section 4.7.6.3 can giv
application better control over testing when an inexact operation will affect computatio
accuracy.

This model is implemented by using IEEE floating-point instructions with the /SU or /SV t
qualifiers. The performance of this model depends on how often computations involve
finite operands and results. Performance also depends on how an Alpha system choo
trade off implementation complexity between hardware and operating system completion
dlers (see Section 4.7.7.3).

4.7.6.5 High-Performance IEEE-Format Arithmetic

This model provides arithmetic operations on IEEE finite numbers and notifies application
all exceptional floating-point operations. An imprecise arithmetic trap is generated by
operation that involves non-finite numbers, floating overflow, divide-by-zero, and inva
operations. Underflow results are set to zero. Conversion to integer results that overflow a
to the low-order bits of the integer value.

This model is implemented by using IEEE floating-point instructions with a trap qualifier ot
than /SU, /SV, /SUI, or /SVI. Each instruction can determine whether it also traps on un
flow or integer overflow. This model does not require the overhead of an operating sys
completion handler and can be the fastest of the three IEEE models.
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4.7.7 Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions, a
naled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow

• Inexact result

• Integer overflow (conversion to integer only)

4.7.7.1 VAX Trapping Modes

This section describes the characteristics of the four VAX trapping modes, which are sum
rized in Table 4–8.

When no trap mode is specified (the default):

• Arithmetic is performed on VAX finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– a floating overflow
– a divide-by-zero

• Traps are imprecise and it is not always possible to determine which instruction
gered a trap or the operands of that instruction.

• An underflow produces a zero result without trapping.
• A conversion to integer that overflows uses the low-order bits of the integer as

result without trapping.
• The result of any operation that traps is UNPREDICTABLE.

When /U or /V mode is specified:

• Arithmetic is performed on VAX finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero

• Traps are imprecise and it is not always possible to determine which instruction
gered a trap or the operands of that instruction.

• An underflow trap produces a zero result.
• A conversion to integer trapping with an integer overflow produces the low-order

of the integer value.
• The result of any other operation that traps is UNPREDICTABLE.

When /S mode is specified:

• Arithmetic is performed on all VAX values, both finite and non-finite.
• A VAX dirty zero is treated as zero.
4–70 Common Architecture (I)



d the

the

ICT-

d the

s of

in
• Exceptions are signaled for:
– a VAX reserved operand, which generates aninvalid operation exception
– a floating overflow
– a divide-by-zero

• Exceptions are precise and an application can locate the instruction that cause
exception, along with its operand values. See Section 4.7.7.3.

• An operation that underflows produces a zero result without taking an exception.
• A conversion to integer that overflows uses the low-order bits of the integer as

result, without taking an exception.
• When an operation takes an exception, the result of the operation is UNPRED

ABLE.

When /SU or /SV mode is specified:

• Arithmetic is performed on all VAX values, both finite and non-finite.
• A VAX dirty zero is treated as zero.
• Exceptions are signaled for:

– a VAX reserved operand, which generates aninvalid operation exception
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero

• Exceptions are precise and an application can locate the instruction that cause
exception, along with its operand values. See Section 4.7.7.3.

• An underflow exception produces a zero.
• A conversion to integer exception with integer overflow produces the low-order bit

the integer value.
• The result of any other operation that takes an exception is UNPREDICTABLE.

A summary of the VAX trapping modes, instruction notation, and their meaning follows
Table 4–8:

Table 4–8: VAX Trapping Modes Summary

Trap Mode Notation Meaning

Underflow disabled No qualifier

/S

Imprecise

Precise exception completion

Underflow enabled /U

/SU

Imprecise

Precise exception completion

Integer overflow disabled No qualifier

/S

Imprecise

Precise exception completion

Integer overflow enabled /V

/SV

Imprecise

Precise exception completion
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4.7.7.2 IEEE Trapping Modes

This section describes the characteristics of the four IEEE trapping modes, which are su
rized in Table 4–9.

When no trap mode is specified (the default):

• Arithmetic is performed on IEEE finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– a floating overflow
– a divide-by-zero
– an invalid operation

• Traps are imprecise, and it is not always possible to determine which instruction
gered a trap or the operands of that instruction.

• An underflow produces a zero result without trapping.
• A conversion to integer that overflows uses the low-order bits of the integer as

result without trapping.
• When an operation traps, the result of the operation is UNPREDICTABLE.

When /U or /V mode is specified :

• Arithmetic is performed on IEEE finite numbers.
• Operations give imprecise traps whenever the following occur:

– an operand is a non-finite number
– an underflow
– an integer overflow
– a floating overflow
– a divide-by-zero
– an invalid operation

• Traps are imprecise, and it is not always possible to determine which instruction
gered a trap or the operands of that instruction.

• An underflow trap produces a zero.
• A conversion to integer trap with an integer overflow produces the low-order bits of

integer.
• The result of any other operation that traps is UNPREDICTABLE.

When /SU or /SV mode is specified:

• Arithmetic is performed on all IEEE values, both finite and non-finite.
• Alpha systems support all IEEE features except inexact exception (which requires

or /SVI):
– The IEEE standard specifies a default where exceptions do not fault or trap. In

combination with the FPCR, this mode allows disabling exceptions and produc
IEEE compliant nontrapping results. See Sections 4.7.7.10 and 4.7.7.11.

– Each Alpha operating system provides a way to optionally signal IEEE floating
point exceptions. This mode enables the IEEE status flags that keep a record o
each exception that is encountered. An Alpha operating system uses the IEEE
ing-point control (FP_C) quadword, described in Appendix B, to maintain the IE
status flags and to enable calls to IEEE user signal handlers.

• Exceptions signaled in this mode are precise and an application can locate the in
tion that caused the exception, along with its operand values. See Section 4.7.7.3.
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When /SUI or /SVI mode is specified:

• Arithmetic is performed on all IEEE values, both finite and non-finite.
• Inexact exceptions are supported, along with all the other IEEE features supporte

the /SU or /SV mode.

A summary of the IEEE trapping modes, instruction notation, and their meaning follow
Table 4–9.

4.7.7.3 Arithmetic Trap Completion

Because floating-point instructions may be pipelined, the trap PC can be an arbitrary nu
of instructions past the one triggering the trap. Those instructions that are executed aft
trigger instruction of an arithmetic trap are collectively referred to as thetrap shadowof the
trigger instruction.

Marking floating-point instructions for exception completion with any valid qualifier combin
tion that includes the /S qualifier enables the completion of the triggering instruction. For
instruction so marked, the output register for the triggering instruction cannot also be o
the input registers, so that an input register cannot be overwritten and the input value is
able after a trap occurs.

See Section B.2 for more information.

The AMASK instruction reports how the arithmetic trap should be completed:

• If AMASK does not clear feature mask bit 9, floating-point traps are imprecise. Exc
tion completion requires that generated code must obey the trap shadow rules in S
•, with a trap shadow length as described in Section 4.7.7.3.2.

Table 4–9 Summary of IEEE Trapping Modes

Trap Mode Notation Meaning

Underflow disabled and inexact disabled No qualifier Imprecise

Underflow enabled and inexact disabled /U

/SU

Imprecise

Precise exception completion

Underflow enabled and inexact enabled /SUI Precise exception completion

Integer overflow disabled and inexact disabled No qualifier Imprecise

Integer overflow enabled and inexact disabled /V

/SV

Imprecise

Precise exception completion

Integer overflow enabled and inexact enabled /SVI Precise exception completion
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• If AMASK clears feature mask bit 9, the hardware implements precise floating-p
traps. If the instruction has any valid qualifier combination that includes /S, the trap
points to the instruction that immediately follows the instruction that triggered the t
The trap shadow contains zero instructions; exception completion does not requir
the generated code follow the conditions in Section • and the length rules in Se
4.7.7.3.2.

4.7.7.3.1 Trap Shadow Rules

For an operating system (OS) completion handler to complete non-finite operands and e
tions, the following conditions must hold.

Conditions 1 and 2, below, allow an OS completion handler to locate the trigger instructio
doing a linear scan backwards from the trap PC while comparing destination registers i
trap shadow with the registers that are specified in the register write mask parameter
arithmetic trap.

Condition 3 allows an OS completion handler to emulate the trigger instruction with its o
nal input operand values.

Condition 4 allows the handler to re-execute instructions in the trap shadow with their orig
operand values.

Condition 5 prevents any unusual side effects that would cause problems on repeated e
tion of the instructions in the trap shadow.

Conditions:

1. The destination register of the trigger instruction may not be used as the destinatio
ister of any instruction in the trap shadow.

2. The trap shadow may not include any branch or jump instructions.

3. An instruction in the trap shadow may not modify an input to the trigger instruction

4. The value in a register or memory location that is used as input to some instructio
the trap shadow may not be modified by a subsequent instruction in the trap sha
unless that value is produced by an earlier instruction in the trap shadow.

5. The trap shadow may not contain any instructions with side effects that interact
earlier instructions in the trap shadow or with other parts of the system. Example
operations with prohibited side effects are:

– Modifications of the stack pointer or frame pointer that can change theaccessibility
of stack variables and the exception context that is used by earlier instruction
the trap shadow.

– Modifications of volatile values and access to I/O device registers.

– If order of exception reporting is important, taking an arithmetic trap by an inte
instruction or by a floating-point instruction that does not include a /S qualif
either of which can report exceptions out of order.

An instruction may be in the trap shadows of multiple instructions that include a /S quali
That instruction must obey all conditions for all those trap shadows. For example, the de
tion register of an instruction in multiple trap shadows must be different than the destina
registers of each possible trigger instruction.
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4.7.7.3.2 Trap Shadow Length Rules

The trap shadow length rules in Table 4–11 apply only to those floating-point instructions
any valid qualifier combination that includes a /S trap qualifier. Further, the instruction
which the trap shadow extends is not part of the trap shadow and that instruction is no
cuted prior to the arithmetic trap that is signaled by the trigger instruction.

Implementation notes:

• On Alpha implementations for which the IMPLVER instruction returns the value 0,
trap shadow of an instruction may extend after the result is consumed by a floa
point STx instruction. On all other implementations, the trap shadow ends when a r
is consumed.

• Because Alpha implementations need not execute instructions that have R31 or F
the destination operand, instructions with such an destination should not be thoug
end a trap shadow.
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Table 4–10 Trap Shadow Length Rules

Floating-Point
Instruction Group Trap Shadow Extends Until Any of the Following Occurs:

Floating-point operate

(except DIVx and SQRTx)

• Encountering a CALL_PAL, EXCB, or TRAPB instruction.

• The result is consumed by any instruction except floating-poi
STx.

• The fourth instruction† after the result is consumed by a float-
ing-point STx instruction.

Or, following the floating-point STx of the result, the result of a
LDx that loads the stored value is consumed by any instructio

• The result of a subsequent floating-point operate instruction
consumed by any instruction except floating-point STx.

• The second instruction† after the result of a subsequent floating
point operate instruction is consumed by a floating-point ST
instruction.

• The result of a subsequent floating-point DIVx or SQRTx
instruction is consumed by any instruction.

† The length of four instructions is a conservative estimate of how far the trap shadow may extend past
consuming floating-point STx instruction. The length of two instructions is a conservative estimate of
how far the trap shadow may extend after a subsequent floating-point operate instruction is consume
by a floating-point STx instruction. Compilers can make a more precise estimate by consulting the
Hardware Reference Manual for a particular processor at ftp.compaq.com/pub/products/alphaCPU-
docs.

Floating-point DIVx
• Encountering a CALL_PAL, EXCB, or TRAPB instruction.

• The result is consumed by any instruction except floating-poi
STx.

• The fourth instruction† after the result is consumed by a float-
ing-point STx instruction.

Or, following the floating-point STx of the result, the result of a
LDx that loads the stored value is consumed by any instructio

• The result of a subsequent floating-point DIVx is consumed b
any instruction.

Floating-point SQRTx • Encountering a CALL_PAL, EXCB, or TRAPB instruction.

• The result is consumed by any instruction.

• The result of a subsequent SQRTx instruction is consumed
any instruction.
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4.7.7.4 Invalid Operation (INV) Arithmetic Trap

An invalid operation arithmetic trap is signaled if an operand is a non-finite number or i
operand is invalid for the operation to be performed. (Note that CMPTxy does not trap on
or minus infinity.) Invalid operations are:

• Any operation on a signaling NaN.

• Addition of unlike-signed infinities or subtraction of like-signed infinities, such
(+infinity + –infinity) or (+infinity – +infinity).

• Multiplication of 0∗infinity.

• IEEE division of 0/0 or infinity/infinity.

• Conversion of an infinity or NaN to an integer.

• CMPTLE or CMPTLT when either operand is a NaN.

• SQRTx of a negative non-zero number.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE valu
stored in the result register. However, under some conditions, theFPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as descr
Section 4.7.10.

IEEE-compliant system software must also supply an invalid operation indication to the
for x REM 0 and for conversions to integer that take an integer overflow trap.

If an implementation does not support the DZED (division by zero disable) bit, it may resp
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, wh
IEEE compliant software must change to an invalid operation trap for the user.

An implementation may choose not to take an INV trap for a valid IEEE operation t
involves denormal operands if:

• The instruction is modified by any valid qualifier combination that includes the
(exception completion) qualifier.

• The implementation supports the DNZ (denormal operands to zero) bit and DNZ is

• The instruction produces the result and exceptions required by Section 4.7.10, as
fied by the DNZ bit described in Section 4.7.7.11.

An implementation may choose not to take an INV trap for a valid IEEE operation t
involves denormal operands, and direct hardware implementation of denormal arithme
permitted if:

• The instruction is modified by any valid qualifier combination that includes the
(exception completion) qualifier.

• The implementation supports both the DNOD (denormal operand exception disabl
and the DNZ (denormal operands to zero) bit and DNOD is setwhile DNZ is clear.

• The instruction produces the result and exceptions required by Section 4.7.10, po
modified by the UDNZ bit described in Section 4.7.7.11.
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Regardless of the setting of the INVD (invalid operation disable) bit, the implementation
choose not to trap on valid operations that involve quiet NaNs and infinities as operand
IEEE instructions that are modified by any valid qualifier combination that includes the
(exception completion) qualifier.

4.7.7.5 Division by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid oper
trap and the denominator is zero.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE valu
stored in the result register. However, under some conditions, theFPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as descr
Section 4.7.10.

If an implementation does not support the DZED (division by zero disable) bit, it may resp
to the IEEE division of 0/0 by delivering a division by zero trap to the operating system, wh
IEEE compliant software must change to an invalid operation trap for the user.

4.7.7.6 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude the la
finite number of the destination format.

The instruction cannot disable the trap and, if the trap occurs, an UNPREDICTABLE valu
stored in the result register. However, under some conditions, theFPCR can dynamically dis-
able the trap, as described in Section 4.7.7.10, producing a correct IEEE result, as descr
Section 4.7.10.

4.7.7.7 Underflow (UNF) Arithmetic Trap

Section 4.7.5 defines conditions under which an underflow occurs.

Note:

The Alpha hardware definition underflow differs from the IEEE definition in that the
Alpha definition does not depend on whether the result is inexact. Alpha provides I
compliant underflow handling by means of a software completion handler, which
described in Appendix B.

If an underflow trap occurs, a true zero (64 bits of zero) is always stored in the result reg
In the case of an IEEE operation that takes an underflow arithmetic trap, a true zero is s
even if the result after rounding would have been –0 (underflow below the negative deno
range).

If an underflow occurs and underflow traps are enabled by the instruction, an underflow a
metic trap is signaled. However, under some conditions, the FPCR can dynamically disab
trap, as described in Section 4.7.7.10, producing the result described in Section 4.7.10, as
ified by the UNDZ bit described in Section 4.7.7.11.

4.7.7.8 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded result.

If an inexact result occurs, the normal rounded result is still stored in the result register.
inexact result occurs and inexact result traps are enabled by the instruction, an inexact
4–78 Common Architecture (I)
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arithmetic trap is signaled. However, under some conditions, the FPCR can dynamically
able the trap; see Section 4.7.7.10 for information.

4.7.7.9 Integer Overflow (IOV) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the roun
result is outside the range –2**63..2**63–1. In conversions from quadword integer to lo
word integer, an integer overflow occurs if the result is outside the range –2**31..2**31–1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the low-or
64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the instruction, an
ger overflow arithmetic trap is signaled.

4.7.7.10 IEEE Floating-Point Trap Disable Bits

In the case of IEEE exception completion modes, any of the traps described in Sec
through 4.7.7.9 may be disabled by setting the appropriate trap disable bit in the FPCR
trap disable bits only affect the IEEE trap modes when the instruction is modified by any v
qualifier combination that includes the /S (exception completion) qualifier. The trap dis
bits (DNOD, DZED, INED, INVD, OVFD, and UNFD) do not affect any of the VAX trap
modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware imple
tation sets the result of the operation to the nontrapping result value as specified in the
standard and Section 4.7.10 and modified by the denormal control bits. If the implement
is unable to calculate the required result, it ignores the trap disable bit and signals a tr
usual.

Note that a hardware implementation may choose to support any subset of the trap disab
including the empty subset.

4.7.7.11 IEEE Denormal Control Bits

In the case of IEEE exception completion modes, the handling of denormal operand
results is controlled by the DNZ and UNDZ bits in the FPCR. These denormal control bits
affect denormal handling by IEEE instructions that are modified by any valid qualifier com
nation that includes the /S (exception completion) qualifier.

The denormal control bits apply only to the IEEE operate instructions –ADD, SUB, MUL,
DIV, SQRT, CMPxx, and CVT with floating-point source operand.

If both the UNFD (underflow disable) bit and the UNDZ (underflow to zero) bit are set in
FPCR, the implementation sets the result of an underflow operation to a true zero resul
zeroing of a denormal result by UNDZ must also be treated as an inexact result.

If the DNZ (denormal operands to zero) bit is set in the FPCR, the implementation treats
denormal operand as if it were a signed zero value. The source operands in the register a
changed. If DNZ is set, IEEE operations with any valid qualifier combination that includes
qualifier signal arithmetic traps as if any denormal operand were zero; that is, with DNZ se

• An IEEE operation with a denormal operand never generates an overflow, underflow, or
inexact result arithmetic trap.
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• Dividing by a denormal operand is a division by zero or invalid operation as appro
ate.

• Multiplying a denormal by infinity is an invalid operation.

• A SQRT of a negative denormal produces a –0 instead of an invalid operation.

• A denormal operand, treated as zero, does not take the denormal operand exceptio
controlled by the DNOD bit in the FPCR.

Note that a hardware implementation may choose to support any subset of the denorma
trol bits, including the empty subset.

4.7.8 Floating-Point Control Register (FPCR)

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its func
field (function field bits <12:11> = 11), the rounding mode to be used for the instructio
derived from the FPCR register. The layout of the rounding mode bits and their assignm
matches exactly the format used in the 11-bit function field of the floating-point ope
instructions. The function field is described in Section 4.7.9.

In addition, the FPCR gives a summary of each exception type for the exception condi
detected by all IEEE floating-point operates thus far, as well as an overall summary bit
indicates whether any of these exception conditions has been detected. The individual e
tion bits match exactly in purpose and order the exception bits found in the exception sum
quadword that is pushed for arithmetic traps. However, for each instruction, these exce
bits are set independent of the trapping mode specified for the instruction. Therefore,
though trapping may be disabled for a certain exceptional condition, the fact that the ex
tional condition was encountered by an instruction is still recorded in the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs to
VAX and IEEE subsets, appropriately set the FPCR exception bits. It is UNPREDICTAB
whether floating-point operates that belong only to the VAX floating-point subset set the
FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one. Onc
to one, these exception bits are only cleared when software writes zero into these bits by
ing a new value into the FPCR.

Section 4.7.2 allows certain of the FPCR bits to besubsetted.

The format of the FPCR is shown in Figure 4–1 and described in Table 4–11.
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Figure 4–1 Floating-Point Control Register (FPCR) Format

Table 4–11 Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to

FPCR<57 |56 | 55 | 54 | 53 | 52>. The summary bit is not directly modified by writes to bit
of the FPCR, but is indirectly modified by changes to FPCR bits 57–52.

62 Inexact Disable (INED)†. Suppress INE trap and place correct IEEE nontrapping result in
destination register.

61 Underflow Disable (UNFD)†. If the implementation is capable of producing the correct IEE
nontrapping underflow result, suppress the UNF trap and place the appropriate result va
the destination register. The correct result value is determined according to the value o
UNDZ bit.

60 Underflow to Zero (UNDZ)†. Determines the result value in the destination register when
underflow trap is disabled. When set, the non-trapping underflow result value is a truezero
(64 bits of zero); when clear, the non-traping underflow result value is the non-trapping re
(denorm, +0 or –0) specified in the IEEE standard.

59–58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by an IEEE fl
ing-point operate instruction when the instruction’s function field specifies dynamic mo
(/D). Assignments are:

57 Integer Overflow (IOV). A CVTGQ, CVTTQ, or CVTQL instruction overflowed the desti
nation precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result that differed
from the mathematically exact result.

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the destinat
exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the destinati
exponent.

53 Division by Zero (DZE). An attempt was made to perform a floatingdivide operation with a
divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic, conversi
or comparison operation, and one or more of the operand values were illegal.

63 62 60 0

S
U
M

O
V

N
E

U
N
F

O
V
F

D
Z
E

N
V

5859 57 56 55 54 53 52 51

RAZ/IGNN
V

50 49 48

D

D
Z
E
D

O
V
F
D

DYN
_RM

U
N
D
Z

U
N
F

61

D

N
E
D

I I I II
47 46

D
N
Z

N
O
D

D

DYN IEEE Rounding Mode Selected

00 Chopped rounding mode

01 Minus infinity
10 Normal rounding

11 Plus infinity
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FPCR is read from and written to the floating-point registers by the MT_FPCR and MF_FP
instructions respectively, which are described in Section 4.7.8.1.

FPCR and the instructions to access it are required for an implementation that supports
ing-point (see Section 4.7.8). On implementations that do not support floating-point,
instructions that access FPCR (MF_FPCR and MT_FPCR) take an Illegal Instruction Trap

Software Note:

Support for FPCR is required on a system that supports the OpenVMS operating sy
even if that system does not support floating-point.

4.7.8.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of floating-
instructions, accessing theFPCR must be synchronized with other floating-point instructions.
An EXCB instruction must be issued both prior to and after accessing the FPCR to ensur
the FPCR access is synchronized with the execution of previous and subsequent floating
instructions; otherwise synchronization is not ensured.

51 Overflow Disable (OVFD)†. Suppress OVF trap and place correct IEEEnontrapping result in
the destination register if the implementation is capable of producing correct IEEE nont
ping results.

50 Division by Zero Disable (DZED)†. Suppress DZE trap and place correct IEEEnontrapping
result in the destination register if the implementation is capable of producing correct IE
nontrapping results.

49 Invalid Operation Disable (INVD)†. Suppress INV trap and place correct IEEE nontrappin
result in the destination register if the implementation is capable of producing correct IE
nontrapping results.

48 Denormal Operands to Zero (DNZ)†. Treat all denormal operands as a signed zero value w
the same sign as the denormal.

47 Denormal Operand Exception Disable (DNOD)†. Suppress INV trap for valid operations tha
involve denormal operand values and place the correct IEEE nontrapping result in the desti-
nation register if the implementation is capable of processing the denormal operand. I
result of the operation underflows, the correct result is determined according to the valu
the UNDZ bit. If DNZ is set, DNOD has noeffect because a denormal operand is treated
having a zero value instead of a denormal value.

46–0 Reserved. Read as Zero. Ignored when written.

† Bit only has meaning for IEEE instructions whenany valid qualifier combination that includes
exception completion (/S) is specified.

Table 4–11 Floating-Point Control Register (FPCR) Bit Descriptions (Continued)

Bit Description (Meaning When Set)
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Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that o
floating-point instructions issued after the second EXCB are affected by and affect the
value of the FPCR. Issuing an EXCB followed by an MF_FPCR followed by another EX
ensures that the value read from the FPCR only records the exception information for floa
point instructions issued prior to the first EXCB.

Consider the following example:

ADDT/D
EXCB ;1
MT_FPCR F1,F1,F1
EXCB ;2
SUBT/D

Without the first EXCB, it is possible in an implementation for the ADDT/D to execute in p
allel with the MT_FPCR. Thus, it would be UNPREDICTABLE whether the ADDT/D wa
affected by the new rounding mode set by the MT_FPCR and whether fields cleared b
MT_FPCR in the exception summary were subsequently set by the ADDT/D.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to execu
parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether the SUBT/D w
affected by the new rounding mode set by the MT_FPCR and whether fields cleared b
MT_FPCR in the exception summary field of FPCR were previously set by the SUBT/D.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that
needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should be issued b
attempting to write the FPCR if the code expects changes to bits <59:52> not to have d
dencies with prior instructions. An EXCB should be issued after attempting to write the FP
if the code expects subsequent instructions to have dependencies with changes to bits <5

4.7.8.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

Software Note:

Compaq software should initialize FPCR<DYN> = 10 during program activation. Us
this default, a program can be coded to use only dynamic rounding without the nee
explicitly set the rounding mode to normal rounding in its start-up code.

Program activation normally clears all other fields in the FPCR. However, this beha
may depend on the operating system.

4.7.8.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR value
process does not affect the rounding behavior and exception summary of another process

The dynamic rounding mode put into effect by the programmer (or initialized by image ac
tion) is valid for the entirety of the program and remains in effect until subsequently chan
by the programmer or until image run-down occurs.
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Software Notes:

The following software notes apply to saving and restoring the FPCR:

1. The IEEE standard precludes saving and restoring the FPCR across subroutine ca

2. The IEEE standard requires that an implementation provide status flags that ar
whenever the corresponding conditions occur and are reset only at the user’s re
The exception bits in the FPCR do not satisfy that requirement, because they ca
spuriously set by instructions in a trap shadow that should not have been execute
the trap been taken synchronously.

The IEEE status flags can be provided by software (as software status bits) as follo

Trap interface software (usually the operating system) keeps a set of softwa
status bits and a mask of the traps that the user wants to receive. Code is gen
with the /SUI qualifiers. For a particular exception, the software clears
corresponding trap disable bit if either the corresponding software status bit is 0 o
if the user wants to receive such traps. If a trap occurs, the software locate
offending instruction in the trap shadow, simulates it and sets any of the softw
status bits that are appropriate. Then, the software either delivers the trap t
user program or disables further delivery of such traps. The user program
interface to this trap interface software to set or clear any of the software status
or to enable or disable floating-point traps. See Appendix B.

When such a scheme is being used, the trap disable bits and denormal contro
should be modified only by the trap interface software. If the disable bits are
spuriously cleared, unnecessary traps may occur. If they are spuriously set
software may fail to set the correct values in the software status bits. Programs s
call routines in the trap interface software to set or clearbits in the FPCR.

Compaq software may choose to initialize the software status bits and the trap di
bits to all 1’s to avoid any initial trapping when an exception condition first occurs.
software may choose to initialize those bits to all 0’s in order to provide a summar
the exception behavior when the program terminates.

In any event, the exception bits in the FPCR are still useful to programs. A prog
can clear all of the exception bits in the FPCR, execute a single floating-p
instruction, and then examine the status bits to determine which hardware-de
exceptions the instruction encountered. For this operation to work in the presen
various implementation options, the single instruction should be followed by a TRA
or EXCB instruction, and exception completion by the system software should s
and restore the FPCR registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of floa
point registers, they should not be used to manipulate FPCR values.

4.7.9 Floating-Point Instruction Function Field Format

The function code for IEEE and VAX floating-point instructions, bits <15..5>, contain t
function field. That field is shown in Figure 4–2 and described for IEEE floating-point in Ta
4–12 and for VAX floating-point in Table 4–13. Function codes for the independent floati
point instructions, those with opcode 1716, do not correspond to the function fields below.
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The function field contains subfields that specify the trapping and rounding modes tha
enabled for the instruction, the source datatype, and the instruction class.

Figure 4–2: Floating-Point Instruction Function Field

Table 4–12 IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning †

15–13 TRP Trapping modes:

Opcode Fa Fb Fc
T
R
P

R
N
D

S
R
C

F
N
C

31 25 20 15 12 10 8 4 0591113162126

Contents Meaning for Opcodes 1416 and 1616
000 Imprecise (default)
001 Underflow enable (/U) — floating-point output

Integer overflow enable (/V) — integer output
010 UNPREDICTABLE for opcode 1616 instructions

Reserved for opcode 1416 instructions
011 UNPREDICTABLE for opcode 1616 instructions

Reserved for opcode 1416 instructions
100 UNPREDICTABLE for opcode 1616 instructions

Reserved for opcode 1416 instructions
101 /SU — floating-point output

/SV — integer output
110 UNPREDICTABLE for opcode 1616 instructions

Reserved for opcode 1416 instructions
111 /SUI — floating-point output

/SVI — integer output
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12–11 RND Rounding modes:

10–9 SRC Source datatype:

8–5 FNC Instruction class:

† Encodings for the instructions CVTST and CVTST/S are exceptions to this table; use the encodings i
Appendix C.

Table 4–12 IEEE Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning †

Contents Meaning for Opcodes 1616 and 1416

00 Chopped (/C)
01 Minus infinity (/M)

10 Normal (default)
11 Dynamic (/D)

Contents Meaning for

Opcode 1616

Meaning for

Opcode 1416

00 S_floating S_floating
01 Reserved Reserved

10 T_floating T_floating
11 Q_fixed Reserved

Contents Meaning for

Opcode 1616

Meaning for

Opcode 1416

0000 ADDx Reserved

0001 SUBx Reserved
0010 MULx Reserved

0011 DIVx Reserved
0100 Reserved ITOFS/ITOFT

0101 CMPxEQ Reserved
0110 CMPxLT Reserved

0111 CMPxLE Reserved
1000 Reserved Reserved

1001 Reserved Reserved
1010 Reserved Reserved

1011 Reserved SQRTS/SQRTT
1100 CVTxS Reserved

1101 Reserved Reserved
1110 CVTxT Reserved

1111 CVTxQ Reserved
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Table 4–13 VAX Floating-Point Function Field Bit Summary

Bits Field Meaning

15–13 TRP Trapping modes:

Contents Meaning for Opcodes 1416 and 1516

000 Imprecise (default)

001 Underflow enable (/U) – floating-point output
Integer overflow enable (/V) – integer output

010 UNPREDICTABLE for opcode 1516 instructions

Reserved for opcode 1416 instructions

011 UNPREDICTABLE for opcode 1516 instructions
Reserved for opcode 1416 instructions

100 /S – Exception completion enable

101 /SU – floating-point output
/SV – integer output

110 UNPREDICTABLE for opcode 1516 instructions
Reserved for opcode 1416 instructions

111 UNPREDICTABLE for opcode 1516 instructions

Reserved for opcode 1416 instructions
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12–11 RND Rounding modes:

10–9 SRC Source datatype:†

8–5 FNC Instruction class:

† In the SRC field, both 00 and 01 specify the F_floating source datatype for opcode 1416.

Table 4–13 VAX Floating-Point Function Field Bit Summary (Continued)

Bits Field Meaning

Contents Meaning for Opcodes 1516 and 1416

00 Chopped (/C)
01 UNPREDICTABLE

10 Normal (default)
11 UNPREDICTABLE

Contents Meaning for Opcode 1516 Meaning for Opcode 1416

00 F_floating F_floating

01 D_floating F_floating
10 G_floating G_floating

11 Q_fixed Reserved

Contents Meaning for
Opcode 1516

Meaning for
Opcode 1416

0000 ADDx Reserved
0001 SUBx Reserved

0010 MULx Reserved
0011 DIVx Reserved

0100 CMPxUN ITOFF
0101 CMPxEQ Reserved

0110 CMPxLT Reserved
0111 CMPxLE Reserved

1000 Reserved Reserved
1001 Reserved Reserved

1010 Reserved SQRTF/SQRTG
1011 Reserved Reserved

1100 CVTxF Reserved
1101 CVTxD Reserved

1110 CVTxG Reserved
1111 CVTxQ Reserved
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4.7.10 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985
included by reference.

This standard leaves certain operations as implementation dependent. The remainder
section specifies the behavior of the Alpha architecture in these situations. Note tha
behavior may be supplied by either hardware (if the invalid operation disable, or INVD, b
implemented) or by software. See Sections 4.7.7.10, 4.7.7.11, 4.7.8, 4.7.8.3, and Append

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of a NaN or an Infinity value to an integer gives a result of zero.

Conversion of a NaN value from S_floating to T_floating gives a result identical to the in
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN.

Conversion of a NaN value from T_floating to S_floating gives a result identical to the in
except that the most significant fraction bit (bit 51) is set to indicate a quiet NaN, and
<28:0> are cleared to zero.

4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid opera
exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of its inputs are NaN value
result of the operation is the quiet NaN value that has the sign bit set to one, all exponen
set to one (to indicate a NaN), the most significant fraction bit set to one (to indicate tha
NaN is quiet), and all other fraction bits cleared to zero. This value is referred to as "the ca
ical quiet NaN."

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of its inputs are NaN va
the IEEE standard requires that quiet NaN values be propagated when possible. With the
architecture, the result of such an operation is a NaN generated according to the first of th
lowing rules that is applicable:

1. If the operand in the Fb register of the operation is aquiet NaN, that value is used as th
result.

2. If the operand in the Fb register of the operation is a signaling NaN, the result is
quiet NaN formed from the Fb value by setting the most significant fraction bit (bit 51)
to a one bit.

3. If the operation uses its Fa operand and the value in the Fa register is a quiet NaN
value is used as the result.

4. If the operation uses its Fa operand and the value in the Fa register is a signaling
the result is the quiet NaN formed from the Fa value by setting the most signific
fraction bit (bit 51) to a one bit.

5. The result is the canonical quiet NaN.
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4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and mem
They use the Memory instruction format. They do not interpret the bits moved in any way;
cifically, they do not trap on non-finite values.

The instructions are summarized in Table 4–14.

Table 4–14: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset

LDF Load F_floating VAX

LDG Load G_floating (Load D_floating) VAX

LDS Load S_floating (Load Longword Integer) Both

LDT Load T_floating (Load Quadword Integer) Both

STF Store F_floating VAX

STG Store G_floating (Store D_floating) VAX

STS Store S_floating (Store Longword Integer) Both

STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 1002

little_endian_data: va' ← va
ENDCASE

Fa ← (va')<15> || MAP_F((va')<14:7>) || (va')<6:0> ||
(va')<31:16> || 0<28:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the data is
naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an 1
register-format exponent according to Table 2–1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted
any memory management fault is reported for va (not va' ). The source operand is fetche
from memory and the bytes are reordered to conform to the F_floating register format.
result is then zero-extended in the low-order longword and written to register Fa.

LDF Fa.wf,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDF Load F_floating

None
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4.8.2 Load G_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}
Fa ← (va)<15:0> || (va)<31:16> || (va)<47:32> || (va)<63:48>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

LDG fetches a G_floating (or D_floating) datum from memory and writes it to register Fa
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. The source operand is fetched from memory, the bytes are reordered to conform
G_floating register format (also conforming to the D_floating register format), and the resu
then written to register Fa.

LDG Fa.wg,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDG Load G_floating (Load D_floating)

None
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4.8.3 Load S_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 1002

little_endian_data: va' ← va
ENDCASE

Fa ← (va')<31> || MAP_S((va')<30:23>) || (va')<22:0> || 0<28:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register Fa. If
data is not naturally aligned, an alignment exception is generated. The MAP_S function c
the 8-bit memory-format exponent to be expanded to an 11-bit register-format expo
according to Table 2–2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted
any memory management fault is reported for va (not va' ). The source operand is fetche
from memory, is zero-extended in the low-order longword, and then written to register
Longword integers in floating registers are stored in bits <63:62,58:29>, with bits <61:
ignored and zeros in bits <28:0>.

An LDS instruction for which the Fa operand is 31 is executed as a PREFETCH_M inst
tion, described in Section 4.11.8.

LDS Fa.ws,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDS Load S_floating (Load Longword Integer)

None
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4.8.4 Load T_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

Fa ← (va)<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register Fa
the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. The source operand is fetched from memory and written to register Fa.

An LDT instruction for which the Fa operand is 31 is executed as a PREFETCH_MEN inst
tion, described in Section 4.11.8.

LDT Fa.wt,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Read

Alignment
Translation Not Valid

LDT Load T_floating (Load Quadword Integer)

None
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4.8.5 Store F_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 1002

little_endian_data: va' ← va
ENDCASE

(va')<31:0> ← Fav<44:29> || Fav<63:62> || Fav<58:45>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally aligned
alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted
any memory management fault is reported for va (not va' ). The bits of the source operand ar
fetched from register Fa, the bits are reordered to conform to F_floating memory format
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No chec
is done.

STF Fa.rf,disp.ab(Rb.ab) !Memory format

Access Violation

Fault on Write

Alignment

Translation Not Valid

STF Store F_floating

None
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4.8.6 Store G_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}
(va)<63:0> ← Fav<15:0> || Fav<31:16> || Fav<47:32> || Fav<63:48>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not natur
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. The source operand is fetched from register Fa, the bytes are reordered to conform
G_floating memory format (also conforming to the D_floating memory format), and the re
is then written to memory.

STG Fa.rg,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STG Store G_floating (Store D_floating)

None
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4.8.7 Store S_floating

Format:

Operation:
va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va' ← va XOR 1002

little_endian_data: va' ← va
ENDCASE

(va')<31:0> ← Fav<63:62> || Fav<58:29>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data is not
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. For a big-endian longword access, va<2> (bit 2 of the virtual address) is inverted
any memory management fault is reported for va (not va' ). The bits of the source operand ar
fetched from register Fa, the bits are reordered to conform to S_floating memory format
the result is then written to memory. Bits <61:59> and <28:0> of Fa are ignored. No chec
is done.

STS Fa.rs,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STS Store S_floating (Store Longword Integer)

None
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4.8.8 Store T_floating

Format:

Operation:

va ← {Rbv + SEXT(disp)}
(va)<63:0> ← Fav<63:0>

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data is not
urally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit disp
ment. The source operand is fetched from register Fa and written to memory.

STT Fa.rt,disp.ab(Rb.ab) !Memory format

Access Violation
Fault on Write

Alignment
Translation Not Valid

STT Store T_floating (Store Quadword Integer)

None
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format instruct
test the value of a floating-point register and conditionally change the PC.

They do not interpret the bits tested in any way; specifically, they do not trap on non-fi
values.

The test is based on the sign bit and whether the rest of the register is all zero bits. All 64
of the register are tested. The test is independent of the format of the operand in the re
Both plus and minus zero are equal to zero. A non-zero value with a sign of zero is greate
zero. A non-zero value with a sign of one is less than zero. No reserved operand or non-inite
checking is done.

The floating-point branch operations are summarized in Table 4–15:

Table 4–15: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset

FBEQ Floating Branch Equal Both

FBGE Floating Branch Greater Than or Equal Both

FBGT Floating Branch Greater Than Both

FBLE Floating Branch Less Than or Equal Both

FBLT Floating Branch Less Than Both

FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch

Format:

Operation:
{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Fav, Condition_based_on_Opcode) THEN

PC ← va

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with the targe
tual address; otherwise, execution continues with the next sequential instruction.

The displacement is treated as a signed longword offset. This means it is shifted left two
(to address a longword boundary), sign-extended to 64 bits, and added to the updated
form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed displacement
a forward/backward branch distance of +/–1M instructions.

Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the res
the compare.

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as floating
minus zero, so it is treated as equal to zero by the branchinstructions. To branch prop-
erly on the largest negative integer, convert it to floating or move it to an integer re
ter and do an integer branch.

FBxx Fa.rq,disp.al !Branch format

None

FBEQ Floating Branch Equal

FBGE Floating Branch Greater Than orEqual
FBGT Floating Branch Greater Than

FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than

FBNE Floating Branch Not Equal

None
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4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert operations on
bit register values. The bit-operate instructions do not interpret the bits moved in any way;
cifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply, divide, c
pare, register move, squre root, and floating convert operations on 64-bit register values
of the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well a
rounding mode and trapping mode to be used. These instructions use the Floating-point
ate format.

The floating-point operate instructions are summarized in Table 4–16.

Table 4–16 Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Bit and FPCR Operations:

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both

Arithmetic Operations:

ADDF Add F_floating VAX

ADDG Add G_floating VAX

ADDS Add S_floating IEEE

ADDT Add T_floating IEEE
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Arithmetic Operations, Continued:

CMPGxx Compare G_floating VAX

CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX

CVTGD Convert G_floating to D_floating VAX

CVTGF Convert G_floating to F_floating VAX

CVTGQ Convert G_floating to Quadword VAX

CVTQF Convert Quadword to F_floating VAX

CVTQG Convert Quadword to G_floating VAX

CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTST Convert S_floating to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX

DIVG Divide G_floating VAX

DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

FTOIS Floating-point to integer register move, S_floating IEEE

FTOIT Floating-point to integer register move, T_floating IEEE

ITOFF Integer to floating-point register move, F_floating VAX

ITOFS Integer to floating-point register move, S_floating IEEE

ITOFT Integer to floating-point register move, T_floating IEEE

MULF Multiply F_floating VAX

MULG Multiply G_floating VAX

MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

Table 4–16 Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
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Arithmetic Operations, Continued:

SQRTF Square root F_floating VAX

SQRTG Square root G_floating VAX

SQRTS Square root S_floating IEEE

SQRTT Square root T_floating IEEE

SUBF Subtract F_floating VAX

SUBG Subtract G_floating VAX

SUBS Subtract S_floating IEEE

SUBT Subtract T_floating IEEE

Table 4–16 Floating-Point Operate Instructions Summary (Continued)

Mnemonic Operation Subset
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4.10.1 Copy Sign

Format:

Operation:
CASE

CPYS: Fc ← Fav<63> || Fbv<62:0>
CPYSN: Fc ← NOT(Fav<63>) || Fbv<62:0>
CPYSE: Fc ← Fav<63:52> || Fbv<51:0>

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case of CP
and concatenated with the exponent and fraction bits from Fb; the result is stored in Fc.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with the fr
bits from Fb; the result is stored in Fc.

No checking of the operands is performed.

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute v
can be done using CPYS F31,Fx,Fy. Floating-point negation can be done u
CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using CPYS

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

None

CPYS Copy Sign

CPYSE Copy Sign and Exponent
CPYSN Copy Sign Negate

None
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4.10.2 Convert Integer to Integer

Format:

Operation:
CASE

CVTQL: Fc ← Fbv<31:30> || 0<2:0> || Fbv<29:0> ||0<28:0>
CVTLQ: Fc ← SEXT(Fbv<63:62> || Fbv<58:29>)

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two’s-complement operand in register Fb is converted to a two’s-complement resul
written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of the o
and, with zero fill and optional integer overflow checking. Integer overflow occurs if Fb
outside the range –2**31..2**31–1. If integer overflow occurs, the truncated result is store
Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the operand,
sign extension.

CVTxy Fb.rq,Fc.wx !Floating-point Operate format

Integer Overflow, CVTQL only

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword

Trapping: Exception Completion (/S) (CVTQL only)
Integer Overflow Enable (/V) (CVTQL only)
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4.10.3 Floating-Point Conditional Move

Format:

Operation:
IF TEST(Fav, Condition_based_on_Opcode) THEN

Fc ← Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Fa is tested. If the specified relationship is true, register Fb is written to registe
otherwise, the move is suppressed and register Fc is unchanged. The test is based on t
bit and whether the rest of the register is all zero bits, as described for floating branches in
tion 4.9.

Notes:

Except that it is likely in many implementations to be substantially faster, the instruction:

FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

FByy Fa,label ! yy = NOT xx
CPYS Fb,Fb,Fc

label: ...

FCMOVxx Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

None

FCMOVEQ FCMOVE if Register Equal to Zero

FCMOVGE FCMOVE if Register Greater Than or Equal to Zero
FCMOVGT FCMOVE if Register Greater Than Zero

FCMOVLE FCMOVE if Register Less Than or Equal to Zero
FCMOVLT FCMOVE if Register Less Than Zero

FCMOVNE FCMOVE if Register Not Equal to Zero

None
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For example, a branchless sequence for:

F1=MAX(F1,F2)

is:

CMPxLT F1,F2,F3 ! F3=one if F1<F2; x=F/G/S/T
FCMOVNE F3,F2,F1 ! Move F2 to F1 if F1<F2
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4.10.4 Move from/to Floating-Point Control Register

Format:

Operation:
CASE

MF_FPCR: Fa ← FPCR
MT_FPCR: FPCR← Fav

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written
(MT_FPCR), a floating-point register. The floating-point register to be used is specified by
Fa, Fb, and Fc fields all pointing to the same floating-point register. If the Fa, Fb, and Fc f
do not all point to the same floating-point register, then it is UNPREDICTABLE which reg
ter is used. If the Fa, Fb, and Fc fields do not all point to the same floating-point register
resulting values in the Fc register and in FPCR are UNPREDICTABLE.

If the Fc f ield is F31 in the case of MT_FPCR, the resul t ing va lue in FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.8.

Mx_FPCR Fa.rq,Fa.rq,Fa.wq !Floating-point Operate format

None

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

None
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4.10.5 VAX Floating Add

Format:

Operation:
Fc ← Fav + Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding ra
checked for overflow/underflow. The single-precision operation on canonical single-prec
values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs. See Section 4.7.7 for details of the stored result on overflow or underflow.

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

ADDF Add F_floating
ADDG Add G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
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4.10.6 IEEE Floating Add

Format:

Operation:
Fc ← Fav + Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision and then the corresponding range is check
overflow/underflow. The single-precision operation on canonical single-precision values
duces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

ADDS Add S_floating

ADDT Add T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
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4.10.7 VAX Floating Compare

Format:

Operation:
IF Fav SIGNED_RELATION Fbv THEN

Fc ← 4000 0000 0000 0000 16

ELSE
Fc ← 0000 0000 0000 0000 16

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualif
true, a non-zero floating value (0.5) is written to register Fc; otherwise, a true zero is writte
Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive rela
are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore,only
the less-than operations are included.

CMPGyy Fa.rg,Fb.rg,Fc.wq !Floating-point Operate format

Invalid Operation

CMPGEQ Compare G_floating Equal
CMPGLE Compare G_floating Less Than or Equal

CMPGLT Compare G_floating Less Than

Trapping: Exception Completion (/S)
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4.10.8 IEEE Floating Compare

Format:

Operation:
IF Fav SIGNED_RELATION Fbv THEN

Fc ← 4000 0000 0000 0000 16

ELSE
Fc ← 0000 0000 0000 0000 16

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the qualif
true, a non-zero floating value (2.0) is written to register Fc; otherwise, a true zero is writte
Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive relation
possible: less than, equal, greater than, and unordered. The unordered relation is true if
both operands are NaN. (This behavior may be provided by an operating system (OS) co
tion handler, because NaNs may trap.) Comparisons ignore the sign of zero, so +0 = –0.

Comparisons with plus and minus infinity execute normally and do not take an invalid opera
trap.

Notes:

• In order to use CMPTxx with exception completion handling, it is necessary to spe
the /SU IEEE trap mode, even though an underflow trap is not possible.

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Than or Equal A,B is the same as Compare Greater Than or Equal B,A. Therefore,only
the less-than operations are included.

CMPTyy Fa.rx,Fb.rx,Fc.wq !Floating-point Operate format

Invalid Operation

CMPTEQ Compare T_floating Equal
CMPTLE Compare T_floating Less Than or Equal

CMPTLT Compare T_floating Less Than
CMPTUN Compare T_floating Unordered

Trapping: Exception Completion (/SU)
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4.10.9 Convert VAX Floating to Integer

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The floating operand in register Fb is converted to a two’s-complement quadword numbe
written to register Fc. The conversion aligns the operand fraction with the binary point ju
the right of bit zero, rounds as specified, and complements the result if negative. Regist
must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs.

See Section 4.7.7 for details of the stored result on integer overflow.

CVTGQ Fb.rx,Fc.wq !Floating-point Operate format

Invalid Operation
Integer Overflow

CVTGQ Convert G_floating to Quadword

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Integer Overflow Enable (/V)
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4.10.10 Convert Integer to VAX Floating

Format:

Operation:
Fc ← {conversion of Fbv<63:0>}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two’s-complement quadword operand in register Fb is converted to a single- or do
precision floating result and written to register Fc. The conversion complements a numb
negative, normalizes it, rounds to the target precision, and packs the result with an appro
sign and exponent field. Register Fa must be F31.

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

None

CVTQF Convert Quadword to F_floating

CVTQG Convert Quadword to G_floating

Rounding: Chopped (/C)
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4.10.11 Convert VAX Floating to VAX Floating

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The floating operand in register Fb is converted to the specified alternate floating forma
written to register Fc. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

Notes:

• The only arithmetic operations on D_floating values are conversions to and fro
G_floating. The conversion to G_floating rounds or chops as specified, removing t
fraction bits. The conversion from G_floating to D_floating adds three low-order ze
as fraction bits, then the 8-bit exponent range is checked for overflow/underflow.

• The conversion from G_floating to F_floating rounds or chops to single precision, t
the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F_floating to G_floating is required, since F_floating values
always stored in registers as equivalent G_floating values.

CVTxy Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

CVTDG Convert D_floating to G_floating
CVTGD Convert G_floating to D_floating

CVTGF Convert G_floating to F_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
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4.10.12 Convert IEEE Floating to Integer

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The floating operand in register Fb is converted to a two’s-complement number and writt
register Fc. The conversion aligns the operand fraction with the binary point just to the rig
bit zero, rounds as specified, and complements the result if negative. Register Fa must be

See Section 4.7.7 for details of the stored result on integer overflow and inexact result.

CVTTQ Fb.rx,Fc.wq !Floating-point Operate format

Invalid Operation
Inexact Result

Integer Overflow

CVTTQ Convert T_floating to Quadword

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Integer Overflow Enable (/V)

Inexact Enable (/I)
4–116 Common Architecture (I)



ision
tive,
n and

ary
4.10.13 Convert Integer to IEEE Floating

Format:

Operation:
Fc ← {conversion of Fbv<63:0>}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The two’s-complement operand in register Fb is converted to a single- or double-prec
floating result and written to register Fc. The conversion complements a number if nega
normalizes it, rounds to the target precision, and packs the result with an appropriate sig
exponent field. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on inexact result.

Notes:

• In order to use CVTQS or CVTQT with exception completion handling, it is necess
to specify the /SUI IEEE trap mode, even though an underflow trap is not possible.

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

Inexact Result

CVTQS Convert Quadword to S_floating

CVTQT Convert Quadword to T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Inexact Enable (/I)
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4.10.14 Convert IEEE S_floating to IEEE T_floating

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The S_floating operand in register Fb is converted to T_floating format and written to reg
Fc. Register Fa must be F31.

Notes:

• The conversion from S_floating to T_floating is exact. No rounding occurs. No und
flow, overflow, or inexact result can occur. In fact, the conversion for finite values is
identity transformation.

• A trap handler can convert an S_floating denormal value into the correspon
T_floating finite value by adding 896 to the exponent and normalizing.

CVTST Fb.rx,Fc.wx ! Floating-point Operate format

Invalid Operation

CVTST Convert S_floating to T_floating

Trapping: Exception Completion (/S)
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4.10.15 Convert IEEE T_floating to IEEE S_floating

Format:

Operation:
Fc ← {conversion of Fbv}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The T_floating operand in register Fb is converted to S_floating format and written to reg
Fc. Register Fa must be F31.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

CVTTS Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

CVTTS Convert T_floating to S_floating

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)

Inexact Enable (/I)
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4.10.16 VAX Floating Divide

Format:

Operation:
Fc ← Fav / Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb an
quotient is written to register Fc.

The quotient is rounded or chopped to the specified precision and then the corresponding
is checked for overflow/underflow. The single-precision operation on canonical single-p
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are UNPREDICTABLE
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Division by Zero

Overflow
Underflow

DIVF Divide F_floating

DIVG Divide G_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
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4.10.17 IEEE Floating Divide

Format:

Operation:
Fc ← Fav / Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb an
quotient is written to register Fc.

The quotient is rounded to the specified precision and then the corresponding range is ch
for overflow/underflow. The single-precision operation on canonical single-precision va
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Division by Zero

Overflow
Underflow

Inexact Result

DIVS Divide S_floating
DIVT Divide T_floating

Rounding: Dynamic (/D)

Minus infinity (/M)
Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)

Inexact Enable (/I)
Instruction Descriptions (I)4–121



not

an be
4.10.18 Floating-Point Register to Integer Register Move

Format:

Operation:
CASE:

FTOIS:
Rc<63:32> ← SEXT(Fav<63>)
Rc<31:0> ← Fav<63:62> || Fav <58:29>

FTOIT:
Rc <- Fav

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Data in a floating-point register file is moved to an integer register file.

The Fb field must be F31.

The instructions do not interpret bits in the register files; specifically, the instructions do
trap on non-finite values. Also, the instructions do not access memory.

FTOIS is exactly equivalent to the sequence:

STS
LDL

FTOIT is exactly equivalent to the sequence:

STT
LDQ

Software Note:

FTOIS and FTOIT are no slower than the corresponding store/load sequence and c
significantly faster.

FTOIx Fa.rq,Rc.wq !Floating-point Operate format

None

FTOIS Floating-point to Integer Register Move, S_floating

FTOIT Floating-point to Integer Register Move, T_floating

None
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Implementation Note:

• The FTOIS and FTOIT instructions are supported in hardware on Alpha impleme
tions for which the AMASK instruction clears feature mask bit 1. FTOIS and FTO
are supported with software emulation in Alpha implementations for which AMAS
does not clear feature mask bit 1. Software emulation of FTOIS and FTOIT is sig
cantly slower than hardware support.
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4.10.19 Integer Register to Floating-Point Register Move

Format:

Operation:
CASE:

ITOFF:
Fc ← Rav<31> || MAP_F(Rav<30:23> || Rav<22:0> || 0<28:0>

ITOFS:
Fc ← Rav<31> || MAP_S(Rav<30:23> || Rav<22:0> || 0<28:0>

ITOFT:
Fc <- Rav

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Data in an integer register file is moved to a floating-point register file.

The Rb field must be R31.

The instructions do not interpret bits in the register files; specifically, the instructions do
trap on non-finite values. Also, the instructions do not access memory.

ITOFF is equivalent to the following sequence, except that the word swapping that LDF
mally performs is not performed by ITOFF:

STL
LDF

ITOFS is exactly equivalent to the sequence:

STL
LDS

ITOFT is exactly equivalent to the sequence:

STQ
LDT

ITOFx Ra.rq,Fc.wq !Floating-point Operate format

None

ITOFF Integer to Floating-point Register Move, F_floating

ITOFS Integer to Floating-point Register Move, S_floating
ITOFT Integer to Floating-point Register Move, T_floating

None
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Software Note:

ITOFF, ITOFS, and ITOFT are no slower than the corresponding store/load sequenc
can be significantly faster.

Implementation Note:

• The ITOFF, ITOFS, and ITOFT instructions are supported in hardware on Alpha im
mentations for which the AMASK instruction clears feature mask bit 1. ITOFF, ITOF
and ITOFT are supported with software emulation in Alpha implementations for wh
AMASK does not clear feature mask bit 1. Software emulation of ITOFF, ITOFS, a
ITOFT is significantly slower than hardware support.
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4.10.20 VAX Floating Multiply

Format:

Operation:
Fc ← Fav * Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in registe
and the product is written to register Fc.

The product is rounded or chopped to the specified precision and then the corresponding
is checked for overflow/underflow. The single-precision operation on canonical single-p
sion values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

MULF Multiply F_floating
MULG Multiply G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
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4.10.21 IEEE Floating Multiply

Format:

Operation:
Fc ← Fav * Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in registe
and the product is written to register Fc.

The product is rounded to the specified precision and then the corresponding range is ch
for overflow/underflow. The single-precision operation on canonical single-precision va
produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

MULS Multiply S_floating

MULT Multiply T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
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4.10.22 VAX Floating Square Root

Format:

Operation:
Fc ← Fb ** (1/2)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (Th
field of this instruction must be set to a value of F31.)

The result is rounded or chopped to the specified precision. The single-precision operatio
canonical single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the operand has exp=0 and is not a true zero (that is,
reserved operands and dirty zeros trap). An invalid operation is signaled if the sign of the
and is negative.

The contents of the Fc are UNPREDICTABLE if an invalid operation is signaled.

Notes:

• Floating-point overflow and underflow are not possible for square root operation.
underflow enable qualifier is ignored.

Implementation Notes:

• The SQRTF and SQRTG instructions are supported in hardware on Alpha implem
tions for which the AMASK instruction clears feature mask bit 1. SQRTF and SQR
are supported with software emulation in Alpha implementations for which AMAS
does not clear feature mask bit 1. Software emulation of SQRTF and SQRTG is sig
cantly slower than hardware support.

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Invalid operation

SQRTF Square root F_floating

SQRTG Square root G_floating

Rounding: Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U) — See Notes below
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4.10.23 IEEE Floating Square Root

Format:

Operation:
Fc ← Fb ** (1/2)

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The square root of the floating-point operand in register Fb is written to register Fc. (Th
field of this instruction must be set to a value of F31.) The result is rounded to the spec
precision. The single-precision operation on a canonical single-precision value produ
canonical single-precision result. An invalid operation is signaled if the sign of the operand is
less than zero. However, SQRT (–0) produces a result of –0.

Notes:

• Floating-point overflow and underflow are not possible for square root operation.
underflow enable qualifier is ignored.

Implementation Notes:

• The SQRTS and SQRTT instructions are supported in hardware on Alpha implem
tions for which the AMASK instruction clears feature mask bit 1. SQRTS and SQRT
are supported with software emulation in Alpha implementations for which AMAS
does not clear feature mask bit 1. Software emulation of SQRTS and SQRTT is sig
cantly slower than hardware support.

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Inexact result
Invalid operation

SQRTS Square root S_floating

SQRTT Square root T_floating

Rounding: Chopped (/C)
Dynamic (/D)

Minus infinity (/M)
Trapping: Inexact Enable (/I)

Exception Completion (/S)
Underflow Enable (/U) — See Notes below
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4.10.24 VAX Floating Subtract

Format:

Operation:
Fc ← Fav - Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in regis
and the difference is written to register Fc.

The difference is rounded or chopped to the specified precision and then the correspo
range is checked for overflow/underflow. The single-precision operation on canonical sin
precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (th
VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABL
this occurs.

See Section 4.7.7 for details of the stored result on overflow or underflow.

SUBx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow

SUBF Subtract F_floating
SUBG Subtract G_floating

Rounding: Chopped (/C)

Trapping: Exception Completion (/S)
Underflow Enable (/U)
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4.10.25 IEEE Floating Subtract

Format:

Operation:
Fc ← Fav - Fbv

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in regis
and the difference is written to register Fc.

The difference is rounded to the specified precision and then the corresponding ran
checked for overflow/underflow. The single-precision operation on canonical single-prec
values produces a canonical single-precision result.

See Section 4.7.7 for details of the stored result on overflow, underflow, or inexact result.

SUBx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Invalid Operation
Overflow

Underflow
Inexact Result

SUBS Subtract S_floating

SUBT Subtract T_floating

Rounding: Dynamic (/D)
Minus infinity (/M)

Chopped (/C)
Trapping: Exception Completion (/S)

Underflow Enable (/U)
Inexact Enable (/I)
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4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4–17.

Table 4–17: Miscellaneous Instructions Summary

Mnemonic Operation

AMASK Architecture Mask

CALL_PAL Call Privileged Architecture Library Routine

ECB Evict Cache Block

EXCB Exception Barrier

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

IMPLVER Implementation Version

MB Memory Barrier

PREFETCH Normal prefetch

PREFETCH_EN Prefetch Memory Data, Evict Next

PREFETCH_M Prefetch Memory Data with Modify Intent

PREFETCH_MEN Prefetch Memory Data with Modify Intent, Evict Next

RPCC Read Processor Cycle Counter

TRAPB Trap Barrier

WH64 Write Hint — 64 Bytes

WH64EN Write Hint — 64 Bytes Evict Next

WMB Write Memory Barrier
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4.11.1 Architecture Mask

Format:

Operation:
Rc ← Rbv AND {NOT CPU_feature_mask}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Rbv represents a mask of the requested architectural extensions. Bits are cleared that
spond to architectural extensions that are present. Reserved bits and bits that corresp
absent extensions are copied unchanged. In either case, the result is placed in Rc. If the
is zero, all requested features are present.

Software may specify an Rbv of all 1’s to determine the complete set of architectural ex
sions implemented by a processor. Assigned bit definitions are located in Appendix D.

Ra must be R31 or the result in Rc is UNPREDICTABLE and it is UNPREDICTABL
whether an exception is signaled.

Software Note:

Use this instruction to make instruction-set decisions; use IMPLVER to make code-tu
decisions.

Implementation Note:

Instruction encoding is implemented as follows:

• On 21064/21064A/21066/21068/21066A (EV4/EV45/LCA/LCA45 chips), AMAS
copies Rbv to Rc.

• On 21164 (EV5), AMASK copies Rbv to Rc.

AMASK Rb.rq,Rc.wq !Operate format

AMASK #b.ib,Rc.wq !Operate format

None

AMASK Architecture Mask

None
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• On 21164A (EV56), 21164PC (PCA56), 21264/EV6x, and 21364/EV7x, AMASK cor-
rectly indicates support for architecture extensions by copying Rbv to Rc and clea
appropriate bits.

Bits are assigned and placed in Appendix D for architecture extensions as ECOs for
extensions are passed. The low 8 bits are reserved for standard architecture extens
they can be tested with a literal; application-specific extensions are assigned from
upward.
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4.11.2 Call Privileged Architecture Library

Format:

Operation:
{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The CALL_PAL instruction is not issued until all previous instructions are guaranteed to c
plete without exceptions. If an exception occurs, the continuation PC in the exception s
frame points to the CALL_PAL instruction. The CALL_PAL instruction causes a trap
PALcode.

CALL_PAL fnc.ir !PAL format

None

CALL_PAL Call Privileged Architecture Library

None
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4.11.3 Evict Data Cache Block

Format:

Operation:
va ← Rbv

IF { va maps to memory space } THEN
Prepare to reuse cache resources that are occupied by the
the addressed byte.

END

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The ECB instruction provides a hint that the addressed location will not be referenced ag
the near future, so any cache space it occupies should be made available to cache othe
ory locations. If the cache copy of the location is dirty, the processor may start writing it b
if the cache has multiple sets, the processor may arrange for the set containing the add
byte to be the next set allocated.

The ECB instruction does not generate exceptions; if it encounters data address trans
errors (access violation, translation not valid, and so forth) during execution, it is treated
NOP.

If the address maps to non-memory-like (I/O) space, ECB is treated as a NOP.

Software Note:

• ECB makes a particular cache location available for reuse by evicting and invalida
its contents. The intent is to give software more control over cache allocation polic
set-associative caches so that "useful" blocks can be retained in the cache.

• ECB is a performance hint — it does not serialize the eviction of the addressed c
block with any preceding or following memory operation.

• ECB is not intended for flushing caches prior to power failure or low power opera
— CFLUSH is intended for that purpose.

ECB (Rb.ab) ! Memory format

None

ECB Evict Cache Block

None
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Implementation Note:

Implementations with set-associative caches are encouraged to update their allo
pointer so that the next D-stream reference that misses the cache and maps to this
allocated into the vacated set.
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4.11.4 Exception Barrier

Format:

Operation:
{EXCB does not appear to issue until completion of all

exceptions and dependencies on the Floating-point Control
Register (FPCR) from prior instructions.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The EXCB instruction allows software to guarantee that in a pipelined implementation, all
vious instructions have completed any behavior related to exceptions or rounding modes b
any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are guaranteed to
been made, whether or not there is an associated exception. Also, all potential floating-
exceptions and integer overflow exceptions are guaranteed to have been taken. EXCB is
superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB instruction a
like a fault. In this case, the value of the Program Counter reported to the program may b
address of the EXCB instruction (or earlier) but is never the address of an instruction fol
ing the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.8.1.

EXCB ! Mfc format

None

EXCB Exception Barrier

None
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4.11.5 Prefetch Data

Format:

Operation:
va ← {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The virtual address is given by Rbv. This address is used to designate an aligned 512
block of data. An implementation may optionally attempt to move all or part of this block (o
larger surrounding block) of data to a part of the memory hierarchy that has faster-acce
anticipation of subsequent Load or Store instructions that access that data.

Implementation Note:

FETCHx is intended to help software overlap memory latencies when such latencies a
the order of at least 100 cycles. FETCHx is unlikely to help (or be implemented)
significantly shorter memory latencies. Code scheduling and cache-line prefetching
Section A.3.6) should be used to overlap such shorter latencies.

Existing Alpha implementations (through the 21364) have memory latencies that are
short to profitably implement FETCHx. Therefore, FETCHx does not improve mem
performance in existing Alpha implementations.

The FETCH instruction is a hint to the implementation that may allow faster execution.
implementation is free to ignore the hint. If prefetching is done in an implementation, the o
of fetch within the designated block is UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to some o
of the data block are anticipated.

FETCHx 0(Rb.ab) !Memory format

None

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

None
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No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_M)
uses the same address would fault, the prefetch request is ignored. It is UNPREDICTA
whether a TB-miss fault is ever taken by FETCHx.

Implementation Note:

Implementations are encouraged to take the TB-miss fault, then continue the prefetch
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4.11.6 Implementation Version

Format:

Operation:
Rc ← value, which is defined in Appendix D

Exceptions:

Instruction mnemonics:

Description:

A small integer is placed in Rc that specifies the major implementation version of the pro
sor on which it is executed. This information can be used to make code-scheduling or tu
decisions, or the information can be used to branch to different pieces of code optimize
different implementations.

Notes:

• The value returned by IMPLVER does not identify the particular processor ty
Rather, it identifies a group of processors that can be treated similarly for perform
characteristics such as scheduling. Ra must be R31 and Rb must be the literal #1
result in Rc is UNPREDICTABLE and it is UNPREDICTABLE whether an exceptio
is signaled.

Software Note:

Use this instruction to make code-tuning decisions; use AMASK to make instruction
decisions.

IMPLVER Rc !Operate format

None

IMPLVER Implementation Version
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4.11.7 Memory Barrier

Format:

Operation:
{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor systems

In the absence of an MB instruction, loads and stores to different physical locations
allowed to complete out of order on the issuing processor as observed by other processo
MB instruction allows memoryaccesses to be serialized on theissuing processor as observe
by other processors. See Section 5.6 for details on using the MB instruction to serialize
accesses. Section 5.6 also details coordinating memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the progre
memory operations.

MB !Memory format

None

MB Memory Barrier

None
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4.11.8 Prefetch Memory Data

Format:

Operation:
CASE

PREFETCH: LDL R31, disp (Rb)
PREFETCH_EN: LDQ R31, disp (Rb)
PREFETCH_M: LDS F31, disp (Rb)
PREFETCH_MEN: LDT F31, disp (Rb)

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

A prefetch is a hint to the processor that a cache block might be used in the future and s
be brought into the cache now.

A prefetch with modify intent is a hint to the processor that a cache block might be modifie
the future and should be brought into the cache now with write permission.

A prefetch, evict next, is a hint to the processor that a cache block should be brought int
cache now and marked for preferential eviction on future cache fills. Such a prefetch is pa
larly useful with an associative cache, to prefetch data that is not repeatedly referenced —
that has a short temporal lifetime in the cache. If such a cache block might require write
mission, the prefetch is also specified with modify intent.

PREFETCHx disp.ab(Rb.ab) !Memory format

None

PREFETCH Normal Prefetch

PREFETCH_EN Prefetch, Evict Next

PREFETCH_M Prefetch with Modify Intent

PREFETCH_MEN Prefetch with Modify Intent, Evict Next

None
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The PREFETCHx instructions perform different types of cacheblock prefetches, as follows:

Implementation Notes:

• PREFETCH and PREFETCH_EN onlyaffect performance and do not modify any
architecturally visible state.

• PREFETCH_M and PREFETCH_MEN only affect performance except for poss
signalling a floating-point disabled exception or for their effects on LDx_L/STx_
sequences.

• PREFETCH_M and PREFETCH_MEN must not trap on processors that choose n
implement floating-point support. On processors that do implement floating-point s
port, it is UNPREDICTABLE whether PREFETCH_M and PREFETCH_MEN ca
generate a floating-point disable exception.

• Eviction policy is implementation-dependent and is described in the hardwarereference
manual for the particular implementation. Consult Chapter 2 in the appropriate ma
available at ftp.compaq.com/pub/products/alphaCPUdocs.

Instruction Operation

PREFETCH If possible, the addressed cache block is allocated to the Dcache withread
permission.

PREFETCH_EN Prefetch the addressed cache block and mark it for preferential eviction on
future cache fills.

PREFETCH_M If possible, the addressed cache block is allocated to the Dcache with w
permission.

PREFETCH_MEN Prefetch the addressed cache block with modify intent and mark it for pre
ential eviction on future cache fills.
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4.11.9 Read Processor Cycle Counter

Format:

Operation:
{see programming note for use of Rb}
Ra ← {cycle counter}

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

Register Ra is written with the processor cycle counter (PCC). The PCC register consi
two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an unsigned, wrapping coun
PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are operating-system de
dent in their implementation.

The RPCC instruction is not issued until all previous instructions that generate a result i
have completed.

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle
that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT. The follow
example computes that cycle count, modulo 2**32, and returns the count value in R0. N
the care taken not to cause an unwanted sign extension.

RPCC R0 ; Read the process cycle counter
SLL R0, #32, R1 ; Line up the offset and count fields
ADDQ R0, R1, R0 ; Do add
SRL R0, #32, R0 ; Zero extend the count to 64 bits

RPCC Ra.wq, Rb.rq !Memory format

None

RPCC Read Processor Cycle Counter

None
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The following example code returns the value ofPCC_CNT in R0<31:0> and all zeros in
R0<63:32>.

RPCC R0
ZAPNOT R0,#15,R0

RPCC does not read the Processor Cycle Counter (PCC) any earlier than the generatio
result by the nearest preceding instruction that modifies register Rb. If R31 is used as th
operand, the PCC need not wait for any preceding computation.

Programming Note

See Section E.1.4 for information about RPCC and various Alpha processor implementati
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4.11.10 Trap Barrier

Format:

Operation:
{TRAPB does not appear to issue until all prior instructions

are guaranteed to complete without causing any arithmetic traps}.

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The TRAPB instruction allows software to guarantee that in a pipelined implementation
previous arithmetic instructions will complete without incurring any arithmetic traps before
TRAPB or any instructions after it are issued.

If an arithmetic exception occurs for which trapping is enabled, the TRAPB instruction
like a fault. In this case, the value of the Program Counter reported to the program may b
address of the TRAPB instruction (or earlier) but is never the address of the instruction fo
ing the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for each exc
tion domain, to isolate the address range in which an exception occurs. If the address
instruction following the TRAPB were allowed, there would be no way to distinguish
exception in the address range preceding a label from an exception in the range that inc
the label along with the faulting instruction and a branch back to the label. This case a
when the code is not following exception completion rules but is inserting TRAPB instr
tions to isolate exceptions to the proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see Section 4.11.4.

TRAPB !Memory format

None

TRAPB Trap Barrier

None
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4.11.11 Write Hint

Format:

Operation:
va ← Rbv
IF { va maps to memory space } THEN

Write UNPREDICTABLE data to the aligned 64-byte region
containing the addressed byte.

END

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The WH64x instruction provides a hint that the current contents of the aligned 64-byte b
containing the addressed byte will never be read again but will be overwritten in the
future.

The processor may allocate cache resources to hold the block without reading its previou
tents from memory; the contents of the block may be set to any value that does not introd
security hole, as described in Section 1.6.2.

The WH64x instruction does not generate exceptions; if it encounters data address trans
errors (access violation, translation not valid, and so forth), it is treated as a NOP.

If the address maps to non-memory-like (I/O) space, WH64x is treated as a NOP. If WH64x is
not supported on a particular Alpha implementation, it is treated as a NOP.

WH64EN is a hint to the processor that the corresponding 64-byte cache block should h
short temporal lifetime in the cache and can be marked for preferential eviction in future c
fills.

Software Note:

This instruction is a performance hint that should be used when writing a large contin
region of memory. The intended code sequence consists of one WH64x instruction
followed by eight quadword stores for each aligned 64-byte region to be written.

WH64x (Rb.ab) ! Mfc format

None

WH64 Write Hint - 64 Bytes

WH64EN Write Hint - 64 Bytes Evict Next

None
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Implementation Notes:

• If the 64-byte region containing the addressed byte is not in the data cache, implem
tions are encouraged to allocate the region in the data cache without first reading it
memory. However, if any of the addressed bytes exist in the caches of other proce
they must be kept coherent with respect to those processors.

• Processors with cache blocks smaller than 64 bytes are encouraged to imple
WH64x as defined. However, they may instead implement the instruction by alloca
a smaller aligned cache block for write access or by treating WH64x as a NOP.

• Processors with cache blocks larger than 64 bytes are also encouraged to impl
WH64x as defined. However, they may instead treat WH64x as a NOP.

• WH64EN is implemented as a NOP on processors previous to the 21264/EV6x
implemented as WH64 on 21264/EV6x processors.

• WH64 and WH64EN differ only in their eviction policy, and that policy is implementa-
tion-dependent. The eviction policy for particular implementations is described in
appropriate hardware reference manual, which can be found atftp.com-
paq.com/pub/products/alphaCPUdocs.
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4.11.12 Write Memory Barrier

Format:

Operation:
{ Guarantee that
{ All preceding stores that access memory-like
{ regions are ordered before any subsequent stores
{ that access memory-like regions and
{ All preceding stores that access non-memory-like
{ regions are ordered before any subsequent stores
{ that access non-memory-like regions.

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The WMB instruction provides a way for software to control write buffers. It guarantees
writes preceding the WMB are not aggregated with writes that follow the WMB.

WMB guarantees that writes to memory-like regions that precede the WMB are ordered b
writes to memory-like regions that follow the WMB. Similarly, WMB guarantees that writes
non-memory-like regions that precede the WMB are ordered before writes to non-memory
regions that follow the WMB. It does not order writes to memory-like regions relative to wr
to non-memory-like regions.

WMB causes writes that are contained in buffers to be completed without unnecessary de
is particularly suited for batching writes to high-performance I/O devices.

WMB prevents writes that precede the WMB from being merged with writes that follow
WMB. In particular, two writes that access the same location and are separated by a W
cause two distinct and ordered write events.

In the absence of a WMB (or IMB or MB) instruction, stores to memory-like or non-memo
like regions can be aggregated and/or buffered and completed in any order.

WMB !Memory format

None

WMB Write Memory Barrier

None
4–150 Common Architecture (I)



ms

em-
can
d or

f data
wing

sec-
cond

after
are

iable
non-
cific
The WMB instruction is the preferred method for providing high-bandwidth write strea
where order must be preserved between writes in that stream.

Notes:

WMB is useful for ordering streams of writes to a non-memory-like region, such as to m
ory-mapped control registers or to a graphics frame buffer. While both MB and WMB
ensure that writes to a non-memory-like region occur in order, without being aggregate
reordered, the WMB is usually faster and is never slower than MB.

WMB can correctly order streams of writes in programs that operate on shared sections o
if the data in those sections are protected by a classic semaphore protocol. The follo
example illustrates such a protocol:

The example above is similar to that in Section 5.5.5, except a WMB is substituted for the
ond MB in the lock-update-release sequence. It is correct to substitute WMB for the se
MB only if:

1. All data locations that are read or written in the critical section are accessed only
acquiring a software lock by using lock_variable (and before releasing the softw
lock).

2. For each readu of shared data in the critical section, there is a writev such that:

a. v is BEFORE the WMB.

b. v follows u in processor issue sequence (see Section 5.6.1.1).

c. v either depends onu (see Section 5.6.1.7) or overlapsu (see Section 5.6.1), or
both.

3. Both lock_variable and all the shared data are in memory-like regions (or lock_var
and all the shared data are in non-memory-like regions). If the lock_variable is in a
memory-like region, the atomic lock protocol must use some implementation-spe
hardware support.

The substitution of a WMB for the second MB is usually faster and never slower.

Processor i Processor j

<Acquire lock>

MB

<Read and write data in shared section>

WMB

<Release lock> ⇒ <Acquire lock>

MB

<Read and write data in shared section>

WMB
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4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4–18 for use in translated VAX code. Th
instructions are intended to preserve customer assumptions about VAX instruction atomic
porting code from VAX to Alpha.

These instructions should be generated only by the VAX-to-Alpha software translator;
should never be used in native Alpha code. Any native code that uses them may cease to

Table 4–18: VAX Compatibility Instructions Summary

Mnemonic Operation

RC Read and Clear

RS Read and Set
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4.12.1 VAX Compatibility Instructions

Format:

Operation:
Ra ← intr_flag
intr_flag ← 0 !RC
intr_flag ← 1 !RS

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha instruc
between RS and RC (corresponding to a single VAX instruction) was executed without i
ruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor encount
CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when that processor
cutes an LDx_L or STx_C instruction. A processor’s intr_flag is not affected when t
processor executes a normal load or store instruction.

A processor’s intr_flag is not affected when that processor executes a taken branch.

Notes:

• These instructions are intendedonly for use by the VAX-to-Alpha software translator
they should never be used by native code.

Rx Ra.wq !Memory format

None

RC Read and Clear

RS Read and Set

None
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4.13 Multimedia (Graphics and Video) Support

Alpha provides the following instructions that enhance support for graphics and vi
algorithms:

The MIN and MAX instructions allow the clamping of pixel values to maximum values th
are allowed in different standards and stages of the CODECs.

The PERR instruction accelerates the macroblock search in motion estimation.

The pack and unpack (PKxB and UNPKBx) instructions accelerate the blocking of interle
YUV coordinates for processing by the CODEC.

Implementation Note:

Alpha processors for which the AMASK instruction clears feature mask bit 8 implement th
instructions. Those processors for which AMASK does not clear feature mask bit 8 can ta
Illegal Instruction trap, and software can emulate their function, if required.

Mnemonic Operation

MINUB8 Vector Unsigned Byte Minimum

MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum

MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum

MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum

MAXSW4 Vector Signed Word Maximum

PERR Pixel Error

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words
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4.13.1 Byte and Word Minimum and Maximum

Format:

Operation:
CASE

MINUB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MINU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MINSB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MINS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MINUW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MINU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

MINSW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MINS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

MAXUB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MAXU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MAXSB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MAXS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MAXUW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MAXU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

MAXSW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MAXS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

ENDCASE:

Exceptions:

MINxxx Ra.rq,Rb.rqRc.wq

Ra.rq,#b.ib,Rc.wq
! Operate Format

MAXxxx Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq
! Operate Format

None
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Instruction mnemonics:

Qualifiers:

Description:

For MINxB8, each byte of Rc is written with the smaller of the corresponding bytes of Ra or
Rb. The bytes may be interpreted as signed or unsigned values.

For MINxW4, each word of Rc is written with the smaller of the corresponding words of Ra
Rb. The words may be interpreted as signed or unsigned values.

For MAXxB8, each byte of Rc is written with the larger of the corresponding bytes of Ra
Rb. The bytes may be interpreted as signed or unsigned values.

For MAXxW4, each word of Rc is written with the larger of the corresponding words of Ra
Rb. The words may be interpreted as signed or unsigned values.

MINUB8 Vector Unsigned Byte Minimum
MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum
MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum
MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum
MAXSW4 Vector Signed Word Maximum

None
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Format:

Operation:
temp = 0
FOR i FROM 0 TO 7

IF { Rav<i*8+7:i*8> GEU Rbv<i*8+7:i*8>} THEN
temp ← temp + (Rav<i*8+7:i*8> - Rbv<i*8+7:i*8>)

ELSE
temp ← temp + (Rbv<i*8+7:i*8> - Rav<i*8+7:i*8>)

END
Rc ← temp

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

The absolute value of the difference between each of the bytes in Ra and Rb is calculate
sum of the resulting bytes is written to Rc.

PERR Ra.rq,Rb.rq,Rc.wq ! Operate Format

None

PERR Pixel Error

None
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4.13.3 Pack Bytes

Format:

Operation:
CASE

PKLB:
BEGIN
Rc<07:00> ← Rbv<07:00>
Rc<15:08> ← Rbv<39:32>
Rc<63:16> ← 0
END

PKWB:
BEGIN
Rc<07:00> ← Rbv<07:00>
Rc<15:08> ← Rbv<23:16>
Rc<23:16> ← Rbv<39:32>
Rc<31:24> ← Rbv<55:48>
Rc<63:32> ← 0
END

ENDCASE

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

For PKLB, the component longwords of Rb are truncated to bytes and written to the lower
byte positions of Rc. The upper six bytes of Rc are written with zero.

For PKWB, the component words of Rb are truncated to bytes and written to the lower
byte positions of Rc. The upper four bytes of Rc are written with zero.

PKxB Rb.rq,Rc.wq ! Operate Format

None

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

None
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4.13.4 Unpack Bytes

Format:

Operation:
temp = 0
CASE

UNPKBL:
BEGIN
temp<07:00> = Rbv<07:00>
temp<39:32> = Rbv<15:08>
END

UNPKBW:
BEGIN
temp<07:00> = Rbv<07:00>
temp<23:16> = Rbv<15:08>
temp<39:32> = Rbv<23:16>
temp<55:48> = Rbv<31:24>
END

ENDCASE
Rc ← temp

Exceptions:

Instruction mnemonics:

Qualifiers:

Description:

For UNPKBL, the lower two component bytes of Rb are zero-extended to longwords.
resulting longwords are written to Rc.

For UNPKBW, the lower four component bytes of Rb are zero-extended to words. The re
ing words are written to Rc.

UNPKBx Rb.rq,Rc.wq ! Operate Format

None

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words

None
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Chapter 5

System Architecture and Programming

Implications (I)

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and the system s
ture, of both uniprocessor and multiprocessor implementations. Architectural implicat
considered in the following sections are:

• Physical address space behavior

• Translation buffers and virtual caches

• Caches and write buffers

• Data sharing

• Read/write ordering

• Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware implementors
to take these issues into consideration.

5.2 Physical Address Space Characteristics

Alpha physical address space is divided into four equal-size regions. The regions are
eated by the two most significant, implemented, physical address bits. Each reg
characteristics are distinguished by the coherency, granularity, and width of memory acc
and whether the region exhibits memory-like behavior or non-memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementations must provide a coherent view of memory, in which each write b
processor or I/O device (hereafter, called "processor") becomes visible to all other proce
No distinction is made between coherency of "memory space" and "I/O space."
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Memory coherency may be provided in different ways for each of the four physical add
regions.

Possible per-region policies include, but are not restricted to:

• No caching

No copies are kept of data in a region; all reads and writes access the actual
location (memory or I/O register), but a processor may elide multiple accesses to the
same data (see Section 5.2.3).

• Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes u
the actual data location and either update or invalidate all copies.

• Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies
writes use additional state to determine whether there are other copies to invalida
update.

Software/Hardware Note:

To produce separate and distinct accesses to a specific location, the location mus
region with no caching and a memory barrier instruction must be inserted betw
accesses. See Section 5.2.3.

Part of the coherency policy implemented for a given physical address region may inc
restrictions on excess data transfers (performing more accesses to a location than is nec
to acquire or change the location’s value) or may specify data transfer widths (the granu
used to access a location).

Independent of coherency policy, a processor may use different hardware or different
ware resource policies for caching or buffering different physical address regions.

5.2.2 Granularity of Memory Access

For each region, an implementation must support aligned quadword access and may opti
support aligned longword access or byte access. If byte access is supported in a region, a
word access and aligned longword access are also supported.

For a quadword access region, accesses to physical memory must be implemented su
independent accesses to adjacent aligned quadwords produce the same results regardle
order of execution. Further, an access to an aligned quadword must be done in a single a
operation.

For a longword access region, accesses to physical memory must be implemented su
independent accesses to adjacent aligned longwords produce the same results regardles
order of execution. Further, an access to an aligned longword must be done in a single a
operation, and an access to an aligned quadword must also be done in a single a
operation.
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For a byte access region, accesses to physical memory must be implemented such that in
dent accesses to adjacent bytes or adjacent aligned words produce the same results, reg
of the order of execution. Further, an access to a byte, an aligned word, an aligned long
or an aligned quadword must be done in a single atomic operation.

In this context, "atomic" means that the following is true if different processors do simu
neous reads and writes of the same data:

• The result of any set of writes must be the same as if the writes had occurred se
tially in some order, and

• Any read that observes theeffect of a write on some part of memory mustobserve the
effect of that write (or of a later write or writes) on the entire part of memory that
accessed by both the read and the write.

When a write accesses only part of a given word, longword, or quadword, a read of the e
structure may observe the effect of that partial write without observing the effect of an earlier
write of another byte or bytes to the same structure. See Sections 5.6.1.5 and 5.6.1.6.

5.2.3 Width of Memory Access

Subject to the granularity, ordering, and coherency constraints given in Sections 5.2.1,
and 5.6, accesses to physical memory may be freely cached, buffered, and prefetched.

A processor may read more physical memory data (such as a full cache block) than is ac
accessed, writes may trigger reads, and writes may write back more data than is ac
updated. A processor may elide multiple reads and/or writes to the same data.

5.2.4 Memory-Like and Non-Memory-Like Behavior

Memory-like regions obey the following rules:

• Each page frame in the region either exists in its entirety or does not exist in its enti
there are no holes within a page frame.

• All locations that exist are read/write.

• A write to a location followed by a read from that location returns precisely the b
written; all bits act as memory.

• A write to one location does not change any other location.

• Reads have no side effects.

• Longword access granularity is provided, and if the byte/word extension is im
mented, byte access granularity is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

• Unimplemented locations or bits may exist anywhere.

• Some locations or bits may be read-only and others write-only.

• Address ranges may overlap, such that a write to one location changes the bits
from a different location.
System Architecture and Programming Implications (I)5–3
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• Reads may have side effects, although this is strongly discouraged.

• Longword granularity need not be supported and, even if the byte/word extensio
implemented, byte access granularity need not be implemented.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

Hardware/Software Coordination Note:

The details of such behavior are outside the scope of the Alphaarchitecture. Specific
processor and I/O device implementations may choose and document whatever be
they need. It is the responsibility of system designers to impose enough consisten
allow processors successfully to access matching non-memory devices in a coherent

5.3 Translation Buffers and Virtual Caches

A system may choose to include a virtual instruction cache (virtual I-cache) or a virtual
cache (virtual D-cache). A system may also choose to include either a combined dat
instruction translation buffer (TB) or separate data and instruction TBs (DTB and ITB).
contents of these caches and/or translation buffers may become invalid, depending on
operating system activity is being performed.

Whenever a non-software field of a valid page table entry (PTE) is modified, copies of
PTE must be made coherent. PALcode mechanisms are available to clear all TBs, both
and ITB entries for a given VA, either DTB or ITB entries for a given VA, or all entries wi
the address space match (ASM) bit clear. Virtual D-cache entries are made coherent whe
the corresponding DTB entry is requested to be cleared by any of the appropriate PAL
mechanisms. Virtual I-cache entries can be made coherent via the IMB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has the A
Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then entries can also e
tively be made coherent by assigning a new, unused ASN to the currently running proces
not reusing the previous ASN before calling the appropriate PALcode routine to invalidate
translation buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only one pr
sor is not always sufficient. An operating system must arrange to perform the above actio
each processor that could possibly have copies of the PTE or data for any affected page.

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memoryaccess time by mak-
ing local copies of recently used memory contents (or those expected to be used)
buffering writes to complete at a later time. Caches and write buffers are examples of
mechanisms. They must be implemented so that their existence is transparent to so
(except for timing, error reporting/control/recovery, and modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations. All p
cessors must provide a coherent view of memory.
5–4 Common Architecture (I)
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• Write buffers may be used to delay and aggregate writes. From the viewpoint of another
processor, buffered writes appear not to have happened yet. (Write buffers must not
delay writes indefinitely. See Section 5.6.1.9.)

• Write-back caches must be able to detect a later write from another processor and
idate or update the cache contents.

• A processor must guarantee that a data store to a location followed by a data load
the same location reads the updated value.

• Cache prefetching is allowed, but virtual caches must not prefetch from invalid pa
See Sections 5.6.1.3, 5.6.4.3, and 5.6.4.4.

• A processor must guarantee that all of its previous writes are visible to all other pro
sors before a HALT instruction completes. A processor must guarantee that its ca
are coherent with the rest of the system before continuing from a HALT.

• If battery backup is supplied, a processor must guarantee that the memory sy
remains coherent across a powerfail/recovery sequence. Data that was written b
processor before the powerfail may not be lost, and any caches must be in a valid
before (and if) normal instruction processing is continued after power is restored.

• Virtual instruction caches are not required to notice modifications of the virtua
stream (they need not be coherent with the rest of memory). Software that creat
modifies the instruction stream must execute a CALL_PAL IMB before trying to exe-
cute the new instructions.

In this context, to "modify the virtual I-stream" means either:

– any Store to the same physical address that is subsequently fetched as an instr
by some corresponding (virtual address, ASN) pair, or

– any change to the virtual-to-physical address mapping so that different values are
fetched.

For example, if two different virtual addresses, VA1 and VA2, map to the same p
frame, a store to VA1 modifies the virtual I-stream fetched by VA2.

However, the following sequence does not modify the virtual I-stream (this might
happen in soft page faults).

1. Change the mapping of an I-stream page from valid to invalid.

2. Copy the corresponding page frame to a new pageframe.

3. Change the original mapping to be valid and point to the new page frame.

• Physical instruction caches are not required to notice modifications of the physic
stream (they need not be coherent with the rest of memory), except for certain pa
activity. (See Section 5.6.4.4.) Software that creates or modifies the instruction st
must execute a CALL_PAL IMB before trying to execute the new instructions.

In this context, to "modify the physical I-stream" means any Store to the same phy
address that is subsequently fetched as an instruction.
System Architecture and Programming Implications (I)5–5
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5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized b
programmer.

5.5.1 Atomic Change of a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change of a s
aligned longword or quadword. ("Change" means that the new value is not a function of th
value.) In particular, an ordinary STL or STQ instruction can be used to change a variable
could be simultaneously accessed via an LDx_L/STx_C sequence.

5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic update
shared aligned longword or quadword. ("Update" means that the new value is a function o
old value.)

The following sequence performs a read-modify-write operation on locationx. Only register-
to-register operate instructions and branch fall-throughs may occur in the sequence:

try_again:
LDQ_L R1,x
<modify R1>
STQ_C R1,x
BEQ R1,no_store
:

no_store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes to
tion x (more precisely, the locked range includingx) between the LDQ_L and STQ_C
instructions, then the STQ_C shown in the example stores the modified value inx and sets R1
to 1. If, however, the sequence encounters exceptions or interrupts that eventually contin
sequence, or another processor writes tox, then the STQ_C does not store and sets R1 to 0.
this case, the sequence is repeated by the branches to no_store and try_again. This re
continues until the reasons for exceptions or interrupts are removed and no interfering st
encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary n
of times, giving the same result values each time. A sufficient (but not necessary) conditi
that, within the sequence, the set of operand destinations and the set of operand sourc
disjoint.

Note:

A sufficiently long instruction sequence between LDx_L and STx_C will never comple
because periodic timer interrupts will always occur before the sequence completes
rules in Appendix A describe sequences that will eventually complete inall Alpha
implementations.
5–6 Common Architecture (I)
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This load-locked/store-conditional paradigm may be used whenever an atomic updat
shared aligned quadword is desired, including getting the effect of atomic byte writes.

5.5.3 Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned lon
or quadword), the programmer can acquire control of the data structure by using an a
update to set a software lock variable. Such a software lock can be cleared with an ord
store instruction.

A software-critical section, therefore, may looklike the sequence:

stq_c_loop:
spin_loop:

LDQ R1,lock_variable ; This optional spin-loop code
BLBS R1,already_set ; should be used unless the

; lock is known to be low-contention.
LDQ_L R1,lock_variable ; \
BLBS R1,already_set ; \
OR R1,#1,R2 ; > Set lock bit
STQ_C R2,lock_variable ; /
BEQ R2,stq_c_fail ; /

MB
<critical section: updates various data structures>
MB ; Second MB
STQ R31,lock_variable ; Clear lock bit

:
:

already_set:
<code to block or reschedule or test for too many iterations>
BR spin_loop

stq_c_fail:
<code to test for too many iterations>
BR stq_c_loop

This code has a number of subtleties:

• If the lock_variable is already set, the spin loop is done without doing any stores.
avoidance of stores improves memory subsystem performance and avoids the deadlock
described below. The loop uses an ordinary load. This code sequence is preferredunless
the lock is known to be low-contention, because the sequence increases the prob
that the LDQ_L hits in the cache and the LDQ_L/STQ_C sequence complete qui
and successfully.

• If the lock_variable is actually being changed from 0 to 1, and the STQ_C fails (du
an interrupt, or because another processor simultaneously changed lock_variable
entire process starts over by reading the lock_variable again.

• Only the fall-through path of the BLBS instructions does a STx_C; some impleme
tions may not allow a successful STx_C after a branch-taken.

• Only register-to-register operate instructions are used to do the modify.

• The OR writes its result to a second register; this allows the OR and the BLBS t
interchanged if that would give a faster instruction schedule.
System Architecture and Programming Implications (I)5–7
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• Other operateinstructions (from the critical section) may be scheduled into the
LDQ_L..STQ_C sequence, so long as they do not fault or trap and they give co
results if repeated; other memory or operate instructions may be scheduled betwe
STQ_C and BEQ.

• The memory barrier instructions are discussed in Section 5.5.5. It is correct to subs
WMB for the second MB only if:

– All data locations that are read or written in the critical section are accessed
after acquiring a software lock by using lock_variable (and before releasing
software lock).

– For each readu of shared data in the critical section, there is a writev such that:

1. v is BEFORE the WMB.

2. v follows u in processor issue sequence (see Section 5.6.1.1).

3. v either depends onu (see Section 5.6.1.7) or overlapsu (see Section 5.6.1), or
both.

– Both lock_variable and all the shared data are in memory-like regions
lock_variable and all the shared data are in non-memory-like regions). If
lock_variable is in a non-memory-like region, the atomic lock protocol must u
some implementation-specific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

• An ordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C sequ
(to move the BLBS after the BEQ) because that sequence may repeatedly change the so
lock_variable from "locked" to "locked," with each write causing extra access delays in
other caches that contain the lock_variable. In the extreme, spin-waits that contain writes
deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not chang
the lock_variable, then the writes on the first processor may cause the STx_C o
modify on the second processor always to fail.

This deadlock situation is avoided by:

• Having only one processor execute a store (no STx_C), or

• Having no write in the spin loop, or

• Doing a writeonly if the shared variable actually changes state (1→ 1 does not change
state).

5.5.4 Prefetching Low-Contention Atomic Data and Locks

A low-contention situation is one in which multiple processors are not vigorously conten
for the same datum. In a low-contention situation, performance can be improved by exec
a prefetch-with-modify-intent well in advance of attempting an atomic update or of attemp
to set an atomic lock.

LDA R3,0x1000 # test AMASK<12>. See Section E.1.6.
AMASK R3,R3
5–8 Common Architecture (I)
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BNE R3, skip_prefetch

LDS F31, 0(R1) # Prefetch with modify intent (PREFETCH_M)
# to prefetch the cache block
# with the lock in it exactly
# once per lock acquisition.

skip_prefetch:
. # 20 to 80 cycles ahead of the
. # atomic memory ref to overcome
. # memory latency if possible.

start:
LDA R2, 1(R31)
LDQ_L R0, 0(R1)
BNE R0, lazy
STQ_C R2, 0(R1)
BEQ R2, start
BR done

lazy:
LDQ R0, 0(R1)
BNE R0, lazy
BR start

done:

Notice that this code does not use the spin-loop, shown in the example code in Section
which is suitable only for high-contention locks. Notice also relative to the code in Sec
5.5.2, the prefetch is executed before the atomic update.

The code above can be particularly useful in large multiprocessor systems with signif
latencies. With this code, only one system transaction is required for the lock to suc
because the cache block that contains the lock is brought into the cache with write permi
Without the prefetch-with-modify-intent, two system transactions can be required: one fo
LDx_L to read the block into the cache and one for the STx_C to get permission to write
block.

Note:

When a prefetch-with-modify-intent issues a system transaction to get write permissio
ownership) of the block, the prefetch is issuing a transaction similar to a store. And, li
store, such a prefetch can clear the lock flag on another processor.

5.5.5 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three ste

1. Acquire software lock

2. Critical section — read/write shared data

3. Clear software lock

In the absence of explicit instructions to the contrary, the Alphaarchitecture allows reads and
writes to be reordered. While this may allow more implementation speed and overlap, i
also create undesired side effects on shared data structures. Normally, the critical section just
described would have two instructions added to it:
System Architecture and Programming Implications (I)5–9
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<acquire software lock>
MB (memory barrier #1)
<critical section – read/write shared data>
MB (memory barrier #2)
<clear software lock>
<endcode_example>

The first memory barrier prevents any reads (from within the critical section) from be
prefetched before the software lock is acquired; such prefetched reads would potentially
tain stale data.

The second memory barrier prevents any writes and reads in the critical section being de
past the clearing of the software lock. Such delayed accesses could interact with the nex
of the shared data, defeating the purpose of the software lock entirely. It is correct to subs
WMB for the second MB only if:

1. All data locations that are read or written in the critical section are accessed only
acquiring a software lock by using lock_variable (and before releasing the softw
lock).

2. For each readu of shared data in the critical section, there is a writev such that:

a. v is BEFORE the WMB.

b. v follows u in processor issue sequence (see Section 5.6.1.1).

c. v either depends onu (see Section 5.6.1.7) or overlapsu (see Section 5.6.1), or both.

3. Both lock_variable and all the shared data are in memory-like regions (or lock_var
and all the shared data are in non-memory-like regions). If the lock_variable is in a
memory-like region, the atomic lock protocol must use some implementation-spe
hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

Software Note:

In the VAX architecture, many instructions provide noninterruptable read-modify-write
sequences to memory variables. Most programmers never regard data sharing as an i

In the Alpha architecture, programmers must pay more attention to synchronizing acce
shared data; for example, to AST routines. In the VAX architecture, a programmer can
an ADDL2 to update a variable that is shared between a "MAIN" routine and an A
routine, if running on a single processor. In the Alpha architecture, a programmer
deal with AST shared data by using multiprocessor shared data sequences.

5.6 Read/Write Ordering

This section applies to programs that run on multiple processors or on one or more proce
that are interacting with DMA I/O devices. To a program running on a single processor an
interacting with DMA I/O devices, all memory accesses appear to happen in the order s
fied by the programmer. This section deals with predictable read/write ordering across mu
processors and/or DMA I/O devices.
5–10 Common Architecture (I)
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The order of reads and writes done in an Alpha implementation may differ from that spec
by the programmer.

For any two memory accesses A and B, either A must occur before B in all Alpha impleme
tions, B must occur before A, or they are UNORDERED. In the last case, software ca
depend upon one occurring first: the order may vary from implementation to implementa
and even from run to run or moment to moment on a single implementation.

If two accesses cannot be shown to be ordered by the rules given, they are UNORDERE
implementations are free to do them in any order that is convenient. Implementations may
advantage of this freedom to deliver substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory acc
on a single processor, then defines the (partial) ordering on this issue sequence thatall Alpha
implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access seque
each shared memory location. The discussion defines the (partial) ordering on the indiv
access sequences thatall Alpha implementations are required to maintain.

The net result is that for any code that executes on multiple processors, one can dete
which memory accesses are required to occur before others onall Alpha implementations and
hence can write useful shared-variable software.

Software writers can force one access to occur before another by inserting a memory b
instruction (MB, WMB, or CALL_PAL IMB) between the accesses.

5.6.1 Alpha Shared Memory Model

An Alpha system consists of a collection of processors, I/O devices (and possibly a brid
connect remote I/O devices), and shared memories that are accessible by all processors.

Note:

An example of an unshared location is a physical address in I/O space that refers to a
that is local to a processor and not accessible by other processors.

A processor is an Alpha CPU.

In most systems, DMA I/O devices or other agents can read or write shared memory loca
The order of accesses by those agents is not completely specified in this document. It is
ble in some systems for read accesses by I/O devices or other agents to give results ind
some reordering of accesses. However, there are guarantees that apply in all systems. S
tion 5.6.4.7.

A shared memory is the primary storage place for one or more locations.

A location is a byte, specified by its physical address. Multiple virtual addresses may ma
the same physical address. Ordering considerations are based only on the physical ad
This definition of location specifically includes locations and registers in memory mapped
devices and bridges to remote I/O (for example, Mailbox Pointer Registers, or MBPRs).

Implementation Note:

An implementation may allow a location to have multiple physical addresses, but the
for accesses via mixtures of the addresses are implementation-specific and outsid
System Architecture and Programming Implications (I)5–11
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scope of this section. Accesses via exactly one of the physical addresses follow the
described next.

Each processor may generate accesses to shared memory locations. There are six t
accesses:

1. Instruction fetch by processori to locationx, returning valuea, denoted Pi:I<4>(x,a).

2. Data read (including load-locked) by processori to location x, returning valuea,
denoted Pi:R<size>(x,a).

3. Data write (including successful store-conditional) by processori to locationx, storing
valuea, denoted Pi:W<size>(x,a).

4. Memory barrier issued by processori, denoted Pi:MB.

5. Write memory barrier issued by processori, denoted Pi:WMB.

6. I-stream memory barrierissued by processori, denoted Pi:IMB.

The first access type is also called an I-stream access or I-fetch. The next two are also
D-stream accesses. The first three types are collectively called read/write accesses, d
Pi:Op<m>(x,a), wherem is the size of the access in bytes,x is the (physical) address of the
access, anda is a value representable inm bytes; for anyk in the range 0..m–1, bytek of value
a (where byte 0 is the low-order byte) is the value written to orread from location x+k by the
access. This relationship reflects little-endian addressing; big-endian addressing represe
is as described in Chapter 2.

The last three types collectively are called barriers or memory barriers.

The size of a read/write access is 8 for a quadword access, 4 for a longword access (inc
all instruction fetches), 2 for a word access, or 1 for a byte access. All read/write access
this chapter are naturally aligned. That is, they have the form Pi:Op<m>(x,a), where
addressx is divisible by sizem.

The word "access" is also used as a verb; a read/write access Pi:Op<m>(x,a) accesses bz if
x ≤ z < x+m. Two read/write accesses Op1<m>(x,a) and Op2<n>(y,b) are defined to over
there is at least one byte that is accessed by both, that is, if max(x,y) < min(x+m,y+n).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a hypothetica
ple implementation that contains one processor and a single shared memory, with no cac
buffers.This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a single
read from memory for a Load instruction or a single data write to memory for a S
instruction.

3. Update: The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done an
PC is updated to point to a PALcode fault handler. If the read/write step gets a memory
agement fault, the read/write is not done and the PC is updated to point to a PALcode
handler.
5–12 Common Architecture (I)
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5.6.1.2 Definition of Before and After

The ordering relation BEFORE (⇐ ) is a partial order on memory accesses. It is further defin
in Sections 5.6.1.3 through 5.6.1.9.

The ordering relation BEFORE (⇐ ), being a partial order, is acyclic.

The BEFORE order cannot be observed directly, nor fully predicted before an actual ex
tion, nor reproduced exactly from one execution to another. Nonetheless, some useful ord
properties must hold in all Alpha implementations.

If u ⇐ v, thenv is said to be AFTERu.

5.6.1.3 Definition of Processor Issue Constraints

Processor issue constraints are imposed on the processor issue sequence defined in
5.6.1.1, as shown in Table 5–1.

Where "overlap" denotes the condition max(x,y) < min(x+m,y+n).

For two accessesu andv issued by processor Pi, ifu precedesv by processor issue constraint
thenu precedesv in BEFORE order.u andv on Pi are ordered by processor issue constrain
any of the following applies:

1. The entry in Table 5–1 indicated by the access type ofu (1st) andv (2nd) indicates the
accesses are ordered.

2. u andv are both writes to memory-like regions and there is a WMB betweenu andv in
processor issue sequence.

3. u andv are both writes to non-memory-like regions and there is a WMB betweenu and
v in processor issue sequence.

4. u is a TB fill that updates a PTE, for example, a PTE read in order to satisfy a TB m
andv is an I- or D-stream access using that PTE (see Sections 5.6.4.3 and 5.6.4.4)

In Table 5–1,1stand2nd refer to the ordering of accesses in the processor issue seque
Note that Table 5–1 imposes no direct constraint on the ordering relationship between
overlapping read/write accesses, though there may be indirect constraints due to the tran
of BEFORE (⇐ ). Conditions 2 through 4, above, impose ordering constraints on some pai
nonoverlapping read/write accesses.

Table 5–1 Processor Issue Constraints

1st↓ 2nd → Pi:I<n=4>(y,b) Pi:R<n>(y,b) Pi:W<n>(y,b) Pi:MB Pi:IMB

Pi:I<m=4>(x,a) ⇐ if overlap ⇐ if overlap ⇐ ⇐

Pi:R<m>(x,a) ⇐ if overlap ⇐ if overlap ⇐ ⇐

Pi:W<m>(x,a) ⇐ if overlap ⇐ ⇐

Pi:MB ⇐ ⇐ ⇐ ⇐

Pi:IMB ⇐ ⇐ ⇐ ⇐ ⇐
System Architecture and Programming Implications (I)5–13
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Table 5–1 permits a read access Pi:R<n>(y,b) to be ordered BEFORE an overlapping
access Pi:W<m>(x,a) that precedes the read access in processor issue order. This asy
for reads allows reads to be satisfied by using data from an earlier write in processor
sequence by the same processor (for example, by hitting in a write buffer) before the
completes. The write access remains "visible" to the read access; "visibility" is describ
Sections 5.6.1.5 and 5.6.1.6 and illustrated in Litmus Test 11 in Section 5.6.2.11.

An I-fetch Pi:I<4>(y,b) may also be ordered BEFORE an overlapping write Pi:W<m>(x,a)
precedes it in processor issue sequence. In that case, the write may, but need not, be vi
the I-fetch. This asymmetry in Table 5–1 allows writes to the I-stream to be incoherent un
CALL_PAL IMB is executed.

Implementations are free to perform memory accesses from a single processor in any seq
that is consistent with processor issue constraints.

5.6.1.4 Definition of Location Access Constraints

Location access constraints are imposed on overlapping read/write accesses. Ifu andv are
overlapping read/write accesses, at least one of which is a write, thenu andv must be compara-
ble in the BEFORE (⇐ ) ordering, that is, either u⇐ v or v ⇐ u.

There is no direct requirement that nonoverlapping accesses be comparable in the BE
(⇐ ) ordering.

All writes accessing any given byte are totally ordered, and any read or I-fetch access
given byte is ordered with respect to all writes accessing that byte.

5.6.1.5 Definition of Visibility

If u is a write access Pi:W<m>(x,a) andv is an overlapping read access Pj:R<n>(y,b),u is visi-
ble tov only if:

u ⇐ v, or

u precedesv in processor issue sequence (possible only if Pi=Pj).

If u is a write access Pi:W<m>(x,a) andv is an overlapping instruction fetch Pj:I<4>(y,b)
there are the following rules for visibility:

1. If u ⇐ v, thenu is visible tov.

2. If u precedesv in processor issue sequence, then:

a. If there is a writew such that:

u overlapsw and precedesw in processor issue sequence, and

w is visible tov,

thenu is visible tov.

b. If there is an instruction fetchw such that:

u is visible tow, and

w overlapsv and precedesv in processor issue sequence,

thenu is visible tov.

3. If u does not precedev in either processor issue sequence or BEFORE order, thenu is
not visible tov.
5–14 Common Architecture (I)
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Note that the rules of visibility for reads and instruction fetches are slightly different. If a w
u precedes an overlapping instruction fetchv in processor issue sequence, butu is not
BEFOREv, thenu may or may not be visible tov.

5.6.1.6 Definition of Storage

The property of storage applies only to memory-like regions.

The value read from any byte by a read access or instruction fetchv, is the value written by the
latest (in BEFORE order) writeu to that byte that is visible tov. More formally:

If u is Pi:W<m>(x,a), andv is either Pj:I<4>(y,b) or Pj:R<n>(y,b), and z is a byte access
by bothu andv, andu is visible tov; and there is no write that is AFTERu, is visible tov,
and accesses byte z; then the value of byte z read byv is exactly the value written byu. In
this situation,u is a source ofv.

The only way to communicate information between different processors is for one to wr
shared location and the other to read the shared location and receive the newly written
(In this context, the sending of an interrupt from processor Pi to Pj is modeled as Pi writing
location INTij, and Pj reading from INTij.)

5.6.1.7 Definition of Dependence Constraint

The depends relation (DP) is defined as follows. Givenu andv issued by processor Pi, whereu
is a read or an instruction fetch andv is a write,u precedesv in DP order (writtenu DP v, that
is, v depends onu) in either of the following situations:

• u determines the execution ofv, the location accessed byv, or the value written byv.

• u determines the execution or address or value of another memory accessz that pre-
cedesv or might precedev (that is, would precedev in some execution path dependin
on the value read byu) by processor issue constraint (see Section 5.6.1.3).

Note that the DP relation does not directly impose a BEFORE (⇐) ordering between accesse
u andv.

The dependence constraint requires that the union of the DP relation and the "is a sour
relation (see Section 5.6.1.6) be acyclic. That is, there must not exist reads and/or I-fetche
…, Rn, and writes W1, …, Wn, such that:

1. n≥ 1,

2. For eachi, 1 ≤ i ≤ n, Ri DP Wi,

3. For eachi, 1 ≤ i < n, Wi is a source of Ri + 1, and

4. Wn is a source of R1.

That constraint eliminates the possibility of "causal loops." A simple example of a "ca
loop" is when the execution of a write on Pi depends on the execution of a write on Pj and
versa, creating a circular dependence chain. The following simple example of a "causal
is written in the style of the litmus tests in Section 5.6.2, where initiallyx andy are 1:

Processor Pi executes:

LDQ R1,x
STQ R1,y
System Architecture and Programming Implications (I)5–15
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Processor Pj executes:

LDQ R1,y
STQ R1,x

Representing those code sequences in the style of the litmus tests in Section 5.6.2, it is i
sible for the following sequence to result:

Analysis:

Given the initial condition x, y = 1, the access sequence above would also be impossible
code were:

Processor Pi’s program:

LDQ R1,x
BNE R1,done
STQ R31,y

done:

Processor Pj’s program:

LDQ R1,y
BNE R1,done
STQ R31,x

done:

5.6.1.8 Definition of Load-Locked and Store-Conditional

The property of load-locked and store-conditional applies only to memory-like regions.

For each successful store-conditionalv, there exists a load-lockedu such that the following are
true:

1. u precedesv in the processor issue sequence.

2. There is no load-locked or store-conditional betweenu and v in the processor issue
sequence.

3. If u andv access within the same naturally aligned 16-byte physical and virtual bloc
memory, then for every writew by a different processor that accesses withinu’s lock
range (wherew is either a store or a successful store conditional), it must be true thw
⇐ u or v ⇐ w.

u’s lock range contains the region of physical memory thatu accesses. See Sections 4.2.4 and
4.2.5, which define the lock range and conditions for success or failure of a store condition

Pi Pj

[U1] Pi:R<8>(x,0) [V1] Pj:R<8>(y,0)

[U2] Pi:W<8>(y,0) [V2] Pj:W<8>(x,0)

<1> By the definitions of storage and visibility, U2 is the source of V1, and V2 is the
source of U1.

<2> By the definition of DP and examination of the code, U1 DP U2, and V1 DP V2.

<3> Thus, U1 DP U2, U2 is the source of V1, V1 DP V2, and V2 is the source of U1.
This circular chain is forbidden by the dependence constraint.
5–16 Common Architecture (I)
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5.6.1.9 Timeliness

Even in the absence of a barrier after the write, no write by a processor may be delayed i
nitely in the BEFORE ordering.

5.6.2 Litmus Tests

Many issues about writing and reading shared data can be cast into questions about wh
write is before or after a read. These questions can be answered by rigorously che
whether any ordering satisfies the rules in Sections 5.6.1.3 through 5.6.1.8.

In litmus tests 1–9 below, all initial quadword memory locations contain 1. In all these litm
tests, it is assumed that initializations are performed by a write or writes that are BEFOR
the explicitly listed accesses, that all relevant writes other than the initializations are expl
shown, and that all accesses shown are to memory-like regions (so the definition of st
applies).

5.6.2.1 Litmus Test 1 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Thus, once a processor reads a new value from a location, it must never see an old value
must not go backward. V2 must read 2.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(x,2)

[V2]Pj:R<8>(x,1)

<1> By the definition of storage (Section 5.6.1.6), V1 reading 2 implies that U1 is visibl
to V1.

<2> By the rules for visibility (Section 5.6.1.5), U1 being visible to V1, but being issued
by a different processor, implies that U1⇐ V1.

<3> By the processor issue constraints (Section 5.6.1.3), V1⇐ V2.

<4> By the transitivity of the partial order⇐, it follows from <2> and <3> that U1⇐
V2.

<5> By the rules for visibility, it follows from U1⇐ V2 that U1 is visible to V2.

<6> Since U1 is AFTER the initialization ofx, U1 is the latest (in the⇐ ordering) write
to x that is visible to V1.

<7> By the definition of storage, it follows that V2 should read the value written by U1,
in contradiction to the stated result.
System Architecture and Programming Implications (I)5–17
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5.6.2.2 Litmus Test 2 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Thus, once processor Pj reads a new value written by U1, any other writes that must pr
the read must also precede U1. V3 must read 2.

5.6.2.3 Litmus Test 3 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Again, time cannot go backwards. If V1 is ordered before U1, then processor Pk cannot
first the later value 3 and then the earlier value 2. Alternatively, if V1 is ordered before U1
must read 2.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[V2]Pj:R<8>(x,2)

[V3]Pj:R<8>(x,3)

<1> Since V1 precedes V2 in processor issue sequence, V1 is visible to V2.

<2> V2 reading 2 implies U1 is the latest (in⇐ order) write tox visible to V2.

<3> From <1> and <2>, V1⇐ U1.

<4> Since U1 is visible to V2, and they are issued by different processors, U1⇐ V2.

<5> By the processor issue constraints, V2⇐ V3.

<6> From <4> and <5>, U1⇐ V3.

<7> From <6> and the visibility rules, U1 is visible to V3.

<8> Since both V1 and the initialization ofx are BEFORE U1, U1 is the latest write tox
that is visible to V3.

<9> By the definition of storage, it follows that V3 should read the value written by U1,
in contradiction to the stated result.

Pi Pj Pk

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3) [W1]Pk:R<8>(x,3)

[U2]Pi:R<8>(x,3) [W2]Pk:R<8>(x,2)

<1> U2 reading 3 implies V1 is the latest write tox visible to U2, therefore U1⇐ V1.

<2> W1 reading 3 implies V1 is visible to W1, so V1⇐ W1 ⇐ W, therefore V1 is also
visible to W2.

<3> W2 reading 2 implies U1 is the latest write tox visible to W2, therefore V1⇐ U1.

<4> From <1> and <3>, U1⇐ V1 ⇐ U1.
5–18 Common Architecture (I)
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5.6.2.4 Litmus Test 4 (Sequence Okay)

Initially, locationsx andy contain 1:

Analysis:

There are no conflicts in the sequence. There are no violations of the definition of BEFOR

5.6.2.5 Litmus Test 5 (Sequence Okay)

Initially, locationsx andy contain 1:

Analysis:

There is U2⇐ V1 ⇐ V2 ⇐ V3 ⇐ U1. There are no conflicts in this sequence. There are
violations of the definition of BEFORE.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

<1> V1 reading 2 implies U2⇐ V1, by storage and visibility.

<2> Since V2 does not read 2, there cannot be U1⇐ V2.

<3> By the access order constraints, it follows from <2> that V2⇐ U1.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[V2]Pj:MB

[U2]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

<1> V1 reading 2 implies U2⇐ V1, by storage and visibility.

<2> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<3> V3 reading 1 implies V3⇐ U1, by storage and visibility.
System Architecture and Programming Implications (I)5–19



no

r
ate to
.

ged
ins
5.6.2.6 Litmus Test 6 (Sequence Okay)

Initially, locationsx andy contain 1:

Analysis:

There is V2⇐ U1 ⇐ U2 ⇐ U3 ⇐ V1. There are no conflicts in this sequence. There are
violations of the definition of BEFORE.

In litmus tests 4, 5, and 6, writes to two different locationsx andy are observed (by anothe
processor) to occur in the opposite order than that in which they were performed. An upd
y propagates quickly to Pj, but the update tox is delayed, and Pi and Pj do not both have MBs

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Initially, locationsx andy contain 1:

Analysis:

Both <1> and <5> cannot be true, so if V1 reads 2, then V3 must also read 2.

If both x andy are in memory-like regions, the sequence remains impossible if U2 is chan
to a WMB. Similarly, if bothx andy are in non-memory-like regions, the sequence rema
impossible if U2 is changed to a WMB.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB

[U3]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

<1> U1⇐ U2 ⇐ U3, by processor issue constraints.

<2> V1 reading 2 implies U3⇐ V1, by storage and visibility.

<3> V2 reading 1 implies V2⇐ U1, by storage and visibility.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

<1> V3 reading 1 implies V3⇐ U1, by storage and visibility.

<2> V1 reading 2 implies U3⇐ V1, by storage and visibility.

<3> U1⇐ U2 ⇐ U3, by processor issue constraints.

<4> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<5> By <2>, <3>, and <4>, U1⇐ U2 ⇐ U3 ⇐ V1 ⇐ V2 ⇐ V3.
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5.6.2.8 Litmus Test 8 (Impossible Sequence)

Initially, locationsx andy contain 1:

Analysis:

Both <1> and <5> cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa.

5.6.2.9 Litmus Test 9 (Impossible Sequence)

Initially, location x contains 1:

Analysis:

Both <1> and <2> cannot be true. Time cannot go backwards. If V3 reads 2, then U3 mus
2. Alternatively, if U3 reads 3, then V3 must read 3.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:R<8>(y,1) [V3]Pj:R<8>(x,1)

<1> V3 reading 1 implies V3⇐ U1, by storage and visibility.

<2> U3 reading 1 implies U3⇐ V1, by storage and visibility.

<3> U1⇐ U2 ⇐ U3, by processor issue constraints.

<4> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<5> By <2>, <3>, and <4>, U1⇐ U2 ⇐ U3 ⇐ V1 ⇐ V2 ⇐ V3.

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[U2]Pi:R<8>(x,2) [V2]Pj:R<8>(x,3)

[U3]Pi:R<8>(x,3) [V3]Pj:R<8>(x,2)

<1> V3 reading 2 implies U1 is the latest write tox visible to V3, therefore V1⇐ U1.

<2> U3 reading 3 implies V1 is the latest write tox visible to U3, therefore U1⇐ V1.
System Architecture and Programming Implications (I)5–21
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5.6.2.10 Litmus Test 10 (Sequence Okay)

For an aligned quadword location,x, initially 10000000116:

Analysis:

There is no ordering cycle, so the sequence is permitted.

5.6.2.11 Litmus Test 11 (Impossible Sequence)

For an aligned quadword location,x, initially 10000000116:

Analysis:

Both <1> and <2> cannot be true.

5.6.3 Implied Barriers

There are no implied barriers in Alpha. If an implied barrier is needed for functionally cor
access to shared data, it must be written as an explicit instruction. (Software must expl
include any needed MB, WMB, or CALL_PAL IMB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:

• Entry to PALcode

• Sending and receiving interrupts

• Returning from exceptions, interrupts, or machine checks

• Swapping context

• Invalidating the Translation Buffer (TB)

Pi Pj

[U1]Pi:W<4>(x,2) [V1]Pj:W<4>(x+4,2)

[U2]Pi:R<8>(x,10000000216) [V2]Pj:R<8>(x,20000000116)

<1> Since U2 reads 1 from x+4, V1 is not visible to U2. Thus U2⇐ V1.

<2> Similarly, V2⇐ U1.

<3> U1 is visible to U2, but since they are issued by the same processor, it is not nece
sarily the case that U1⇐ U2.

<4> Similarly, it is not necessarily the case that V1⇐ V2.

Pi Pj

[U1]Pi:W<4>(x,2) [V1]Pj:R<8>(x,20000000116)

[U2]Pi:MB or WMB

[U3]Pi:W<4>(x+4,2)

<1> V1 reading 20000000116 implies U3⇐ V1 ⇐ U1 by storage and visibility.

<2> U1⇐ U2 ⇐ U3, by processor issue constraints.
5–22 Common Architecture (I)
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Depending on implementation choices for maintaining cache coherency, some PALcode/
implementations may have an implied CALL_PAL IMB in the I-stream TB fill routine, b
this is transparent to the non-PALcode programmer.

5.6.4 Implications for Software

Software must explicitly include MB, WMB, or CALL_PAL IMB instructions according to th
following circumstances.

5.6.4.1 Single Processor Data Stream

No barriers are ever needed. A read to physical addressx will always return the value written
by the immediately preceding write tox in the processor issue sequence.

5.6.4.2 Single Processor Instruction Stream

An I-fetch from virtual or physical addressx does not necessarily return the value written b
the immediately preceding write tox in the issue sequence. To make the I-fetch reliably get
newly written instruction, a CALL_PAL IMB is needed between the write and the I-fetch.

5.6.4.3 Multiprocessor Data Stream (Including Single Processor with DMA I/O)

Generally, the only way to reliably communicate shared data is to write the shared data o

processor or DMA I/O device, execute an MB (or the logical equivalent1 if it is a DMA I/O
device), then write a flag (equivalently, send an interrupt) signaling the other processor th
shared data is ready. Each receiving processor must read the new flag (equivalently, rece
interrupt), execute an MB, then read or update the shared data. In the special case in whic
is communicated through just one location in memory, memory barriers are not necessary

Software Note:

Note that this section does not describe how to reliably communicate data from a proc
to a DMA device. See Section 5.6.4.7.

Leaving out the first MB removes the assurance that the shared data is written before the
written.

Leaving out the second MB removes the assurance that the shared data is read or updat
after the flag is seen to change; in this case, an early read could see an old value, and a
update could be overwritten.

This implies that after a DMA I/O device has written some data to memory (such as pagin

a page from disk), the DMA device must logically execute an MB1 before posting a comple-
tion interrupt, and the interrupt handler software must execute an MB before the da
guaranteed to be visible to the interrupted processor. Other processors must also execu
before they are guaranteed to see the new data.

1 In this context, the logical equivalent of an MB for a DMA device is whatever is necessary under the applicable I/O subsystem
architecture to ensure that preceding writes will be BEFORE (see Section 5.6.1.2) the subsequent write of a flag or transmissi
of an interrupt. Not all I/O devices behave exactly as required by the Alpha architecture. To interoperate properly with those
devices, some special action might be required by the program executing on the CPU. For example, PCI bus devices require t
after the CPU has received an interrupt, the CPU must read a CSR location on the PCI device, execute an MB, then read or
update the shared data. From the perspective of the Alpha architecture, this CSR read can be regarded as a necessary assis
help the DMA I/O device complete its logical equivalent of an MB.
System Architecture and Programming Implications (I)5–23
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An important special case occurs when a write is done (perhaps by an I/O device) to
physical page frame, then an MB is executed, and then a previously invalid PTE is chang
be a valid mapping of the physical page frame that was just written. In this case, all proce
that access virtual memory by using the newly valid PTE must guarantee to deliver the n
written data after the TB miss, for both I-stream and D-stream accesses unless the P
marked to indicate no such ordering is required.

5.6.4.4 Multiprocessor Instruction Stream (Including Single Processor with DMA I/O)

The only way to update the I-stream reliably is to write the shared I-stream on one proces
DMA I/O device, then execute a CALL_PAL IMB (or an MB if the processor is not going
execute the new I-stream, or the logical equivalent of an MB if it is a DMA I/O device), th
write a flag (equivalently, send an interrupt) signaling the other processor that the sha
stream is ready. Each receiving processor must read the new flag (equivalently, receiv
interrupt), execute a CALL_PAL IMB, then fetch the shared I-stream.

Software Note:

Note that this section does not describe how to reliably communicate I-stream fro
processor to a DMA device. See Section 5.6.4.7.

Leaving out the first CALL_PAL IMB (or MB) removes the assurance that the shared I-stre
is written before the flag.

Leaving out the second CALL_PAL IMB removes the assurance that the shared I-strea
read onlyafter the flag is seen to change; in this case, an early read could see an old value

This implies that after a DMA I/O device has written some I-stream to memory (such as

ing in a page from disk), the DMA device must logically execute an MB1 before posting a
completion interrupt, and the interrupt handler software must execute a CALL_PAL I
before the I-stream is guaranteed to be visible to the interrupted processor. Other proc
must also execute CALL_PAL IMB instructions before they are guaranteed to see the n
stream.

An important special case occurs under the following circumstances:

1. A write (perhaps by an I/O device) is done to some physical page frame.

2. A CALL_PAL IMB (or MB) is executed.

3. A previously invalid PTE is changed to be a valid mapping of the physical page fr
that was written in step 1.

In this case, all processors that access virtual memory by using the newly valid PTE must
antee to deliver the newly written I-stream after the TB miss.

5.6.4.5 Multiprocessor Context Switch

If a process migrates from executing on one processor to executing on another, the co
switch operating system code must include a number of barriers.

1 See Footnote on page 5-23.
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A process migrates by having its context stored into memory, then eventually having that
text reloaded on another processor. In between, some shared mechanism must be u
communicate that the context saved in memory by the first processor is available to the s
processor. This could be done by using an interrupt, by using a flag bit associated wit
saved context, or by using a shared-memory multiprocessor data structure, as follows:

MB [1] ensures that the writes done to save the state of the current process happen befor
the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen af
ownership is picked up and hence are reliably the values written by the processor s
the old state. Leaving this MB out makes the code fail if an old value of the con
remains in the second processor’s cache and invalidates from the writes done on th
processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page
that may have occurred on the first processor just before the save of the process stat
must be done with a series of TB invalidate instructions to remove any nonglobal p
mapping for this process, or by assigning an ASN that is unused on the second proces
the process. One of these actions must occur sometime before starting execution
code for the new process that accesses memory (instruction or data) that is not comm
all processes. A common method is to assign a new ASN after gaining ownership o
new process and before loading its context, which includes its ASN.

The D-cache on the second processor must be made coherent with any write to t
stream that may have occurred on the first processor just before the save of process
This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the I-s
that may have occurred on the first processor just before the save of process state. Th
be done with a CALL_PAL IMB sometime before the execution of any code that is

First Processor Second Processor

:

Save state of current process.

MB [1]

Pass ownership of process context
data structure memory.

⇒ Pick up ownership of process context data
structure memory.

MB [2]

Restore state of new process context dat
structure memory.

Make I-stream coherent [3].

Make TB coherent [4].

:

Execute code for new process that accesse
memory that is not common to all processes.
System Architecture and Programming Implications (I)5–25
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common to all processes. More commonly, this can be done by forcing a TB miss (via
new ASN or via TB invalidate instructions) and using the TB-fill rule (see Section 5.6.4
This latter approach does not require any additional instruction.

Combining all these considerations gives the following, where, on a single processor, th
no need for the barriers:

5.6.4.6 Multiprocessor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second process
that processor receives the interrupt, then accesses the shared data, the sequence from
5.6.4.3 must be used:

First Processor Second Processor

:

Pick up ownership of process con-
text data structure memory.

MB

Assign new ASN or invalidate
TBs.

Save state of current process.

Restore state of new process.

MB

Pass ownership of process context
data structure memory.

:
⇒

:

Pick up ownership of new process context
data structure memory.

: MB

Assign new ASN or invalidate TBs.

Save state of current process.

Restore state of new process.

MB

Pass ownership of old process context data
structure memory.

:

Execute code for new process that accesses
memory that is not common to all processes.

First Processor Second Processor

:

Write data

MB
5–26 Common Architecture (I)
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Leaving out the MB at the beginning of the interrupt-receipt routine causes the code to f
an old value of the context remains in the second processor’s cache, and invalidates fro
writes done on the first processor are not delivered soon enough.

5.6.4.7 Implications for Memory Mapped I/O

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a proces
DMA I/O device to another processor that work reliably in all Alpha systems. Special con
erations apply to the communication of data or I-stream from a processor to a DMA
device. These considerations arise from the use of bridges to connect to I/O buses with d
that are accessible by memory accesses to non-memory-like regions of physical memory.

The following communication method works in all Alpha systems.

To reliably communicate shared data from a processor to an I/O device:

1. Write the shared data to a memory-like physical memory region on the processor.

2. Execute an MB instruction.

3. Write a flag (equivalently, send an interrupt or write a register location implemente
the I/O device).

The receiving I/O device must:

1. Read the flag (equivalently, detect the interrupt or detect the write to the register
tion implemented in the I/O device).

2. Execute the equivalent of an MB1.

3. Read the shared data.

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance th
shared data is written before the flag is. Unlike the case in Section 5.6.4.3, writing the shared
data to a non-memory-like physical memory region removes the assurance that the I/O d
will detect the writes of the shared data before detecting the flag write, interrupt, or device
ister write.

This implies that after a processor has prepared a data buffer to be read from memory
DMA I/O device (such as writing a buffer to disk), the processor must execute an MB be
starting the I/O. The I/O device, after receiving the start signal, must logically execute an
before reading the data buffer, and the buffer must be located in a memory-like physical m
ory region.

Send interrupt ⇒ Receive interrupt

MB

Access data

:

1 In this context, the logical equivalent of an MB for a DMA device is whatever is necessary under the applicable I/O subsystem
architecture to ensure that preceding writes will be BEFORE (see Section 5.6.1.2) the subsequent reads of shared data. Typi
cally, this action is defined to be present between every read and write access done by the I/O device, according to the applica
I/O subsystem architecture.

First Processor Second Processor
System Architecture and Programming Implications (I)5–27
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There are methods of communicating data that may work in some systems but are not g
teed in all systems. Two notable examples are:

1. If an Alpha processor writes a location implemented in a component located on a
bus in the system, then executes a memory barrier, then writes a flag in some memor
location (in a memory-like or non-memory-like region), a device on the I/O bus may
able to detect (via read access) the result of the flag in memory write and the wri
the location on the I/O bus out of order (that is, in a different order than the orde
which the Alpha processor wrote those locations).

2. If an Alpha processor writes a location that is a control register within an I/O dev
then executes a memory barrier, then writes a location in memory (in a memory-like or
non-memory-like region), the I/O device may be able to detect (via read access
result of the memory write beforereceiving and responding to the write of its own con-
trol register.

In almost every case, a mechanism that ensures the completion of writes to control re
locations within I/O devices is provided. The normal and strongly recommended mechani
to read a location after writing it, which guarantees that the write is complete. In any cas
systems that use a particular I/O device should provide the same mechanism for that devi

5.6.4.8 Multiple Processors Writing to a Single I/O Device

Generally, for multiple processors to cooperate in writing to a single I/O device, the first
cessor must write to the device, execute an MB, then notify other processors. Ano
processor that intends to write the same I/O device after the first processor must receiv
notification, execute an MB, and then write to the I/O device. For example:

The MB on the first processor guarantees that the write to CSR_A precedes the write to f
memory, as perceived on other processors. (The MB does not guarantee that the w
CSR_A has completed. See Section 5.6.4.7 for a discussion of how a processor can guarantee
that a write to an I/O device has completed at that device.) The MB on the second proc
guarantees that the write to CSR_B will reach the I/O device after the write to CSR_A.

5.6.5 Implications for Hardware

The coherency point for physical addressx is the place in the memory subsystem at whic
accesses tox are ordered. It may be at a main memory board, or at a cache containingx exclu-
sively, or at the point of winning a common bus arbitration.

The coherency point forx may move with time, as exclusive access tox migrates between
main memory and various caches.

First Processor Second Processor

:
Write CSR_A

MB
Write flag (in memory) ⇒ Read flag (in memory)

MB
Write CSR_B

:

5–28 Common Architecture (I)
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MB and CALL_PAL IMB force all preceding writes to at least reach their respective coh
ency points. This does not mean that main-memory writes have been done, just that theorder
of the eventual writes is committed. For example, on the XMI with retry, this means getting
writes acknowledged as received with good parity at the inputs to memory board queue
actual RAM write happens later.

MB and CALL_PAL IMB also force all queued cache invalidates to be delivered to the lo
caches before starting any subsequent reads (that may otherwise cache hit on stale d
writes (that may otherwise write the cache, only to have the write effectively overwritten
late-delivered invalidate).

WMB ensures that the final order of writes to memory-like regions is committed and tha
final order of writes to non-memory-like regions is committed. This does not imply that
final order of writes to memory-like regions relative to writes to non-memory-like region
committed. It also prevents writes that precede the WMB from merging with writes that
low the WMB. For example, an implementation with a write buffer might implement WMB
closing all valid write buffer entries from further merging and then drain the write buf
entries in order.

Implementations may allow reads ofx to hit (by physical address) on pending writes in a wri
buffer, even before the writes tox reach the coherency point forx. If this is done, it is still true
that no earlier value ofx may subsequently be delivered to the processor that took the hit on
write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but o
there cannot be a pending write under a synonym virtual address. Lack of a write-buffer m
on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value w
ever a PALcode routine is executed that affects the validity, fault behavior, protec
behavior, or virtual-to-physical mapping specified for one or more pages. Becoming coh
can be delayed until the next subsequent MB instruction or TB fill (using the new mappin
the implementation of the PALcode routine always forces a subsequent TB fill.

5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently and to
ward results from one instruction to another. Thus, when an arithmetic trap is detected, th
may have advanced an arbitrarily large number of instructions past the instruction T (calc
ing result R) whose execution triggered the trap.

When the trap is detected, any or all of these subsequent instructions may run to comp
before the trap is actually taken. The set of instructions subsequent to T that complete b
the trap is taken are collectively called the trap shadow of T. The PC pushed on the stack
the trap is taken is the PC of the first instruction past the trap shadow.

The instructions in the trap shadow of T may use the UNPREDICTABLE result R of T, t
may generate additional traps, and they may completely change the PC (branches, JSR).
System Architecture and Programming Implications (I)5–29
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Thus, by the time a trap is taken, the PC pushed on the stack may bear no useful relations
the PC of the trigger instruction T, and the state visible to the programmer may have
updated using the UNPREDICTABLE result R. If an instruction in the trap shadow of T u
R to calculate a subsequent register value, that register value is UNPREDICTABLE,
though there may be no trap associated with the subsequent calculation. Similarly:

• If an instruction in the trap shadow of T stores R or any subsequent UNPREDI
ABLE result, the stored value is UNPREDICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent UNPREDICTAB
result as the basis of a conditional or calculated branch, the branch target is UN
DICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent UNPREDICTAB
result as the basis of an address calculation, the memory address actually acces
UNPREDICTABLE.

Software can follow the rules in Section 4.7.7.3 to reliably bound how far the PC may adv
before taking a trap, how far an UNPREDICTABLE result may propagate or continue fro
trap by supplying a well-defined result R within an arithmetic trap handler. Arithmetic instr
tions that do not use the /S exception completion qualifier can reliably produce that beh
by inserting TRAPB instructions at appropriate points.
5–30 Common Architecture (I)
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Chapter 6

Common PALcode Architecture (I)

6.1 PALcode

In a family of machines, both users and operating system developers require functions
implemented consistently. When functions conform to a common interface, the code tha
those functions can be used on several different implementations without modification.

These functions range from the binary encoding of the instruction and data to the exce
mechanisms and synchronization primitives. Some of these functions can be implemente
effectively in hardware, but others are impractical to implement directly in hardware. Th
functions include low-level hardware support functions such as Translation Buffer mis
routines, interrupt acknowledge, and vector dispatch. They also include support for privil
and atomic operations that require long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as a p
lem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha architecture is to implement functions consistently without mi
code. However, it is still desirable to provide an architected interface to these functions
will be consistent across the entire family of machines. The Privileged Architecture Lib
(PALcode) provides a mechanism to implement these functions without microcode.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Instructions that require complex sequencing as an atomic operation
• Instructions that require VAX style interlocked memory access
• Privileged instructions
• Memory management control, including translation buffer (TB) management
• Context swapping
• Interrupt and exception dispatching
• Power-upinitialization and booting
• Console functions
• Emulation of instructions with no hardware support

The Alpha architecture lets these functions be implemented in standard machine code
resident in main memory. PALcode is written in standard machine code with some implem
tation-specific extensions to provide access to low-level hardware. This lets an A
Common PALcode Architecture (I)6–1
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implementation make various design trade-offs based on the hardware technology being
to implement the machine. The PALcode can abstract these differences and make them
ble to system software.

An Alpha Privileged Architecture Library (PALcode) of routines and environments is supp
by Compaq. Other systems may use a library supplied by Compaq or architect and implem
different library of routines. Alpha systems are required to support the replacement of P
code defined by Compaq with an operating system-specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following ways:

• Complete control of the machine state.

• Interrupts are disabled.

• Implementation-specific hardware functions are enabled, as described below.

• I-stream memory management traps are prevented (by disabling I-stream map
mapping PALcode with a permanent TB entry, or by other mechanisms).

Complete control of the machine state allows all functions of the machine to be contro
Disabling interrupts allows the system to provide multi-instruction sequences as atomic o
tions. Enabling implementation-specific hardware functions allows access to low-level sy
hardware. Preventing I-stream memory management traps allows PALcode to implem
memory management functions such as translation buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small number of a
tional functions are needed to implement the PALcode. Five opcodes are reserv
implement PALcode functions: PAL19, PAL1B, PAL1D, PAL1E, and PAL1F. These instr
tions produce an trap if executed outside the PALcode environment.

• PALcode needs a mechanism to save the current state of the machine and dispatc
PALcode.

• PALcode needs a set of instructions to access hardware control registers.

• PALcode needs a hardware mechanism to transition the machine from the PAL
environment to the non-PALcode environment. This mechanism loads the PC, en
interrupts, enables mapping, and disables PALcode privileges.

An Alpha implementation may also choose to provide additional functions to simplify
improve performance of some PALcode functions. The following are some examples:

• An Alpha implementation may include a read/write virtual function that allows PA
code to perform mapped memory accesses using the mapping hardware rather tha
viding the virtual-to-physical translation in PALcode routines. PALcode may provid
special function to do physical reads and writes and have the Alpha loads and s
continue to operate on virtual address in the PALcode environment.
6–2 Common Architecture (I)
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• An Alpha implementation may include hardware assists for various functions, suc
saving the virtual address of a reference on a memory management error rathe
having to generate it by simulating the effective address calculation in PALcode.

• An Alpha implementation may include private registers so it can function without h
ing to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may reside in main me
and maintain privileged data structures in main memory, the operating system code tha
cates physical memory cannot use all of physical memory.

The amount of memory PALcode requires is small, so the loss to the system is negligible.

6.6 PALcode Replacement

Alpha systems are required to support the replacement of PALcode supplied by Compaq
an operating system-specific version. The following functions must be implemented in P
code,not directly in hardware, to facilitate replacement with different versions.

• Translation Buffer fill. Different operating systemswill want to replace the Translation
Buffer (TB) fill routines. The replacement routines will use different data structures
Page tables will not be present in these systems. Therefore, no portion of the T
flow that would change with a change in page tables may be placed in hardware, u
it is placed in a manner that can be overridden by PALcode.

• Process structure. Different operatingsystems might want to replace the process co
text switch routines. The replacement routines will use different data structures. The
HWPCB or PCB will not be present in these systems. Therefore, no portion of the
text switching flows that would change with a change in process structure ma
placed in hardware.

PALcode can be viewed as consisting of the following somewhat intertwined components

• Chip/architecture component

• Hardware platform component

• Operating system component

PALcode should be written modularly to facilitate the easy replacement or conditional b
ing of each component. Such a practice simplifies the integration of CPU hardware, sy
platform hardware, console firmware, operating system software, and compilers.

PALcode subsections that are commonly subject to modification include:

• Translation Buffer fill

• Process structure and context switch

• Interrupt and exception frame format and routine dispatch

• Privileged PALcode instructions

• Transitions to and from console I/O mode
Common PALcode Architecture (I)6–3
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6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6–1 and Appendix C must be recognized by m
monic and opcode in all operating system implementations, but the effect of each instruct
dependent on the implementation. Compaq defines the operation of these PALcode in
tions for operating system implementations supplied by Compaq.

The PALcode instructions listed in Table 6–2 and described in the following sections mu
supported by all Alpha implementations.

Table 6–1: PALcode Instructions that Require Recognition

OpenVMS
Mnemonic

Tru64 UNIX and Alpha Linux
Mnemonic Operation

BPT bpt Breakpoint trap

BUGCHK bugchk Bugcheck trap

CSERVE cserve Console service

GENTRAP gentrap Generate trap

READ_UNQ rdunique Read unique value

SWPPAL swppal Swap PALcode

WRITE_UNQ wrunique Write unique value

Table 6–2: Required PALcode Instructions

OpenVMS
Mnemonic

Tru64 UNIX and Alpha
Linux Mnemonic Type Operation

DRAINA draina Privileged Drain aborts

HALT halt Privileged Halt processor

IMB imb Unprivileged I-stream memory barrier
6–4 Common Architecture (I)
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6.7.1 Drain Aborts

Format:

Operation:

IF PS<literal>(<)CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Instruction mnemonics:

Description:

If aborts are deliberately generated and handled (such as nonexistent memory aborts wh
ing memory or searching for I/O devices), the DRAINA instruction forces any outstand
aborts to be taken before continuing.

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue at
until all previously issued instructions have completed and any associated aborts have
signaled, as follows:

• For operate instructions, this usually means stalling until the result register has
written.

• For branch instructions, this usually means stalling until the result register and PC
been written.

• For load instructions, this usually means stalling until the result register has been
ten.

• For store instructions, this usually means stalling until at least the first level in a po
tially multilevel memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed porti
a cache block have been transferred error free before continuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate target
tion of the store has received error-free data before continuing. An implementation-spe
technique must be used to guarantee the ultimate completion of a write in implementation
have multilevel memory hierarchies or store-and-forward bus adapters.

CALL_PAL DRAINA !PALcode format

Privileged Instruction

CALL_PAL DRAINA Drain Aborts
Common PALcode Architecture (I)6–5
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6.7.2 Halt

Format:

Operation:
IF PS<literal>(<)CM> NE 0 THEN

{privileged instruction exception}

CASE {halt_action} OF
! Operating System or Platform dependent choice

halt: {halt}
restart/boot/halt: {restart/boot/halt}
boot/halt: {boot/halt}
debugger/halt: {debugger/halt}
restart/halt: {restart/halt}

ENDCASE

Exceptions:

Instruction mnemonics:

Description:

The HALT instruction stops normal instruction processing and initiates some other oper
system or platform-specific behavior, depending on the HALT action setting. The choic
behavior typically includes the initiation of a restart sequence, a system bootstrap, or entr
console mode. See Section 27.5.4.

CALL_PAL HALT !PALcode format

Privileged Instruction

CALL_PAL HALT Halt Processor
6–6 Common Architecture (I)
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6.7.3 Instruction Memory Barrier

Format:

Operation:
{Make instruction stream coherent with data stream}
IF PS<CM> NE 0

IF {Tru64 UNIX and Alpha Linux PALcode}
(PCBB+40)<32> <− 1

IF {OpenVMS PALcode}
(PCBB+56)<32> <− 1

Exceptions:

Instruction mnemonics:

Description:

An IMB instruction must be executed after software or I/O devices write into the instruc
stream or modify the instruction stream virtual address mapping, and before the new va
fetched as an instruction. An implementation may contain an instruction cache that doe
track either processor or I/O writes into the instruction stream. The instruction cache and m
ory are made coherent by an IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an instruc
from the modified location, it is UNPREDICTABLE whether the old or new value is fetched

Software Note:

In a multiprocessor environment, executing an IMB on one processor does notaffect
instruction caches on other processors. Thus, a single IMB on one processo
insufficient to guarantee that all processors see a modification of the instruction str
When an IMB is executed in other than kernel mode, that fact is recorded in the oper
system HWPCB (or PCB) at HWPCB<IMB> to help software manage tho
multiprocessor events. Software is responsible for clearing the HWPCB<IMB> bit
appropriate.

The cache coherency and sharing rules are described in Section 5.4.

CALL_PAL IMB !PALcode format

None

CALL_PAL IMB I-stream Memory Barrier
Common PALcode Architecture (I)6–7
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Chapter 7

Console Subsystem Overview (I)

On an Alpha system, underlying control of the system platform hardware is provided by acon-
sole subsystem. The console subsystem:

• Initializes, tests, and prepares the system platform hardware for Alpha system softw

• Bootstraps (loads into memory and starts the execution of) system software.

• Controls and monitors the state and state transitions of each processor in a multipr
sor system.

• Provides services to system software that simplify system software control of
access to platform hardware.

• Provides a means for aconsole operatorto monitor and control the system.

The console subsystem interacts with system platform hardware to accomplish the first
tasks. The actual mechanisms of these interactions are specific to the platform hardware
ever, the net effects are common to all systems.

The console subsystem interacts with system software once control of the system pla
hardware has been transferred to that software.

The console subsystem interacts with the console operator through a virtual display device o
console terminal. The console operator may be a person or a management application.
Console Subsystem Overview (I)7–1
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Chapter 8

Input/Output Overview (I)

Conceptually, Alpha systems can consist of processors, memory, a processor-memory
connect (PMI), I/O buses, bridges, and I/O devices.

Figure 8–1 shows the Alpha system overview.

Figure 8–1: Alpha System Overview

As shown in Figure 8–1, processors, memory, and possibly I/O devices, are connecte
PMI.

A bridge connects an I/O bus to the system, either directly to the PMI or through anothe
bus. The I/O bus address space is available to the processor either directly or indirectly.
rect access is provided through either an I/O mailbox or an I/O mapping mechanism. Th
mapping mechanism includes provisions for mapping between PMI and I/O bus addresse
access to I/O bus operations.

Alpha I/O operations can include:

• Accesses between the processor and an I/O device across the PMI

• Accesses between the processor and an I/O device across an I/O bus

• DMA accesses — I/O devices initiating reads and writes to memory

• Processor interrupts requested by devices

• Bus-specific I/O accesses

Processor-Memory Interconnect

I/O Device Processor Memory

I/O Bus

I/O Device I/O Device

Bridge
Input/Output Overview (I)8–1
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OpenVMS Software (II-A)

The following chapters describe how the OpenVMS operating system relates to the A
architecture:

• Chapter 9, Introduction to OpenVMS(II–A)

• Chapter 10, PALcode Instruction Descriptions(II–A)

• Chapter 11, Memory Management (II-A)

• Chapter 12, Process Structure (II-A)

• Chapter 13, Internal Processor Registers (II–A)

• Chapter 14, Exceptions, Interrupts, and Machine Checks (II–A)
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Chapter 9

Introduction to OpenVMS (II–A)

The goals of this design are to provide a hardware-implementation independent inteface
between the OpenVMS operating system and the hardware. Further, the design provid
needed abstractions to minimize the impact between OpenVMS and different hardware i
mentations. Finally, the design must contain only that overhead necessary to satisfy
requirements, while still supporting high-performance systems.

9.1 Register Usage

In addition to those registers described in Chapter 3, OpenVMS defines the registers des
in the following sections.

9.1.1 Processor Status

The Processor Status (PS) is a special register that contains the current status of the pro
It can be read by the CALL_PAL RD_PS instruction. The software field PS<SW> can be w
ten by the CALL_PAL WR_PS_SW routine. See Section 14.2.1 for a description of the
register.

9.1.2 Stack Pointer (SP)

Integer register R30 is the Stack Pointer (SP).

The SP contains the address of the top of the stack in the current mode.

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit operand.
ing such operations, the address value in R30, interpreted as an unsigned 64-bit in
decreases (predecrements) when items are pushed onto the stack and increases (po
ments) when they are popped from the stack. After pushing (writing) an item to the stack
points to that item.

9.1.3 Internal Processor Registers (IPRs)

The IPRs provide an architected mapping to internal hardware or provide other specia
uses. They are available only to privileged software through PALcode routines and a
OpenVMS to interrogate or modify system state. The IPRs are described in Chapter 13.
Introduction to OpenVMS (II–A)9–1
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9.1.4 Processor Cycle Counter (PCC)

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) ar
unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>) are an o
PCC_OFF. PCC_OFF is a value that, when added to PCC_CNT, gives the total PCC re
count for this process, modulo 2**32.
9–2 OpenVMS Software (II–A)
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Chapter 10

PALcode Instruction Descriptions (II–A)

This chapter describes the PALcode instructions that are implemented for the OpenVMS
ronment. The PALcode instructions are a set of unprivileged and privileged CALL_P
instructions that are used to match specific operating system requirements to the unde
hardware implementation.

For example, privileged PALcode instructions switch the hardware context of a process s
ture. Unprivileged PALcode instructions implement the uninterruptible queue operations. A
PALcode instructions provide mechanisms for standard interrupt and exception reporting tha
are independent of the underlying hardware implementation.

Table 10–1 lists all the unprivileged and privileged OpenVMS PALcode instructions and
section in which they are described.

Table 10–1: OpenVMS PALcode Instructions

Mnemonic Operation Section

AMOVRM Atomic move register/memory 10.4.1

AMOVRR Atomic move register/register 10.4.1

BPT Breakpoint 10.1.1

BUGCHK Bugcheck 10.1.2

CFLUSH Cache flush 10.6.1

CHME Change mode to executive 10.1.3

CHMK Change mode to kernel 10.1.4

CHMS Change mode to supervisor 10.1.5

CHMU Change mode to user 10.1.6

CLRFEN Clear floating-point enable 10.1.7

CSERVE Console service 10.6.2

DRAINA Drain aborts 6.7.1

GENTRAP Generate software trap 10.1.8

HALT Halt processor 6.7.2

IMB I-stream memory barrier 6.7.3

INSQxxx Insert in specified queue 10.3
PALcode Instruction Descriptions (II–A)10–1



LDQP Load quadword physical 10.6.3

MFPR Move from processor register 10.6.4

MTPR Move to processor register 10.6.5

PROBER Probe read access 10.1.9

PROBEW Probe write access 10.1.9

RD_PS Read processor status 10.1.10

READ_UNQ Read unique context 10.5.1

REI Return from exception or interrupt 10.1.11

REMQxxx Remove from specified queue 10.3

RSCC Read system cycle counter 10.1.12

STQP Store quadword physical 10.6.6

SWASTEN Swap AST enable 10.1.13

SWPCTX Swap privileged context 10.6.7

SWPPAL Swap PALcode image 10.6.8

WRITE_UNQ Write unique context 10.5.2

WR_PS_SW Write processor status software field 10.1.14

WTINT Wait for interrupt 10.6.9

Table 10–1: OpenVMS PALcode Instructions (Continued)

Mnemonic Operation Section
10–2 OpenVMS Software (II–A)



10.4,
10.1 Unprivileged General PALcode Instructions

The general unprivileged instructions in this section, together with those in Sections 10.3,
and 10.5, provide support for the underlying OpenVMS model.

Table 10–2: Unprivileged General PALcode Instruction Summary

Mnemonic Operation

BPT Breakpoint

BUGCHK Bugcheck

CHME Change mode to executive

CHMK Change mode to kernel

CHMS Change mode to supervisor

CHMU Change mode to user

CLRFEN Clear floating-point enable

GENTRAP Generate software trap

IMB I-stream memory barrier. See Section 6.7.3.

PROBER Probe read access

PROBEW Probe write access

RD_PS Read processor status

REI Return from exception or interrupt

RSCC Read system cycle counter

SWASTEN Swap AST enable

WR_PS_SW Write processor status software field
PALcode Instruction Descriptions (II–A)10–3
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10.1.1 Breakpoint

Format:

Operation:
{initiate BPT exception with new_mode=kernel}

Exceptions:

Instruction mnemonics:

Description:

The BPT instruction is provided for program debugging. It switches to kernel mode and pu
R2..R7, the updated PC, and PS on the kernel stack. It then dispatches to the address
Breakpoint SCB vector. See Section 14.3.3.2.1.

CALL_PAL BPT ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL BPT Breakpoint
10–4 OpenVMS Software (II–A)
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10.1.2 Bugcheck

Format:

Operation:
{initiate BUGCHK exception with new_mode=kernel}
! R16 contains a value encoding for the bugchk trap

Exceptions:

Instruction mnemonics:

Description:

The BUGCHK instruction is provided for error reporting. It switches to kernel mode a
pushes R2..R7, the updated PC, and PS on the kernel stack. It then dispatches to the ad
the Bugcheck SCB vector. See Section 14.3.3.2.2.

The value in R16 identifies the particular bugcheck type. Interpretation of the encoded v
determines the course of action by the operating system.

CALL_PAL BUGCHK ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL BUGCHK Bugcheck
PALcode Instruction Descriptions (II–A)10–5
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10.1.3 Change Mode to Executive

Format:

Operation:
tmp1 ← MINU( 1, PS<CM>)
{initiate CHME exception with new_mode=tmp1}
! R16 contains a value encoding for the trap

Exceptions:

Instruction mnemonics:

Description:

The CHME instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved, th
pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack. The sav
addresses the instruction following the CHME instruction. Registers R22, R23, R24, and
are available for use by PALcode as scratch registers. The contents of these registers
preserved across a CHME.

The value in R16 identifies the particular exception type. Interpretation of the encoded v
determines the course of action by the operating system.

CALL_PAL CHME ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL CHME Change Mode to Executive
10–6 OpenVMS Software (II–A)
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10.1.4 Change Mode to Kernel

Format:

Operation:
{initiate CHMK exception with new_mode=kernel}

! R16 contains a value encoding for the trap

Exceptions:

Instruction mnemonics:

Description:

The CHMK instruction lets a process change its mode to kernel in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved, th
pointer is loaded. R2..R7, PC, and PS are pushed onto the kernel stack. The sav
addresses the instruction following the CHMK instruction. Registers R22, R23, R24, and
are available for use by PALcode as scratch registers. The contents of these registers
preserved across a CHMK.

The value in R16 identifies the particular exception type. Interpretation of the encoded v
determines the course of action by the operating system.

CALL_PAL CHMK ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL CHMK Change Mode to Kernel
PALcode Instruction Descriptions (II–A)10–7
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10.1.5 Change Mode to Supervisor

Format:

Operation:
tmp1 ← MINU( 2, PS<CM>)
{initiate CHMS exception with new_mode=tmp1}

! R16 contains a value encoding for the trap

Exceptions:

Instruction mnemonics:

Description:

The CHMS instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved, th
pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack. The sav
addresses the instruction following the CHMS instruction.

The value in R16 identifies the particular exception type. Interpretation of the encoded v
determines the course of action by the operating system.

CALL_PAL CHMS ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL CHMS Change Mode to Supervisor
10–8 OpenVMS Software (II–A)
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10.1.6 Change Mode to User

Format:

Operation:
{initiate CHMU exception with new_mode=PS<CM>}

! R16 contains a value encoding for the trap

Exceptions:

Instruction mnemonics:

Description:

The CHMU instruction lets a process call a routine by using the change mode mechanism

R2..R7, PC, and PS are pushed onto the current stack. The saved PC addresses the ins
following the CHMU instruction.

The value in R16 identifies the particular exception type. Interpretation of the encoded v
determines the course of action by the operating system.

The CALL_PAL CHMU instruction is provided for VAX compatibility only.

CALL_PAL CHMU ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL CHMU Change Mode to User
PALcode Instruction Descriptions (II–A)10–9
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10.1.7 Clear Floating-Point Enable

Format:

Operation:
FEN ← 0
(HWPCB+56)<0> ← 0 ! Update HWPCB on Write

Exceptions:

Instruction mnemonics:

Description:

The CLRFEN instruction writes a zero to the floating-point enable register and to the HWP
at offset (HWPCB+56)<0>.

CALL_PAL CLRFEN ! PALcode format

None

CALL_PAL CLRFEN Clear floating-point enable
10–10 OpenVMS Software (II–A)



hes
en dis-

ding
10.1.8 Generate Software Trap

Format:

Operation:
{initiate GENTRAP exception with new_mode=kernel}
! R16 contains the value encoding of the software trap

Exceptions:

Instruction mnemonics:

Description:

The GENTRAP instruction is provided for reporting run-time software conditions. It switc
to kernel mode and pushes R2...R7, the updated PC, and PS on the kernel stack. It th
patches to the address in the GENTRAP SCB Vector. See Section 14.6.

The value in R16 identifies the particular software condition that has occurred. The enco
for the software trap values is given in the software calling standard for the system.

CALL_PAL GENTRAP ! PALcode format

Kernel Stack Not Valid Halt

CALL_PAL GENTRAP Generate Software Trap
PALcode Instruction Descriptions (II–A)10–11
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10.1.9 Probe Memory Access

Format:

Operation:
! R16 contains the base address
! R17 contains the signed offset
! R18 contains the access mode
! R0 receives the completion status
! ← 1 if success
! ← 0 if failure

first ← R16
last ← {R16+R17}

IF R18<1:0> GTU PS<CM> THEN
probe_mode ← R18<1:0>

ELSE
probe_mode ← PS<CM>

IF ACCESS(first, probe_mode) AND ACCESS(last, probe_mode) THEN
R0 ← 1

ELSE
R0 ← 0

Exceptions:

Instruction mnemonics:

Description:

The PROBE instruction checks the read or write accessibility of the first and last byte sp
fied by the base address and the signed offset; the bytes in between are not checked.

System software must check all pages between the two bytes if they are to be accessed.
bytes are accessible, PROBE returns the value 1 in R0; otherwise, PROBE returns 0. The
on Read and Fault on Write PTE bits are not checked. A Translation Not Valid exceptio
signaled only if the mapping structures cannot be accessed. A Translation Not Valid exce
is signaled only if a first- or second-level PTE is invalid.

The protection is checked against the less privileged of the modes specified by R18<1:0
the Current Mode (PS<CM>). See Section 14.2 for access mode encodings.

PROBE is only intended to check a single datum for accessibility. It does not check allinter-
vening pages because this could result in excessive interrupt latency.

CALL_PAL PROBE ! PALcode format

Translation Not Valid

CALL_PAL PROBER Probe for Read Access

CALL_PAL PROBEW Probe for Write Access
10–12 OpenVMS Software (II–A)
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10.1.10 Read Processor Status

Format:

Operation:
R0 ← PS

Exceptions:

Instruction mnemonics:

Description:

The RD_PS instruction returns the Processor Status (PS) in register R0. The Processor S
described in Section 14.2. The PS<SP_ALIGN> field is always a zero on a RD_PS.

CALL_PAL RD_PS ! PALcode format

None

CALL_PAL RD_PS Read Processor Status
PALcode Instruction Descriptions (II–A)10–13



10.1.11 Return from Exception or Interrupt

Format:

Operation:
! See Chapter 14
! for information on interrupted registers

IF SP<5:0> NE 0 THEN
{illegal operand }

tmp1 ← (SP) ! Get saved R2
tmp2 ← (SP+8) ! Get saved R3
tmp3 ← (SP+16) ! Get saved R4
tmp4 ← (SP+24) ! Get saved R5
tmp5 ← (SP+32) ! Get saved R6
tmp6 ← (SP+40) ! Get saved R7
tmp7 ← (SP+48) ! Get new PC
tmp8 ← (SP+56) ! Get new PS

ps_chk ← tmp8 ! Copy new ps
ps_chk<cm> ← 0 ! Clear cm field
ps_chk<sp_align> ← 0 ! Clear sp_align field
ps_chk<sw> ← 0 ! Clear Software Field
intr_flag ← 0 ! Clear except/inter/mcheck flag
{ clear lock_flag}

! If current mode is not kernel check the new ps is valid.
IF {ps<cm> NE 0} AND

{{tmp8<cm> LT ps<cm>} OR {ps_chk NE 0}} THEN
BEGIN

{illegal operand}
END

sp ← {sp + 8*8} OR tmp8<sp_align>
IF {internal registers for stack pointers} THEN

CASE ps<cm> BEGIN
[0]: ipr_ksp ← sp
[1]: ipr_esp ← sp
[2]: ipr_ssp ← sp
[3]: ipr_usp ← sp

ENDCASE
CASE tmp8<cm> BEGIN

[0]: sp ← ipr_ksp
[1]: sp ← ipr_esp
[2]: sp ← ipr_ssp
[3]: sp ← ipr_usp

ENDCASE

CALL_PAL REI ! PALcode format
10–14 OpenVMS Software (II–A)
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ELSE
(pcbb + 8*ps<cm>) ← sp
sp ← (pcbb + 8*tmp8<cm>)

ENDIF

R2 ← tmp1
R3 ← tmp2
R4 ← tmp3
R5 ← tmp4
R6 ← tmp5
R7 ← tmp6
PC ← tmp7
PS ← tmp8 <12:00>

{Initiate interrupts or AST interrupts that are now pending}

Exceptions:

Instruction mnemonics:

Description:

The REI instruction pops the PS, PC, and saved R2...R7 from the current stack and holds
in temporary registers. The new PS is checked for validity and consistency. If it is invali
inconsistent, an illegal operand exception occurs; otherwise the operation continues. A k
to nonkernel REI with a new PS<IPL> not equal to zero may yield UNDEFINED results.

The current stack pointer is then saved and a new stack pointer is selected according to th
PS<CM> field. R2 through R7 are restored using the saved values held in the temporary
ters. A check is made to determine if an AST or other interrupt is pending (see Section 14.

If the enabling conditions are present for an interrupt or AST interrupt at the completion of
instruction, the interrupt or AST interrupt occurs before the next instruction.

When an REI is issued, the current stack must be writeable from the current mode or an A
Violation may occur.

Implementation Note:

This is necessary so that an implementation can choose to clear the lock_flag by do
STx_C to above the top-of-stack after popping PS, PC, and saved R2..R7 off the cu
stack.

Access Violation

Fault on Read
Illegal Operand

Kernel Stack Not Valid Halt
Translation Not Valid

CALL_PAL REI Return from Exception or Interrupt
PALcode Instruction Descriptions (II–A)10–15
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10.1.12 Read System Cycle Counter

Format:

Operation:
R0 ← {System Cycle Counter}

Exceptions:

Instruction mnemonics:

Description:

The RSCC instruction writes register R0 with the value of the system cycle counter.
counter is an unsigned 64-bit integer that increments at the same rate as the process
counter. The cycle counter frequency, which is the number of times the system cycle co
gets incremented per second rounded to a 64-bit integer, is given in the HWRPB (see S
26.1).

The system cycle counter is suitable for timing a general range of intervals to within 10%
and may be used for detailed performance characterization. It is required on all implem
tions. SCC is required for every processor, and each processor in a multiprocessor syste
its own private, independent SCC.

Notes:

• Processor initialization starts the SCC at 0.

• SCC is monotonically increasing. On the same processor, the values returned b
successive reads of SCC must either be equal or the value of the second must be g
(unsigned) than the first.

• SCC ticks are never lost so long as the SCC is accessed at least once per eac
overflow period (2**32 PCC increments) during periods when the hardware cl
interrupt remains blocked. The hardware clock interrupt is blocked whenever the IP
at or above CLOCK_IPL or whenever the processor enters console I/O mode from
gram I/O mode.

• The 64-bit SCC may be constructed from the 32-bit PCC hardware counter and a 3
PALcode software counter. As part of the hardware clock interrupt processing, P
code increments the software counter whenever a PCC wrap is detected. Thus,
ticks may be lost only when PALcode fails to detect PCC wraps. In a machine w
the PCC is incremented at a 1 ns rate, this may occur when hardware clock inter
are blocked for greater than 4 seconds.

CALL_PAL RSCC ! PALcode format

None

CALL_PAL RSCC Read System Cycle Counter
10–16 OpenVMS Software (II–A)
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• An implementation-dependent mechanism must exist so that, when enabled, it c
the RSCC instruction, as implemented by standard PALcode, always to return azero in
R0. This mechanism must be usable by privileged system software. A similar me
nism must exist for RPCC. Implementations are allowed to have only a single me
nism, which when enabled causes both RSCC and RPCC to returnzero.
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10.1.13 Swap AST Enable

Format:

Operation:
R0 ← ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>>← R16<0>

{check for pending ASTs}

Exceptions:

Instruction mnemonics:

Description:

The SWASTEN instruction swaps the AST enable bit for the current mode. The new stat
the enable bit is supplied in register R16<0>, and the previous state of the enable
returned, zero extended, in R0.

A check is made to determine if an AST interrupt is pending (see Section 14.7.6.5).

If the enabling conditions are present for an AST interrupt at the completion of this inst
tion, the AST occurs before the next instruction.

CALL_PAL SWASTEN ! PALcode format

None

CALL_PAL SWASTEN Swap AST Enable for Current Mode
10–18 OpenVMS Software (II–A)
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10.1.14 Write Processor Status Software Field

Format:

Operation:
PS<SW>← R16<1:0>

Exceptions:

Instruction mnemonics:

Description:

The WR_PS_SW instruction writes the Processor Status software field (PS<SW>) wit
low-order two bits of R16. The Processor Status is described in Section 14.2.

CALL_PAL WR_PS_SW ! PALcode format

None

CALL_PAL WR_PS_SW Write Processor Status Software Field
PALcode Instruction Descriptions (II–A)10–19
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10.2 Queue Data Types

The following sections describe the queue data types that are manipulated by the Open
queue PALcode. Section 10.3 describes the PALcode instructions that perform
manipulation.

10.2.1 Absolute Longword Queues

A longword queue is a circular, doubly linked list. A longword queue entry is specified by
address. Each longword queue entry is linked to the next with a pair of longwords. A que
classified by the type of link it uses. Absolute longword queues use absolute addresses as

The first (lowest addressed) longword is the forward link; it specifies the address of the
ceeding longword queue entry. The second (highest addressed) longword is the backwar
it specifies the address of the preceding longword queue entry.

A longword queue is specified by a longword queue header, which is identical to a pa
longword queue linkage longwords. The forward link of the header is the address of the
termed the head of the longword queue. The backward link of the header is the address
entry termed the tail of the longword queue. The forward link of the tail points to the heade

An empty longword queue is specified by its header at address H, as shown in Figure 10
an entry at address B is inserted into an empty longword queue (at either the head or tai
longword queue shown in Figure 10–2 results. Figures 10–3, 10–4, and 10–5, respect
illustrate the results of subsequent insertion of an entry at address A at the head, insertion
entry at address C at the tail, and removal of the entry at address B.

The queue header and all entries in absolute longword queues need only be byte aligne
better performance, quadword alignment (or higher) is recommended.

10.2.2 Self-Relative Longword Queues

Self-relative longword queues use displacements from longword queue entries as links.
word queue entries are linked by a pair of longwords. The first longword (lowest addresse
the forward link; it is a displacement of the succeeding longword queue entry from the pre
entry. The second longword (highest addressed) is the backward link; it is the displacem
the preceding longword queue entry from the present entry. A longword queue is specified
longword queue header, which also consists of two longword links.

An empty longword queue is specified by its header at address H. Since the longword qu
empty, the self-relative links are zero, as shown in Figure 10–6.

Four types of operations can be performed on self-relative queues: insert at head, insert
remove from head, and remove from tail. Furthermore, these operations are interlock
allow cooperating processes in a multiprocessor system to access a shared list withou
tional synchronization. A hardware-supported, interlocked memory-access mechanism is
to modify the queue header. Bit <0> of the queue header is used as a secondary interlock
set when the queue is being accessed.
10–20 OpenVMS Software (II–A)
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If an interlocked queue CALL_PAL instruction encounters the secondary interlock set, the
the absence of exceptions, it terminates after setting R0 to –1 to indicate failure to gain a
to the queue. If the secondary interlock bit is not set, then it is set during the interlocked q
operation and is cleared upon completion of the operation. This prevents other interlo
queue CALL_PAL instructions from operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is UNPREDI
ABLE whether the exception will be reported.

The queue header and all entries in self-relative longword queues must be at least qua
aligned.

Figures 10–7, 10–8, and 10–9, respectively, illustrate the results of subsequent insertion
entry at address B at the head, insertion of an entry at address A at the tail, and insertion
entry at address C at the tail.

Figures 10–9, 10–8, and 10–7 (in that order) illustrate the effect of removal at the tail
removal at the head.

Figure 10–1: Empty Absolute Longword Queue

Figure 10–2: Absolute Longword Queue with One Entry

Figure 10–3: Absolute Longword Queue with Two Entries
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Figure 10–4: Absolute Longword Queue with Three Entries

Figure 10–5: Absolute Longword Queue with Three Entries After Removing the
Second Entry

Figure 10–6: Empty Self-Relative Longword Queue

Figure 10–7: Self-Relative Longword Queue with One Entry
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Figure 10–8: Self-Relative Longword Queue with Two Entries

Figure 10–9: Self-Relative Longword Queue with Three Entries

10.2.3 Absolute Quadword Queues

A quadword queue is a circular, doubly linked list. A quadword queue entry is specified b
address. Each quadword queue entry is linked to the next with a pair of quadwords. A que
classified by the type of link it uses. Absolute quadword queues use absolute addres
links.

The first (lowest addressed) quadword is the forward link; it specifies the address of the
ceeding quadword queue entry. The second (highest addressed) quadword is the bac
link; it specifies the address of the preceding quadword queue entry.

A quadword queue is specified by a quadword queue header, which is identical to a p
quadword queue linkage quadwords. The forward link of the header is the address of the
termed the head of the quadword queue. The backward link of the header is the address
entry termed the tail of the quadword queue. The forward link of the tail points to the head

An empty quadword queue is specified by its header at address H, as shown in Figure 10–
an entry at address B is inserted into an empty quadword queue (at either the head or ta
quadword queue shown in Figure 10–11 results. Figures 10–12, 10–13, and 10–14, re
tively, illustrate the results of subsequent insertion of an entry at address A at the h
insertion of an entry at address C at the tail, and removal of the entry at address B.
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The queue header and all entries in absolute quadword queues must be at least oct
aligned.

10.2.4 Self-Relative Quadword Queues

Self-relative quadword queues use displacements from quadword queue entries as links.
word queue entries are linked by a pair of quadwords. The first quadword (lowest address
the forward link; it is a displacement of the succeeding quadword queue entry from the pr
entry. The second quadword (highest addressed) is the backward link; it is the displacem
the preceding quadword queue entry from the present entry. A quadword queue is specif
a quadword queue header, which also consists of two quadword links.

An empty quadword queue is specified by its header at address H. Since the quadword qu
empty, the self-relative links are zero, as shown in Figure 10–15.

Four types of operations can be performed on self-relative queues: insert at head, insert
remove from head, and remove from tail. Furthermore, these operations are interlock
allow cooperating processes in a multiprocessor system to access a shared list withou
tional synchronization. A hardware-supported, interlocked memory-access mechanism is
to modify the queue header. Bit <0> of the queue header is used as a secondary interlock
set when the queue is being accessed.

If an interlocked queue CALL_PAL instruction encounters the secondary interlock set, the
the absence of exceptions, it terminates after setting R0 to –1 to indicate failure to gain a
to the queue. If the secondary interlock bit is not set, it is set during the interlocked queue
ation and is cleared upon completion of the operation. This prevents other interlocked q
CALL_PAL instructions from operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is UNPREDI
ABLE whether the exception will be reported.

The queue header and all entries in self-relative quadword queues must be at least oct
aligned.

Figures 10–16, 10–17, and 10–18, respectively, illustrate the results of subsequent inser
an entry at address B at the head, insertion of an entry at address A at the tail, and inser
an entry at address C at the tail.

Figures 10–18, 10–17, and 10–16 (in that order) illustrate the effect of removal at the tai
removal at the head.

Figure 10–10 Empty Absolute Quadword Queue
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Figure 10–11 Absolute Quadword Queue with One Entry

Figure 10–12 Absolute Quadword Queue with Two Entries

Figure 10–13 Absolute Quadword Queue with Three Entries
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Figure 10–14 Absolute Quadword Queue with Three Entries After Removing the Second
Entry

Figure 10–15 Empty Self-Relative Quadword Queue

Figure 10–16 Absolute Quadword Queue with One Entry

Figure 10–17 Self-Relative Quadword Queue with Two Entries
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Figure 10–18 Self-Relative Quadword Queue with Three Entries
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10.3 Unprivileged Queue PALcode Instructions

The following unprivileged PALcode instructions perform atomic modification of the que
data types that are described in Section 10.2.

Table 10–3: Queue PALcode Instruction Summary

Mnemonic Operation

INSQHIL Insert into longword queue at head, interlocked

INSQHILR Insert into longword queue at head, interlocked, resident

INSQHIQ Insert into quadword queue at head, interlocked

INSQHIQR Insert into quadword queue at head, interlocked, resident

INSQTIL Insert into longword queue at tail, interlocked

INSQTILR Insert into longword queue at tail, interlocked, resident

INSQTIQ Insert into quadword queue at tail, interlocked

INSQTIQR Insert into quadword queue at tail, interlocked, resident

INSQUEL Insert into longword queue

INSQUEQ Insert into quadword queue

REMQHIL Remove from longword queue at head, interlocked

REMQHILR Remove from longword queue at head, interlocked, resident

REMQHIQ Remove from quadword queue at head, interlocked

REMQHIQR Remove from quadword queue at head, interlocked, resident

REMQTIL Remove from longword queue at tail, interlocked

REMQTILR Remove from longword queue at tail, interlocked, resident

REMQTIQ Remove from quadword queue at tail, interlocked

REMQTIQR Remove from quadword queue at tail, interlocked, resident

REMQUEL Remove from longword queue

REMQUEQ Remove from quadword queue
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10.3.1 Insert Entry into Longword Queue at Head Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry.
!
! check entry and header alignment and
! that the header and entry not same location and
! that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R17} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16))! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock

R0 ← -1, {return} ! Already set
done ←STORE_CONDITIONAL ((R16) ←{tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB
tmp1 ← SEXT(tmp0<31:0>)
IF {tmp1<2:1> NE 0} THEN BEGIN ! Check alignment

BEGIN ! Release secondary interlock.
(R16) ← tmp0
{illegal operand exception}

END

! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + tmp1

CALL_PAL INSQHIL ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock.

(R16) ← tmp0
{initiate memory management fault}

END

! All accesses can be done so enqueue the entry

tmp2 ← SEXT({R16 - R17}<31:0>)
(R17)<31:0> ← tmp1 + tmp2 ! Forward link
(R17 + 4)<31:0> ← tmp2 ! Backward link
(R16 + tmp1 + 4)<31:0> ← -tmp1 - tmp2! Successor back link

MB

(R16)<31:0> ← -tmp2 ! Forward link of header
! Release lock

IF tmp1 EQ 0 THEN
R0 ← 1 ! Queue was empty

ELSE
R0 ← 0 ! Queue was not empty

END

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQHIL inserts the entry specified in R17 into the self
ative queue following the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. Before the insertion, the processor validates that the entire o
tion can be completed. This ensures that if a memory management exception occurs, the
is left in a consistent state (see Chapters 11 and 14). If the instruction fails to acquire the
ondary interlock after "N" retry attempts, then (in the absence of exceptions) R0 is set t
The value "N" is implementation dependent.

Access Violation

Fault on Read
Fault on Write

Illegal Operand
Translation Not Valid

CALL_PAL INSQHIL Insert into Longword Queue at Head Interlocked
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10.3.2 Insert Entry into Longword Queue at Head Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry.
! All parts of the Queue must be memory resident

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16))! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ←STORE_CONDITIONAL ((R16) ← {tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
tmp2 ← SEXT({R16 - R17}<31:0>)! Enqueue the entry
(R17)<31:0> ← tmp1 + tmp2 ! Forward link of entry.
(R17 + 4)<31:0> ← tmp2 ! Backward link of entry.
(R16 + tmp1 + 4)<31:0> ← -tmp1 - tmp2 ! Successor back link

MB
(R16)<31:0> ← -tmp2 ! Forward link of header

! Release the lock
IF tmp1 EQ 0 THEN

R0 ← 1 ! Queue was empty
ELSE

R0 ← 0 ! Queue was not empty
END

CALL_PAL INSQHILR ! PALcode format
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Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQHILRinserts the entry specified in R17 into the sel
relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. If the instruction fails to acquire the secondary interlock after
retry attempts, then (in the absence of exceptions) R0 is set to –1. The value "N" is imple
tation dependent.

This instruction requires that the queue be memory resident and that the queue header a
ments are quadword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL INSQHILR Insert Entry into Longword Queue at Head
Interlocked Resident
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10.3.3 Insert Entry into Quadword Queue at Head Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! Header cannot be equal to entry.
!
! check entry and header alignment and
! that the header and entry not same location
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ←{tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

IF {tmp1<3:1> NE 0} THEN BEGIN ! Check Alignment
BEGIN ! Release secondary interlock

(R16) ← tmp1
{illegal operand exception}

END

! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + tmp1

CALL_PAL INSQHIQ ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) ← tmp1
{initiate memory management fault}

END

! All accesses can be done so enqueue the entry
tmp2 ← R16 - R17
(R17) ← tmp1 + tmp2 ! Forward link
(R17 + 8) ← tmp1 ! Backward link
(R16 + tmp1 + 8) ← -tmp1 - tmp2 ! Successor back link

MB

(R16) ← -tmp2 ! Forward link of header
! Release the lock.

IF tmp1 EQ 0 THEN
R0 ← 1 ! Queue was empty

ELSE
R0 ← 0 ! Queue was not empty

END

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQHIQ inserts the entry specified in R17 into the self-rel-
ative queue following the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. Before the insertion, the processor validates that the entire o
tion can be completed. This ensures that if a memory management exception occurs, the
is left in a consistent state (see Chapters 11 and 14). If the instruction fails to acquire the
ondary interlock after "N" retry attempts, then (in the absence of exceptions) R0 is set t
The value "N" is implementation dependent.

Access Violation

Fault on Read
Fault on Write

Illegal Operand
Translation Not Valid

CALL_PAL INSQHIQ Insert into Quadword Queue at Head

Interlocked
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10.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! Header cannot be equal to entry.
! All parts of the Queue must be memory resident

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ←STORE_CONDITIONAL ((R16) ←{tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp2 ← R16 - R17 ! Enqueue the entry
(R17) ← tmp1 + tmp2 ! Forward link of entry.
(R17 + 8) ← tmp2 ! Backward link of entry.
(R16 + tmp1 + 8) ← -tmp1 - tmp2 ! Successor back link

MB
(R16) ← -tmp2 ! Forward link of header,

! Release the lock
IF tmp1 EQ 0 THEN

R0 ← 1 ! Queue was empty
ELSE

R0 ← 0 ! Queue was not empty
END

CALL_PAL INSQHIQR ! PALcode format
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Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQHIQR inserts the entry specified in R17 into the s
relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. If the instruction fails to acquire the secondary interlock after
retry attempts, then (in the absence of exceptions) R0 is set to –1. The value "N" is imple
tation dependent.

This instruction requires that the queue be memory resident and that the queue header a
ments are octaword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL INSQHIQR Insert Entry into Quadword Queue at Head

Interlocked Resident
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10.3.5 Insert Entry into Longword Queue at Tail Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry.
!
! check entry and header alignment and
! that the header and entry not same location and
! that the header and entry are valid 32 bit addresses
IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR

{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R16} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ←{tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
tmp2 ← SEXT(tmp0<63:32>)

IF {tmp1<2:1> NE 0} OR {tmp2<2:0> NE 0} THEN ! Check Alignment
BEGIN ! Release secondary interlock

(R16) ← tmp0
{illegal operand exception}

END

! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + (header + 4)

CALL_PAL INSQTIL ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) ← tmp0
{initiate memory management fault}

END

! All Accesses can be done so enqueue entry
tmp3 ← SEXT( {R16 - R17}<31:0>)
(R17)<31:0> ← tmp3 ! Forward link
(R17 + 4)<31:0> ← tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2)<31:0> ← -tmp3 - tmp2
ELSE

tmp1 ← SEXT({-tmp3 - tmp2}<31:0>)
(R16+4)<31:0> ← -tmp3 ! Backward link of header

MB
(R16)<31:0> ← tmp1 ! Forward link, release lock
IF tmp1 EQ -tmp3 THEN

R0 ← 1 ! Queue was empty
ELSE

R0 ← 0 ! Queue was not empty
END

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQTIL inserts the entry specified in R17 into the self
ative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. Before performing any part of the operation, the processor
dates that the insertion can be completed. This ensures that if a memory management exc
occurs, the queue is left in a consistent state (see Chapters 11 and 14). If the instruction f
acquire the secondary interlock after "N" retry attempts, then (in the absence of except
R0 is set to –1. The value "N" is implementation dependent.

Access Violation

Fault on Read
Fault on Write

Illegal Operand
Translation Not Valid

CALL_PAL INSQTIL Insert into Longword Queue at Tail Interlocked
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10.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! Header cannot be equal to entry.
! All parts of the Queue must be memory resident

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
tmp2 ← SEXT(tmp0<63:32>)
tmp3 ← SEXT( {R16 - R17}<31:0>)
(R17)<31:0> ← tmp3 ! Forward link
(R17 + 4)<31:0> ← tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2)<31:0> ← -tmp3 - tmp2
ELSE

tmp1 ← <- SEXT({-tmp3 - tmp2}<31:0>)

(R16+4)<31:0> ← -tmp3 ! Backward link of header

MB

(R16)<31:0> ← tmp1 ! Forward link
! Release the lock

CALL_PAL INSQTILR ! PALcode format
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IF tmp1 EQ -tmp3 THEN
R0 ← 1 ! Queue was empty

ELSE
R0 ← 0 ! Queue was not empty

END

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQTILR inserts the entry specified in R17 into the s
relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. If the instruction fails to acquire the secondary interlock a
"N" retry attempts, then (in the absence of exceptions) R0 is set to –1. The value "N" is im
mentation dependent.

This instruction requires that the queue be memory resident and that the queue header a
ments are quadword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL INSQTILR Insert Entry into Longword Queue at Tail

Interlocked Resident
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10.3.7 Insert Entry into Quadword Queue at Tail Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! Header cannot be equal to entry.
!
! check entry and header alignment and
! that the header and entry not same location
IF {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp2 ← (R16+8)
IF {tmp1<3:1> NE 0} OR {tmp2<3:0> NE 0} THEN ! Check Alignment.

BEGIN ! Release secondary interlock.
(R16) ← tmp1
{illegal operand exception}

END

! Check if following addresses can be written
! without causing a memory management exception:
! entry
! header + (header + 8)

CALL_PAL INSQTIQ ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock.

(R16) ← tmp1
{initiate memory management fault}

END
! All accesses can be done so enqueue the entry
tmp3 ← R16 - R17
(R17) ← tmp3 ! Forward link
(R17 + 8) ← tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2) ← -tmp3 - tmp2
ELSE

tmp1 ← {-tmp3 - tmp2}
(R16+8) ← -tmp3 ! Backward link of header

MB

(R16) ← tmp1 ! Forward link
! Release the lock

IF tmp1 EQ -tmp3 THEN
R0 ← 1 ! Queue was empty

ELSE
R0 ← 0 ! Queue was not empty

END

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQTIQ inserts the entry specified in R17 into the self
ative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concu
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. Before performing any part of the operation, the processor
dates that the insertion can be completed. This ensures that if a memory management exc
occurs, the queue is left in a consistent state (see Chapters 11 and 14). If the instruction f
acquire the secondary interlock after "N" retry attempts, then (in the absence of except
R0 is set to –1. The value "N" is implementation dependent.

Access Violation

Fault on Read
Fault on Write

Illegal Operand
Translation Not Valid

CALL_PAL INSQTIQ Insert into Quadword Queue at Tail Interlocked
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10.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R17 contains the address of the new entry
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the entry was not empty before adding this entry
! 1 if the entry was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! Header cannot be equal to entry.
! All parts of the Queue must be memory resident

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp2 ← (R16+8)
tmp3 ← R16 - R17
(R17) ← tmp3 ! Forward link
(R17 + 8) ← tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2) ← -tmp3 - tmp2
ELSE

tmp1 ← {-tmp3 - tmp2}
(R16+8) ← -tmp3 ! Backward link of header

MB

(R16) ← tmp1 ! Forward link and release the lock
IF tmp1 EQ -tmp3 THEN

R0 ← 1 ! Queue was empty
ELSE

R0 ← 0 ! Queue was not empty
END

CALL_PAL INSQTIQR ! PALcode format
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Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, INSQTIQRinserts the entry specified in R17 into the sel
relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, R0 is set to 1; otherwise, it is set to 0
insertion is a non-interruptible operation. The insertion is interlocked to prevent concur
interlocked insertions or removals at the head or tail of the same queue by another proces
multiprocessor environment. If the instruction fails to acquire the secondary interlock after
retry attempts, then (in the absence of exceptions) R0 is set to –1. The value "N" is imple
tation dependent.

This instruction requires that the queue be memory resident and that the queue header a
ments are octaword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL INSQTIQR Insert Entry into Quadword Queue at Tail

Interlocked Resident
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10.3.9 Insert Entry into Longword Queue

Format:

Operation:
! R16 contains the address of the predecessor entry
! or the 32 bit address of the 32 bit address of the
! predecessor entry for INSQUEL/D
! R17 contains the address of the new entry
! R0 receives status:
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
!
! Header and entries need only be byte aligned
! Must have write access to header and queue entries
IF opcode EQ INSQUEL/D THEN

tmp2 ← SEXT((R16)<31:0>)! Address of predecessor
ELSE

tmp2 ← R16

IF {all memory accesses can be completed} THEN
BEGIN

tmp1<31:0> ← SEXT((tmp2)<31:0>)! Get Forward Link
(R17)<31:0> ← tmp1 ! Set forward link
(R17 + 4)<31:0> ← tmp2 ! Backward link
(SEXT((tmp2)<31:0>) + 4)<31:0> ← R17

! Backward link of Successor
(tmp2)<31:0> ← R17 ! Forward link of Predecessor
IF tmp1 EQ tmp2 THEN

R0 ← 1
ELSE

R0 ← 0
END

ELSE
BEGIN

{initiate fault}
END

END

Exceptions:

CALL_PAL INSQUEL ! PALcode format

Access Violation

Fault on Read
Fault on Write

Translation Not Valid
PALcode Instruction Descriptions (II–A)10–45
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Instruction mnemonics:

Description:

INSQUEL inserts the entry specified in R17 into the absolute queue following the entry sp
fied by the predecessor addressed by R16. INSQUEL/D performs the same operation
entry specified by the contents of the longword addressed by R16. The queue header an
need only be byte aligned.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in R0; o
wise, a 0 is returned in R0. The insertion is a non-interruptible operation. Before perform
any part of the insertion, the processor validates that the entire operation can be comp
This ensures that if a memory management exception occurs, the queue is left in a cons
state (see Chapters 11 and 14).

CALL_PAL INSQUEL Insert Entry into Longword Queue
CALL_PAL INSQUEL/D Insert Entry into Longword Queue Deferred
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10.3.10 Insert Entry into Quadword Queue

Format:

Operation:
! R16 contains the address of the predecessor entry
! or the address of the address of the
! predecessor entry for INSQUEQ/D
! R17 contains the address of the new entry
! R0 receives status:
! 0 if the queue was not empty before adding this entry
! 1 if the queue was empty before adding this entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned

IF opcode EQ INSQUEQ/D THEN
IF {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END
tmp2 ← (R16) ! Address of predecessor

ELSE
tmp2 ← R16

END
IF {tmp2<3:0> NE 0} OR {R17<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmp1 ← (tmp2) ! Get forward link of entry
IF {tmp1<3:0> NE 0} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(R17) ← tmp1 ! Set forward link of entry
(R17 + 8) ← tmp2 ! Backward link of entry
(tmp1 + 8) ← R17 ! Backward link of successor
(tmp2) ← R17 ! Forward link of predecessor
IF tmp1 EQ tmp2 THEN

R0 ← 1
ELSE

R0 ← 0
END

CALL_PAL INSQUEQ ! PALcode format
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ELSE
BEGIN

{initiate fault}
END

END

Exceptions:

Instruction mnemonics:

Description:

INSQUEQ inserts the entry specified in R17 into the absolute queue following the entry s
fied by the predecessor addressed by R16. INSQUEQ/D performs the same operation
entry specified by the contents of the quadword addressed by R16.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in R0; o
wise, a 0 is returned in R0. The insertion is a non-interruptible operation. Before perform
any part of the insertion, the processor validates that the entire operation can be comp
This ensures that if a memory management exception occurs, the queue is left in a cons
state (see Chapters 11 and 14). R0 is UNPREDICTABLE if an exception occurs. The rel
order of reporting memory management and illegal operand exceptions is UNPREDICTAB

Access Violation
Fault on Read

Fault on Write
Translation Not Valid

Illegal Operand

CALL_PAL INSQUEQ Insert Entry into Quadword Queue

CALL_PAL INSQUEQ/D Insert Entry into Quadword Queue Deferred
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10.3.11 Remove Entry from Longword Queue at Head Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
!
! Check header alignment and
! that the header is a valid 32 bit address
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
IF tmp1<2:0> NE 0 THEN ! Check Alignment

BEGIN ! Release secondary interlock
(R16) ← tmp0

{illegal operand exception}
END

CALL_PAL REMQHIL ! PALcode format
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! Check if the following can be done without
! causing a memory management exception:
! read contents of header + tmp1 {if tmp1 NE 0}
! write into header + tmp1 + (header + tmp1) {if tmp1 NE 0}
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) ← tmp0
{initiate memory management fault}

END

tmp2 ← SEXT({R16 + tmp1}<31:0>)
IF {tmp1 EQL 0} THEN

tmp3 ← R16
ELSE

tmp3 ← SEXT({tmp2 + SEXT((tmp2)<31:0>)})

IF tmp3<2:0> NE 0 THEN ! Check Alignment
BEGIN ! Release secondary interlock

(R16) ← tmp0
{illegal operand exception}

END

(tmp3 + 4)<31:0> ← R16 - tmp3 ! Backward link of successor

MB

(R16)<31:0> ← tmp3 - R16 ! Forward link of header
! Release lock

IF tmp1 EQ 0 THEN
R0 ← 0 ! Queue was empty

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
R0 ← 2 ! Queue now empty

ELSE
R0 ← 1 ! Queue not empty

END
END
R1 ← tmp2 ! Address of removed entry

Exceptions:

Access Violation
Fault on Read

Fault on Write
Illegal Operand

Translation Not Valid
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Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQHIL removes from the self-relative queue the e
following the header, pointed to by R16, and the address of the removed entry is return
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If the interlock succeeded and the queue was not empty at the start o
removal and the queue is empty after the removal, a 2 is returned in R0. If the instruction
to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep
R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation. Before performing any part of the removal, the processor
dates that the entire operation can be completed. This ensures that if a memory manag
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).

CALL_PAL REMQHIL Remove from Longword Queue at Head

Interlocked
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10.3.12 Remove Entry from Longword Queue at Head Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! All parts of the Queue must be memory resident

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
tmp2 ← SEXT({R16 + tmp1}<31:0>)
IF {tmp1 EQL 0} THEN

tmp3 ← R16
ELSE

tmp3 ← SEXT({tmp2 + SEXT((tmp2)<31:0>)})
END

(tmp3 + 4)<31:0> ← R16 - tmp3 ! Backward link of successor

MB
(R16)<31:0> ← tmp3 - R16 ! Forward link of header

! Release lock
IF tmp1 EQ 0 THEN

R0 ← 0 ! Queue was empty

CALL_PAL REMQHILR ! PALcode format
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ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
R0 ← 2 ! Queue now empty

ELSE
R0 ← 1 ! Queue not empty

END
END
R1 ← tmp2 ! Address of removed entry

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQHILR removes from the self-relative queue the e
following the header, pointed to by R16, and the address of the removed entry is return
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If the interlock succeeded and the queue was not empty at the start
removal and the queue is empty after the removal, a 2 is returned in R0. If the instruction
to acquire the secondary interlock after "N" retry attempts, then (in the absence of excep
R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header a
ments are quadword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL REMQHILR Remove Entry from Longword Queue at Head
Interlocked Resident
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10.3.13 Remove Entry from Quadword Queue at Head Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
!
! Check header alignment
IF {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

IF tmp1<3:0> NE 0 THEN ! Check Alignment
BEGIN ! Release secondary interlock

(R16) ← tmp1
{illegal operand exception}

END

! Check if the following can be done without
! causing a memory management exception:
! read contents of header + tmp1 {if tmp1 NE 0}
! write into header + tmp1 + (header + tmp1) {if tmp1 NE 0}

CALL_PAL REMQHIQ ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) ← tmp0
{initiate memory management fault}

END

tmp2 ← R16 + tmp1
IF {tmp1 EQL 0} THEN

tmp3 ← R16
ELSE

tmp3 ← tmp2 + (tmp2)

IF tmp3<3:0> NE 0 THEN ! Check Alignment
BEGIN ! Release secondary interlock

(R16) ← tmp1
{illegal operand exception}

END

(tmp3 + 8) ← R16 - tmp3 ! Backward link of successor

MB

(R16) ← tmp3 - R16 ! Forward link of header
! Release lock

IF tmp1 EQ 0 THEN
R0 ← 0 ! Queue was empty

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
R0 ← 2 ! Queue now empty

ELSE
R0 ← 1 ! Queue not empty

END
END
R1 ← tmp2 ! Address of removed entry

Exceptions:

Access Violation
Fault on Read

Fault on Write
Illegal Operand

Translation Not Valid
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Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQHIQ removes from the self-relative queue the e
following the header, pointed to by R16, and the address of the removed entry is return
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If there was an entry to remove and the queue is not empty at the end o
instruction, R0 is set to 1. If the interlock succeeded and the queue was not empty at the s
the removal, and the queue is empty after the removal, a 2 is returned in R0. If the instru
fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of ex
tions) R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation. Before performing any part of the removal, the processor
dates that the entire operation can be completed. This ensures that if a memory manag
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).

CALL_PAL REMQHIQ Remove from Quadword Queue at Head

Interlocked
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10.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! All parts of the Queue must be memory resident

N ← {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp2 ← R16 + tmp1
IF {tmp1 EQL 0} THEN

tmp3 ← R16
ELSE

tmp3 ← tmp2 + (tmp2)
END
(tmp3 + 8) ← R16 - tmp3 ! Backward link of successor

MB

(R16) ← tmp3 - R16 ! Forward link of header
! Release lock

CALL_PAL REMQHIQR ! PALcode format
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IF tmp1 EQ 0 THEN
R0 ← 0 ! Queue was empty

ELSE
IF {tmp3 - R16} EQ 0 THEN

R0 ← 2 ! Queue now empty
ELSE

R0 ← 1 ! Queue not empty
END
R1 ← tmp2 ! Address of removed entry

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQHIQR removes from the self-relative queue the e
following the header, pointed to by R16, and the address of the removed entry is return
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If there was an entry to remove and the queue is not empty at the end o
instruction, R0 is set to 1. If the interlock succeeded and the queue was not empty at the s
the removal, and the queue is empty after the removal, a 2 is returned in R0. If the instru
fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of ex
tions) R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header a
ments are octaword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL REMQHIQR Remove Entry from Quadword Queue at Head
Interlocked Resident
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10.3.15 Remove Entry from Longword Queue at Tail Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
!
! Check header alignment and
! that the header is a valid 32 bit address
IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
tmp5 ← SEXT(tmp0<63:32>)
IF tmp5<2:0> NE 0 THEN ! Check alignment

BEGIN ! Release secondary interlock
(R16) ← tmp0
{illegal operand exception}

END

!Check if the following can be done without
! causing a memory management exception:
! read contents of header + (header + 4) {if tmp1 NE 0}
! write into header + (header + 4)
! + (heade r + 4 + (header + 4)){if tmp1 NE 0}

CALL_PAL REMQTIL ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) ← tmp0
{initiate memory management fault}

END

addr ← SEXT( {R16 + tmp5}<31:0> )
tmp2 ← SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> )
IF tmp2<2:0> NE 0 THEN ! Check alignment

BEGIN ! Release secondary interlock
(R16) ← tmp0
{illegal operand exception}

END

(R16 + 4)<31:0> ← tmp2 - R16 ! Backward link of header
IF {tmp2 EQL R16} THEN

(R16)<31:0> ← 0 ! Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> ← R16 - tmp2 ! Forward link of predecessor

MB
(R16)<31:0> ← tmp1 ! Release lock

END
IF tmp1 EQ 0 THEN

R0 ← 0 ! Queue was empty
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

R0 ← 2 ! Queue now empty
ELSE

R0 ← 1 ! Queue not empty
END

R1 ← addr ! Address of removed entry

Exceptions:
Access Violation
Fault on Read

Fault on Write
Illegal Operand

Translation Not Valid
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Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQTIL removes from the self-relative queue the e
preceding the header, pointed to by R16, and the address of the removed entry is retur
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If there was an entry to remove and the queue is not empty at the end o
instruction, R0 is set to 1. If the interlock succeeded and the queue was not empty at the s
the removal, and the queue is empty after the removal, a 2 is returned in R0. If the instru
fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of ex
tions) R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation. Before performing any part of the removal, the processor
dates that the entire operation can be completed. This ensures that if a memory manag
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).

CALL_PAL REMQTIL Remove from Longword Queue at Tail

Interlocked
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10.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be quadword aligned.
! All parts of the Queue must be memory resident

N ← {retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp0 ← (R16)) ! Acquire hardware interlock.
IF tmp0<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp0 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp1 ← SEXT(tmp0<31:0>)
tmp5 ← SEXT(tmp0<63:32>)
addr ← SEXT( {R16 + tmp5}<31:0> )
tmp2 ← SEXT( {addr + SEXT( (addr+4)<31:0>)}<31:0> )
(R16 + 4)<31:0> ← tmp2 - R16! Backward link of header
IF {tmp2 EQL R16} THEN

(R16)<31:0> ← 0 ! Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> ← R16 - tmp2 ! Forward link of predecessor
MB
(R16)<31:0> ← tmp1 ! Release lock

END

CALL_PAL REMQTILR ! PALcode format
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IF tmp1 EQ 0 THEN
R0 ← 0 ! Queue was empty

ELSE
IF {tmp2 - R16} EQ 0 THEN

R0 ← 2 ! Queue now empty
ELSE

R0 ← 1 ! Queue not empty
END

END
R1 ← addr ! Address of removed entry

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQTILR removes from the self-relative queue the e
preceding the header, pointed to by R16, and the address of the removed entry is retur
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If there was an entry to remove and the queue is not empty at the end o
instruction, R0 is set to 1. If the interlock succeeded and the queue was not empty at the s
the removal, and the queue is empty after the removal, a 2 is returned in R0. If the instru
fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of ex
tions) R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header a
ments are quadword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL REMQTILR Remove Entry from Longword Queue at Tail
Interlocked Resident
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10.3.17 Remove Entry from Quadword Queue at Tail Interlocked

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
!
! Check header alignment
IF {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END

N ←{retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp5 ← (R16+8)
IF tmp5<3:0> NE 0 THEN ! Check Alignment

BEGIN ! Release secondary interlock
(R16) ← tmp1
{illegal operand exception}

END
! Check if the following can be done without
! causing a memory management exception:
! read contents of header + (header + 8) {if tmp1 NE 0}
! write into header + (header + 8)
! + (heade r + 8 + (header + 8)){if tmp1 NE 0}

CALL_PAL REMQTIQ ! PALcode format
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IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) ← tmp1
{initiate memory management fault}

END

addr ← R16 + tmp5
tmp2 ← addr + (addr + 8)
IF tmp2<3:0> NE 0 THEN ! Check alignment

BEGIN ! Release secondary interlock
(R16) ← tmp1
{illegal operand exception}

END

(R16 + 8) ← tmp2 - R16 ! Backward link of header
IF {tmp2 EQL R16} THEN

(R16) ← 0 ! Forward link, release lock
ELSE

BEGIN
(tmp2) ← R16 - tmp2 ! Forward link of predecessor
MB
(R16) ← tmp1 ! Release lock

END
END
IF tmp1 EQ 0 THEN

R0 ← 0 ! Queue was empty
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

R0 ← 2 ! Queue now empty
ELSE

R0 ← 1 ! Queue not empty
END

END
R1 ← addr ! Address of removed entry

Exceptions:
Access Violation
Fault on Read

Fault on Write
Illegal Operand

Translation Not Valid
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Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQTIQ removes from the self-relative queue the e
preceding the header, pointed to by R16, and the address of the removed entry is retur
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If there was an entry to remove and the queue is not empty at the end o
instruction, R0 is set to 1. If the interlock succeeded and the queue was not empty at the s
the removal, and the queue is empty after the removal, a 2 is returned in R0. If the instru
fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of ex
tions) R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation. Before performing any part of the removal, the processor
dates that the entire operation can be completed. This ensures that if a memory manag
exception occurs, the queue is left in a consistent state (see Chapters 11 and 14).

CALL_PAL REMQTIQ Remove from Quadword Queue at Tail Interlocked
10–66 OpenVMS Software (II–A)



10.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident

Format:

Operation:
! R16 contains the address of the queue header
! R0 receives status:
! -1 if the secondary interlock was set
! 0 if the queue was empty
! 1 if entry removed and queue still not empty
! 2 if entry removed and queue empty
! R1 receives the address of the removed entry
!
! Must have write access to header and queue entries
! Header and entries must be octaword aligned.
! All parts of the Queue must be memory resident

N ←{retry_amount} ! Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ← (R16)) ! Acquire hardware interlock.
IF tmp1<0> EQ 1 THEN ! Try to set secondary interlock.

R0 ← -1, {return} ! Already set
done ← STORE_CONDITIONAL ((R16) ← {tmp1 OR 1} )
N ← N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, R0 ← -1, {return} ! Retry exceeded

MB

tmp5 ← (R16+8)
addr ← R16 + tmp5
tmp2 ← addr + (addr + 8)
(R16 + 8) ← tmp2 - R16 ! Backward link of header
IF {tmp2 EQL R16} THEN

(R16) ← 0 ! Forward link, release lock
ELSE

BEGIN
(tmp2) ← R16 - tmp2 ! Forward link of predecessor
MB
(R16) ← tmp1 ! Release lock

END
END

CALL_PAL REMQTIQR ! PALcode format
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IF tmp1 EQ 0 THEN
R0 ← 0 ! Queue was empty

ELSE
IF {tmp2 - R16} EQ 0 THEN

R0 ← 2 ! Queue now empty
ELSE

R0 ← 1 ! Queue not empty
END
R1 ← addr ! Address of removed entry

Exceptions:

Instruction mnemonics:

Description:

If the secondary interlock is clear, REMQTIQR removes from the self-relative queue the e
preceding the header, pointed to by R16, and the address of the removed entry is retur
R1.

If the queue was empty prior to this instruction and secondary interlock succeeded, a
returned in R0. If there was an entry to remove and the queue is not empty at the end o
instruction, R0 is set to 1. If the interlock succeeded and the queue was not empty at the s
the removal, and the queue is empty after the removal, a 2 is returned in R0. If the instru
fails to acquire the secondary interlock after "N" retry attempts, then (in the absence of ex
tions) R0 is set to –1. The value "N" is implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals at the
or tail of the same queue by another process, in a multiprocessor environment. The remo
a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue header a
ments are octaword aligned. No alignment or memory management checks are made
starting queue modifications to verify these requirements. Therefore, if any of these req
ments are not met, the queue may be left in an UNPREDICTABLE state and an illegal ope
fault may be reported.

Illegal Operand

CALL_PAL REMQTIQR Remove Entry from Quadword Queue at Tail
Interlocked Resident
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10.3.19 Remove Entry from Longword Queue

Format:

Operation:
! R16 contains the address of the entry to remove
! or the address of the 32 bit address of the
! entry for REMQUEL/D
! R0 receives status:
! -1 if the queue was empty
! 0 if the queue is empty after removing an entry
! 1 if the queue is not empty after removing an entry
! R1 receives the address of the removed entry
!

! Header and entries need only be byte aligned

! Must have write access to header and queue entries
IF opcode EQ REMQUEL/D THEN

R1 ← SEXT((R16)<31:0>)
ELSE

R1 ← SEXT(R16<31:0>)

IF {all memory accesses can be completed} THEN
BEGIN

tmp1 ← (R1)<31:0> ! Forward Link of Predecessor
((R1+4)<31:0>)<31:0> ← tmp1
tmp2 ← (R1+4)<31:0> ! Backward Link of Successor
((R1)<31:0>+4)<31:0> ← tmp2
R0 ← 1 ! Queue not empty
IF {tmp1 EQ tmp2} THEN

R0 ← 0 ! Queue now empty
IF {R1 EQ tmp2} THEN

R0 ← -1 ! Queue was empty
END

ELSE
BEGIN

{initiate fault}
END

END

Exceptions:

CALL_PAL REMQUEL ! PALcode form

Access Violation

Fault on Read
Fault on Write

Translation Not Valid
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Instruction mnemonics:

Description:

REMQUEL removes the entry addressed by R16 from the longword absolute queue
address of the removed entry is returned in R1. REMQUEL/D performs the same operati
the queue entry addressed by the longword addressed by R16. The queue header an
need only be byte aligned.

In either case, if there was no entry in the queue to be removed, R0 is set to –1. If there w
entry to remove and the queue is empty at the end of this instruction, R0 is set to 0. If ther
an entry to remove and the queue is not empty at the end of this instruction, R0 is set to 1
removal is a non-interruptible operation. Before performing any part of the removal, the
cessor validates that the entire operation can be completed. This ensures that if a m
management exception occurs, the queue is left in a consistent state (see Chapters 11 an

CALL_PAL REMQUEL Remove Entry from Longword Queue

CALL_PAL REMQUEL/D Remove Entry from Longword Queue Deferred
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10.3.20 Remove Entry from Quadword Queue

Format:

Operation:
! R16 contains the address of the entry to remove
! or address of address of entry for REMQUEQ/D
! R0 receives status:
! -1 if the queue was empty
! 0 if the queue is empty after removing an entry
! 1 if the queue is not empty after removing an entry
! R1 receives the address of the removed entry
! Must have write access to header and queue entries
! Header and entries must be octaword aligned
IF opcode EQ REMQUEQ/D THEN

IF {R16<3:0> NE 0} THEN
BEGIN

{illegal operand exception}
END

R1 ← (R16)
ELSE

R1 ← R16
IF {R1<3:0> NE 0} THEN ! Check alignment

BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmp1 ← (R1) ! Forward link of Predecessor
IF {tmp1<3:0> NE 0} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
tmp2 ← (R1+8) ! Find predecessor
IF {tmp2<3:0> NE 0} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(tmp2) ← tmp1 ! Update Forward link of predecessor
((R1)+8) ← tmp2

CALL_PAL REMQUEQ ! PALcode format
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R0 ← 1 ! Queue not empty
IF {tmp1 EQ tmp2} THEN

R0 ← 0 ! Queue now empty
IF {R1 EQ tmp2} THEN

R0 ← -1 ! Queue was empty
END

ELSE
BEGIN

{initiate fault}
END

END

Exceptions:

Instruction mnemonics:

Description:

REMQUEQ removes the queue entry addressed by R16 from the quadword absolute q
The address of the removed entry is returned in R1. REMQUEQ/D performs the same o
tion on the queue entry addressed by the quadword addressed by R16.

In either case, if there was no entry in the queue to be removed, R0 is set to –1. If there w
entry to remove and the queue is empty at the end of this instruction, R0 is set to 0. If ther
an entry to remove and the queue is not empty at the end of this instruction, R0 is set to 1
removal is a non-interruptible operation. Before performing any part of the removal, the
cessor validates that the entire operation can be completed. This ensures that if a m
management exception occurs, the queue is left in a consistent state (see Chapters 11 a
R0 and R1 are UNPREDICTABLE if an exception occurs. The relative order of report
memory management and illegal operand exceptions is UNPREDICTABLE.

Access Violation

Fault on Read
Fault on Write

Translation Not Valid
Illegal Operand

CALL_PAL REMQUEQ Remove Entry from Quadword Queue

CALL_PAL REMQUEQ/D Remove Entry from Quadword Queue Deferred
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10.4 Unprivileged VAX Compatibility PALcode Instruc-
tions

The Alpha architecture provides the following PALcode instructions for use in translated V
code. These instructions are not a permanent part of the architecture and will not be ava
in some future implementations. They are provided to help customers preserve VAX ins
tion atomicity assumptions in porting code from VAX to Alpha. These calls should be u
mode. They must not be used by any code other than that generated by the VEST sof
translator and its supporting run-time code (TIE).
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10.4.1 Atomic Move Operation

Format:

Operation:
! R16 contains the first source
! R17 contains the first destination address
! R18 contains the first length
! R19 contains the second source
! R20 contains the second destination address
! R21 contains the second length
CASE

AMOVRR:
IF intr_flag EQ 0 THEN

R18 ← 0
{return}

END

intr_flag ← 0
(R17) ← R16 ! length specified by R18<1:0>
(R20) ← R19 ! length specified by R21<1:0>
IF {both moves successful} THEN

R18 ← 1
ELSE

R18 ← 0
END

AMOVRM:
IF intr_flag EQ 0 THEN

R18 ← 0
{return}

END

intr_flag ← 0
(R17) ← R16 ! length specified by R18<1:0>
IF R21<5:0> NE 0 THEN

BEGIN
IF R19<1:0> NE 0 OR R20<1:0> NE 0

{Illegal operand exception}
ELSE

(R20) ← (R19)! length specified by R21<5:0>
END

IF {both moves successful} THEN
R18 ← 1

ELSE
R18 ← 0

END
ENDCASE

AMOVRR ! PALcode format

AMOVRM ! PALcode format
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Exceptions:

Instruction mnemonics:

Description:
Note:

The CALL_PAL AMOVxx instructions existonly for the support of translated VAX code
They must be usedonly in translated VAX code and its support routines (TIE).

CALL_PAL AMOVRR

The CALL_PAL AMOVRR instruction specifies two multiprocessor-safe register stores
arbitrary byte addresses. Either both stores are done or neither store is done. R18 is set
both stores are done, and 0 otherwise. The two source registers are R16 and R19. The tw
tination byte addresses are in R17 and R20. The two lengths are specified in R18<1:0
R21<1:0>. The length encoding is as follows: 00 is store byte, 01 is store word, 10 is s
longword, 11 is store quadword. The low 1, 2, 4, or 8 bytes of the source register are u
respectively. The unused bytes of the source registers are ignored. The unused bits
length registers (R18<63:2> and R21<63:2>) should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction sets R1
zero and exits, doing no stores. Otherwise, intr_flag is cleared and the PALcode routine
ceeds. This is the same per-processor intr_flag used by the RS and RC instructions.

The AMOVRR memory addresses may be unaligned. If either store would result in a Tra
tion Not Valid fault, Fault on Write, or Access Violation fault, neither store is done and
corresponding fault is taken. If both stores would result in faults, it is UNPREDICTAB
which one is taken.

Note:

A fault does not set R18, because the instruction has not been completed.

AMOVRR: Access Violation
Fault On Write

Translation Not Valid
AMOVRM: Access Violation

Fault On Read
Fault On Write

Illegal Operand
Translation Not Valid

CALL_PAL AMOVRR Atomic Move Register/Register

CALL_PAL AMOVRM Atomic Move Register/Memory
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If both stores can be completed without faulting, they are both attempted using multiproce
safe LDQ_L..STQ_C sequences. If all the sequences store successfully with no interru
the PALcode routine completes with R18 set to one. Otherwise, the PALcode routine
pletes with R18 set to zero. In addition, R16, R17, R19, R20, and R21 are UNPREDICTA
upon return from the PALcode routine, even if an exception has occurred.

If the destinations overlap, the stores must appear to be done in the order specified.

CALL_PAL AMOVRM

The CALL_PAL AMOVRM instruction specifies one multiprocessor safe register store to
arbitrary byte address, plus an atomic memory-to-memory move of 0 to 63 aligned longw
Either the store and the move are both done in their entirety or neither is done. R18 is
one if both are done, and zero otherwise.

The first source register is R16, the first destination address is in R17, and the first length
R18. These three are specified exactly as in AMOVRR.

The second source address is in R19, the second destination address is in R20, and the
length is in R21<5:0>. The length is a longword length, in the range 0 to 63 longwords (
252 bytes). The unused bytes of the source register R16 are ignored. The unused bits
length registers (R18<63:2> and R21<63:6>) should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear, the instruction sets R18 to zero
exits, doing no stores. Otherwise, intr_flag is cleared and the PALcode routine proceeds
is the same per-processor intr_flag used by the RS and RC instructions.

The memory address in R17 may be unaligned.

If the length for the move is zero, no move is done, no memory accesses are made via R1
R20, and no fault checking of these addresses is done. In this case, the move is always c
ered to have succeeded in determining the setting of R18.

If the length in R21 is non-zero, the two addresses in R19 and R20 must be aligned long
addresses; otherwise, an Illegal Operand exception is taken.

If either the store or the move would result in a Translation Not Valid, Fault on Read, Fau
Write, or Access Violation fault, neither is done and the corresponding fault is taken. If b
would result in faults, it is UNPREDICTABLE which one is taken.

Note:

A fault does not set R18, since the instruction has not been completed.

If both the store and the move can be completed without faulting, they are both attem
using multiprocessor-safe LDQ_L..STQ_C sequences for the store. If all the operations
successfully with no interruption, the PALcode routine completes with R18 set to one. O
wise, the PALcode routine completes with R18 set to zero. In addition, R16, R17, R19,
and R21 are UNPREDICTABLE upon return from the PALcode routine, even if an excep
has occurred.

If the memory fields overlap, the store must appear to be done first, followed by the move
ordering of the reads and writes of the move is unspecified. Thus, if the move destination
laps the move source, the move results are UNPREDICTABLE.

These instructions contain no implicit MB.
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Notes:

• Typically, these instructions would be used in a sequence starting with CALL_PAL
and ending with CALL_PAL AMOVxx, Bxx R18,label. The failure path from the con
ditional branch would eventually go back to the RS instruction. When such a sequ
succeeds, it has done everything from the RS up to and including the CALL_P
AMOVxx completely with no interrupts or exceptions.

• The CALL_PAL AMOVxx instruction is typically followed by a conditional branch o
R18. If the CALL_PAL AMOVxx is likely to succeed, the conditional branch should
a forward branch on failure (BEQ R18,forward_label) or backward branch on suc
(BNE R18, backward_label), to match the architected branch-prediction rule.

• The CALL_PAL AMOVxx instruction must either do both stores or neither. If R18=
upon return, then memory state must be unchanged. If the first STQ_C in
AMOVRR succeeds (andthus has changed programmer-visible state in memory), the
PALcode routine must complete the second STQ_C also, and exit with R18=1. In
ticular, if the failure loop around the second STQ_C is executed an excessive numb
times (due to perverse interference from another processor), the PALcode may not
"give up" and return with R18=0.
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10.5 Unprivileged PALcode Thread Instructions

The PALcode thread instructions provide support for multithread implementations, w
require that a given thread be able to generate a reproducible unique value in a "timely"
ion. This value can then be used to index into a structure or otherwise generate addi
thread unique data.

The two instructions in Table 10–4 are provided to read and write a process unique value
the process’s hardware context.

The process-unique value is stored in the HWPCB at [HWPCB+72] when the process i
active. When the process is active, the process unique value can be cached in hardwarinter-
nal storage or reside in the HWPCB only.

Table 10–4: Unprivileged PALcode Thread Instructions

Mnemonic Operation

READ_UNQ Read unique context

WRITE_UNQ Write unique context
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10.5.1 Read Unique Context

Format:

Operation:
IF {internal storage for process unique context} THEN

R0 ← {process unique context}
ELSE

R0 ← (HWPCB+72)

Exceptions:

Instruction mnemonics:

Description:

The READ_UNQ instruction causes the hardware process (thread) unique context value
placed in R0. If this value has not previously been written using a CALL_PAL WRITE_UN
or stored into the quadword in the HWPCB at [HWPCB+72] while the thread was inactive
result returned in R0 is UNPREDICTABLE. Implementations can cache this unique con
value while the hardware process is active. The unique context may be thought of as a
register." Typically, this value will be used by software to establish a unique context f
given thread of execution.

CALL_PAL READ_UNQ ! PALcode format

None

CALL_PAL READ_UNQ Read Unique Context
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10.5.2 Write Unique Context

Format:

Operation:
!R16 contains value to be written to the hardware process
! unique context

IF {internal storage for process unique context} THEN
{process unique context} ← R16

ELSE
(HWPCB+72) ← R16

Exceptions:

Instruction mnemonics:

Description:

The WRITE_UNQ instruction causes the value of R16 to be stored in internal storage for h
ware process (thread) unique context, if implemented, or in the HWPCB at [HWPCB+72
the internal storage is not implemented. When the process is context switched, SWP
ensures that this value is stored in the HWPCB at [HWPCB+72]. Implementations can c
this unique context value in internal storage while the hardware process is active. The u
context may be thought of as a "slow register." Typically, this value will be used by softwar
establish a unique context for a given thread of execution.

CALL_PAL WRITE_UNQ ! PALcode format

None

CALL_PAL WRITE_UNQ Write Unique Context
10–80 OpenVMS Software (II–A)



tion
10.6 Privileged PALcode Instructions

Privileged instructions can be called in kernel mode only; otherwise, a privileged instruc
exception occurs. The following privileged instructions are provided:

Table 10–5: PALcode Privileged Instructions Summary

Mnemonic Operation

CFLUSH Cache flush

CSERVE Console service

DRAINA Drain abort. Section 6.7.1.

HALT Halt processor. See Section 6.7.2.

LDQP Load quadword physical

MFPR Move from processor register

MTPR Move to processor register

STQP Store quadword physical

SWPCTX Swap privileged context

SWPPAL Swap PALcode image
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10.6.1 Cache Flush

Format:

Operation:
! R16 contains the Page Frame Number (PFN)
! of the page to be flushed

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Flush page out of cache(s)}

Exceptions:

Instruction mnemonics:

Description:

The CFLUSH instruction may be used to flush an entire physical page specified by the PF
R16 from any data caches associated with the current processor. All processors must
ment this instruction.

On processors that implement a backup power option that maintains only the contents of
ory during a powerfail, this instruction is used by the powerfail interrupt handler to force d
written by the handler to the battery backed-up main memory. After a CFLUSH, the first
sequent load (on the same processor) to an arbitrary address in the target page is either
from physical memory or from the data cache of another processor.

In some multiprocessor systems, CFLUSH is not sufficient to ensure that the data are ac
written to memory and not exchanged between processor caches. Additional platform-sp
cooperation between the powerfail interrupt handlers executing on each processor m
required.

On systems that implement other backup power options (including none), CFLUSH may r
without affecting the datacache contents. To order CFLUSH properly with respect to prece
ing writes, an MB instruction is needed before the CFLUSH; to order CFLUSH properly w
respect to subsequent reads, an MB instruction is needed after the CFLUSH.

CALL_PAL CFLUSH ! PALcode format

Privileged Instruction

CALL_PAL CFLUSH Cache Flush
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10.6.2 Console Service

Format:

Operation:
! Implementation specific

IF PS<CM> NE 0 THEN
{Privileged instruction exception}

ELSE
{Implementation-dependent action}

Exceptions:

Instruction mnemonics:

Description:

This instruction is specific to each PALcode and console implementation and is not inte
for operating system use.

CALL_PAL CSERVE ! PALcode format

Privileged Instruction

CALL_PAL CSERVE Console Service
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10.6.3 Load Quadword Physical

Format:

Operation:
! R16 contains the quadword-aligned physical address
! R0 receives the data from memory

IF PS<CM> NE 0 THEN
{Privileged Instruction exception}

R0 ← (R16) {physical access}

Exceptions:

Instruction mnemonics:

Description:

The LDQP instruction fetches and writes to R0 the quadword-aligned memory operand, w
physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is UNPREDICTABLE.

CALL_PAL LDQP ! PALcode format

Privileged Instruction

CALL_PAL LDQP Load Quadword Physical
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10.6.4 Move from Processor Register

Format:

Operation:
IF PS<CM> NE 0 THEN

{privileged instruction exception}

! R16 may contain an IPR specific source operand
R0 ← result of IPR specific function

Exceptions:

Instruction mnemonics:

Description:

The MFPR_xxx instruction reads the internal processor register specified by the PAL
function field and writes it to R0.

Registers R1, R16, and R17 contain UNPREDICTABLE results after an MFPR.

See Chapter 13 for a description of each IPR.

CALL_PAL MFPR_IPR_Name ! PALcode format

Privileged Instruction

CALL_PAL MFPR_xxx Move from Processor Registerxxx
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10.6.5 Move to Processor Register

Format:

Operation:
IF PS<CM> NE 0 THEN

{privileged instruction exception}
! R16 may contain an IPR specific source operand

R0 ← result of IPR specific function
IPR ← result of IPR specific function

Exceptions:

Instruction mnemonics:

Description:

The MTPR_xxx instruction writes the IPR-specific source operands in integer registers
and R17 (R17 reserved for future use) to the internal processor register specified by the
code function field. The effect produced by loading a processor register is guaranteed
active on the next instruction.

Registers R1, R16, and R17 contain UNPREDICTABLE results after an MTPR. The MT
may return results in R0. If the specific IPR being accessed does not return results in R0
R0 contains an UNPREDICTABLE result after an MTPR.

See Chapter 13 for a description of each IPR.

CALL_PAL MTPR_IPR_Name ! PALcode format

Privileged Instruction

CALL_PAL MTPR_xxx Move to Processor Registerxxx
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10.6.6 Store Quadword Physical

Format:

Operation:
! R16 contains the quadword aligned physical address
! R17 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception}

(R16) ← R17 {physical access}

Exceptions:

Instruction mnemonics:

Description:

The STQP instruction writes the quadword contents of R17 to the memory location w
physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is UNPREDICTABLE.

CALL_PAL STQP ! PALcode format

Privileged Instruction

CALL_PAL STQP Store Quadword Physical
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10.6.7 Swap Privileged Context

Format:

Operation:
! R16 contains the physical address of the new HWPCB.

! check HWPCB alignment

IF R16<6:0> NE 0 THEN
{reserved operand exception}

IF {PS<CM> NE 0} THEN
{privileged instruction exception}

! Store old HWPCB contents

(IPR_PCBB + HWPCB_KSP)← SP
IF {internal registers for stack pointers} THEN

BEGIN
(IPR_PCBB + HWPCB_ESP)← IPR_ESP
(IPR_PCBB + HWPCB_SSP)← IPR_SSP
(IPR_PCBB + HWPCB_USP)← IPR_USP

END

IF {internal registers for ASTxx} THEN
BEGIN

(IPR_PCBB + HWPCB_ASTSR)← IPR_ASTSR
(IPR_PCBB + HWPCB_ASTEN)← IPR_ASTEN

END
tmp1 ← PCC
tmp2 ← ZEXT(tmp1<31:0>)
tmp3 ← ZEXT(tmp1<63:32>)
(IPR_PCBB + HWPCB_PCC)← {tmp2 + tmp3}<31:0>
IF {internal storage for process unique value} THEN

BEGIN
(IPR_PCBB + HWPCB_UNQ)← process unique value

END

! Load new HWPCB contents

IPR_PCBB ← R16

IF {ASNs not implemented in virtual instruction cache} THEN
{flush instruction cache}

CALL_PAL SWPCTX ! PALcode format
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IF {ASNs not implemented in TB} THEN
IF {IPR_PTBR NE (IPR_PCBB + HWPCB_PTBR)} THEN

{invalidate trans. buffer entries with PTE<ASM> EQ 0}
ELSE

IPR_ASN ← (IPR_PCBB + HWPCB_ASN)

SP ← (IPR_PCBB + HWPCB_KSP)
IF {internal registers for stack pointers} THEN

BEGIN
IPR_ESP ← (IPR_PCBB + HWPCB_ESP)
IPR_SSP ← (IPR_PCBB + HWPCB_SSP)
IPR_USP ← (IPR_PCBB + HWPCB_USP)

END

IPR_PTBR ← (IPR_PCBB + HWPCB_PTBR)

IF {internal registers for ASTxx} THEN
BEGIN

IPR_ASTSR ← (IPR_PCBB + HWPCB_ASTSR)
IPR_ASTEN ← (IPR_PCBB + HWPCB_ASTEN)

END

IPR_FEN ← (IPR_PCBB + HWPCB_FEN)
tmp4 ← ZEXT((IPR_PCBB + HWPCB_PCC)<31:0>)
tmp4 ← tmp4 - tmp2
PCC<63:32> ← tmp4<31:0>

IF {internal storage for process unique value} THEN
BEGIN

process unique value ← (IPR_PCBB + HWPCB_UNQ)
END

IF {internal storage for Data Alignment trap setting} THEN
BEGIN

DAT ← (IPR_PCBB + HWPCB_DAT)
END

Exceptions:

Instruction mnemonics:

Description:

The SWPCTX instruction returns ownership of the current Hardware Privileged Context B
(HWPCB) to the operating system and passes ownership of the new HWPCB to the proc
The HWPCB is described in Section 12.2.

Reserved Operand

Privileged Instruction

CALL_PAL SWPCTX Swap Privileged Context
PALcode Instruction Descriptions (II–A)10–89
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SWPCTX saves the privileged context from the internal processor registers into the HW
specified by the physical address in the PCBB internal processor register. It then load
privileged context from the new HWPCB specified by the physical address in R16. The a
sequence of the save and restore operation is not specified, so any overlap of the curre
new HWPCB storage areas produces UNDEFINED results.

The privileged context includes the four stack pointers, the Page Table Base Register (P
the Address Space Number (ASN), the AST enable and summary registers, the Floating
Enable Register (FEN), the Performance Monitor (PME) register, the Data Alignment T
(DAT) register, and the Charged Process Cycles — the number of PCC register counts th
charged to a process (modulo 2**32).

PTBR is never saved in the HWPCB and it is UNPREDICTABLE whether or not ASN
saved. These values cannot be changed for a running process. The process integer and
registers are saved and restored by the operating system. See Figure 12–1 for the HW
format.

Notes:

• Any change to the current HWPCB while the processor has ownership result
UNDEFINED operation.

• All the values in the current HWPCB can be read through IPRs, except the Charge
Process Cycles.

• If the HWPCB is read while ownership resides with the processor, it is UNPREDIC
ABLE whether the original or an updated value of a field is read. The processor
update an HWPCB field at any time. The decision as to whether or not a fiel
updated is made individually for each field.

• If the enabling conditions are present for an interrupt at the completion of this instruc
tion, the interrupt occurs before the next instruction.

• PALcode sets up the PCBB at boot time to point to the HWPCB storage area in
Hardware Restart Parameter Block (HWRPB). See Section 26.1.

• The operation is UNDEFINED if SWPCTX accesses a non-memory-like region.

• A reference to nonexistent memory causes a machine check. Unimplemented physica
address bits are SBZ. The operation is UNDEFINED if any of these bits are set.

Note:

Processors may keep a copy of each of the per-process stack pointers in internal reg
In those processors, SWPCTX stores the internal registers into the HWPCB. Proce
that do not keep a copy of the stack pointers in internal registers keep only the s
pointer for the current access mode in SP andswitch this with the HWPCB contents
whenever the current access mode changes.
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10.6.8 Swap PALcode Image

Format:

Operation:
! R16 contains the new PALcode identifier
! R17–R21 contain implementation-specific entry parameters
! R0 receives status:
! 0 Success (PALcode was switched)
! 1 Unknown PALcode variant
! 2 Known PALcode variant, but PALcode not loaded

IF (PS<CM> NE 0) then
{Privileged instruction exception}

ELSE
IF {R16 < 256} THEN

BEGIN
IF {R16 invalid} THEN

R0 ← 1
{Return}

ELSE IF {PALcode not loaded} THEN
R0 ← 2
{Return}

ELSE
tmp1 ← {PALcode base}

END
ELSE

tmp1 = R16
{Flush instruction cache}
{Invalidate all translation buffers}
{Perform additional PALcode variant-specific initialization}
{Transfer control to PALcode entry at physical address in tmp1}

Exceptions:

Instruction mnemonics:

Description:

The SWPPAL instruction causes the current (active) PALcode to be replaced by the spe
new PALcode image. This instruction is intended for use by operating systems only du
bootstraps and by consoles during transitions to console I/O mode.

CALL_PAL SWPPAL ! PALcode format

Privileged Instruction

CALL_PAL SWPPAL Swap PALcode Image
PALcode Instruction Descriptions (II–A)10–91
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The PALcode descriptor contained in R16 is interpreted as either a PALcode variant o
base physical address of the new PALcode image. If a variant, the PALcode image mus
been previously loaded. No PALcode loading occurs as a result of this instruction.

After successful PALcode switching, the register contents are determined by the param
passed in R17 through R21 or are UNPREDICTABLE. A common parameter is the addre
a new HWPCB. In this case, the stack pointer register and PTBR are determined by the
tents of that HWPCB; the contents of other registers such as R16 through R21 ma
UNPREDICTABLE.

See Section 27.3.2, for information on using this instruction.
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10.6.9 Wait for Interrupt

Format:

Operation:
! R16 contains the maximum number of interval clock ticks to skip
! R0 receives the number of interval clock ticks actually skipped

IF (implemented)
BEGIN

IF {Implementation supports skipping multiple
clock interrupts} THEN

{Ticks_to_skip ←R16}

{Wait no longer than any non-clock interrupt or the first clock
interrupt after ticks_to_skip ticks have been skipped}

IF {Implementation supports skipping multiple}
{clock interrupts} THEN

R0 ← number of interval clock ticks actually skipped
ELSE

R0 ← 0
END
ELSE

R0 ←0
{return}

Exceptions:

Instruction mnemonics:

Description:

The WTINT instruction requests that, if possible, the PALcode wait for the first of either of
following conditions before returning:

• Any interrupt other than a clock tick

• The first clock tick after a specified number of clock ticks has been skipped

The WTINT instruction returns in R0 the number of clock ticks that are skipped. The num
returned in R0 is zero on hardware platforms that implement this instruction, but where it i
possible to skip clock ticks.

CALL_PAL WTINT ! PALcode format

Privileged Instruction

CALL_PAL WTINT Wait for Interrupt
PALcode Instruction Descriptions (II–A)10–93
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The operating system can specify a full 64-bit integer value in R16 as the maximum numb
interval clock ticks to skip. A value ofzero in R16 causes no clock ticks to be skipped.

Note the following if specifying in R16 the maximum number of interval clock ticks to skip:

• Adherence to a specified value in R16 is at the discretion of the PALcode; the PALc
may complete execution of WTINT and proceed to the next instruction at any time
to the specified maximum, even if no interrupt or interval-clock tick has occurred. T
is, WTINT may return before all requested clock ticks are skipped.

• The PALcode must complete execution of WTINT if an interrupt occurs or if an int
val-clock tick occurs after the requested number of interval-clock ticks has b
skipped.

In a multiprocessor environment, only the issuing processor is affected by an issued W

instruction. The counters, SCC and PCC, may increment at a lower rate or may stop en
during WTINT execution. This sideeffect is implementation dependent.
10–94 OpenVMS Software (II–A)
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Chapter 11

Memory Management (II-A)

11.1 Introduction

Memory management consists of the hardware and software that control the allocation an
of physical memory. Typically, in a multiprogramming system, several processes may res
physical memory at the same time (see Chapter 12). OpenVMS uses memory protectio
multiple address spaces to ensure that one process will not affect other processes or the
ing system.

To further improve software reliability, four hierarchical access modes provide memory ac
control. They are, from most to least privileged: kernel, executive, supervisor, and user. P
tion is specified at the individual page level, where a page may be inaccessible, read-on
read/write for each of the four access modes. Accessible pages can be restricted to hav
data or instruction access.

A program uses virtual addresses to access its data and instructions. However, before the
tual addresses can be used to access memory, they must be translatedinto physical addresses
Memory management software maintains hierarchical tables of mapping information (
tables) that keep track of where each virtual page is located in physical memory. The pr
sor utilizes this mapping information when it translates virtual addresses to physical addre

Therefore, memory management provides mechanisms for both memory protection and
ory mapping. The OpenVMS memory management architecture is designed to meet se
goals:

• Provide a large address space for instructions and data

• Allow programs to run on hardware with physical memory smaller than the virt
memory used

• Provide convenient and efficient sharing of instructions and data

• Allow sparse use of a large address space without excessive page table overhead

• Contribute to software reliability

• Provide independent read and write access protection

11.2 Virtual Address Space

A virtual address is a 64-bit unsigned integer that specifies a byte location within the vir
address space. Implementations subset the address space supported to one of several s
function of page size and page table depth. The minimal virtual address size supported
bits. If an implementation supports less than 64-bit virtual addresses, it must check that a
Memory Management (II-A)11–1
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VA<63:VA_SIZE> bits are equal to VA<VA_SIZE-1>. That gives two disjoint ranges f
valid virtual addresses. For example, for a 43-bit virtual address space, valid virtual ad
ranges are 0…3FF FFFF FFFF16 and FFFF FC00 0000 000016…FFFF FFFF FFFF FFFF16.
Accesses to virtual addresses outside of the valid virtual address ranges for an implemen
cause an access violation exception.

The virtual address space is broken into pages, which are the units of relocation, sharin
protection. The page size ranges from 8K bytes to 64K bytes. System software should,
fore, allocate regions with differing protection on 64K-byte virtual address boundarie
ensure image compatibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of the virtual ad
space to the available physical address space. The operating system controls the virtu
physical address mapping tables and saves the inactive parts of the virtual address sp
external storage media.

11.3 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in me
The virtual address consists of three level-number fields and a byte_within_page fiel
shown in Figure 11–1.

Figure 11–1: Virtual Address Format

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a partic
implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 32K bytes, and
bytes. Each level-number field containsn bits, wheren is, for example, 10 with an 8K-byte
page size.

An implementation may support a smaller virtual address space than the page size allo
including only a subset of low-order bits in Level1. The smaller virtual address space mu

at least 43 bits and must be large enough that at least two bits of Level1 are implemented.1

1 OpenVMS requires at least three PTEs in the highest-level page table. The lowest-order PTE must map process space, the h
est-order PTE must map system space and another PTE maps the page table structure. See Section 11.8.2.

Level3Level2Level1* byte_within_pageSEXT (VA<M>)

63 0M L

* Level1 <M:L+1> contains SEXT(VA<L>), where L is the highest numbered implemented VA bit.
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The level-number fields are a function of the page size; all page table entries at any given
do not exceed one page. The PFN field in the PTE is always 32 bits wide. Thus, as the
size grows, the virtual and physical address size also grows (Table 11–1).

11.4 Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to implement a smaller
cal address space by not implementing some number of high-order bits.

The two most significant implemented physical address bits delineate the four regions i
physical address space. Implementations use these bits as appropriate for their system
example, in a workstation with a 30-bit physical address space, bit <29> might select bet
memory and non-memory-like regions, and bit <28> could enable or disable caching
Chapter 5.

11.5 Memory Management Control

Memory management is always enabled. Implementations must provide an environme
PALcode to service exceptions and to initialize and boot the processor. For example, PAL
might run with I-stream mapping disabled and use the privileged CALL_PAL LDQP a
STQP instructions to access data stored in physical addresses.

11.6 Page Table Entries

The processor uses a quadword Page Table Entry (PTE), as shown in Figure 11–2, to tra
virtual addresses to physical addresses. A PTE contains hardware and software control
mation and the physical Page Frame Number.

Figure 11–2 Page Table Entry

Table 11–1 Virtual Address Options

Page Size (bytes) Byte Offset (bits) Level Size (bits)
Virtual Address
(bits)

Physical Address
(bits)

8 K 13 10 43 45

16 K 14 11 43–47†

† Level1 page table might be partially utilized for this page size.

46

32 K 15 12 43–51† 47

64 K 16 13 44–55† 48

Reserved
for

Software

63 8 0

A
S
M

F
O
E

F
O
W

F
O
R

V

67 5 4 3 2 132 31

N
O
M
B

GH
U
R
E

S
R
E

E
R
E

K
R
E

12 11 10 9

U
W
E

S
W
E

E
W
E

K
W
E

16 15 14 13

PFN
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Fields in the page table entry are interpreted as shown in Table 11–2.

Table 11–2 Page Table Entry

Bits Description

63–32 Page Frame Number (PFN)

The PFN field always points to a page boundary. If V is set, the PFN is concatenated
the byte_within_page bits of the virtual address to obtain the physical address (see Se
11.8). If V is clear, this field may be used by software.

31–16 Reserved for software.

15 User Write Enable (UWE)

This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted whil
user mode, an Access Violation occurs. This bit is valid even when V=0.

Note:

If a write-enable bit is set and the corresponding read-enable bit is not,
operation of the processor is UNDEFINED.

14 Supervisor Write Enable (SWE)

This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is attemp
while in supervisor mode, an Access Violation occurs. This bit is valid even when V=0.

13 Executive Write Enable (EWE)

This bit enables writes from executive mode. If this bit is a 0 and a STORE is attemp
while in executive mode, an Access Violation occurs. This bit is valid even when V=0.

12 Kernel Write Enable (KWE)

This bit enables writes from kernel mode. If this bit is a 0 and a STORE is attempted w
in kernel mode, an Access Violation occurs. This bit is valid even when V=0.

11 User Read Enable (URE)

This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction fetch
attempted while in user mode, an Access Violation occurs. This bit is valid even when V

10 Supervisor Read Enable (SRE)

This bit enables reads fromsupervisor mode. If this bit is a 0 and a LOAD or instruction
fetch is attempted while in supervisor mode, an Access Violation occurs. This bit is v
even when V=0.

9 Executive Read Enable (ERE)

This bit enables reads from executive mode. If this bit is a 0 and a LOAD or instruction fe
is attempted while in executive mode, an Access Violation occurs. This bit is valid e
when V=0.

8 Kernel Read Enable (KRE)

This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or instruction fetch
attempted while in kernel mode, an Access Violation occurs. This bit is valid even wh
V=0.
11–4 OpenVMS Software (II–A)
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7 Translation Buffer Miss Memory Barrier (NOMB)

When set, the requirement described in Section 5.6.4.3 is lifted for ensuring that all pro
sors using a newly valid PTE also see any new contents of the related page. This allow
TB-miss code to avoid potentially expensive global synchronization. Software is expecte
set this bit on PTEs when it is known that the page contents are already visible to all pro
sors.

6–5 Granularity hint (GH)

Software may set these bits as follows to supply a hint to translation buffer implementations
that a block of pages can be treated as a single larger page:

Note:

1. The block is a group of physically contiguous pages that are naturally aligned b
virtually and physically. Within the block, the PFN field in each PTE must map th
correct physical page for the virtual page to which the PTE corresponds.

2. Within the block, all PTEs have the same values for bits <15:0>, that is, protect
fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry.

It is UNPREDICTABLE which PTE values within the block are used if the granularity bi
are set inconsistently.

Programming Note:

A granularity hint might be appropriate for a large memory structure such a
frame buffer ornonpaged pool that, in fact, is mapped into contiguous virtu
pages with identical protection, fault, and valid bits.

4 Address Space Match (ASM)

When set, this PTE matches all Address Space Numbers. For a given VA, ASM must b
consistently in all processes; otherwise, the address mapping is UNPREDICTABLE.

3 Fault on Execute (FOE)

When set, a Fault on Execute exception occurs on an attempt to execute an instruction
page.

Table 11–2 Page Table Entry (Continued)

Bits Description

PTE<6:5>
Page Size Before GH:
8KB 16KB 32KB 64KB

Resulting Page Size:

00 8KB 1 KB 32KB 64KB

01 64KB 128KB 256KB 2MB

10 512KB 1MB 2MB 64MB

11 4MB 8MB 16MB 512MB
Memory Management (II-A)11–5
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11.6.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions. For
ple, the operating system may set or clear the valid bit, change the PFN field as page
moved to and from external storage media, or modify the software bits. The processor
ware never changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing a PT
field at a time may give incorrect system operation, for example, setting PTE<V> with
instruction before establishing PTE<PFN> with another. Execution of an interrupt service
tine between the two instructions could use an address that would map using the incons
PTE. Software can solve this problem by building a complete new PTE in a register and
moving the new PTE to the page table using a Store Quadword instruction (STQ).

Multiprocessing complicates the problem. Another processor could be reading (or even c
ing) the same PTE that the first processor is changing. Such concurrent access must p
consistent results. Software must use some form of software synchronization to modify
that are already valid. Once a processor has modified a valid PTE, it is possible that othe
cessors in a multiprocessor system may have old copies of that PTE in their Translation B
When software changes a PTE, each processor may use either the old or the new PT
software performs a TB invalidate on that processor (after which, the processor may use o
the new PTE). An example of a case where either the old or new PTE could usefully be us
when the PTE<NOMB> bit is transitioned from zero to one.

Software may write new values into invalid PTEs using quadword store instructions (S
Hardware must ensure that aligned quadword reads and writes are atomic operations. T
lowing procedure must be used to change any of the PTE bits <15:0> of a shared valid
(PTE<0>=1) such that an access that was allowed before the change is not allowed aft
change.

1. The PTE<0> is cleared without changing any of the PTE bits <63:32> and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed. The VA use
the TBIS must assume that the PTE granularity hint bits are zero.

3. After all processors have done the TBIS, the new PTE may be written changing a
all fields.

2 Fault on Write (FOW)

When set, a Fault on Write exception occurs on an attempt to write any location in the p

1 Fault on Read (FOR)

When set, a Fault on Read exception occurs on an attempt to read any location in the p

0 Valid (V)

Indicates the validity of the PFN field. When V is set, the PFN field is valid for use by ha
ware. When V is clear, the PFN field is reserved for use by software. The V bit does
affect the validity of PTE<15:1> bits.

Table 11–2 Page Table Entry (Continued)

Bits Description
11–6 OpenVMS Software (II–A)



at all
the V

rotec-
ed.

d), the

d write

e page

or Sta-

ay be
ciated

e code
Programming Note:

The procedure above allows queue instructions that have probed in order to check th
can complete, to service a TB miss. The queue instructions use the PTE even though
bit is clear, if the V bit was set during the instruction’s initial probe flow.

11.7 Memory Protection

Memory protection is the function of validating whether a particular type of access is allowed
to a specific page from a particular access mode. Access to each page is controlled by a p
tion code that specifies, for each access mode, whether read or write references are allow

The processor uses the following to determine whether an intended access is allowed:

• The virtual address, which is used to index page tables

• The intendedaccess type (read data, write data, or instruction fetch)

• The current access mode from the Processor Status

If the access is allowed and the address can be mapped (the Page Table Entry is vali
result is the physical address that corresponds to the specified virtual address.

For protection checks, the intended access is read for data loads and instruction fetch, an
for data stores.

If an operand is an address operand, then no reference is made to memory. Hence, th
need not be accessible nor map to a physical page.

11.7.1 Processor Access Modes

There are four processor modes:

• Kernel

• Executive

• Supervisor

• User

The access mode of a running process is stored in the Current Mode bits of the Process
tus (PS) (see Section 14–2).

11.7.2 Protection Code

Every page in the virtual address space is protected according to its use. A program m
prevented from reading or writing portions of its address space. Each page has an asso
protection code that describes the accessibility of the page for each processor mode. Th
allows a choice of read or write protection for each processor mode.

• Each mode’s access can be read/write, read-only, or no-access.

• Read and write accessibility are specified independently.

• The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE (see Table 11–2).
Memory Management (II-A)11–7
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The OpenVMS architecture allows a page to be designated as execute only by setting th
enable bit for the access mode and by setting the fault on read and write bits in the PTE.

11.7.3 Access Violation Fault

An Access Violation fault occurs if an illegal access is attempted, as determined by the cu
processor mode and the page’s protection field.

11.8 Address Translation

The page tables can be accessed from physical memory, or (to reduce overhead) through
mapping to a linear region of the virtual address space. All implementations must suppo
virtual access method and are expected to use it as the primary access method to en
performance.

Additionally, an optional reduced page table (RPT) mode is defined, which allows more
cient mapping of very large blocks of memory.

The following sections describe the access methods.

11.8.1 Physical Access for Page Table Entries

Physical address translation is performed by accessing entries in a multilevel page table
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number
of the highest-level page table.

In systems that implement the Virtual Address Boundary (VIRBND) register, the System P
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page ta
such systems, the virtual address to be translated is compared against the address st
VIRBND. Translations of lower addresses begin with the PFN in PTBR as the highest-l
page table. Translations of higher or equal addresses use the PFN in SYSPTBR as the h
level page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.2
13.3.18, respectively.

Level1 is the highest-level page table. Bits <Level1> of the virtual address are used to i
into the Level1 page table to obtain the physical PFN of the base of the next level (Lev
page table. Bits <Level2> of the virtual address are used to index into the Level2 page ta
obtain the physical PFN of the base of the next level (Level3) page table. Bits <Level3> o
virtual address are used to index into the Level3 page table to obtain the physical PFN o
page being referenced. The PFN is concatenated with virtual address bits <byte_within_
to obtain the physical address of the location being accessed.

If part of any page table resides in I/O space, or in nonexistent memory, the operation o
processor is UNDEFINED.

If all the higher-level PTEs (those PTEs that map higher-significance portions of the vir
address space than is mapped by Level3) are valid, the protection bits are ignored; the p
tion code in the Level3 PTE is used to determine accessibility. If a higher-level PTE is inv
an access-violation fault occurs if the PTE<KRE> equals zero. An Access-Violation fau
any higher-level PTE implies that all lower-level page tables mapped by that PTE do not e
11–8 OpenVMS Software (II–A)
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Programming Note:

This mapping scheme does not require multiple contiguous physical pages. There a
length registers. With a page size of 8KB, 3 pages (24KB) map 8MB of virtual add
space; 1026 pages (approximately 8MB) map an 8GB address space; and 1,049,601
(approximately 8GB) map the entire 8TB 2**43 byte address space.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT(VA<VA_SIZE-1>} THEN
{initiate Access Violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN

ptbr_value <- PTBR
ELSE

ptbr_value <- SYSPTBR
ELSE

ptbr_value <- PTBR

! Read Physical
level1_pte ← (   {  ptbr_value * page_size } + { 8 * VA <level1} )

IF level1_pte<V> EQ 0 THEN
IF level1_pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

! Read Physical
level2_pte ← ({level1_pte<PFN> * page_size} + {8 * VA<level2>})

IF level2_pte<V> EQ 0 THEN
IF level2_pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

! Read Physical
level3_pte ← ({level2_pte<PFN> * page_size} + {8 * VA<level3>})

IF {{{level3_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 3}} OR
{{level3_pte<URE> EQ 0} AND {read access} AND {PS<CM> EQ 3}} OR
{{level3_pte<SWE> EQ 0} AND {write access} AND {PS<CM> EQ 2}} OR
{{level3_pte<SRE> EQ 0} AND {read access} AND {PS<CM> EQ 2}} OR
{{level3_pte<EWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR
{{level3_pte<ERE> EQ 0} AND {read access} AND {PS<CM> EQ 1}} OR
{{level3_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR
{{level3_pte<KRE> EQ 0} AND {read access} AND {PS<CM> EQ 0}}}

THEN
{initiate Access Violation fault}

ELSE
Memory Management (II-A)11–9
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IF level3_pte<V> EQ 0 THEN
{initiate Translation Not Valid fault}

IF {level3_pte<FOW> EQ 1} AND {write access} THEN
{initiate Fault On Write fault}

IF {level3_pte<FOR> EQ 1} AND {read access} THEN
{initiate Fault On Read fault}

IF {level3_pte<FOE> EQ 1} AND {execute access} THEN
{initiate Fault On Execute fault}

Physical_Address ← {level3_pte<PFN> * page_size} OR VA<byte_within_page>

11.8.2 Virtual Access for Page Table Entries

To reduce the overhead associated with the address translation in a multilevel page table
ture, the page tables are mapped into a linear region of the virtual address space. The
address of the base of the page table structure is set on a system-wide basis and is conta
the VPTB IPR.

When a native mode DTB or ITB miss occurs, the TBMISS flows attempt to load the Lev
page table entry using a single virtual mode load instruction.

The algorithm involving the manipulation of the missing VA follows, wherepSrepresents
pageSize:

tmp ← LEFT_SHIFT (va, {64 - {{lg(pS) * 4} - 9 }})
tmp ← RIGHT_SHIFT (tmp, {64 - {{lg(pS) * 4} - 9 } + lg(pS)-3})
tmp ← VPTB OR tmp
tmp<2:0> ← 0

At this point, tmpcontains the VA of the Level3 page table entry. A LDQ from that VA wi
result in the acquisition of the PTE needed to satisfy the initial TBMISS condition.

However, in the PALcode environment, if a TBMISS occurs during an attempt to fetch
Level3 PTE, it is necessary to use the longer sequence of multiple dependent loads descr
Section 11.8.1.

Section 13.3.25 contains the description of the VPTB IPR used to contain the virtual addre
the base of the page table structure.

The necessary mapping of the page tables for the correct function of the algorithm is do
follows.

1. Select a 2(3*lg(pageSize/8))+3)byte-aligned region (an address with 3*lg(pageSize/8)+
low-order zeros) in the virtual address space. This value will be written into the VP
register.

2. Create one or two PTEs to map the page tables. Only one is required unless SYS
is implemented and software intends to use it (that is, VIRBND is to be set to a v
other than -1). Each PTE is initialized as follows:

PTE = 0 ! Initialize all fields to zero
PTE<63:32> = PFN of Level1 pagetable

! Set to the PFN from either the
! PTBR or SYSPTBR

PTE<8> = 1 ! Set the kernel read enable bit
PTE<0> = 1 ! Set the valid bit
11–10 OpenVMS Software (II–A)
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3. Write the resulting PTE(s) into the page table entries that correspond to the VPTB
value. The PTE that contains the PTBR’s PFN is written to the page indicated by PT
If SYSPTBR is in use, the PTE that contains the SYSPTBR’s PFN is written to the p
indicated by SYSPTBR.

In either case, these are the Level1 page tables.

4. Set all Level1 and Level2 Valid PTEs to allow kernel read access.

5. Write the VPTB register with the selected base value.

Notes:

No validity checks need be made on the value stored in the VPTB in a running sys
Therefore, if the VPTB contains an invalid address, the operation is UNDEFINED.

SYSPTBR allows software to replicate portions of virtual memory contents in phys
memory. For example, in systems exhibiting non-uniform memory access times, read
portions of the operating system may be separately instantiated in portions of physical
memory, which provides the fastest access time to a given processor. An identical v
address reference executed by multiple processors would translate by using each res
processor's SYSPTBR to the physical memory instance that is local to that proce
thereby increasing performance.

The physical page tables indicated by PTBR and SYSPTBR together map a single 6
virtual address space. They also map themselves into a single linear region of the ad
space, presenting to software one virtually accessible page table that maps the
address space. The set of Level3 PTEs contributed by each physical page tab
essentially disjoint from each other, with only the set indicated by PTBR being cont
switched.

11.8.3 Reduced Page Table (RPT) Mode

The reduced page table (RPT) mode is an optional extension of 64KB page size mode. A
tion of the address space is mapped by one fewer page table levels, allowing each of the
in the lowest-level page table to map a 512MB page. In implementations that support gran
ity hints in hardware, applications can use these hints to make more efficient use o
translation buffer. Applications that can use the 512MB granularity hint in 64KB page
mode can use RPT mode for additional benefits.

With the 512MB granularity hint but without RPT, every entry in the Level3 page table m
the same 512MB page. With RPT, that Level3 page table is eliminated entirely, and the Le
PTE that would normally point to that Level3 page table is used to directly map the 512
page.

Therefore, in an RPT region, there is elimination of redundant page table pages and compre
sion of page table space. The compressed PTEs are more likely to fit in hardware cach
there is locality of reference, a new PTE that is needed to satisfy a mapping is more likely
present in the cache. Additionally, a single TB entry that maps the VA of the lowest-level p
table now allows access to PTEs mapping 4 TB, rather than 512 MB, of memory.

In order to use RPT mode, the feature must be available and enabled in the implement
and:

• Use the 64KB page size.
Memory Management (II-A)11–11
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• Every L2 PTE in the reduced page table region must havePTE<GH>=112, that is, a
512MB page size.

• The PFN field of the PTE must refer to a 512MB aligned page.

• The RPT region is selected by usings VAs such thatVA<vaSize-1:vaSize-2>=01 2.

11.8.3.1 Physical Access for Page Table Entries in Reduced Page Table Mode

Physical address translation is performed by accessing entries in a two-level page table
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number
of the highest-level (Level1) page table.

In systems that implement the Virtual Address Boundary register (VIRBND), the System P
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page ta
such systems, the virtual address to be translated is compared against the address st
VIRBND. Translations of Level2 addresses begin with the PFN in PTBR as the highest-
page table. Translations of Level1 addresses use the PFN in SYSPTBR as the highes
page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.24
13.3.18, respectively.

Level1 is the highest-level page table. Bits <Level1> of the virtual address are used to i
into the Level1 page table to obtain the physical PFN of the base of the next level (Lev
page table. Bits <Level2> of the virtual address are used to index into the Level2 page ta
obtain the physical PFN of the page being referenced. The PFN is concatenated with v
address bits <byte_within_page> to obtain the physical address of the location being acce

If part of any page table resides in I/O space, or in nonexistent memory, the operation o
processor is UNDEFINED.

If the Level1 PTE is valid, the protection bits are ignored; the protection code in the Le
PTE is used to determine accessibility. If a Level1 PTE is invalid, an access-violation
occurs if the PTE<KRE> equals zero. An access-violation fault on any Level1 PTE imp
that all Level2 page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63:VA_SIZE>) NEQ SEXT(VA<VA_SIZE-1>} THEN
{initiate Access Violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN

ptbr_value <- PTRB
ELSE

ptbr_value <- SYSPTBR
ELSE

ptbr_value <- PTBR

! Read Physical
level1_pte ← (   {  ptbr_value * page_size} + { 8 * VA<level1} )
11–12 OpenVMS Software (II–A)
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IF level1_pte<V> EQ 0 THEN
IF level1_pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

! Read Physical
level2_pte ← ({level1_pte<PFN> * page_size} + {8 * VA<level2>})

IF {{{level2_pte<UWE> EQ 0} AND {write access} AND {PS<CM> EQ 3}} OR
{{level2_pte<URE> EQ 0} AND {read access} AND {PS<CM> EQ 3}} OR
{{level2_pte<SWE> EQ 0} AND {write access} AND {PS<CM> EQ 2}} OR
{{level2_pte<SRE> EQ 0} AND {read access} AND {PS<CM> EQ 2}} OR
{{level2_pte<EWE> EQ 0} AND {write access} AND {PS<CM> EQ 1}} OR
{{level2_pte<ERE> EQ 0} AND {read access} AND {PS<CM> EQ 1}} OR
{{level2_pte<KWE> EQ 0} AND {write access} AND {PS<CM> EQ 0}} OR
{{level2_pte<KRE> EQ 0} AND {read access} AND {PS<CM> EQ 0}}}

THEN
{initiate Access Violation fault}

ELSE
IF level2_pte<V> EQ 0 THEN

{initiate Translation Not Valid fault}
IF {level2_pte<FOW> EQ 1} AND {write access} THEN

{initiate Fault On Write fault}
IF {level2_pte<FOR> EQ 1} AND {read access} THEN

{initiate Fault On Read fault}
IF {level2_pte<FOE> EQ 1} AND {execute access} THEN

{initiate Fault On Execute fault}

Physical_Address ← {level2_pte<PFN> * page_size} OR VA<byte_within_RPT_page 1>

11.8.3.2 Virtual Access for Page Table Entries in Reduced Page Table Mode

To reduce overhead associated with the address translation in a multilevel page table stru
the page tables are mapped into a linear region of the virtual address space. The virtual a
of the base of the page table structure is set on a system-wide basis and is contained
VPTB IPR.

When a native mode DTB or ITB miss occurs, it is desirable that the TBMISS flow attemp
load the lowest-level PTE by using a single virtual load instruction without regard to whe
the missing VA is mapped by two levels (RPT) or three levels of page table. (See Section
for the 21364 implementation.)

11.9 Translation Buffer

In order to save actual memory references when repeatedly referencing the same pages
ware implementations include a translation buffer to remember successful virtual add
translations and page states.

1 byte_within_RPT_page contains those bits that would have been VA<Level3>, concatenated with the VA<byte_within_page>
field for 64 KB page table mode .
Memory Management (II-A)11–13



umber
AL
es with

num-
of a
ge to
PR
this

hus,

BIS.
B.

ali-
y

d to
id.

n for
ns of
must

valid

ential
f TB
tion is

bers
rocess
ASN.
d

n of
When the process context is changed, a new value is loaded into the Address Space N
(ASN) internal processor register with a Swap Privileged Context instruction (CALL_P
SWPCTX). (See Section 10.6 and Chapter 12.) This causes address translations for pag
PTE<ASM> clear to be invalidated on a processor that does not implement address space
bers. Additionally, when the software changes any part (except for the Software field)
valid Page Table Entry, it must also move a virtual address within the corresponding pa
the Translation Buffer Invalidate Single (TBIS) internal processor register with the MT
instruction (see Section 13.3.22). Changes to PTE<NOMB> are also an exception to
requirement. This bit only has an effect when a PTE is loaded into the translation buffer. T
there is no need to invalidate the TB when the bit changes.

Implementation Note:

Some implementations may invalidate the entire Translation Buffer on an MTPR to T
In general, implementations may invalidate more than the required translations in the T

The entire Translation Buffer can be invalidated by doing a write to Translation Buffer Inv
date All register (CALL_PAL MTPR_TBIA), and all ASM=0 entries can be invalidated b
doing a write to Translation Buffer Inval idate All Process register (CALL_PAL
MTPR_TBIAP). See Section 13.3.21.

The Translation Buffer must not store invalid PTEs. Therefore, the software is not require
invalidate Translation Buffer entries when making changes for PTEs that are already inval

After software changes a valid Level1 or Level2 PTE, software must flush the translatio
the corresponding page in the virtual page table. Then software must flush the translatio
all valid pages mapped by that page. In the case of a change to a Level1 PTE, this action
be taken through a second iteration.

The TBCHK internal processor register is available for interrogating the presence of a
translation in the Translation Buffer (see Section 13.3.19).

Implementation Note:

Hardware implementors should be aware that a single, direct-mapped TB has a pot
problem when a load/store instruction and its data map to the same TB location. I
misses are handled in PALcode, there could be an endless loop unless the instruc
held in an instruction buffer or a translated physical PC is maintained by the hardware.

11.10 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space num
(process tags) to reduce the need for invalidation of cached address translations for p
specific addresses when a context switch occurs. The supported ASN range is 0…MAX_
MAX_ASN is provided in the HWRPB MAX_ASN field. See Section 26.1 for a detaile
description of the HWRPB.

Note:

If an ASN outside of the range 0…MAX_ASN is assigned to a process, the operatio
the processor is UNDEFINED.
11–14 OpenVMS Software (II–A)
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The address space number for the current process is loaded by software in the Address
Number (ASN) internal processor register with a Swap Privileged Context instruction. A
are processor specific and the hardware makes no attempt to maintain coherency across
ple processors. In a multiprocessor system, software is responsible for ensuring the consi
of TB entries for processes that might be rescheduled on different processors.

Systems that support ASNs should have MAX_ASN in the range 13…65535. The numb
ASNs should be determined by the market a system is targeting.

Programming Note:

System software should not assume that the number of ASNs is a power of two.
allows, for example, hardware to use N TB tag bits to encode (2**N)−3 ASN values, one
value for ASM=1 PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several complication
multiprocessor system. Consider the case in which a process that executed on proce
is rescheduled on processor 2. If a page is deleted or its protection is changed, the
processor 1 has stale data. One solution is to send an interprocessor interrupt to all the
processors on which this process could have run and cause them to invalidate the ch
PTE. That results in significant overhead in a system with several processors. An
solution is to have software invalidate all TB entries for a process on a new proce
before it can begin execution, if the process executed on another processor duri
previous execution. That ensures the deletion of possibly stale TB entries on the
processor. A third solution is to assign a new ASN whenever a process is run
processor that is not the same as the last processor on which it ran.

11.11 Memory Management Faults

Five types of faults are associated with memory access and protection:

• Access Control Violation (ACV)

Taken when the protection field of the Level3 PTE that maps the data indicates tha
intended page referencewould be illegal in the specified access mode. An Acce
Control Violation fault is also taken if the KRE bit iszero in aninvalid Level1, or
Level2 PTE.

For reduced page table regions, ACV taken when the protection field of the Le
PTE that maps the data indicates that the intended page reference would be ille
the specified access mode. An Access Control Violation fault is also taken if the K
bit is zero in aninvalid Level1 PTE.

• Fault on Read (FOR)

Occurs when a read is attempted with PTE<FOR> set.

• Fault on Write (FOW)

Occurs when a write is attempted with PTE<FOW> set.

• Fault on Execute (FOE)

Occurs when instruction execution is attempted with PTE<FOE> set.
Memory Management (II-A)11–15
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• Translation Not Valid (TNV)

Taken when a read or write reference is attempted through an invalid PTE in a Level1,
Level2, or Level3 page table.

See Section 14.3.1 for a detailed description of these faults.

Those five faults have distinct vectors in the System Control Block. The Access Viola
(ACV) fault takes precedence over the faults TNV, FOR, FOW, and FOE. The Translation
Valid (TNV) fault takes precedence over the faults FOR, FOW, and FOE.

The faults FOR and FOW can occur simultaneously in the CALL_PAL queue instruction
which case the order that the exceptions are taken is UNPREDICTABLE (see Section 10.
11–16 OpenVMS Software (II–A)
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Chapter 12

Process Structure (II-A)

12.1 Process Definition

A process is the basic entity that is scheduled for execution by the processor. A process
sents a single thread of execution and consists of an address space and both hardwa
software context.

The hardware context of a process is defined by:

• Thirty-one integer registers and 31 floating-point registers

• Processor Status (PS)

• Program Counter (PC)

• Four stack pointers

• Asynchronous System Trap Enable and summary registers (ASTEN, ASTSR)

• Process Page Table Base Register (PTBR)

• Address Space Number (ASN)

• Floating Enable Register (FEN)

• Charged Process Cycles

• Process Unique value

• Data Alignment Trap (DAT)

• Performance Monitoring Enable Register (PME)

The software context of a process is defined by operating system software and is sy
dependent.

A process may share the same address space with other processes or have an address
its own. There is, however, no separate address space for system software, and therefo
operating system must be mapped into the address space of each process (see Chapter

In order for a process to execute, its hardware context must be loaded into the integer
ters, floating-point registers, and internal processor registers. When a process is
executed, its hardware context is continuously updated. When a process is not being exe
its hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed by loading the h
ware context for a new process, is termed context switching. Context switching occurs a
process after another is scheduled by the operating system for execution.
Process Structure (II-A)12–1
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12.2 Hardware Privileged Process Context

The hardware context of a process is defined by a privileged part that is context switched
the Swap Privileged Context instruction (SWPCTX) (see Section 10.6), and a nonprivile
part that is context switched by operating system software.

When a process is not executing, its privileged context is stored in a 128-byte naturally al
memory structure called the Hardware Privileged Context Block (HWPCB). (See Figure 12–
1.)

Figure 12–1 Hardware Privileged Context Block

The Hardware Privileged Context Block (HWPCB) for the current process is specified by
Privileged Context Block Base register (PCBB). (See Section 13.3.11.)

The Swap Privileged Context instruction (SWPCTX) saves the privileged context of the
rent process into the HWPCB specified byPCBB, loads a new value into PCBB, and the
loads the privileged context of the new process into the appropriate hardware registers.

The new value loaded into PCBB, as well as the contents of the Privileged Context Bl
must satisfy certain constraints or an UNDEFINED operation results:

• The physical address loaded into PCBB must be 128-byte aligned and describ
contiguous quadwords that are in a memory-like region. (See Section 5.2.4.)

• The value of PTBR must be the Page Frame Number of an existent page that is
memory-like region.

It is the responsibility of the operating system to save and load the nonprivileged part o
hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to operating system
ware and passes ownership of the new HWPCB from the operating system to the proc
Any attempt to write a HWPCB while ownership resides with the processor has UN
FINED results. If the HWPCB is read while ownership resides with the processor,
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UNPREDICTABLE whether the original or an updated value of a field is read. The proce
can update an HWPCB field at any time. The decision as to whether or not a field is upda
made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The FEN bit reflects the setting of the FEN IPR.

Setting the PME bit alerts any performance hardware or software in the system to monito
performance of this process.

The IMB bit records that an IMB was issued in user mode.

The DAT bit controls whether data alignment traps that are fixed up in PALcode are repo
to the operating system. If the bit is clear, the trap is reported. If the bit is set, after the fi
return is to the user. See Section 14.6.

The Charged Process Cycles is the total number of PCC register counts that are charged
process (modulo 2**32). When a process context is loaded by the SWPCTX instructions
contents of the PCC count f ield (PCC_CNT) are subtracted from the content
HWPCB[64]<31:0> and the result is written to the PCC offset field (PCC_OFF):

PCC<63:32> ← (HWPCB[64]<31:0> − PCC<31:0>)

When a process context is saved by the SWPCTX instruction, the charged process cy
computed by performing an unsigned add of PCC<63:32> and PCC<31:0>. That value is
ten to HWPCB[64]<31:0>.

Software Programming Note:

The following example returns in R0 the current PCC register count (modulo 2**32) fo
process. Care is taken not to cause an unwanted sign extension.

RPCC R0 ; Read the processor cycle counter
SLL R0, #32, R1 ; Line up the offset and count fields
ADDQ R0, R1, R0 ; Do add
SRL R0, #32, R0 ; Zero extend the cycle count to 64 bits

The Process Unique value is that value used in support of multithread implementations
value is stored in the HWPCB when the process is not active. When the process is activ
value may be cached in hardware internal storage or kept only in the HWPCB.

12.3 Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of events that a
synchronized with its execution but that must be dealt with in the context of the process
minimum delay.

Asynchronous System Traps (ASTs) interrupt process execution and are controlled by the
Enable (ASTEN) and AST Summary (ASTSR) internal processor registers. (See Sec
13.3.2 and 13.3.3, respectively.)
Process Structure (II-A)12–3
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The AST Enable register (ASTEN) contains an enable bit for each of the four processor a
modes. When the bit corresponding to an access mode is set, ASTs for that mode are en
The AST enable bit for an access mode may be changed by executing a Swap AST E
instruction (SWASTEN; see Section 10.1.13), or by executing a Move to Processor Reg
instruction specifying ASTEN (MTPR ASTEN; see Section 13.3.2).

The AST Summary Register (ASTSR) contains a pending bit for each of the four proce
access modes. When the bit corresponding to an access mode is set, an AST is pending
mode.

Kernel mode software may request an AST for a particular access mode by executing a
to Processor Register instruction specifying ASTSR (MTPR ASTSR; see Section 13.3.3).

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>, and PS<IPL>
PS<IPL> is less than 2, and there is an AST pending and enabled for an access mode
less than or equal to PS<CM> (that is, an equal or more privileged access mode), an A
initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are not allowed to
rupt execution in a more privileged access mode.

12.4 Process Context Switching

Process context switching occurs as one process after another is scheduled for execu
operating system software. Context switching requires the hardware context of one proc
be saved in memory followed by the loading of the hardware context for another process
the hardware registers.

The privileged hardware context is swapped with the CALL_PAL Swap Privileged Con
instruction (SWPCTX). Other hardware context must be saved and restored by operatin
tem software.

The sequence in which process context is changed is important because the SWPCTX in
tion changes the environment in which the context switching software itself is executing. A
although hardware does not enforce this, it is advisable to execute the actual context swi
software in an environment that cannot be context switched (that is, at an IPL high enoug
rescheduling cannot occur).

The SWPCTX instruction is the only method provided for loading certain internal proce
registers. The SWPCTX instruction always saves the privileged context of the old proces
loads the privileged context of a new process. Therefore, a valid HWPCB must be availab
save the privileged context of the old process as well as load the privileged context of the
process.

At system initialization, a valid HWPCB is constructed in the Hardware Restart Param
Block (HWRPB) for the primary processor. (See Section 26.1.) Thereafter, it is the respon
ity of operating system software to ensure a valid HWPCB when executing a SWPC
instruction.
12–4 OpenVMS Software (II–A)
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Chapter 13

Internal Processor Registers (II–A)

13.1 Internal Processor Registers

This chapter describes the OpenVMS Internal Processor Registers (IPRs). These regist
read and written with Move from Processor Register (MFPR) and Move to Processor Register
(MTPR) instructions. See Section 10.6.

Those instructions accept an input operand in R16 and return a result, if any, in R0. Registers
R1, R16, and R17 are UNPREDICTABLE after a CALL_PAL MxPR routine. If a CALL_PA
MxPR routine does not return a result in R0, then R0 is also UNPREDICTABLE on return.

Some IPRs (for example, ASTSR, ASTEN, IPL) may be both read and written in a comb
operation by performing an MTPR instruction.

Internal Processor Registers may or may not be implemented as actual hardware registe
implementation may choose any combination of PALcode and hardware to produce the
tecturally specified function. Internal Processor Registers are only accessible from k
mode.

13.2 Stack Pointer Internal Processor Registers

The stack pointers for user, supervisor, and executive stacks are accessible as IPRs thro
CALL_PAL MTPR and MFPR instructions. An implementation may retain some or all
these stack pointers only in the HWPCB. In this case, MTPR and MFPR for these regi
must access the corresponding PCB locations. However, implementations that have thes
pointers in internal hardware registers are not required to access the corresponding HW
locations for MTPR and MFPR. The HWPCB locations get updated when a SWPCTX ins
tion is executed.

An implementation may also choose to keep the kernel stack pointer (KSP) in an internal
ware register (labeled IPR_KSP); however, this register is not directly accessible thr
MTPR and MFPR instructions. Because access to the KSP requires kernel mode, the
KSP is the current mode stack pointer (R30); thus access to KSP is provided through R3
no MTPR or MFPR access is required. PALcode routines can directly access IPR_KSP
needed.

At system initialization, the value of the KSP is taken from the initial HWPCB (see Sect
12.2). Table 13–1 summarizes the IPRs.
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13.3 IPR Summary
Table 13–1 Internal Processor Register (IPR) Summary

Register Name Mnemonic Access †

† Access symbols are defined in Table 13–2.

Input
R16

Output
R0

Context
Switched

Address Space Number ASN R — Number Yes

AST Enable ASTEN R/W* Mask Mask Yes

AST Summary Register ASTSR R/W* Mask Mask Yes

Data Alignment Trap Fixup DATFX W Value — Yes

Executive Stack Pointer ESP R/W Address Address Yes

Floating-point Enable FEN R/W Value Value Yes

Interprocessor Int. Request IPIR W Number — No

Interrupt Priority Level IPL R/W* Value Value No

Kernel Stack Pointer KSP None — — Yes

Machine Check Error Summary MCES R/W Value Value No

Performance Monitoring PERFMON W* IMP IMP No

Privileged Context Block Base PCBB R — Address No

Processor Base Register PRBR R/W Value Value No

Page Table Base Register PTBR R — Frame Yes

System Control Block Base SCBB R/W Frame Frame No

Software Int. Request Register SIRR W Level — No

Software Int. Summary Register SISR R — Mask No

Supervisor Stack Pointer SSP R/W Address Address Yes

System Page Table Base SYSPTBR R/W Value Value Yes

TB Check TBCHK R Number Status No

TB Invalid. All TBIA W — — No

TB Invalid. All Process TBIAP W — — No

TB Invalid. Single TBIS W Address — No

TB Invalid. Single Data TBISD W Address — No

TB Invalid. Single Instruct. TBISI W Address — No

User Stack Pointer USP R/W Address Address Yes

Virtual Address Boundary VIRBND R/W Address Address Yes

Virtual Page Table Base VPTB R/W Address Address No

Who-Am-I WHAMI R — Number No
13–2 OpenVMS Software (II–A)
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Table 13–2 Internal Processor Register (IPR) Access Summary

Access Type Meaning

R Access by MFPR only.

W Access by MTPR only.

R/W Access by MFPR or MTPR.

W* Read and Write access accomplished by MTPR. See Section 13.1 for details.

R/W* Access by MFPR or MTPR. Read and Write access accomplished by MTPR.
Section 13.1 for details.

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed.
Internal Processor Registers (II–A)13–3
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13.3.1 Address Space Number (ASN)

Access:

Operation:
IF {ASN are implemented} THEN

R0 ← ZEXT(ASN)
ELSE

R0 ← 0

Value at System Initialization:

Format:

Figure 13–1: Address Space Number (ASN) Register

Description:

Address Space Numbers (ASNs) are used to further qualify Translation Buffer references
Section 11.9. If ASNs are implemented, the current ASN may be read by executing an MFPR
instruction specifying ASN.

As processes are scheduled for execution, the ASN for the next process to execute is l
using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and Chapte

The ASN register is an implicit operand to the CALL_PALMFPR_IPR, TBCHK, and TBISx
PALcode instructions, in which it is used to qualify the virtual address supplied in R16.

Read

Zero

Address Space Number

R0

63 0
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13.3.2 AST Enable (ASTEN)

Access:

Operation:
R0 ← ZEXT (ASTEN<3:0>) ! Read (MFPR)
R0 ← ZEXT (ASTEN<3:0>) ! Write* (MTPR)
ASTEN<3:0> ← {{ASTEN<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Format:

Figure 13–2: AST Enable (ASTEN) Register

Description:

The AST Enable Register records the AST enable state for each of the modes: kernel (K
executive (EEN), supervisor (SEN), and user (UEN). By writing R16 appropriately and t
executing an MTPR instruction specifying ASTEN, the value of ASTEN may be simu
neously read and modified. R16 contains bit masks that are used to determine the new va
ASTEN:

• Bits R16<0> and R16<4> control the new state of kernel enable.

• Bits R16<1> and R16<5> control the new state of executive enable.

• Bits R16<2> and R16<6> control the new state of supervisor enable.

• Bits R16<3> and R16<7> control the new state of user enable.

An MFPR to ASTEN reads the current value of the ASTEN and returns this value in R0.

An MTPR to ASTEN begins by reading the current value of ASTEN and returningthis value
in R0. The current value of ASTEN is then ANDed with bits R16<3:0>; these bits preserv
set to 1) or clear (if equal to 0) the current state of their corresponding enable modes. The

Read
Write*

Zero

IGN

Format of R0:

RAZ

63 8 0

E
O
N

K
O
N

U
C
L

S
C
L

E
C
L

K
C
L

67 5 4 3 2 1

63 0

S
O
N

U
O
N

N

S
E
N

E
E
N

K
E
N

3 2 1

U
E

4
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produced by this operation is then ORed with bits R16<7:4>; these bits turn on (if set to
do not affect (if equal to 0) their corresponding enable modes. The resulting value is then
ten to the ASTEN.

Note:

All AST enables can be cleared by loading a zero into R16 and executing an M
instruction specifying ASTEN. To enable an AST for a given mode, load R16 with a m
that has bits <3:0> set and one of the bits <7:4> corresponding to the AST mode to b
Then execute an MTPR instruction specifying ASTEN.

As processes are scheduled for execution, the state of the AST enables for the next pro
execute is loaded using the Swap Privileged Context (SWPCTX) instruction. The Swap
Enable (SWASTEN) instruction can be used to change the enable state for the current a
mode. See Section 10.1.13 and Chapter 12.
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13.3.3 AST Summary Register (ASTSR)

Access:

Operation:
R0 ← ZEXT(ASTSR<3:0>) ! Read (MFPR)
R0 ← ZEXT(ASTSR<3:0>) ! Write* (MTPR)
ASTSR<3:0> ← {{ASTSR<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Format:

Figure 13–3: AST Summary Register (ASTSR)

Description:

The AST Summary Registerrecords the AST pending state for each of the modes: ker
(KPD), executive (EPD), supervisor (SPD), and user (UPD).

By writing R16 appropriately and then executing an MTPR instruction specifying ASTSR,
value of ASTSR may be simultaneously read and modified. R16 contains bit masks us
determine the new value of ASTSR:

• Bits R16<0> and R16<4> control the new state of kernel pending.

• Bits R16<1> and R16<5> control the new state of executive pending.

• Bits R16<2> and R16<6> control the new state of supervisor pending.

• Bits R16<3> and R16<7> control the new state of user pending.

An MFPR reads the current value of ASTSR and returns this value in R0.

An MTPR to ASTSR begins by reading the current value of ASTSR and returning this valu
R0. The current value of ASTSR is then ANDed with bits R16<3:0>; these bits preserve (
to 1) or clear (if equal to 0) the current state of their corresponding pending modes. The

Read
Write*

Zero

IGN

R16

63 0

S
O
N

E
O
N

K
O
N

U
C
L

S
C
L

E
C
L

7 6 5 4 3 2 1

U
O
N

8

K
C
L

RAZ

R0

63 0

U
P
D

S
P
D

E
P
D

4 3 2 1

K
P
D
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produced by this operation is then ORed with bits R16<7:4>; these bits turn on (if set to
do not affect (if equal to 0) their corresponding pending modes. The resulting value is
written to the ASTSR.

Note:

All AST requests can be cleared by loading a zero in R16 and executing an MTPR
instruction specifying ASTSR. To request an AST for a given mode, load R16 with a m
that has bits <3:0> set and one of the bits <7:4> corresponding to the AST mode to b
Then execute an MTPR instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for the next process
cute is loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 1
and Chapter 12.

When the processor IPL is less than 2, and proper enabling conditions are present, an
interrupt is initiated at IPL 2 and the corresponding access mode bit in ASTSR is cleared
Section 14.7.6.
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13.3.4 Data Alignment Trap Fixup (DATFX)

Access:

Operation:
DATFX ← R16<0>
(HWPCB+56)<63> ← DATFX

Value at System Initialization:

Format:

Figure 13–4: Data Alignment Trap Fixup (DATFX)

Description:

Data Alignment traps are fixed up in PALcode and are reported to the operating system
the control of the DAT bit. If the bit is zero, the trap is reported. For the LDx_L and STx
instructions, no fixup is possible and an illegal operand exception is generated.

For the description of the data alignment traps, see Section 14.6.

Write

Zero

63 1 0

D
A
T

2
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13.3.5 Executive Stack Pointer (ESP)

Access:

Operation:
IF {internal registers for stack pointers} THEN ! Read

R0 ← ESP
ELSE

R0 ← (IPR_PCBB + HWPCB_ESP)

IF {internal registers for stack pointers} THEN ! Write
ESP ← R16

ELSE
(IPR_PCBB + HWPCB_ESP)← R16

Value at System Initialization:

Format:

Figure 13–5: Executive Stack Pointer (ESP)

Description:

This register allows the stack pointer for executive mode (ESP) to be read and writte
MFPR and MTPR instructions that specify ESP.

The current stack pointer may be read and written directly by specifying scalar registe
(R30).

As processes are scheduled for execution, the stack pointers for the next process to exec
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7
Chapter 12.

Read/Write

Value in the initial HWPCB

Stack Address

63 0
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13.3.6 Floating Enable (FEN)

Access:

Operation:
R0 ← ZEXT(FEN) ! Read

FEN ← R16<0> ! Write
(HWPCB+56)<0> ← FEN ! Update PCB on Write

Value at System Initialization:

Format:

Figure 13–6: Floating Enable (FEN) Register

Description:

The floating-point unit can be disabled with the CALL_PAL CLRFEN instruction. If the Flo
ing Enable Register (FEN) is zero, all instructions that have floating registers as oper
cause a floating-point disabled fault. See Section 14.3.1.1.

Read/Write

Zero

63 0

F
E
N

1
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13.3.7 Interprocessor Interrupt Request (IPIR)

Access:

Operation:
IPIR ← R16

Value at System Initialization:

Format:

Figure 13–7: Interprocessor Interrupt Request (IPIR) Register

Description:

An interprocessor interrupt can be requested on a specified processor by writing that pr
sor’s number into the IPIR register through an MTPR instruction. The interrupt reque
recorded on the target processor and is initiated when proper enabling conditions are pres

Programming Note:

The interrupt need not be initiated before the next instruction is executed on the reque
processor, even if the requesting processor is also the target processor for the reques

For additional information on interprocessor interrupts, see Section 14.4.6.

Write

Not applicable

Processor Number

R16

63 0
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13.3.8 Interrupt Priority Level (IPL)

Access:

Operation:
R0 ← ZEXT(PS<IPL>) ! Read
R0 ← ZEXT(PS<IPL>) ! Write*
PS<IPL> ← R16<4:0> ! Write
{check for pending ASTs or interrupts}

Value at System Initialization:

Format:

Figure 13–8: Interrupt Priority Level (IPL)

Description:

An MFPR IPL returns the current interrupt priority level in R0. An MTPR IPL returns the c
rent interrupt priority level in R0 and sets the interrupt priority level to the value in R16
proper enabling conditions are present, an interrupt or AST is initiated prior to issuing the
instruction. See Sections 14.4.2 and 14.7.6. R16<63:5> are defined as RAZ/SBZ. Ther
the presence of nonzero bits upon write in R16<63:5> may cause UNDEFINED results.

Read/Write*

31

SBZ IPL

63 05 4
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13.3.9 Machine Check Error Summary Register (MCES)

Access:

Operation:
R0 ← ZEXT(MCES) ! Read

IF {R16<0> EQ 1} THEN MCES<0> ← 0 ! Write
IF {R16<1> EQ 1} THEN MCES<1> ← 0
IF {R16<2> EQ 1} THEN MCES<2> ← 0
MCES<3>← R16<3>
MCES<4>← R16<4>

Value at System Initialization:

Format:

Figure 13–9: Machine Check Error Summary (MCES) Register

Description:

The use of the MCES IPR is described in Section 14.5.

MCK (MCES<0>) is set by the hardware or PALcode when a processor or system mac
check occurs. SCE (MCES<1>) is set by the hardware or PALcode when a system corre
error occurs. PCE (MCES<2>) is set by the hardware or PALcode when a processor co
able error occurs.

Setting the corresponding bit(s) in R16 clears MCK, SCE, and PCE. MCK is cleared by
operating system machine check error handler and used by the hardware or PALcode to
double machine checks. SCE and PCE are cleared by the operating system or process
tem correctable error handlers; these bits are used to indicate that the associated corre
error logout area may be reused by hardware or PALcode. In the event of double correc
errors, PALcode does not overwrite the logout area and does not force the processor to
console I/O mode. See Section 14.5.1.

DPC (MCES<3>) and DSC (MCES<4>) are used to disable reporting of correctable erro
system software. The generation and correction of the machine check are not affected; on
report to system software is disabled. Setting DPC disables reporting of processor-corre
machine checks. Setting DSC disables reporting of system-correctable machine checks.
mentation-dependent (IMP) bits may be used to report implementation-specific errors.

Read/Write

Zero

IMP

63

P
C
E

S
C
E

M
C
K

3 2 1 0

D
P
C

4

D
S
C

53132

Reserved
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13.3.10 Performance Monitoring Register (PERFMON)

Access:

Operation:
! R16 contains implementation specific input values
! R17 contains implementation specific imput values
! R0 may return implementation specific values
! Operations and actions taken are implementation specific

Value at System Initialization:

Format:

Figure 13–10: Performance Monitoring (PERFMON) Register

Description:

The arguments and actions of this performance monitoring function are platform and
dependent. The functions, when defined for an implementation, are described in Appendix

R16 and R17 contain implementation-dependent input values. Implementation-specific v
may be returned in R0.

Write*

Implementation Dependent

IMP

63 0
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13.3.11 Privileged Context Block Base (PCBB)

Access:

Operation:
R0 ← ZEXT(PCBB)

Value at System Initialization:

Format:

Figure 13–11: Privileged Context Block Base (PCBB) Register

Description:

The Privileged Context Block Base Register contains the physical address of the privil
context block for the current process. It may be read by executing an MFPR instruction s
fying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX) instruction. See Section 10
and Chapter 12.

Read

Address of processor’s bootstrap HWPCB

Physical AddressRAZ

R0

63 048 47
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13.3.12 Processor Base Register (PRBR)

Access:

Operation:
R0 ← PRBR ! Read

PRBR← R16 ! Write

Value at System Initialization:

Format:

Figure 13–12: Processor Base Register (PRBR)

Description:

In a multiprocessor system, it is desirable for the operating system to be able to locate a p
sor-specific data structure in a simple and straightforward manner. The Processor
Register provides a quadword of operating system-dependent state that can be read and
via MFPR and MTPR instructions that specify PRBR.

Read/Write

UNPREDICTABLE

Operating System-Dependent Value

63 0
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13.3.13 Page Table Base Register (PTBR)

Access:

Operation:
R0 ← PTBR

Value at System Initialization:

Format:

Figure 13–13: Page Table Base Register (PTBR)

Description:

The Page Table Base Register contains the page frame number of the first-level page ta
the current process. It may be read by executing an MFPR instruction specifying PTBR
Chapter 11.

As processes are scheduled for execution, the PTBR for the next process to execute is
using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7 and Chapte

Read

Value in the bootstrap HWPCB

Page Frame NumberRAZ

R0

63 032 31
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13.3.14 System Control Block Base (SCBB)

Access:

Operation:
R0 ← ZEXT(SCBB) ! Read

SCBB ← R16 ! Write

Value at System Initialization:

Format:

Figure 13–14: System Control Block Base (SCBB) Register

Description:

The System Control Block Base Register holds the Page Frame Number (PFN) of the S
Control Block, which is used to dispatch exceptions and interrupts, and may be read and
ten by executing MFPR and MTPR instructions that specify SCBB. See Section 14.6.

When SCBB is written, the specified physical address must be the PFN of a page that i
ther in I/O space nor nonexistent memory, or UNDEFINED operation will result.

Read/Write

UNPREDICTABLE

Page Frame NumberIGN/RAZ

63 032 31
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13.3.15 Software Interrupt Request Register (SIRR)

Access:

Operation:
IF R16<3:0> NE 0 THEN

SISR<R16<3:0>> ← 1

Value at System Initialization:

Format:

Figure 13–15: Software Interrupt Request Register (SIRR)

Description:

A software interrupt may be requested for a particular Interrupt Priority Level (IPL) by exe
ing an MTPR instruction specifying SIRR. Software interrupts may be requested at lev
through 15 (requests at level 0 are ignored).

An MTPR SIRR sets the bit corresponding to the specified interrupt level in the Softw
Interrupt Summary Register (SISR).

If proper enabling conditions are present, a software interrupt is initiated prior to issuing
next instruction. See Sections 14.4.1 and 14.7.6.

Write

Not applicable

IGN LVL

R16

63 04 3
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13.3.16 Software Interrupt Summary Register (SISR)

Access:

Operation:
R0 ← ZEXT(SISR<15:0>)

Value at System Initialization:

Format:

Figure 13–16: Software Interrupt Summary Register (SISR)

Description:

The Software Interrupt Summary Register records the interrupt pending state for each
interrupt levels 1 through 15. The current interrupt pending state may be read by executi
MFPR instruction specifying SISR.

MTPR SIRR (see SIRR) requests an interrupt at a particular interrupt level and sets the
sponding pending bit in SISR.

When the processor IPL falls below the level of a pending request, an interrupt is initiated
the corresponding bit in SISR is cleared. See Sections 14.4.1 and 14.7.6.

Read

Zero

R0

63 8 0

R
4

R
3

R
2

R
1

67 5 4 3 2 1

R
7

R
B

R
A

R
9

R
8

12 11 10 9

R
F

R
E

R
D

R
C

16 15 14 13

RAZ
R
A
Z

R
5

R
6

I I I III I I II I I I II
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13.3.17 Supervisor Stack Pointer (SSP)

Access:

Operation:
IF {internal registers for stack pointers} THEN ! Read

R0 ← SSP
ELSE

R0 ← (IPR_PCBB + HWPCB_SSP)

IF {internal registers for stack pointers} THEN ! Write
SSP ← R16

ELSE
(IPR_PCBB + HWPCB_SSP)← R16

Value at System Initialization:

Format:

Figure 13–17: Supervisor Stack Pointer (SSP)

Description:

The Supervisor Stack Pointer register allows the stack pointer for supervisor mode (SSP)
read and written by using MFPR and MTPR instructions that specify SSP.

The current stack pointer may be read and written directly by specifying scalar registe
(R30).

As processes are scheduled for execution, the stack pointers for the next process to exec
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7
Chapter 12.

Read/Write

Value in the initial HWPCB

Stack Address

63 0
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13.3.18 System Page Table Base Register (SYSPTBR)

Access:

Operation:
R0 <- SYSPTBR ! Read
SYSPTBR <- R16 ! Write

Value at System Initialization:

Format:

Figure 13–18: System Page Table Base Register (SYSPTBR)

Description:

The System Page Table Base Register contains the page frame number of the highes
page table to be used for translating addresses equal to or above the value stored in the
Address Boundary register. It may be read and written by executing MFPR and MT
instructions that specify SYSPTBR. Section 11.8 further describes the use of this register

Implementation of VIRBND and SYSPTBR is optional. If not implemented, only PTBR
used as a base during address translation.

In contrast to the PTBR register, the contents of SYSPTBR are not modified as process
texts are switched by the Swap Privileged Context (SWPCTX) instruction.

Read/Write

UNPREDICTABLE

Page Frame Number

63 032 31

RAZ
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13.3.19 Translation Buffer Check (TBCHK)

Access:

Operation:
R0 ← 0
IF {implemented} THEN

R0<0> ← {indicator that VA in R16 is in TB}
ELSE

R0<63> ← 1

Value at System Initialization:

Format:

Figure 13–19: Translation Buffer Check Register (TBCHK)

Description:

The Translation Buffer Check Register provides the capability to determine if a virtual add
is present in the Translation Buffer by executing an MFPR instruction specifying TBCHK.
Section 11.9.

The virtual address to be checked is specified in R16 and may be any address with
desired page. If ASNs are implemented, only those Translation Buffer entries that are as
ated with the current value of the ASN IPR will be checked for the virtual address. The v
read contains an indication of whether the function is implemented and whether the vi
address is present in the Translation Buffer.

If the function is not implemented, a one is returned in bit <63> and bit <0> is clear. Ot
wise, bit <63> is clear and bit <0> indicates the presence or absence of the virtual addr
the Translation Buffer. Bit <0> set indicates the virtual address is present; bit <0> clear
cates it is absent.

The TBCHK register can be used by system software for working set management.

Read

Correct results are always returned

Virtual Address

R16

RAZ

R0

63 0

63 62

M
P

P
R
S

1 0

I
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13.3.20 Translation Buffer Invalidate All (TBIA)

Access:

Operation:
{Invalidate all TB entries}

Value at System Initialization:

Format:

Figure 13–20: Translation Buffer Invalidate All (TBIA) Register

Description:

The Translation Buffer Invalidate All Register provides the capability to invalidate all ent
in the Translation Buffer by executing an MTPR instruction specifying TBIA. See Section 1
for information on translation buffers.

Write

Not applicable

Unused

R16

63 0
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13.3.21 Translation Buffer Invalidate All Process (TBIAP)

Access:

Operation:
{Invalidate all TB entries with PTE<ASM> clear}

Value at System Initialization:

Format:

Figure 13–21: Translation Buffer Invalidate All Process (TBIAP) Register

Description:

The Translation Buffer Invalidate All Process Register provides the capability to invalidat
entries in the Translation Buffer that do not have the ASM bit set by executing an MT
instruction specifying TBIAP. See Section 11.9 for information on translation buffers and S
tion 11.10 for information on address space numbers (ASNs), because ASNs can imp
modify TB operations.

Notes:

More entries may be invalidated by this operation. For example, some implementation
may flush the entire TB on a TBIAP.

Write

Not applicable

Unused

R16

63 0
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13.3.22 Translation Buffer Invalidate Single (TBISx)

Access:

Operation:
TBIS:

{Invalidate single Data TB entry using R16}
{Invalidate single Instruction TB entry using R16}

TBISD:
{Invalidate single Data TB entry using R16}

TBISI:
{Invalidate single Instruction TB entry using R16}

Value at System Initialization:

Format:

Figure 13–22: Translation Buffer Invalidate Single (TBIS)

Description:

The Translation Buffer Invalidate Single Registers provide the capability to invalidate a si
entry in the Instruction Translation Buffer (TBISI), the Data Translation Buffer (TBISD),
both translation buffers (TBIS). The virtual address to be invalidated is passed in R16 and
be any address within the desired page. See Section 11.9 for information on translation b
and Section 11.10 for information on address space numbers (ASNs), because ASNs can
implicitly modify TB operations.

Notes:

• More than the single entry may be invalidated by this operation. For example s
implementations may flush the entire TB on a TBIS. As a result, if the specified add
does not match any entry in the Translation Buffer, then it is implementation depen
whether the state of the Translation Buffer is affected by the operation.

Write

Not applicable

Virtual Address

R16

63 0
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13.3.23 User Stack Pointer (USP)

Access:

Operation:
IF {internal registers for stack pointers} THEN ! Read

R0 ← USP
ELSE

R0 ← (IPR_PCBB + HWPCB_USP)

IF {internal registers for stack pointers} THEN ! Write
USP ← R16

ELSE
(IPR_PCBB + HWPCB_USP)← R16

Value at System Initialization:

Format:

Figure 13–23: User Stack Pointer (USP)

Description:

This register allows the stack pointer for user mode (USP) to be read and written via M
and MTPR instructions that specify USP.

The current stack pointer may be read and written directly by specifying scalar registe
(R30).

As processes are scheduled for execution, the stack pointers for the next process to exec
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 10.6.7
Chapter 12.

Read/Write

Value in the initial HWPCB

Stack Address

63 0
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13.3.24 Virtual Address Boundary Register (VIRBND)

Access:

Operation:
R0 <- VIRBND ! Read
VIRBND <- R16 ! Write

Value at System Initialization:

Format:

Figure 13–24: Virtual Address Boundary (VIRBND) Register

Description:

The Virtual Address Boundary Register holds the address used to determine which page
physical base register is used during address translation, either PTBR or SYSPTBR. It m
read and written by executing MFPR and MTPR instructions that specify VIRBND.

UNPREDICTABLE operations result if the address is not 64-bit aligned. At Processor Ini
ization, VIRBND is initialized to a value of -1, thereby forcing all translations to use PTB
The value in SYSPTBR is effectively ignored. Section 11.8 further describes the use o
register.

Implementation of VIRBND and SYSPTBR is optional. If not implemented, only PTBR
used as a base during address translation.

Read/Write

–1

63 0

Virtual Address
Internal Processor Registers (II–A)13–29
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13.3.25 Virtual Page Table Base (VPTB)

Access:

Operation:
R0 ← VPTB ! Read

VPTB ← R16 ! Write

Value at System Initialization:

Format:

Figure 13–25: Virtual Page Table Base (VPTB) Register

Description:

The Virtual Page Table Base Register contains the virtual address of the base of the
three-level page table structure. It may be read by executing an MFPR instruction spec
VPTB. It is written at system initialization using an MTPR instruction specifying VPTB. S
Section 11.8.2 and Section 27.4 for initialization considerations.

Read/Write

Initialized by the console in the bootstrap address space.

VA of Page Table Structure

R0

63 0
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13.3.26 Who-Am-I (WHAMI)

Access:

Operation:
R0 ← WHAMI

Value at System Initialization:

Format:

Figure 13–26: Who-Am-I (WHAMI) Register

Description:

The Who-Am-I Register provides the capability to read the current processor number by
cuting anMFPR instruction specifying WHAMI. The processor number returned is in t
range 0 to the number of processors minus one that can be configured in the system. Pro
number FFFF FFFF FFFF FFFF16 is reserved.

The current processor number is useful in a multiprocessing system to index arrays that
per processor information. Such information is operating system dependent.

Read

Processor number

Processor Number

R0

63 0
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Chapter 14

Exceptions, Interrupts, and Machine Checks (II–A)

14.1 Introduction

At certain times during the operation of a system, events within the system require the e
tion of software outside the explicit flow of control. When such an exceptional event occur
Alpha processor forces a change in control flow from that indicated by the current instruction
stream. The notification process for such events is of one of three types:

• Exceptions

These events are relevant primarily to the currently executing process and norm
invoke software in the context of the current process. The three types of exceptions are
faults, arithmetic traps, and synchronous traps. Exceptions are described in Se
14.3.

• Interrupts

These events are primarily relevant to other processes or to the system as a who
are typically serviced in a system-wide context.

Some interrupts are of such urgency that they require high-priority service, w
others must be synchronized with independent events. To meet these needs
processor has priority logic that grants interrupt service to the highest priority eve
any point in time. Interrupts are described in Section 14.4.

• Machine Checks

These events are generally the result of serious hardware failure. The register
memory are potentially in an indeterminate state such that the instruction exec
cannot necessarily be correctly restarted, completed, simulated, or undone. Ma
checks are described in Section 14.5.

For all such events, the change in flow of control involves changing the Program Counter
possibly changing the execution mode (current mode) and/or interrupt priority level (IPL
the Processor Status (PS), and saving the old values of the PC and PS. The old values ar
on the target stack as part of an Exception, Interrupt, or Machine Check Stack Frame. C
tively, those elements are described in Section 14.2.

The service routines that handle exceptions, interrupts, and machine checks are specif
entry points in the System Control Block (SCB), described in Section 14.6.

Return from an exception, interrupt, or machine check is done via the CALL_PAL REI inst
tion. As part of its work, CALL_PAL REI restores the saved values of PC and PS and p
them off the stack.
Exceptions, Interrupts, and Machine Checks (II–A)14–1
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14.1.1 Differences Between Exceptions, Interrupts, and Machine Checks

Generally, exceptions, interrupts, and machine checks are similar. However, there are
important differences:

1. An exception is caused by the execution of an instruction. An interrupt is cause
some activity in the system that may be independent of any instruction. A mac
check is associated with a hardware error condition.

2. The IPL of the processor is not changed when the processor initiates an exception
IPL is always raised when an interrupt is initiated. The IPL is always raised whe
machine check is initiated, and for all machine checks other than system correctab
raised to 31 (highest priority level). (For system correctable machine checks, the IPL i
raised to 20.)

3. Exceptions are always initiated immediately, no matter what the processor IPL is. I
rupts are deferreduntil the processor IPL drops below the IPL of the requesting source.
Machine checks can be initiated immediately or deferred, depending on error condi-
tions.

4. Some exceptions can be selectively disabled by selecting instructions that do not
for exception conditions. If an exception condition occurs in such an instruction,
condition is totally ignored and no state is saved to signal that condition at a later ti

If an interrupt request occurs while the processor IPL is equal to or greater than th
the interrupting source, the condition will eventually initiate an interrupt if t
interrupt request is still present and the processor IPL is lowered below that of
interrupting source.

Machine checks cannot be disabled. Machine checks can be initiated immediate
deferred, depending on the error condition. Also, they can be deliberately generated
software.

14.1.2 Exceptions, Interrupts, and Machine Checks Summary

Table 14–1 summarizes the actions taken on an exception, interrupt, or machine check
remaining sections in this chapter describe those actions in greater detail.

• The "SavedPC" column describes what is saved in the "PC" field of the exceptio
interrupt or machine check stack frame.

1. "Current" indicates the PC of the instruction at which the exception or interrupt
machine check was taken,

2. "Next" indicates the PC of the successor instruction.

• The "NewMode" column specifies the mode and stack that the exception or interru
machine check routine will start with. For change mode traps, "MostPrv" indicates
more privileged of the current and new modes.

• The "R2" column specifies the value with which R2 is loaded, after its original va
has been saved in the exception or interrupt or machine check stack frame. The
vector quadword, "SCBv", is loaded into R2 for all interrupts and exceptions
machine checks.
14–2 OpenVMS Software (II–A)
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• The "R3" column specifies the value with which R3 is loaded, after its original va
has been saved in the exception or interrupt or machine check stack frame. The
parameter quadword, "SCBp", is loaded into R3 for all interrupts and exceptions and
machine checks.

• The "R4" column specifies the value with which R4 is loaded, after its original va
has been saved in the exception or interrupt or machine check stack frame. If the
column is blank, the value in R4 is UNPREDICTABLE on entry to an interrupt
exception.

1. "VA" indicates the exact virtual address that triggered a memory management f
or data alignment trap.

2. "Mask" indicates the Register Write Mask.

3. "LAOff" indicates the offset from the base of the logout area in the HWRPB (se
Section 14.5.2).

• The "R5" column specifies the value with which R5 is loaded, after its original va
has been saved in the exception or interrupt or machine check stack frame. If the
column is blank, the value in R5 is UNPREDICTABLE on entry to an interrupt
exception or machine check.

1. "MMF" indicates the Memory Management Flags.

2. "Exc" indicates the Exception Summary parameter.

3. "RW" indicates Read/Load =0 Write/Store =1 for data alignment traps

Table 14–1 Exceptions, Interrupts, and Machine Checks Summary

SavedPC NewMode R2 R3 R4 R5

Exceptions – Faults :

Floating Disabled Fault Current Kernel SCBv SCBp

Memory Management Faults :

Access Control Violation Current Kernel SCBv SCBp VA MMF

Translation Not Valid Current Kernel SCBv SCBp VA MMF

Fault on Read Current Kernel SCBv SCBp VA MMF

Fault on Write Current Kernel SCBv SCBp VA MMF

Fault on Execute Current Kernel SCBv SCBp VA MMF

Exceptions – Arithmetic Traps:

Arithmetic Traps Next Kernel SCBv SCBp Mask Exc

Exceptions - Synchronous Traps :

Breakpoint Trap Next Kernel SCBv SCBp

Bugcheck Trap Next Kernel SCBv SCBp

Change Mode to K/E/S/U Next MostPrv SCBv SCBp
Exceptions, Interrupts, and Machine Checks (II–A)14–3
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14.2 Processor State and Exception/Interrupt/Machine
Check Stack Frame

Processor state consists of a quadword of privileged information called the Processor S
(PS) and a quadword containing the Program Counter (PC), which is the virtual address
next instruction.

When an exception, interrupt, or machine check is initiated, the current processor state d
the exception, interrupt, or machine check must be preserved. This is accomplished by
matically pushing the PS and the PC on the target stack.

Subsequently, instruction execution can be continued at the point of the exception, interru
machine check by executing a CALL_PAL REI instruction (see Section 10.1.11).

Process context such as memory mapping information is not saved or restored on each
tion, interrupt, or machine check. Instead, it is saved and restored when process co
switching is performed. Other processor status is changed even less frequently (see C
12).

Exceptions - Synchronous Traps, Continued :

Illegal Instruction Next Kernel SCBv SCBp

Illegal Operand Next Kernel SCBv SCBp

Data Alignment Trap Next Kernel SCBv SCBp VA RW

Interrupts :

Asynch System Trap (4) Current Kernel SCBv SCBp

Interval Clock Current Kernel SCBv SCBp

Interprocessor Interrupt Current Kernel SCBv SCBp

Software Interrupts Current Kernel SCBv SCBp

Performance monitor Current Kernel SCBv SCBp IMP IMP

Passive Release Current Kernel SCBv SCBp

Powerfail Current Kernel SCBv SCBp

I/O Device Current Kernel SCBv SCBp

Machine Checks :

Processor Correctable Current Kernel SCBv SCBp LAOff

System Correctable Current Kernel SCBv SCBp LAOff

System Current Kernel SCBv SCBp LAOff

Processor Current Kernel SCBv SCBp LAOff

Table 14–1 Exceptions, Interrupts, and Machine Checks Summary (Continued)

SavedPC NewMode R2 R3 R4 R5
14–4 OpenVMS Software (II–A)
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14.2.1 Processor Status

The PS can be explicitly read with the CALL_PAL RD_PS instruction. The PS<SW> field
be explicitly written with the CALL_PAL WR_PS_SW instruction. See Section 10.1.

The terms current PS and saved PS are used to distinguish between this status inform
when it is stored internal to the processor and when copies of it are materialized in mem
The current PS is shown in Figure 14–1, the saved PS in Figure 14–2, and the bits for bo
described in Table 14–2.

Figure 14–1: Current Processor S tatus (PS Register)

Figure 14–2: Saved Processor Status (PS on Stack)

Table 14–2 Processor Status Register Summary

Bits Description

63–62 Reserved to Compaq, MBZ.

61–56 Stack alignment (SP_ALIGN)

The previous stack byte alignment within a 64-byte aligned area, in the range 0 to 63.
field is set in the saved PS during the act of taking an exception or interrupt; it is used by
CALL_PAL REI instruction to restore the previous stack byte alignment.

55–13 Reserved to Compaq, MBZ.

12–8 Interrupt priority level (IPL)

The current processor priority, in the range 0 to 31.

7 Virtual machine monitor (VMM).

When set, the processor is executing in a virtual machine monitor. When clear, the proc
is running in either real or virtual machine mode.

Programming Note:

This bit is only meaningful when running with PALcode that implements virtu
machine capabilities.

6–5 Reserved to Compaq, MBZ.

SWCMIPLMBZ

63 6

P

V
M
M

5 4 3 278

M
B
Z

1 01213

I

MBZSP_
ALIGN

63 62 56 55

SWCMIPL

6

P

V
M
M

5 4 3 278

M
B
Z

1 01213
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B
Z
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At bootstrap, the initial value of PS is set to 1F0016. Previous stack alignment is zero, IPL i

31, VMM is clear, CM is kernel, and the SW and IP fields are zero.

14.2.2 Program Counter

The PC (Figure 14–3) is a 64-bit virtual address. All instructions are aligned on longw
boundaries and, therefore, hardware can assume zero for the two low-order PC bits. The
discussed in Section 14.2.6.

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All branch
instructions also load a new value into the PC.

Figure 14–3: Program Counter (PC)

14.2.3 Processor Interrupt Priority Level (IPL)

Each processor has 32 interrupt priority levels (IPLs) divided into 16 software levels (n
bered 0 to 15), and 16 hardware levels (numbered 16 to 31). User applications and
operating system software run at IPL 0, which may be thought of as process level. Higher
bered interrupt levels have higher priority; that is, any request at an interrupt level higher
the processor’s current IPL will interrupt immediately, but requests at lower or equal level
deferred.

4–3 Current mode (CM)

The access mode of the currently executing process as follows:

2 Interrupt pending (IP)

Set when an interrupt (software or hardware but not AST) is initiated; indicates an inter
is in progress.

1–0 Reserved for Software (SW)

These bits are reserved for software use and can be read and written at any time by the
ware, regardless of the current mode. The value of these bits is ignored by the hardware
software field is set to zero at the initiation of either an exception or an interrupt.

Table 14–2 Processor Status Register Summary (Continued)

Bits Description

0 Kernel
1 Executive

2 Supervisor
3 User

Instruction Virtual Address <63:2>

63 0

G
N

2 1

I
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Interrupt levels 0 to 15 exist solely for use by software. No hardware event can reque
interrupt on these levels. Conversely, interrupt levels 16 to 31 exist solely for use by hard
Serious system failures, such as a machine check abort, however, raise the IPL to the h
level (31) to minimize processor interruption until the problem is corrected, and execute in
nel mode on the kernel stack.

14.2.4 Protection Modes

Each processor has four protection modes: kernel, executive, supervisor, and user. Pe
memory protection varies as a function of mode (for example, a page can be made read-o
user mode, but read-write in supervisor, executive, or kernel mode).

For each process, a separate stack is associatedwith each mode. Corruption of one stack does
not affect use of the other stacks.

Some instructions, termed privileged instructions, may be executed only in kernel mode.

14.2.5 Processor Stacks

Each processor has four stacks. There are four process-specific stacks associated with t
modes of the current process. At any given time, only one of these stacks is actively used
current stack.

14.2.6 Stack Frames

When an exception, interrupt, or machine check occurs, a stack frame (Figure 14–3) is p
on the target stack. Regardless of the type of event notification, this stack frame consist
64-byte-aligned structure that contains the saved contents of registers R2..R7, the Pr
Counter (PC), and the Processor Status (PS). Registers R2 and R3 are then loaded with
and parameter from the SCB for the exception, interrupt, or machine check. Registers R4 an
R5 may be loaded with data pertaining to the exception, interrupt, or machine check. The
cific data loaded is described below in conjunction with each exception, interrupt, or mac
check; if no specific data is specified, the contents of R4 and R5 are UNPREDICTAB
After the stack is built, the contents of registers R6 and R7 are UNPREDICTABLE.

The Program Counter value that is saved in the stack frame is:

• For faults, the instruction that encountered the exception

• For traps, the next instruction

• For interrupts and (on a best-effort basis) machine checks, the instruction thatwould
have been issued if the interrupt or machine-check condition had not occurred.

Return from an exception, interrupt, or machine check is done via the CALL_PAL REI inst
tion, which restores the saved values of PC, PS, and R2..R7. Thus, the CALL_PAL
instruction:

• For faults, re-executes the faulting instruction

• For traps, executes the next instruction

• For interrupts, executes the instruction that would have been executed if the interrupt
had not occurred
Exceptions, Interrupts, and Machine Checks (II–A)14–7
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• For machine checks, continues execution from the point at which the machine c
was taken

Table 14–3 Stack Frame

14.3 Exceptions

Exception service routines execute in response to exception conditions caused by sof
Most exception service routines execute in kernel mode, on the kernel stack; all exceptio
vice routines execute at the current processor IPL. Change mode exception routine
CHMU/CHMS/CHME execute in the more privileged of the current mode or the target m
(U/S/E) on the matching stack. Exception service routines are usually coded to avoid e
tions; however, nested exceptions can occur.

Types of Exceptions

There are three types of exceptions:

• A fault is an exception condition that occurs during an instruction and leaves the re
ters and memory in a consistent state such that elimination of the fault condition
subsequent re-execution of the instruction will give correct results. Faults are not g
anteed to leave the machine in exactly the same state it was in immediately prior t
fault, but rather in a state such that the instruction can be correctly executed if the
condition is removed. The PC saved in the exception stack frame is the address
faulting instruction. A CALL_PAL REI instruction to this PC will reexecute the faul
ing instruction.

• An arithmetic trap is an exception condition that occurs at the completion of the op
tion that caused the exception. Because several instructions may be in various sta
execution at any time, it is possible for multiple arithmetic traps to occur simu
neously. The PC that is saved in the exception frame on traps is that of the next ins
tion that would have been issued if the trapping condition(s) had not occurred. Th
not necessarily the address of the instruction immediately following the one(s)
encountered the trap condition, and the intervening instructions are collectively c
the trap shadow. See Section 4.7.7.3, for information.

The intervening instructions may have changed operands or other state used b
instruction(s) encountering the trap condition(s). If such is the case, a CALL_PAL
instruction to this PC does not reexecute the trapping instruction(s), nor doe

:SP

:+08

:+16

:+24

:+32

:+40

:+48

:+56

R2

R3

R4

R5

R6

R7

Program Counter (PC)

Processor Status (PS)

63 0
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which the trap was taken.

In general, it is difficult to fix up results and continue program execution at the po
of an arithmetic trap. Software can force a trap to be continued more easily withou
need for complicated fixup code. This is accomplished by specifying any v
qualifier combination that includes the /S qualifier with each such instruction
following a set of code-generation restrictions in the code that could cause arithm
traps, allowing those traps to be completed by an OS completion handler.

The AND of all the exception completion qualifiers for trapping instructions
provided to the OS completion handler in the exception summary SWC bit. If SW
set, the OS completion handler may find the trigger instruction by scanning backw
from the trap PC until each register in the register write mask has been an instru
destination. The trigger instruction is the last instruction in I-stream order to get a
before the trap shadow. If the SWC bit is clear, no fixup is possible. (The trig
instruction may have been followed by a taken branch, so the trap PC cannot be
to find it.)

• A synchronous trap is an exception condition that occurs at the completion of the o
ation that caused the exception (or, if the operation can only be partially carriedout, at
the completion of that part of the operation), and no subsequent instruction is is
before the trap occurs.

Synchronous traps are divided into data alignment traps and all other synchro
traps.

14.3.1 Faults

The six types of faults signal that an instruction or its operands are in some way illegal. T
faults are all initiated in kernel mode and push an exception stack frame onto the stack.
entry to the exception routine, the saved PC (in the exception stack frame) is the virtual ad
of the faulting instruction.

The six faults include the Floating Disable Fault described in the next section and five m
ory management faults.

Memory management faults occur when a virtual address translation encounters an exc
condition. This can occur as the result of instruction fetch or during a load or store operatio

Immediately following a memory management fault, register R4 contains the exact vir
address encountering the fault condition.

The register R5 contains the "MM Flag" quadword.

"MM Flag" is set as follows:

The faulting instruction is the instruction whose fetch faulted, or the load, store, or PALc
instruction that encountered the fault condition.

Chapter 11 describes the Alpha memory management architecture in more detail.

0000 0000 0000 000016 for a faulting data read

0000 0000 0000 000116 for a faulting I-fetch operation

8000 0000 0000 000016 for a faulting write operation
Exceptions, Interrupts, and Machine Checks (II–A)14–9
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14.3.1.1 Floating Disabled Fault

A Floating Disabled Fault is an exception that occurs when an attempt is made to exec
floating-point instruction and the floating-point enable (FEN) bit in the HWPCB is not set.

14.3.1.2 Access Control Violation (ACV) Fault

An ACV fault is a memory management fault that indicates that an attempted access to
tual address was not allowed in the current mode.

ACV faults usually indicate program errors, but in some cases, such as automatic stack e
sion, can indicate implicit operating system functions.

ACV faults take precedence over Translation Not Valid, Fault on Read, Fault on Write,
Fault on Execute faults.

ACV faults take precedence over Translation Not Valid faults so that a malicious user c
not degrade system performance by causing spurious page faults to pages for which no
is allowed.

14.3.1.3 Translation Not Valid (TNV)

A TNV fault is a memory management fault that indicates that an attempted access was
to a virtual address whose Page Table Entry (PTE) was not valid.

Software may use TNV faults to implement virtual memory capabilities.

14.3.1.4 Fault on Read (FOR)

An FOR fault is a memory management fault that indicates that an attempted data read a
was made to a virtual address whose Page Table Entry (PTE) had the Fault on Read bit s

As a part of initiating the FOR fault, the processor invalidates the Translation Buffer entry
caused the fault to be generated.

Implementation Note:

This allows an implementation to invalidate entries only from the Data-stream Transla
Buffer on Fault on Read faults.

The Translation Buffer may reload and cache the old PTE value between the time the
fault invalidates the old value from the Translation Buffer and the time software update
PTE in memory. Software that depends on the processor-provided invalidate must thus b
pared to take another FOR fault on a page after clearing the page’s PTE<FOR> bit. The s
fault will invalidate the stale PTE from the Translation Buffer, and the processor cannot
another stale copy. Thus, in the worst case, a multiprocessor system will take an initial
fault and then an additional FOR fault on each processor. In practice, even a single repeti
unlikely.

Software may use FOR faults to implement watchpoints, to collect page usage statistics,
implement execute-only pages.

14.3.1.5 Fault on Write (FOW)

A FOW fault is a memory management fault that indicates that an attempted data write a
was made to a virtual address whose Page Table Entry (PTE) had the Fault On Write bit s
14–10 OpenVMS Software (II–A)
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As a part of initiating the FOW fault, the processor invalidates the Translation Buffer entry
caused the fault to be generated.

Implementation Note:

This allows an implementation to invalidate entries only from the Data-stream Transla
Buffer on Fault on Write faults.

Note that the Translation Buffer may reload and cache the old PTE value between the tim
FOW fault invalidates the old value from the Translation Buffer and the time software upd
the PTE in memory. Software that depends on the processor-provided invalidate must th
prepared to take another FOW fault on a page after clearing the page’s PTE<FOW> bit
second fault will invalidate the stale PTE from the Translation Buffer, and the processor
not load another stale copy. Thus, in the worst case, a multiprocessor system will take an
FOW fault and then an additional FOW fault on each processor. In practice, even a single
tition is unlikely.

Software may use FOW faults to maintain modified page information, to implement cop
write and watchpoint capabilities, and to collect page usage statistics.

14.3.1.6 Fault on Execute (FOE)

An FOE fault is a memory management fault that indicates that an attempted instruction s
access was made to a virtual address whose Page Table Entry (PTE) had the Fault On E
bit set.

As a part of initiating the FOE fault, the processor invalidates the Translation Buffer entry
caused the fault to be generated.

Implementation Note:

This allows an implementation to invalidate entries only from the Instruction-stre
Translation Buffer on Fault on Execute faults.

Note that the Translation Buffer may reload and cache the old PTE value between the tim
FOE fault invalidates the old value from the Translation Buffer and the time software upd
the PTE in memory. Software that depends on the processor-provided invalidate must th
prepared to take another FOE fault on a page after clearing the page’s PTE<FOE> bit. Th
ond fault will invalidate the stale PTE from the Translation Buffer, and the processor ca
load another stale copy. Thus, in the worst case, a multiprocessor system will take an
FOE fault and then an additional FOE fault on each processor. In practice, even a single r
tion is unlikely.

Software may use FOE faults to implement access mode changes and protected entry to
mode, to collect page usage statistics, and to detect programming errors that try to ex
data.

14.3.2 Arithmetic Traps

An arithmetic trap is an exception that occurs as the result of performing an arithmetic or
version operation.
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If integer register R31 or floating-point register F31 is specified as the destination of an op
tion that can cause an arithmetic trap, it is UNPREDICTABLE whether the trap will actu
occur, even if the operation would definitely produce an exceptional result. If the opera
causes an arithmetic trap, the bit that corresponds to R31 or F31 in the Register Write M
UNPREDICTABLE.

Arithmetic traps are initiated in kernel mode and push the exception stack frame on the k
stack. The Register Write Mask is saved in R4, and the Exception Summary parameter is
in R5. These are described in Section 14.3.2.1.

14.3.2.1 Exception Summary Parameter

The Exception Summary parameter shown in Figure 14–4 and described in Table 14–4 re
the various types of arithmetic traps that can occur together. These types of traps are des
in subsections below.

Figure 14–4: Exception Summary

Table 14–4 Exception Summary

Bit Description

63–7 Zero.

6 Integer Overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the de
nation precision.

5 Inexact Result (INE)

A floating arithmetic or conversion operation gave a result that differed from the mathem
cally exact result.

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

2 Division by Zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.

1 Invalid Operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison operation
and one or more of the operand values were illegal.

0 Software Completion (SWC)

Set when all of the other arithmetic exception bits were set by floating-operate instruct
with the /S exception completion qualifier set. See Section 4.7.7.3 for rules about setting
/S qualifier in code that may cause an arithmetic trap, and Section 14.3 for rules about u
the SWC bit in a trap handler.
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14.3.2.2 Register Write Mask

The Register Write Mask parameter records all registers that were targets of instruction
set the bits in the exception summary register. There is a one-to-one correspondence be
bits in the Register Write Mask quadword and the register numbers. The quadword rec
starting at bit 0 and proceeding right to left, which of the registers R0 through R31, the
through F31, received an exceptional result.

Note:

For a sequence such as:

ADDF F1,F2,F3
MULF F4,F5,F3

If the add overflows and the multiply does not, the OVF bit is set in the except
summary, and the F3 bit is set in the register mask, even though the overflowed sum
can be overwritten with an in-range product by the time the trap is taken. (This c
violates the destination reuse rule for software completion. See Section 4.7.7.3 fo
destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next instru
This is defined as the virtual address of the first instruction not executed after the trap c
tion was recognized.

14.3.2.3 Invalid Operation (INV) Trap

An INV trap is reported for most floating-point operate instructions with an input operand
is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity, or IEEE denormal.

Floating INV traps are always enabled. If this trap occurs, the result register is written wit
UNPREDICTABLE value.

14.3.2.4 Division by Zero (DZE) Trap

A DZE trap is reported when a finite number is divided by zero. Floating DZE traps are alw
enabled. If this trap occurs, the result register is written with an UNPREDICTABLE value.

14.3.2.5 Overflow (OVF) Trap

An OVF trap is reported when the destination’s largest finite number is exceeded in ma
tude by the rounded true result. Floating OVF traps are always enabled. If this trap occur
result register is written with an UNPREDICTABLE value.

14.3.2.6 Underflow (UNF) Trap

A UNF trap is reported when the destination’s smallest finite number exceeds in magnitud
non-zero rounded true result. Floating UNF trap enable can be specified in each floating-
operate instruction. If underflow occurs, the result register is written with a true zero.

14.3.2.7 Inexact Result (INE) Trap

An INE trap is reported if the rounded result of an IEEE operation is not exact. INE trap en
can be specified in each IEEE floating-point operate instruction. The unchanged result va
stored in all cases.
Exceptions, Interrupts, and Machine Checks (II–A)14–13
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14.3.2.8 Integer Overflow (IOV) Trap

An IOV trap is reported for any integer operation whose true result exceeds the destinatio
ister size. IOV trap enable can be specified in each arithmetic integer operate instructio
each floating-point convert-to-integer instruction. If integer overflow occurs, the result reg
is written with the truncated true result.

14.3.3 Synchronous Traps

A synchronous trap is an exception condition that occurs at the completion of the oper
that caused the exception (or, if the operation can only be partially carried out, at the com
tion of that part of the operation), but no successor instruction is allowed to start. All traps
are not arithmetic traps are synchronous traps.

Some synchronous traps are caused by PALcode instructions: BPT, BUGCHK, CH
CHMS, CHME, and CHMK. For synchronous traps, the PC saved in the exception stack f
is the address of the instruction immediately following the one causing the trap conditio
CALL_PAL REI instruction to this PC will continue without reexecuting the trapping instru
tion. The following subsections describe the synchronous traps in detail.

14.3.3.1 Data Alignment Trap

All data must be naturally aligned or an alignment trap may be generated. Natural align
means that data bytes are on byte boundaries, data words are on word boundaries, dat
words are on longword boundaries, and data quadwords are on quadword boundaries.

A Data Alignment trap is generated by the hardware when an attempt is made to load or s
word, a longword, or a quadword to/from a register using an address that does not have th
ural alignment of the particular data reference.

Data Alignment traps are fixed up by the PALcode and are optionally reported to the oper
system under the control of the DAT bit. If the bit is zero, the trap will be reported. If the b
set, after the alignment is corrected, control is returned to the user. In either case, if the
code detects a LDx_L or STx_C instruction, no correction is possible and an illegal ope
exception is generated.

Note:

In the case of concurrently pending data alignment and arithmetic traps, it is assume
the arithmetic trap is reported before PALcode data alignment fixup is performed.
Otherwise, it would not be possible to back up the PC for the synchronous data align
trap as required by Section 14.7.4.

The system software is notified via the generation of a kernel mode exception throug
Unaligned_Access SCB vector (28016) The virtual address of the unaligned data bein

accessed is stored in R4. R5 indicates whether the operation was a read or a write
read/load 1 = write/store).

PALcode may write partial results to memory without probing to make sure all writes will s
ceed when dealing with unaligned store operations.

If a memory management exception condition occurs while reading or writing part of
unaligned data, the appropriate memory management fault is generated.
14–14 OpenVMS Software (II–A)
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Software should avoid data misalignment whenever possible since the emulation perform
penalty may be as large as 100-to-1.

The Data Alignment trap control bit is included in the HWPCB at offset HWPCB[56], bit 6
In order to change this bit for the currently executing process, the DATFX IPR may be wr
by using a CALL_PAL MTPR_DATFX instruction. This operation will also update the val
in the HWPCB.

14.3.3.2 Other Synchronous Traps

With the traps described in this subsection, the SCB vector quadword is saved in R2 an
SCB parameter quadword is saved in R3. The change mode traps are initiated in the mor
ileged of the current mode and the target mode, while the other traps are initiated in k
mode.

14.3.3.2.1 Breakpoint Trap

A Breakpoint trap is an exception that occurs when a CALL_PAL BPT instruction is execu
(see Section 10.1.1). Breakpoint traps are intended for use by debuggers and can be u
place breakpoints in a program.

Breakpoint traps are initiated in kernel mode so that system debuggers can capture brea
traps that occur while the user is executing system code.

14.3.3.2.2 Bugcheck Trap

A Bugcheck trap is an exception that occurs when a CALL_PAL BUGCHK instruction is e
cuted (see Section 10.1.2). Bugchecks are used to log errors detected by software.

14.3.3.2.3 Illegal Instruction Trap

An Illegal Instruction trap is an exception that occurs when an attempt is made to execu
instruction when:

• It has an opcode that is reserved to Compaq or reserved to PALcode.

• It is a subsetted opcode that requires emulation on the host implementation.

• It is a privileged instruction and the current mode is not kernel.

• It has an unused function code for those opcodes defined as reserved in the Vers
Alpha architecture specification (May 1992).

14.3.3.2.4 Illegal Operand Trap

An Illegal Operand trap occurs when an attempt is made to execute PALcode with ope
values that are illegal or reserved for future use by Compaq. Illegal operands include:

• An invalid combination of bits in the PS restored by the CALL_PAL REI instruction.

• An unaligned operand passed to PALcode.

14.3.3.2.5 Generate Software Trap

A Generate Software trap is an exception that occurs when a CALL_PAL GENTRAP inst
tion is executed (see Section 10.1.8). The intended use is for low-level compiler-gene
code that detects conditions such as divide-by-zero, range errors, subscript bounds, and
tive string lengths.
Exceptions, Interrupts, and Machine Checks (II–A)14–15
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14.3.3.2.6 Change Mode to Kernel Trap

A Change Mode to Kernel trap is an exception that occurs when a CALL_PAL CHMK instr
tion is executed (see Section 10.1.4). Change Mode to Kernel traps are initiated in kernel
and push the exception frame on the kernel stack.

14.3.3.2.7 Change Mode to Executive Trap

A Change Mode to Executive trap is an exception that occurs when a CALL_PAL CH
instruction is executed (see Section 10.1.3). Change Mode to Executive traps are initia
the more privileged of the current mode and Executive mode, and push the exception fram
the target stack.

14.3.3.2.8 Change Mode to Supervisor Trap

A Change Mode to Supervisor trap is an exception that occurs when a CALL_PAL CH
instruction is executed (see Section 10.1.5). Change Mode to Supervisor traps are initia
the more privileged of the current mode and supervisor mode, and push the exception fra
the target stack.

14.3.3.2.9 Change Mode to User Trap

A Change Mode to User trap is an exception that occurs when a CALL_PAL CHMU inst
tion is executed (see Section 10.1.6). Change Mode to User traps are initiated in the
privileged of the current mode and user mode, and push the exception frame on the
stack.

14.4 Interrupts

The processor arbitrates interrupt requests according to priority. When the priority of an i
rupt request is higher than the current processor IPL, the processor will raise the IPL
service the interrupt request. The interrupt service routine is entered at the IPL of the inte
ing source, in kernel mode, and on the kernel stack. Interrupt requests can come from
devices, memory controllers, other processors, or the processor itself.

The priority level of one processor does not affect the priority level of other processors. T
in a multiprocessor system, interrupt levels alone cannot be used to synchronize acc
shared resources.

Synchronization with other processors in a multiprocessor system involves a combinati
raising the IPL and executing an interlocking instruction sequence. Raising the IPL prev
the synchronization sequence itself from being interrupted on a single processor whil
interlock sequence guarantees mutual exclusion with other processors. Alternately, one p
sor can issue explicit interprocessor interrupts (and wait for acknowledgment) to put o
processors in a known software state, thus achieving mutual exclusion.

In some implementations, several instructions may be in various stages of execution sim
neously. Before the processor can service an interrupt request, all active instructions m
allowed to complete without exception. Thus, when an exception occurs in a currently a
instruction, the exception is initiated and the exception stack frame built immediately be
the interrupt is initiated and its stackframe built.
14–16 OpenVMS Software (II–A)
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The following events will cause an interrupt:

• Software interrupts — IPL 1 to 15

• Asynchronous System Traps — IPL 2

• Passive Release interrupts — IPL 20 to 23

• I/O Device interrupts — IPL 20 to 23

• Interval Clock interrupt — IPL 22

• Interprocessor interrupt — IPL 22

• Performance Monitor interrupt — IPL 29

• Powerfail interrupt — IPL 30

Interrupts are initiated in kernel mode and push the interrupt stack frame of eight quadw
onto the kernel stack. The PC saved in the interrupt stack frame is the virtual address
first instruction not executed after the interrupt condition was recognized. A CALL_PAL R
instruction to the saved PC/PS will continue execution at the point of interrupt.

Each interrupt source has a separate vector location (offset) within the System Control B
(SCB). (See Section 14.6.) With the exception of I/O device interrupts, each of the abo
events has a unique fixed vector. I/O device interrupts occupy a range of vectors that c
both statically and dynamically assigned. Upon entry to the interrupt service routine, R2
tains the SCB vector quadword and R3 contains the SCB parameter quadword. For Cor
Error interrupts, R4 optionally locates additional information (see Section 14.5.2).

In order to reduce interrupt overhead, no memory mapping information is changed whe
interrupt occurs. Therefore, the instructions, data, and the contents of the interrupt vect
the interrupt service routine must be present in every process at the same virtual address.

Interrupt service routines should follow the discipline of not lowering IPL below their init
level. Lowering IPL in this way could result in an interrupt at an intermediate level, wh
would cause the stack nesting to be incorrect.

Kernel mode software may need to raise and lower IPL during certain instruction seque
that must synchronize with possible interrupt conditions (such as powerfail). This ca
accomplished by specifying the desired IPL and executing a CALL_PAL MTPR_IPL instr
tion or by executing a CALL_PAL REI instruction that restores a PS that contains the de
IPL (see Section 10.6.5).

14.4.1 Software Interrupts — IPLs 1 to 15

14.4.1.1 Software Interrupt Summary Register

The architecture provides 15 priority interrupt levels for use by software (level 0 is also a
able for use by software but interrupts can never occur at this level). The Software Inte
Summary Register (SISR) stores a mask of pending software interrupts. Bit positions in
mask that contain a 1 correspond to the levels on which software interrupts are pending.

When the processor IPL drops below that of the highest requested software interrupt, a
ware interrupt is initiated and the corresponding bit in the SISR is cleared.

The SISR is a read-only internal processor register that may be read by kernel mode so
by executing a CALL_PAL MFPR_SISR instruction (see Section 13.3).
Exceptions, Interrupts, and Machine Checks (II–A)14–17
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14.4.1.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only internal processor register
for making software interrupt requests.

Kernel mode software may request a software interrupt at a particular level by execut
CALL_PAL MTPR_SIRR instruction (see Section 13.3).

If the requested interrupt level is greater than the current IPL, the interrupt will occur be
the execution of the next instruction. If, however, the requested level is equal to or less tha
current processor IPL, the interrupt request will be recorded in the Software Interrupt S
mary Register (SISR) and deferred until the processor IPL drops to the appropriate level.

Note that no indication is given if there is already a request at the specified level. There
the respective interrupt service routine must not assume that there is a one-to-one corre
dence between interrupts requested and interrupts generated. A valid protocol for gene
this correspondence is:

1. The requester places information in a control block and then inserts the control blo
a queue associated with the respective software interrupt level.

2. The requester uses CALL_PAL MTPR_SIRR to request an interrupt at the approp
level.

3. When enabling conditions arise, processor HW clears the appropriate SISR bit a
of initiating the software interrupt.

4. The interrupt service routine attempts to remove a control block from the request qu
If there are no control blocks in the queue, the interrupt is dismissed with a CALL_P
REI instruction.

5. If a valid control block is removed from the queue, the requested service is perfor
and step 3 is repeated.

14.4.2 Asynchronous System Trap — IPL 2

Asynchronous System Traps (ASTs) are a means of notifying a process of events that a
synchronized with its execution, but that must be dealt with in the context of the process
AST is initiated in kernel mode at IPL 2 when the current mode is less privileged than or e
to a mode for which an AST is pending and not disabled, with PS<IPL> less than 2 (see
tions 14.7.6 and 12.3).

There are four separate per-mode SCB vectors, one for each of kernel, executive, supe
and user modes.

On encountering an AST, the interrupt stack frame is pushed on the kernel stack. The va
the PC saved in this stack frame is the address of the next instruction to have been exec
the interrupt had not occurred. The SCB vector quadword is saved in R2 and the SCB pa
ter quadword in R3.
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14.4.3 Passive Release Interrupts — IPLs 20 to 23

Passive releases occur when the source of an interrupt granted by a processor cannot b
mined. This can happen when the requesting I/O device determines that it no longer requi
interrupt after requesting one or when a previously requested interrupt has already bee
viced by another processor in some multiprocessor configurations. The interrupt handl
passive releases executes at the priority level of the interrupt request.

14.4.4 I/O Device Interrupts — IPLs 20 to 23

The architecture provides four priority levels for use by I/O devices. I/O device interrupts
requested when the device encounters a completion, attention, or error condition an
respective interrupt is enabled. See Section 26.3.5 for more information.

14.4.5 Interval Clock Interrupt — IPL 22

The interval clock requests an interrupt periodically.

At least 1000 interval clock interrupts occur per second. An entry in the HWRPB contains
number of interval clock interrupts per second that occur in an actual Alpha implementa
scaled up by 4096, and rounded to a 64-bit integer. (See Section 26.1.)

The accuracy of the interval clock must be at least 50 parts per million (ppm).

Hardware/Software Note:

For example, an interval of 819.2 usec derived from a 10 MHz Ethernet clock and a 1
counter is acceptable.

To guarantee software progress, the interval clock interrupt should be no more freq
than the time it takes to do 500 main memory accesses. Over the life of the architec
this interval may well decrease much more slowly than CPU cycle time decreases.

Other constraints may apply to secure kernel systems.

14.4.6 Interprocessor Interrupt — IPL 22

Interprocessor interrupts are provided to enable operating system software running on on
cessor to interrupt activity on another processor and cause operating system-dependent
to be performed.

14.4.6.1 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only internal processor re
used for making a request to interrupt a specific processor.

Kernel mode software may request to interrupt a particular processor by executi
CALL_PAL MTPR_IPIR instruction (see Section 13.3).

If the specified processor is the same as the current processor and the current IPL is les
22, then the interrupt may be delayed and not initiated before the execution of the
instruction.
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Note that, as with software interrupts, no indication is given as to whether there is alread
interprocessor interrupt pending when one is requested. Therefore, the interprocessor in
service routine must not assume there is a one-to-one correspondence between inte
requested and interrupts generated. A valid protocol similar to the one for software inter
for generating this correspondence is:

1. The requester places information in a control block and then inserts the control blo
a queue associated with the target processor.

2. The requester uses CALL_PAL MTPR_IPIR to request an interprocessor interrup
the target processor.

3. The interprocessor interrupt service routine on the target processor attempts to rem
control block from its request queue. If there are no control blocks remaining, the in
rupt is dismissed with a CALL_PAL REI instruction.

4. If a valid control block is removed from the queue, the specified action is perform
and step 3 is repeated.

14.4.7 Performance Monitor Interrupts — IPL 29

These interrupts provide some of the support for processor or system performance me
ments. The implementation is processor or system specific.

14.4.8 Powerfail Interrupt — IPL 30

If the system power supply backup option permits powerfail recovery, a powerfail interru
generated to each processor when power is about to fail. See Section 27.5 for a descrip
powerfail recovery requirements and for a description of the interactions between system
ware and the console during system restarts.

In systems in which the backup option maintains only the contents of memory and keeps
tem time with the BB_WATCH, the power supply requests a powerfail interrupt to per
volatile system state to be saved. Prior to dispatching to the powerfail interrupt service rou
PALcode is responsible for saving all system state that is not visible to system software.
state includes, but is not limited to, processor internal registers and PALcode tempo
variables.

PALcode is also responsible for saving the contents of any write-back caches or bu
including the powerfail interrupt stack frame. System software is responsible for savin
other system state. Such state includes, but is not limited to, processor registers and write
cache contents. State can be saved by forcing all written data to a backed-up part of the
ory subsystem; software may use the CALL_PAL CFLUSH instruction.

The powerfail interrupt will not beinitiated until the processor IPL drops below 30. Thus, crit
cal code sequences can block the power-down sequence by raising the IPL to 31. Sof
however, must take extra care not to lock out the power-down sequence for an extended
of time. The time interval is platform specific.

Explicit state is not provided by the architecture for software to directly determine whe
there were outstanding interrupts when powerfail occurred. It is the responsibility of softw
to leave sufficient information in memory so that it may determine the proper action on po
up.
14–20 OpenVMS Software (II–A)
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14.5 Machine Checks

A machine check, or mcheck, indicates that a hardware error condition was detected an
or may not be successfully corrected by hardware or PALcode. Such error conditions can
either synchronously or asynchronously with respect to instruction execution. There are
types:

1. System Machine Check (IPL 31)

These machine checks are generated by error conditions that are det
asynchronously to processor execution but are not successfully corrected by hardware
or PALcode. Examples of system machine check conditions include protocolerrors on
the processor-memory-interconnect (PMI) and unrecoverable memory errors.

System machine checks are always maskable and deferred until processor IPL drops
below IPL 31.

2. Processor Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected an
successfully corrected by hardware or PALcode. Examples of processor mac
check conditions include processor internal cache errors, translation buffer p
errors, or read access to a nonexistent local I/O space location (NXM).

Processor machine checks may be nonmaskable or maskable. If nonmaskable, th
initiated immediately, even if the processor IPL is 31. If maskable, they are deferred
until processor IPL drops below IPL 31.

3. System Correctable Machine Check (IPL 20)

These machine checks are generated by error conditions that are det
asynchronously to processor execution and are successfully corrected by hardware or
PALcode. Examples of system correctable machine check conditions include sing
errors within the memory subsystem.

System correctable machine checks are always maskable and deferred until procssor
IPL drops below IPL 20.

4. Processor Correctable Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
successfully corrected by hardware or PALcode. Examples of processor correcta
machine check conditions include corrected processor internal cache errors an
corrected translation buffer table errors.

Processor correctable machine checks may be nonmaskable or maskab
nonmaskable, they are initiated immediately, even if the processor IPL is 31
maskable, they are deferreduntil processor IPL drops below IPL 31.

Machine checks are initiated in kernel mode, on the kernel stack, and cannot be disabled.

Correctable machine checks permit the pattern and frequency of certain errors to be cap
The delivery of these machine checks to system software can be disabled by settin
MCES<4:3>, as described in Section 13.3.9. Note that setting IPR MCES<4:3> does no
able the generation of the machine check or the correction of the error, but rather suppr
the reporting of that correction to system software.
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sued
f the

ions
condi-

at

istent
INA
efore

e pro-
uld be

rame
re has

been
n can
and/or

retry
erates

ot

um-
tem
chine

er
equent
ode is

the

is-
The PC in the machine check stack frame is that of the next instruction that would have is
if the machine check condition had not occurred. This is not necessarily the address o
instruction immediately following the one encountering the error, and intervening instruct
may have changed operands or other state used by the instruction encountering the error
tion. A CALL_PAL REI instruction to this PC will simply continue execution from the point
which the machine check was taken.

Note:

On machine checks, a meaningful PC is delivered on a best-effort basis. The machine state,
processor registers, memory, and I/O devices may be indeterminate.

Machine checks may be deliberately generated by software, such as by probing nonex
memory during memory sizing or searching for local I/O devices. In such a case, the DRA
PALcode instruction can be called to force any outstanding machine checks to be taken b
continuing.

14.5.1 Software Response

The reaction of system software to machine checks is specific to the characteristics of th
cessor, platform, and system software. System software must determine if operation sho
discontinued on an implementation-specific basis.

To assist system software, PALcode provides a retry flag in the machine check logout f
(see Figure 14–5). If the retry flag is set, the state of the processor and platform hardwa
not been compromised; system software operation should be able to continue.

If the retry flag is clear, the state of the processor is either unknown or is known to have
updated during partial execution of one or more instructions. System software operatio
continue only after system software determines that the hardware state change permits
takes corrective action.

PALcode should take appropriate implementation-specific actions prior to setting the
flag. PALcode should also attempt to ensure that each encountered error condition gen
only one machine check.

Implementation Note:

An important example of using the retry flag is read NXM. Also, a read NXM should n
generate both a Processor Machine Check and a System Machine Check.

PALcode sets an internal Machine-Check-In-Progress flag in the Machine Check Error S
mary (MCES) register prior to initiating a system or processor machine check. Sys
software must clear that flag to dismiss the machine check. If a second uncorrectable ma
check hardware error condition is detected while the flag is set, or if PALcode cannot deliv
the machine check, PALcode forces the processor to enter console I/O mode, and subs
actions, such as processor restart, are taken by the console. The REASON FOR HALT c
"doubleerror abort encountered." See Sections 26.1.3 and 27.5.

Similarly, PALcode sets an internal correctable Machine-Check-In-Progress flag in
Machine Check Error Summary (MCES) register prior to initiating a system-correctable error
interrupt or processor-correctable machine check. System software must clear that flag to d
14–22 OpenVMS Software (II–A)
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miss the condition and permit the reuse of the logout area. If a second correctable har
error condition is detected while the flag is set, the error is corrected, but not reported. P
code does not overwrite the logout area and the processor remains in program I/O mode.

14.5.2 Logout Areas

When a hardware error condition is encountered, PALcode optionally builds a logout fr
prior to passing control to the machine check service routine. The logout frame is show
Figure 14–5 and described in Table 14–5. The logout frame is built in the logout area loc
by the processor’s per-CPU slot in the HWRPB (see Section 26.1).

Figure 14–5: Corrected Error and Machine Check Logout Frame

Table 14–5 Corrected Error and Machine Check Logout Frame Fields

Offset Description

FRAME FRAME SIZE — Size in bytes of the logout frame, including the FRAME SIZ
longword.

+04 FRAME FLAGS — Informational flags.

+08 CPU OFFSET — Offset in bytes from the base of the logout frame to the CPU-s
cific information. If CPU OFFSET is equal to 16, the frame contains no PALcod
specific information. If CPU OFFSET is equal to SYS OFFSET, the frame conta
no CPU-specific information.

+12 SYS OFFSET — Offset in bytes from the base of the logoutframe to the system-
specific information. If SYS OFFSET is equal to FRAME SIZE, the frame contai
no system-specific information.

:FRAME

:+8

PALcode-Specific Information

CPU-Specific Information

System-Specific Information

Frame SizeR S

:+16

:+CPU Offset

:+SYS Offset

:+FRAME_SI

SBZ

CPU OffsetSystem Offset

63 62 061 32 31

Bit Description

31 RETRY FLAG — Indicates whether execution can be resumed after dismissin
this machine check. Set on Corrected Error interrupts; may be set on machin
checks.

30 SECOND ERROR FLAG — Indicates that a second correctable error wa
encountered. Set on Corrected Error interrupts when a correctable error wa
encountered while the relevant correctable error bit (PCE or SCE) is set in th
MCES register. Clear on machine checks.

29–0 SBZ.
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The logout frame is optional; the service routine uses R4 to locate the frame, if any. U
entry to the service routine, R4 contains the byte offset of the logout frame from the base o
logout area. If no frame wasbuilt, R4 contains –1.

14.6 System Control Block

The System Control Block (SCB) specifies the entry points for exception, interrupt, and
machine check service routines. The block is from 8K to 32K bytes long, must be p
aligned, and must be physically contiguous. The PFN is specified by the value of the Sy
Control Block Base (SCBB) internal register.

The SCB, shown in Figure 14–6, consists of from 512 to 2048 entries, each 16 bytes long
first eight bytes of an entry, the vector, specify the virtual address of the service routine as
ated with that entry. The second eight bytes, the parameter, are an arbitrary quadword va
be passed to the service routine.

Table 14–6 System Control Block Summary

The SCB entries are grouped as follows:

• Faults

• Arithmetic traps

• Asynchronous system traps

• Data alignment trap

• Other synchronous traps

• Processor software interrupts

• Processor hardware interrupts and machine checks

+16 PALCODE INFORMATION — PALcode-specific logout information.

+CPU OFFSET CPU INFORMATION — CPU-specific logout information.

+SYS OFFSET SYS INFORMATION — System platform-specific logout information.

Table 14–5 Corrected Error and Machine Check Logout Frame Fields (Continued)

Offset Description

000-0F0

200-230

240-270

280-3F0

400-4F0

Faults

Arithmetic Traps

Asynchronous System Traps

Data Alignment Traps

Other Synchronous Traps

63 0

500-5F0Software Interrupts

Unused

I/O Hardware Interrupts

600-6F0

700-7F0

800-7FF0

Processor Hardware Interrupts and Machine Checks
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The first 512 entries (offsets 0000 through 80016) contain all architecturally defined and an
statically allocated entries. All remaining SCB entries, if any, are used only for those
device interrupt vectors that are assigned dynamically by system software. It is the respon
ity of that software to ensure the consistency of the assigned vector and the SCB entry.

14.6.1 SCB Entries for Faults

The exception handler for a fault executes with the IPL unchanged, in kernel mode, on the
nel stack. Table 14–7 lists the SCB entries for faults.

14.6.2 SCB Entries for Arithmetic Traps

The exception handler for an arithmetic trap executes with the IPL unchanged, in kernel m
on the kernel stack. Table 14–8 lists the SCB entries for arithmetic traps.

Table 14–7: SCB Entries for Faults

Byte Offset 16 Entry Name

000 Unused

010 Floating Disabled fault

020–070 Unused

080 Access Control Violation fault

090 Translation Not Valid fault

0A0 Fault on Read fault

0B0 Fault on Write fault

0C0 Fault on Execute fault

0A0–0F0 Unused

Table 14–8: SCB Entries for Arithmetic Traps

Byte Offset 16 Entry Name

200 Arithmetic Trap

210–230 Unused
Exceptions, Interrupts, and Machine Checks (II–A)14–25
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14.6.3 SCB Entries for Asynchronous System Traps (ASTs)

The interrupt handler for an asynchronous system trap executes at IPL 2, in kernel mod
the kernel stack. Table 14–9 lists the SCB entries for asynchronous system traps.

14.6.4 SCB Entries for Data Alignment Traps

The exception handler for a data alignment trap executes with the IPL unchanged in k
mode, on the kernel stack. Table 14–10 lists the SCB entries for data alignment traps.

14.6.5 SCB Entries for Other Synchronous Traps

The exception handler for a synchronous trap, other than those described above, execut
the IPL unchanged, in the mode and on the stack indicated below. "MostPriv" indicates th
handler executes in either the original mode or the new mode, whichever is the most p
leged. Table 14–11 lists the SCB entries for other synchronous traps.

Table 14–9: SCB Entries for Asynchronous System Traps

Byte Offset 16 Entry Name

240 Kernel Mode AST

250 Executive Mode AST

260 Supervisor Mode AST

270 User Mode AST

Table 14–10: SCB Entries for Data Alignment Trap

Byte Offset 16 Entry Name

280 Unaligned_Access

290-3F0 Unused

Table 14–11: SCB Entries for Other Synchronous Traps

Byte Offset 16 Entry Name Mode

400 Breakpoint Trap Kernel

410 Bugcheck Trap Kernel

420 Illegal Instruction Trap Kernel

430 Illegal Operand Trap Kernel

440 Generate Software Trap Kernel

450 Unused

460 Unused

470 Unused

480 Change Mode to Kernel Kernel

490 Change Mode to Executive MostPriv
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14.6.6 SCB Entries for Processor Software Interrupts

The exception handler for a processor software interrupt executes at the target IPL, in k
mode, on the kernel stack. Table 14–12 lists the SCB entries for processor software interrupts.

14.6.7 SCB Entries for Processor Hardware Interrupts and Machine Checks

The interrupt handler for a processor hardware interrupt executes at the target IPL, in k
mode, on the kernel stack.

4A0 Change Mode to Supervisor MostPriv

4B0 Change Mode to User Current

4C0–4F0 Reserved for Compaq

Table 14–12: SCB Entries for Processor Software Interrupts

Byte Offset 16 Entry Name Target IPL 10

500 Unused

510 Software interrupt level 1 1

520 Software interrupt level 2 2

530 Software interrupt level 3 3

540 Software interrupt level 4 4

550 Software interrupt level 5 5

560 Software interrupt level 6 6

570 Software interrupt level 7 7

580 Software interrupt level 8 8

590 Software interrupt level 9 9

5A0 Software interrupt level 10 10

5B0 Software interrupt level 11 11

5C0 Software interrupt level 12 12

5D0 Software interrupt level 13 13

5E0 Software interrupt level 14 14

5F0 Software interrupt level 15 15

Table 14–11: SCB Entries for Other Synchronous Traps (Continued)

Byte Offset 16 Entry Name Mode
Exceptions, Interrupts, and Machine Checks (II–A)14–27
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The handler for machine checks executes in kernel mode, on the kernel stack. The hand
system-correctable machine checks executes at IPL 20; the handler for all other ma
checks executes at IPL 31. Table 14–13 lists the SCB entries for processor hardware inte
and machine checks.

Processor-specific SCB entries include those used by console devices (if any) or other p
erals dedicated to system support functions.

14.6.8 SCB Entries for I/O Device Interrupts

The interrupt handler for an I/O device interrupt executes at the target IPL, in kernel mod
the kernel stack. SCB entries for offsets of 80016 through 7FF016 are reserved for I/O device

interrupts.

14.7 PALcode Support

14.7.1 Stack Writeability

In response to various exceptions, interrupts, and machine checks, PALcode pushes in
tion on the kernel stack. PALcode may write this information without first probing to ens
that all such writes to the kernel stack will succeed. If a memory management exception o
while pushing information, PALcode forces the processor to enter console I/O mode, and
sequent actions, such as processor restart, are taken by the console. The REASON FOR
code is "processor halted due to kernel-stack-not-valid." See Sections 26.1.3 and 27.5.

14.7.2 Stack Residency

The user, supervisor, and executive stacks for the current process do not need to be re
Software running in kernel mode can bring in or allocate stack pages as TNV faults oc
However, since this activity is taking place in kernel mode, the kernel stack must be f
resident.

Table 14–13 SCB Entries for Processor Hardware Interrupts and Machine Checks

Byte Offset 16 Entry Name Target IPL 10

600 Interval clock interrupt 22

610 Interprocessor interrupt 22

620 System correctable machine check 20

630 Processor correctable machine check 31

640 Powerfail interrupt 30

650 Performance monitor 29

660 System machine check 31

670 Processor machine check 31

680–6E0 Reserved — processor specific

6F0 Passive release 20-23
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When the faults TNV, ACV, FOR, and FOW occur on kernel mode references to the ke
stack, they are considered serious system failures from which recovery is not possible.
of those faults occur, PALcode forces the processor to enter console I/O mode, and subs
actions, such as processor restart, are taken by the console. The REASON FOR HALT c
"processor halted due to kernel-stack-not-valid." See Sections 26.1.3 and 27.5.

14.7.3 Stack Alignment

Stacks may have arbitrary byte alignment, but performance may suffer if at least octa
alignment is not maintained by software.

PALcode creates stack frames in response to exceptions and interrupts. Before doing s
target stack is aligned to a 64-byte boundary by setting the six low bits of the target S
0000002. The previous value of these bits is stored in the SP_ALIGN field of the saved P

memory, for use by a CALL_PAL REI instruction.

Software-constructed stack frames must be 64-byte aligned and have SP_ALIGN proper
otherwise, a CALL_PAL REI instruction will take an illegal operand trap.

14.7.4 Initiate Exception or Interrupt or Machine Check

Exceptions, interrupts, and machine checks are initiated by PALcode with interrupts disa
When an exception, interrupt, or machine check is initiated, the associated SCB vector is
to determine the address of the service routine. PALcode then attempts to push the PC, P
R2..R7 onto the target stack. When an interrupt (software or hardware but not AST) is
ated, PS<IP> is set to 1 to indicate an interrupt is in progress. Additional parameters m
passed in R4 and R5 on exceptions and machine checks.

During the attempt to push this information, the exceptions (faults) TNV, ACV, and FOW
occur:

• If any of those faults occur when the target stack is user, supervisor, or executive,
the fault is taken on the kernel stack.

• If any of those faults occur when the target stack is the kernel stack, PALcode forces the
processor to enter console I/O mode, and subsequent actions, such as processor
are taken by the console. The REASON FOR HALT code is "processor halted du
kernel-stack-not-valid." See Sections 26.1.3 and 27.5.

14.7.5 Initiate Exception or Interrupt or Machine Check Model

check_for_exception_or_interrupt_or_mcheck:
IF NOT {ready_to_initiate_exception OR

ready_to_initiate_interrupt OR
ready_to_initiate_mcheck} THEN

BEGIN
{fetch next instruction}
{decode and execute instruction}

END
ELSE
Exceptions, Interrupts, and Machine Checks (II–A)14–29



BEGIN
{wait for instructions in progress to complete}

! clear interrupt pending
tmp ← 0
IF {exception pending} THEN

BEGIN
{back up implementation specific state if necessary,

this includes the PC if synchronous trap pending}
new_ipl ← PS<IPL>
new_mode ← Kernel

END

ELSE IF {unmaskable mcheck pending} THEN
BEGIN

{back up implementation specific state if necessary}
{attempt correction if appropriate}
IF {uncorrectable AND MCES<0> = 1} THEN

{enter console}
ELSE IF {uncorrectable} THEN

new_mode ← Kernel
new_ipl ← 31

! set mcheck error flag
MCES<0>← 1

ELSE IF {reporting enabled} THEN
new_mode ← Kernel
new_ipl ← 31
MCES<2>← 1

END
END

ELSE IF {data alignment trap} THEN
new_mode ← Kernel

ELSE IF {synchronous trap} THEN
CASE {opcode} OF

{back up implementation specific state if necessary}
CHME: new_mode ← min(PS<CM>,Executive)
CHMS: new_mode ← min(PS<CM>,Supervisor)
CHMU: new_mode← min(PS<CM>,User)
otherwise: new_mode ← Kernel

ENDCASE

ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN
BEGIN

{back up implementation specific state if necessary}
IF {MCES<0> = 1} THEN

{enter console}
ELSE

new_mode ← Kernel
new_ipl ← 31
MCES<0>← 1 ! set mcheck error flag

END
END
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ELSE IF {interrupt pending} THEN
new_ipl ← {interrupt source IPL}
tmp ← 1 ! set interrupt pending
new_mode ← Kernel

ELSE IF {maskable correctable mcheck pending AND
reporting enabled} THEN

new_ipl ← 20
MCES<1>← 1
new_mode ← Kernel

END

IPR_SP[PS<CM>] ← SP
new_sp ← IPR_SP[new_mode]
save_align ← new_sp<5:0>
new_sp<5:0> ← 0

PUSH(PS OR LEFT_SHIFT(save_align,56), old_pc, new_mode)
PUSH(R7, R6, new_mode)
PUSH(R5, R4, new_mode)
PUSH(R3, R2, new_mode)

PS<SW>← 0
PS<CM>← new_mode
PS<IP> ← tmp
PS<IPL> ← new_ipl
SP ← new_sp

IF {memory management fault} THEN
R4 ← VA
R5 ← MMF

END

IF {data alignment trap} THEN
R4 ← VA
R5 ← { 0 if read/load 1 if write/store }

END

IF {mcheck or correctable error interrupt} THEN
IF {logout frame built}

R4 ← logout_area_offset
ELSE

R4 ← -1
END

END

IF {arithmetic Trap} THEN
R4 ← register write mask
R5 ← exception summary

END

IF {software interrupt} THEN
SISR ← SISR AND NOT{ 2**{ PRIORITY_ENCODE(SISR) } }

END
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vector ← {exception or interrupt or mcheck SCB offset}

R2 ← (SCBB + vector)
R3 ← (SCBB + vector + 8)
PC ← R2

END

GOTO check_for_exception_or_interrupt_or_mcheck

PROCEDURE PUSH(first, last, mode)
BEGIN

IF ACCESS(new_sp - 16, mode) THEN
BEGIN

(new_sp - 8) ← first
(new_sp - 16) ← last
new_sp ← new_sp - 16
RETURN

END
ELSE

{initiate ACV, TNV, or FOW fault, or
Kernel Stack Not Valid restart sequence}

END
END

14.7.6 PALcode Interrupt Arbitration

The following sections describe the logic for the interrupt conditions produced by the sp
fied operation.

14.7.6.1 Writing the AST Summary Register

Writing the ASTSR internal processor register (Section 13.3) requests an AST for any o
four processor modes. This operation may request an AST on a formerly inactive leve
thus cause an AST interrupt. The logic required to check for this condition is:

ASTSR<3:0> ← {ASTSR<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

14.7.6.2 Writing the AST Enable Register

Writing the ASTEN internal processor register (Section 13.3) enables ASTs for any of the
processor modes. This operation may enable an AST on a formerly inactive level and
cause an AST interrupt. The logic required to check for this condition is:

ASTEN<3:0> ← {ASTEN<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

14.7.6.3 Writing the IPL Register

Writing the IPL internal processor register (Section 13.3) changes the current IPL. This o
tion may enable an AST or software interrupt on a formerly inactive level and thus caus
AST or software interrupt. The logic required to check for this condition is:
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PS<IPL> ← R16<4:0>

! check for software interrupt at level 2..15

IF {RIGHT_SHIFT({SISR AND FFFC 16 }, PS<IPL> + 1) NE 0} THEN

{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

IF ASTEN<0> AND ASTSR<0> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}

14.7.6.4 Writing the Software Interrupt Request Register

Writing the SIRR internal processor register (Section 13.3) requests a software interrupt a
of the 15 software interrupt levels. This operation may cause a formerly inactive level to c
a software interrupt. The logic required to check for this condition is:

SISR<level> ← 1
IF level GT PS<IPL> THEN

{initiate software interrupt at IPL level}

14.7.6.4.1 Return from Exception or Interrupt

The CALL_PAL REI instruction (Section 10.1.11) writes both the Current Mode and I
fields of the PS (see Section 14.2). This may enable a formerly disabled AST or software
rupt to occur. The logic required to check for this condition is:

PS ← New PS

! check for software interrupt at level 2..15

IF {RIGHT_SHIFT({SISR AND FFFC 16 }, PS<IPL> + 1) NE 0} THEN

{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

tmp ← NOT LEFT_SHIFT(1110(bin), PS<CM>)
IF {{tmp AND ASTEN AND ASTSR}<3:0> NE 0} AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}
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14.7.6.5 Swap AST Enable

Swapping the AST enable state for the Current Mode results in writing the ASTEN inte
processor register (see Section 13.3). This operation may enable a formerly disabled A
cause an AST interrupt. The logic required to check for this condition is:

R0 ← ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>>← R16<0>

IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

14.7.7 Processor State Transition Table

Table 14–14 shows the operations that can produce a state transition and the specific tra
produced. For example, if a processor’s initial state is supervisor mode, it is not possib
the processor to transition to a program halt condition. A processor can only transition to
gram halt from kernel mode.

In Table 14–14:

• "REI" increases mode or lowers IPL.

• "MTPR" changes IPL or is a CALL_PAL MTPR_ASTSR or CALL_PAL
MTPR_ASTEN instruction that causes an interrupt request.

• "Exc" is a state change caused by an exception.

• "Int" is a state change caused by an interrupt.

• "Mcheck" is a state change caused by a machine check
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Table 14–14 Processor State Transitions

Initial State: Final State:

User Super. Exec. Kernel Program Halt

User CHMU

REI

CHMS CHME CHMK

Exc

Int

Mcheck
SWASTEN

Not Possible

Supervisor REI CHMS
REI

CHME CHMK

Exc

Int

Mcheck
SWASTEN

Not Possible

Executive REI REI CHME
REI

CHMK

Exc

Int

Mcheck
SWASTEN

Not Possible

Kernel REI REI REI CHMK

REI

Exc

Int

Mcheck

MTPR
SWASTEN

HALT
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Tru64 UNIX Software (II–B)

The following chapters describe how the Tru64 UNIX operating system relates to the A
architecture:

• Chapter 15, Introduction to Tru64 UNIX (II–B)

• Chapter 16, PALcode Instruction Descriptions(II–B)

• Chapter 17, Memory Management (II–B)

• Chapter 18, Process Structure (II–B)

• Chapter 19, Exceptions and Interrupts(II–B)
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Chapter 15

Introduction to Tru64 UNIX (II–B)

The goals of this design are to provide a hardware interface between the hardwar
Tru64 UNIX that is implementation independent. The interface needs to provide the req
abstractions to minimize the impact of different hardware implementations on the oper
system. The interface also needs to be low in overhead to support high-performance sy
Finally, the interface needs to support only thefeatures used by Tru64 UNIX.

The register usage in this interface is based on the current calling standard used by
UNIX. If the calling standard changes, this interface will be changed accordingly. The cur
calling standard register usage is shown in Table 15–1.

Table 15–1: Tru64 UNIX Register Usage

Register
Name

Software
Name Use and Linkage

r0 v0 Used for expression evaluations and to hold integer fun
tion results.

r1…r8 t0…t7 Temporary registers; not preserved across procedu
calls.

r9…r14 s0…s5 Saved registers; their values must be preserved acr
procedure calls.

r15 FP or s6 Frame pointer or a saved register.

r16…r21 a0…a5 Argument registers; used to pass the first six integer ty
arguments; their values are not preserved across pro
dure calls.

r22…r25 t8…t11 Temporary registers; not preserved across procedu
calls.

r26 ra Contains the return address; used for expression eval
tion.

r27 pv or t12 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across p
cedure calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r31 zero Always has the value 0.
Introduction to Tru64 UNIX (II–B)15–1



ectly
ode

he rest

ction

pace

ssor
be a
em-

is an
fault
AL-

ster
gister

rnal
ment
use
15.1 Programming Model

The programming model of the machine is the combination of the state visible either dir
via instructions, or indirectly via actions of the machine. Tables 15–2 and 15–3 define c
flow constants, state variables, terms, subroutines, and code flow terms that are used in t
of the document.

15.1.1 Code Flow Constants and Terms

Tru64 UNIX uses the following constants and terms

15.1.2 Machine State Terms

Table 15–2 Code Flow Constants and Terms

Term Meaning and Value

IPL = 2:0 The range 2:0 used in the PS to access the IPL field of the PS (PS <IPL>).

maxCPU The maximum number of processors in a given system.

mode = 3 Used as a subscript in PS to select current mode (PS <mode>).

opDec An attempt was made to execute a reserved instruction or execute a privileged instru
in user mode.

pageSize Size of a page in an implementation in bytes.

vaSize Size of virtual address in bits in a given implementation.

Table 15–3 Machine State Terms

Term Meaning

ASN An implementation-dependent size register to hold the current address s
number (ASN). The size and existence of ASN is an implementation choice.

entArith <63:0> The arithmetic trap entry address register. The entArith is an internal proce
register that holds the dispatch address on an arithmetic trap. There can
hardware register for the entArith or the PALcode can use private scratch m
ory.

entIF <63:0> The instruction fault or synchronous trap entry address register. The entIF
internal processor register that holds the dispatch address on an instruction
or synchronous trap. There can be a hardware register for the entIF or the P
code can use private scratch memory.

entInt <63:0> The interrupt entry address register. The entInt is an internal processor regi
that holds the dispatch address on an interrupt. There can be a hardware re
for the entInt or the PALcode can use private scratch memory.

entMM <63:0> The memory-management fault entry address register. The entMM is an inte
processor register that holds the dispatch address on a memory-manage
fault. There can be a hardware register for the entMM or the PALcode can
private scratch memory.
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entSys <63:0> The system call entry address register. The entSys is an internal processor
ter that holds the dispatch address on an callsys instruction. There can be a
ware register for the entSys or the PALcode can use private scratch memory

entUna <63:0> The unaligned fault entry address register. The entUna is an internal proc
register that holds the dispatch address on an unaligned fault. There can
hardware register for the entUna or the PALcode can use private scratch m
ory.

FEN <0> The floating-point enable register. The FEN is a one-bit register, located at b
of PCB[40], that is used to enable or disable floating-point instructions. If
floating-point instruction is executed with FEN equal to zero, a FEN fault is in
tiated.

instruction <31:0> The current instruction being executed. This is a fake register used in the f
to CASE on differentinstructions.

intr_flag A per-processor state bit. The intr_flag bit is cleared if that processor execute
rti or retsys instruction.

KGP <63:0> The kernel global pointer. The KGP is an internal processor register that h
the kernel global pointer that is loaded into R15, the GP, when an exceptio
initiated. There can be a hardware register for the KGP or the PALcode can
private scratch memory.

KSP <63:0> The kernel stack pointer. The KSP is an internal processor register that hold
kernel stack pointer while in user mode. There can be a hardware register for
KSP or the storage space in the PCB can be used.

lock_flag <0> A one-bit register that is used by the load locked and store conditional inst
tions.

MCES <2:0> The machine check error summary register. The MCES is a 3-bit register
contains controls for machine check and system-correctableerror handling.

PC <63:0> The program counter. The PC is a pointer to the next instruction in the flo
The low-order two bits of the PC always read as zero and writes to them
ignored.

PCB The process control block. The PCB holds the state of the process.

PCBB <63:0> The process control block base address register. The PCBB holds the addr
the PCB for the current process.

PCC The PCC register consists of two 32-bit fields. The low-order 32 bits (PC
<31:0>) are an unsigned, wrapping counter, PCC_CNT. The high-order 32
(PCC <63:32>) are an offset, PCC_OFF. PCC_OFF is a value that, when ad
to PCC_CNT, gives the total PCC register count for this process, modulo 2**3

Table 15–3 Machine State Terms (Continued)

Term Meaning
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PME <62> The performance monitoring enable bit. The PME is a one-bit register, locate
bit 62 of PCB[40], that alerts any performance monitoring software/hardware
the system that this process is to have its performance monitored. The im
mentation mechanism for this bit is not specified; it is implementation depend
(IMP).

PS <3:0> The processor status. The PS is a four-bit register that stores the current mo
bit <3> and stores the three-bit IPL in bits <2:0>. The mode is 0 for kernel an
for user.

PTBR <63:0> The page table base register. The PTBR contains the physical page frame
ber (PFN) of the highest level page table.

SP <63:0> Another name for R30. The SP points to the top of the current stack.

PALcode only accesses the kernel stack. The kernel stack must be quadw
aligned whenever PALcode reads or writes it. If the PALcode accesses the
nel stack and the stack is not aligned, a kernel-stack-not-valid halt is initiat
Although PALcode does not access the user stack, that stack should also
least quadword aligned for best performance.

SYSPTBR The system page table physical base register.

Contains the page frame number (pfn) of the highest-level page table to be u
for system-wide addresses equal to or above the value of the virtual add
boundary register.

Not saved in a context switch.

sysvalue <63:0> The system value register. The sysvalue holds the per-processor unique
There can be a hardware register for the sysvalue register or the storage spa
the PALcode scratch memory can be used.

The sysvalue register can only be accessed by kernel mode code and there i
sysvalue register per CPU.

unique <63:0> The process unique value register. The unique register holds the per-pr
unique value. There can be a hardware register for the unique register or the
age space in the PCB can be used.

The unique register can be accessed by both user and kernel code and th
one unique register per process.

USP <63:0> The user stack pointer. The USP is an internal processor register that hold
user stack pointer while in kernel mode. There can be a hardware register for
USP or the storage space in the PCB can be used.

Table 15–3 Machine State Terms (Continued)

Term Meaning
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VIRBND The virtual address boundary register. Used to determine which page table p
ical base register is used. At processor initialization, VIRBND is initialized to
value of -1, which results in all translations using PTBR.

VPTPTR <63:0> The virtual page table pointer. The VPTPTR holds the virtual address of the
level page table.

whami <63:0> The processor number of the current processor. This number is in the r
0…maxCPU–1.

Table 15–3 Machine State Terms (Continued)

Term Meaning
Introduction to Tru64 UNIX (II–B)15–5
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Chapter 16

PALcode Instruction Descriptions (II–B)

16.1 Unprivileged PALcode Instructions

Table 16–1 lists the Tru64 UNIX PALcode unprivileged instruction mnemonics, names,
the environment from which they can be called.

Table 16–1: Unprivileged PALcode Instructions

Mnemonic Name Calling Environment

bpt Breakpoint trap Kernel and user modes

bugchk Bugcheck trap Kernel and user modes

callsys System call User mode

clrfen Clear floating-point enable User mode

gentrap Generate trap Kernel and user modes

imb I-stream memory barrier Kernel and user modes

Described in Section 6.7.3.

rdunique Read unique Kernel and user modes

urti Return from user mode trap User mode

wrunique Write unique Kernel and user modes
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16.1.1 Breakpoint Trap

Format:

Operation:
temp ← PS
if (ps<mode> NE 0) then

USP ← SP ! Mode is user so switch to kernel
SP ← KSP
PS ← 0

endif
SP ← SP - {6 * 8}
(SP+00) ← temp
(SP+08) ← PC
(SP+16) ← GP
(SP+24) ← a0
(SP+32) ← a1
(SP+40) ← a2
a0 ← 0
GP ← KGP
PC ← entIF

Exceptions:

Instruction Mnemonics:

Description:

The breakpoint trap (bpt) instruction switches mode to kernel, builds a stackframe on the
nel stack, loads the GP with the KGP, loads a value of 0 into a0, and dispatches t
breakpoint code pointed to by the entIF register. The registers a1…a2 are UNPREDICT-
ABLE on entry to the trap handler. The saved PC at (SP+08) is the address of the instru
following the trap instruction that caused the trap.

bpt ! PALcode format

Kernel stack not valid

bpt Breakpoint trap
16–2 Tru64 UNIX Software (II–B)
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16.1.2 Bugcheck Trap

Format:

Operation:
temp ← PS
if (PS<mode> NE 0) then

USP ← SP ! Mode is user so switch to kernel
SP ← KSP
PS ← 0

endif
SP ← SP - {6 * 8}
(SP+00) ← temp
(SP+08) ← PC
(SP+16) ← GP
(SP+24) ← a0
(SP+32) ← a1
(SP+40) ← a2
a0 ← 1
GP ← KGP
PC ← entIF

Exceptions:

Instruction Mnemonics:

Description:

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe o
kernel stack, loads the GP with the KGP, loads a value of 1 into a0, and dispatches t
breakpoint code pointed to by the entIF register. The registers a1…a2 are UNPREDICT-
ABLE on entry to the trap handler. The saved PC at (SP+08) is the address of the instru
following the trap instruction that caused the trap.

bugchk ! PALcode format

Kernel stack not valid

bugchk Bugcheck trap
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from

GP is
y the
16.1.3 System Call

Format:

Operation:
if (PS<mode> EQ 0) then

machineCheck
endif
USP ← SP
SP ← KSP
PS ← 0 ! Mode=kernel
SP ← SP - {6*8}
(SP+00) ← 8 ! PS of mode=user, IPL=0
(SP+08) ← PC
(SP+08) ← GP
GP ← KGP
PC ← entSys

Exceptions:

Instruction Mnemonics:

Description:

The system call (callsys) instruction is supported only from user mode. (Issuing a callsys
kernel mode causes a machine check exception.)

The callsys instruction switches mode to kernel and builds a callsys stack frame. The
loaded with the KGP. The exception then dispatches to the system call code pointed to b
entSys register. On entry to the callsys code, the scratch registers t0 and t8…t11 are
UNPREDICTABLE.

callsys ! PALcode format

Machine check – invalid kernel mode callsys

Kernel stack not valid

callsys System call
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16.1.4 Clear Floating-Point Enable

Format:

Operation:
FEN ←  0
(PCBB+40)<0> ←  0

Exceptions:

Instruction Mnemonics:

Description:

The clear floating-point enable (clrfen) instruction writes a zero to the floating-point ena
register and to the PCB at offset (PCBB+40)<0>. On return from the clrfen instruction,
scratch registers t0 and t8…t11 are UNPREDICTABLE.

clrfen ! PALcode format

None

clrfen Clear floating-point enable
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16.1.5 Generate Trap

Format:

Operation:
temp ← PS
if (PS<mode> NE 0) then

USP ← SP ! Mode is user so switch to kernel
SP ← KSP
PS ← 0

endif
SP ← SP - {6 * 8}
(SP+00) ← temp
(SP+08) ← PC
(SP+16) ← GP
(SP+24) ← a0
(SP+32) ← a1
(SP+40) ← a2
a0 ← 2
GP ← KGP
PC ← entIF

Exceptions:

Instruction Mnemonics:

Description:

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe o
kernel stack, loads the GP with the KGP, loads a value of 2 into a0, and dispatches t
breakpoint code pointed to by the entIF register. The registers a1…a2 are UNPREDICT-
ABLE on entry to the trap handler. The saved PC at (SP+08) is the address of the instru
following the trap instruction that caused the trap.

gentrap ! PALcode format

Kernel stack not valid

gentrap Generate trap
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16.1.6 Read Unique Value

Format:

Operation:
v0 ← unique

Exceptions:

Instruction Mnemonics:

Description:

The read unique value (rdunique) instruction returns the process unique value in v0. The
unique value (wrunique) instruction, described in Section 16.1.8, sets the process unique
register.

rdunique ! PALcode format

None

rdunique Read unique value
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16.1.7 Return from User Mode Trap

Format:

Operation:
if (PS<mode> EQ 0) then

{machineCheck}
endif
if (SP<5:0> NE 0)

{Initiate illegal operand exception}
endif
tempps ← (SP+16)

if (( tempps<mode> E Q 0 ) OR ( tem pps<IPL> NE 0 )) then
{Initiate illegal operand exception}

endif

at ← (SP+0)
tempsp ← (SP+8)
temppc ← (SP+24)
GP ← (SP+32)
a0 ← (SP+40)
a1 ← (SP+48)
a2 ← (SP+56)

intr_flag = 0 ! Clear the interrupt flag
lock_flag = 0 ! Clear the load lock flag

SP ← tempsp
PC ← temppc

Exceptions:

Instruction Mnemonics:

Description:

The return from user trap (urti) instruction pops registers (a0…a2, and GP), the new user at
SP, PC, and the PS, from the user stack.

urti ! PALcode format

Machine check - invalid kernel mode urti

Illegal operand
Translation not valid

Access violation
Fault on read

urti Return from user mode trap
16–8 Tru64 UNIX Software (II–B)
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16.1.8 Write Unique Value

Format:

Operation:
unique ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write unique value (wrunique) instruction sets the process unique register to the
passed in a0. The read unique value (rdunique) instruction, described in Section 16.1.6, r
the process unique value.

wrunique ! PALcode format

None

wrunique Write unique value
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16.2 Privileged PALcode Instructions

The Privileged Tru64 UNIX PALcode instructions (Table 16–2) provide an abstracted in
face to control the privileged state of the machine.

Table 16–2: Privileged PALcode Instructions

Mnemonic Name

cflush Cache flush

cserve Console service

draina Drain aborts. Described in Section 6.7.1.

halt Halt the processor. Described in Section 6.7.2.

rdmces Read machine check error summary register

rdps Read processor status

rdusp Read user stack pointer

rdval Read system value

retsys Return from system call

rti Return from trap, fault, or interrupt

swpctx Swap process context

swppal Swap PALcode image

swpipl Swap IPL

tbi TB (translation buffer) invalidate

whami Who am I

wrasn Write ASN

wrent Write system entry address

wrfen Write floating-point enable

wripir Write interprocessor interrupt request

wrkgp Write kernal global pointer

wrmces Write machine check error summary register

wrperfmon Performance monitoring function

wrsysptb Write system page table base

wrusp Write user stack pointer

wrval Write system value

wrvirbnd Write virtual address boundary

wrvptptr Write virtual page table pointer

wtint Wait for interrupt
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16.2.1 Cache Flush

Format:

Operation:
! a0 contains the page frame number (PFN)
! of the page to be flushed

IF PS<mode> EQ 1 THEN
{Initiate opDec fault}

{Flush page out of cache(s)}

Exceptions:

Instruction Mnemonics:

Description:

The cflush instruction may be used to flush an entire physical page specified by the PFN
from any data caches associated with the current processor. All processors must impleme
instruction.

On processors that implement a backup power option that maintains only the contents of
ory if a powerfail occurs, this instruction is used by the powerfail interrupt handler to fo
data written by the handler to the battery backed-up main memory. After a cflush, the first
sequent load (on the same processor) to an arbitrary address in the target page is either
from physical memory or from the data cache of another processor.

In some multiprocessor systems, cflush is not sufficient to ensure that the data are ac
written to memory and not exchanged between processor caches. Additional platform-sp
cooperation between the powerfail interrupt handlers executing on each processor m
required.

On systems that implement other backup power options (including none), cflush may r
without affecting the data cache contents.

To order cflush properly with respect to preceding writes, an MB instruction is needed be
the cflush; to order cflush properly with respect to subsequent reads, an MB instructi
needed after the cflush.

cflush !PALcode format

Opcode reserved to Compaq

cflush Cache flush
PALcode Instruction Descriptions (II–B)16–11



nded
16.2.2 Console Service

Format:

Operation:
! implementation specific

if PS<mode> EQ 1 then
{initiate opDec fault}

else
{implementation-dependent action}

Exceptions:

Instruction Mnemonics:

Description:

This instruction is specific to each PALcode and console implementation and is not inte
for operating system use.

cserve !PALcode format

Opcode reserved to Compaq

cserve Console service
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16.2.3 Read Machine Check Error Summary

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← MCES

Exceptions:

Instruction Mnemonics:

Description:

The read machine check error summary (rdmces) instruction returns the MCES (ma
check error summary) register in v0. On return from the rdmces instruction, registers t0
t8…t11 are UNPREDICTABLE.

rdmces ! PALcode format

Opcode reserved to Compaq

rdmces Read machine check error summary
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16.2.4 Read Processor Status

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← PS

Exceptions:

Instruction Mnemonics:

Description:

The read processor status (rdps) instruction returns the PS in v0. On return from the
instruction, registers t0 and t8…t11 are UNPREDICTABLE.

rdps ! PALcode format

Opcode reserved to Compaq

rdps Read processor status
16–14 Tru64 UNIX Software (II–B)



user
from
16.2.5 Read User Stack Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← USP

Exceptions:

Instruction Mnemonics:

Description:

The read user stack pointer (rdusp) instruction returns the user stack pointer in v0. The
stack pointer is written by the wrusp instruction, described in Section 16.2.22. On return
the rdusp instruction, registers t0 and t8…t11 are UNPREDICTABLE.

rdusp ! PALcode format

Opcode reserved to Compaq

rdusp Read user stack pointer
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16.2.6 Read System Value

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← sysvalue

Exceptions:

Instruction Mnemonics:

Description:

The read system value (rdval) instruction returns the sysvalue in v0, allowing access to a
per-processor value for use by the operating system. On return from the rdval instruction
isters t0 and t8…t11 are UNPREDICTABLE.

rdval !PALcode format

Opcode reserved to Compaq

rdval Read system value
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16.2.7 Return from System Call

Format:

Operation:
if {PS<mode> EQ 1} then

{Initiate opDec fault}
endif
tmp ← (SP+08)
GP ← (SP+16)
KSP ← SP + {6*8}
SP ← USP
intr_flag = 0 ! Clear the interrupt flag
lock_flag = 0 ! Clear the load lock flag
PS ← 8 ! Mode=user
PC ← tmp

Exceptions:

Instruction Mnemonics:

Description:

The return from system call (retsys) instruction pops the return address and the user mod
bal pointer from the kernel stack. It then saves the kernel stack pointer, sets the mode to
sets the IPL to zero, and enters the user mode code at the address popped off the sta
return from the retsys instruction, registers t0 and t8…t11 are UNPREDICTABLE.

retsys ! PALcode format

Opcode reserved to Compaq
Kernel stack not valid (halt)

retsys Return from system call
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16.2.8 Return from Trap, Fault or Interrupt

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
tempps ← (SP+0)
temppc ← (SP+8)
GP ← (SP+16)
a0 ← (SP+24)
a1 ← (SP+32)
a2 ← (SP+40)
SP ← SP + {6 * 8}
if { tempps<3> EQ 1} then

KSP ← SP ! New mode is user
SP ← USP
tempps ← 8

endif
intr_flag = 0 ! Clear the interrupt flag
lock_flag = 0 ! Clear the load lock flag
PS ← tempps<3:0> ! Set new PS
PC ← temppc

Exceptions:

Instruction Mnemonics:

Description:

The return from fault, trap, or interrupt (rti) instruction pops registers (a0…a2, and GP), the
PC, and the PS, from the kernel stack. If the new mode is user, the kernel stack is save
the user stack is restored.

rti ! PALcode format

Opcode reserved to Compaq

Kernel stack not valid (halt)

rti Return from trap, fault, or interrupt
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16.2.9 Swap Process Context

Format:

Operation:
if (PS<mode> EQ 1)

{Initiate opDec fault}
endif
(PCBB) ← SP ! Save current state
(PCBB+8) ← USP
tmp ← PCC
tmp1 ← tmp<31:0> + tmp<63:32>
(PCBB+24)<31:0> ← tmp1<31:0>
v0 ← PCBB ! Return old PCBB
PCBB ← a0 ! Switch PCBB
SP ← (PCBB) ! Restore new state
USP ← (PCBB+8)
oldPTBR ← PTBR
PTBR ← (PCBB+16)
tmp1 ← (PCBB+24)
PCC<63:32> ← {tmp1 - tmp}<31:0>
FEN ← (PCBB+40)
if {process unique register implemented} then

(v0+32) ← unique
unique ← (PCBB+32)

endif
if {ASN implemented}

ASN ← tmp1<63:32>
else

if (oldPTBR NE PTBR)
{Invalidate all TB entries with ASM=0}

endif
endif

Exceptions:

swpctx ! PALcode format

Opcode reserved to Compaq
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Instruction Mnemonics:

Description:

The swap process context (swpctx) instruction saves the current process data in the c
PCB. Then swpctx switches to the PCB passed in a0 and loads the new process conte
old PCBB is returned in v0.

The process context and the PCB are described in Chapter 12.

On return from the swpctx instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

swpctx Swap process context
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16.2.10 Swap IPL

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← PS<IPL>
PS<IPL> ← a0<2:0>

Exceptions:

Instruction Mnemonics:

Description:

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in v0 and
the IPL to the value passed in a0. On return from the swpipl instruction, registers t0, t8…t11,
and a0 are UNPREDICTABLE.

swpipl ! PALcode format

Opcode reserved to Compaq

swpipl Swap IPL
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16.2.11 Swap PALcode Image

Format:

Operation:
! a0 contains the new PALcode identifier
! a1:a5 contain implementation-specific entry parameters
! v0 receives the following status:
! 0 success (PALcode was switched)
! 1 unknown PALcode variant
! 2 known PALcode variant, but PALcode not loaded

if (PS<mode> EQ 1) then
(Initiate opDec fault)

else
if {a0 < 256} then

begin
if {a0 invalid} then

v0 ← 1
{return}

else if {PALcode not loaded} then
v0 ← 2
{return}

else
tmp1 ← {PALcode base}

end
else

tmp1 = a0
{flush instruction cache}
{invalidate all translation buffers}
{perform additional PALcode variant-specific initialization}
{transfer control to PALcode entry at physical address in tmp1}

Exceptions:

Instruction Mnemonics:

swppal !PALcode format

Opcode reserved to Compaq

swppal Swap PALcode image
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Description:

The swap PALcode image (swppal) instruction causes the current (active) PALcode
replaced by the specified new PALcode image. The swppal instruction is intended for us
operating systems only during bootstraps and by consoles during transitions to conso
mode.

The PALcode descriptor contained in a0 is interpreted as either a PALcode variant or the
physical address of the new PALcode image. If a variant, the PALcode image must have
loaded previously. No PALcode loading occurs as a result of this instruction.

After successful PALcode switching, the register contents are determined by the param
passed in a1…a5 or are UNPREDICTABLE. A common parameter is the address of a n
PCB. In this case, the stack pointer register and PTBR are determined by the contents o
PCB; the contents of other registers such as a0…a5 may be UNPREDICTABLE.

See Section 27.3.2 for information on using this instruction.
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16.2.12 TB Invalidate

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
case a0 begin

1: ! tbisi

{Invalidate ITB entry for va=a1 1}
break;

2: ! tbisd

{Invalidate DTB entry for va=a1 1}
break;

3: ! tbis

{Invalidate both ITB and DTB entry for va=a1 1}
break;

-1: ! tbiap
{Invalidate all TB entries with ASM=0}
break;

-2: ! tbia
{Flush all TBs}
break;

otherwise:
break;

endcase

Exceptions:

Instruction Mnemonics:

Description:

The TB invalidate (tbi) instruction removes specified entries from the I and D translation b
ers (TBs) when the mapping changes. The tbi instruction removes specific entry types
on a CASE selection of the value passed in register a0. On return from the tbi instruction
isters t0, t8…t11, a0, and a1 are UNPREDICTABLE. See Section 17.7 for information
translation buffers and Section 17.8 for information on address space numbers (AS
because ASNs can implicitly modify TB operations.

tbi ! PALcode format

1 Operation assumes no behavior modification from ASNs.

Opcode reserved to Compaq

tbi TB (translation buffer) invalidate
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16.2.13 Who Am I

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← whami

Exceptions:

Instruction Mnemonics:

Description:

The who am I (whami) instruction returns the processor number for the current process
v0. The processor number is in the range 0 to the number of processors minus one (0…max-
CPU–1) that can be configured in the system. On return from the whami instruction, regi
t0 and t8…t11 are UNPREDICTABLE.

whami ! PALcode format

Opcode reserved to Compaq

whami Who am I
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16.2.14 Write ASN

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif

ASN <- a0<31:0>
(PCBB+24)<63:32> <- a0<31:0>

Exceptions:

Instruction Mnemonics:

Description:

The write ASN (wrasn) instruction writes a new ASN. It also writes the value for ASN to
PCB at offset (PCBB+24)<63:32>. On return from the wrasn instruction, registers t0, t8 ...t1
and a0 are UNPREDICTABLE.

wrasn ! PALcode format

Opcode reserved to Compaq

wrasn Write ASN
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16.2.15 Write System Entry Address

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
case a1 begin

0: ! Write the EntInt:
entInt ← a0
break;

1: ! Write the EntArith:
entArith ← a0
break;

2: ! Write the EntMM:
entMM ← a0
break;

3: ! Write the EntIF:
entIF ← a0
break;

4: ! Write the EntUna:
entUna ← a0
break;

5: ! Write the EntSys:
entSys ← a0
break;

otherwise:
break;

endcase;

Exceptions:

Instruction Mnemonics:

Description:

The write system entry address (wrent) instruction determines the specific system entry
based on a CASE selection of the value passed in register a1. The wrent instruction the
the virtual address of the specified system entry point to the value passed in a0.

For best performance, all the addresses should be kseg addresses. (See Section 17.1 fo
nition of kseg addresses.) On return from the wrent instruction, registers t0, t8…t11, a0, and
a1 are UNPREDICTABLE.

wrent ! PALcode format

Opcode reserved to Compaq

wrent Write system entry address
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16.2.16 Write Floating-Point Enable

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
FEN ← a0<0>
(PCBB+40)<0> ← a0 AND 1

Exceptions:

Instruction Mnemonics:

Description:

The write floating-point enable (wrfen) instruction writes bit zero of the value passed in a
the floating-point enable register. The wrfen instruction also writes the value for FEN to
PCB at offset (PCBB+40)<0>. On return from the wrfen instruction, registers t0, t8…t11, and
a0 are UNPREDICTABLE.

wrfen ! PALcode format

Opcode reserved to Compaq

wrfen Write floating-point enable
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16.2.17 Write Interprocessor Interrupt Request

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
IPIR ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write interprocessor interrupt request (wripir) instruction generates an interproce
interrupt on the processor number passed in register a0. The interrupt request is record
the target processor and is initiated when the proper enabling conditions are presen
return from wripir, registers t0, t8…t11, and a0 are UNPREDICTABLE.

Programming Note:

The interrupt need not be initiated before the next instruction is executed on the reque
processor, even if the requesting processor is also the target processor for the reques

wripir ! PALcode format

Opcode reserved to Compaq

wripir Write interprocessor interrupt request
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16.2.18 Write Kernel Global Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
KGP ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write kernel global pointer (wrkgp) instruction writes the value passed in a0 to the ke
global pointer (KGP) internal register. The KGP is used to load the GP on exceptions
return from the wrkgp instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

wrkgp ! PALcode format

Opcode reserved to Compaq

wrkgp Write kernal global pointer
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16.2.19 Write Machine Check Error Summary

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
if (a0<0> EQ 1) then MCES<0> ← 0
if (a0<1> EQ 1) then MCES<1> ← 0
if (a0<2> EQ 1) then MCES<2> ← 0
MCES<3>← a0<3>
MCES<4>← a0<4>

Exceptions:

Instruction Mnemonics:

Description:

The write machine check error summary (wrmces) instruction clears the machine che
progress bit and clears the processor- or system-correctable error in progress bit in the M
register. The instruction also sets or clears the processor- or system-correctable error rep
enabled bit in the MCES register. On return from the wrmces instruction, registers t0, t8…t11
are UNPREDICTABLE.

wrmces ! PALcode format

Opcode reserved to Compaq

wrmces Write machine check error summary
PALcode Instruction Descriptions (II–B)16–31
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16.2.20 Performance Monitoring Function

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
! a0 contains implementation specific input values
! a1 contains implementation specific output values
! v0 may return implementation specific values
! Operations and actions taken are implementation specific

Exceptions:

Instruction Mnemonics:

Description:

The performance monitoring instruction (wrperfmon) alerts any performance monitoring
ware/hardware in the system to monitor the performance of this process. The wrperfmo
function arguments and actions are platform and chip dependent, and when defined
implementation, are described in Appendix E.

Registers a0 and a1 contain implementation-specific input values. Implementation-specifi
ues may be returned in register v0. On return from the wrperfmon instruction, registers a
t0, and t8…t11 are UNPREDICTABLE.

wrperfmon ! PALcode format

Opcode reserved to Compaq

wrperfmon Performance monitoring
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16.2.21 Write System Page Table Base

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif

SYSPTBR<−   a0

Exceptions:

Instruction Mnemonics:

Description:

The write system page table base (wrsysptb) instruction writes the System Page Table
cal Base (SYSPTBR) register. It contains the page frame number (pfn) of the highest
page table to be used for system-wide addresses equal to or above the value of the V
Address Boundary Register. The System Page Table and Virtual Address Boundary bas
isters are described in Section 17.6.

On return from the wrsysptb instruction, registers t0, t8..t11, and a0 are UNPREDICTABLE

Note that this register is not context switched.

wrsysptb ! PALcode format

Opcode reserved to Compaq

wrsysptb Write system page table base
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16.2.22 Write User Stack Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
USP ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write user stack pointer (wrusp) instruction writes the value passed in a0 to the user
pointer. On return from the wrusp instruction, registers t0, t8… t11, and a0 are
UNPREDICTABLE.

wrusp ! PALcode format

Opcode reserved to Compaq

wrusp Write user stack pointer
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16.2.23 Write System Value

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
sysvalue ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write system value (wrval) instruction writes the value passed in a0 to a 64-bit sy
value register. The combination of wrval with the rdval instruction, described in Sec
16.2.6, allows access by the operating system to a 64-bit per-processor value. On return
the wrval instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

wrval !PALcode format

Opcode reserved to Compaq

wrval Write system value
PALcode Instruction Descriptions (II–B)16–35
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16.2.24 Write Virtual Address Boundary

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif

VIRBND <−   a0

Exceptions:

Instruction Mnemonics:

Description:

The write virtual address boundary (wrvirbnd) instruction writes the virtual address boun
register (VIRBND), used to determine which page table physical base register is used
System Page Table and Virtual Address Boundary base registers are described in Sectio
UNPREDICTABLE operations result if the address is not 64-bit aligned.

On return from the wrvirbnd instruction, registers t0, t8..t11, and a0 are UNPREDICTABLE

At processor initialization, VIRBND is initialized to a value of -1, which results in all trans
tions using PTBR. The value in SYSPTBR is thus effectively ignored.

wrvirbnd ! PALcode format

Opcode reserved to Compaq

wrvirbnd Write virtual address boundary
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16.2.25 Write Virtual Page Table Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
VPTPTR ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed in a0 to
virtual page table pointer register (VPTPTR). The VPTPTR is described in Section 17.6.2
return from the wrvptptr instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

wrvptptr ! PALcode format

Opcode reserved to Compaq

wrvptptr Write virtual page table pointer
PALcode Instruction Descriptions (II–B)16–37
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16.2.26 Wait For Interrupt

Format:

Operation:
! a0 contains the maximum number of interval clock ticks to skip
! v0 receives the number of interval clock ticks actually skipped

IF (implemented)
BEGIN

IF {Implementation supports skipping multiple
clock interrupts} THEN

{Ticks_to_skip ←  a0}

{Wait no longer than any non-clock interrupt or the first clock
interrupt after ticks_to_skip ticks have been skipped}

IF {Implementation supports skipping multiple
clock interrupts} THEN

v0 ←number of interval clock ticks actually skipped
ELSE

v0 ←  0
END
ELSE

v0 ←  0
{return}

Exceptions:

Instruction Mnemonics:

Description:

The wait for interrupt instruction (wtint) requests that, if possible, the PALcode wait for
first of either of the following conditions before returning:

• Any interrupt other than a clock tick

• The first clock tick after a specified number of clock ticks has been skipped

The wtint instruction returns in v0 the number of clock ticks that are skipped. The num
returned in v0 is zero on hardware platforms that implement this instruction, but where
not possible to skip clock ticks.

wtint ! PALcode format

Opcode reserved to Compaq

wtint Wait for interrupt
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The operating system can specify a full 64-bit integer value in a0 as the maximum numb
interval clock ticks to skip. A value of zero in a0 causes no clock ticks to be skipped.

Note the following if specifying in a0 the maximum number of interval clock ticks to skip:

• Adherence to a specified value in a0 is at the discretion of the PALcode; the PALc
may complete execution of wtint and proceed to the next instruction at any time u
the specified maximum, even if no interrupt or interval-clock tick has occurred. Tha
wtint may return before all requested clock ticks are skipped.

• The PALcode must complete execution of wtint if an interrupt occurs or if an int
val-clock tick occurs after the requested number of interval-clock ticks has b
skipped.

In a multiprocessor environment, only the issuing processor is affected by an issued
instruction.

The counter, PCC, may increment at a lower rate or may stop entirely during wtint execu
This side effect is implementation dependent.
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Chapter 17

Memory Management (II–B)

17.1 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location within the vir
address space. Implementations subset the supported address space to one of several s
function of page size and page table depth. The minimal supported virtual address size
bits. If an implementation supports less than 64-bit virtual addresses, it must check that a
VA<63:vaSize> bits are equal to VA<vaSize–1>. This gives two disjoint ranges for valid
tual addresses. For example, for a 43-bit virtual address space, valid virtual address rang
0…3FFFFFFFFFF16 and FFFFFC000000000016…FFFFFFFFFFFFFFFF16. Access to virtual

addresses outside an implementation’s valid virtual address range cause an access-vi

fault1.

The virtual address space is divided into three segments: seg0, seg1, and kseg.

The two bits, va<vaSize–1:vaSize–2>, select a segment as shown in Table 17–1.

For kseg, the relocation, sharing, and protection are fixed. The base of kseg is loca
LEFT_SHIFT(FFFFFC000000000016 , (vaSize–43)).

For seg0 and seg1, the virtual address space is broken into pages, which are the units o
cation, sharing, and protection. The page size ranges from 8K bytes to 64K bytes. Ther
system software should allocate regions with differing protection on 64K-byte virtual add
boundaries to ensure image compatibility across all Alpha implementations.

1 The highest physical address that can be addressed by kseg in 43-bit addressing mode can be extended, under certain circu
stances, by an optional 48-bit/43-bit virtual addressing mode, described in Section E.2.1

Table 17–1: Virtual Address Space Segments

VA<vaSize–1:vaSize–
2> Name Mapping Access Control

00 seg0 Mapped via 3 levels of PTEs Programmed in PT

01 seg0 Mapped via 2 levels of PTEs Programmed in PT

10 kseg PA← SEXT(VA<(vaSize–3):0>) Kernel Read/Write

11 seg1 Mapped via the TB Programmed in PTE
Memory Management (II–B)17–1
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Memory management provides the mechanism to map the active part of the virtual ad
space to the available physical address space. The operating system controls th
tual-to-physical address mapping tables and saves the inactive (but used) parts of the
address space on external storage media.

17.1.1 Segment Seg0 and Seg1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in me
A seg0 or seg1 virtual address consists of three level-number fields and a byte_within_
field, as shown in Figure 17–1.

Figure 17–1: Virtual Address Format

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a partic
implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 32K bytes, and
bytes. The low-order bit in each level-number field is 0 and each field is 0…n bits, where for
example,n is 9 for an 8K page size.

An implementation may support a smaller virtual address space than the page size allo
including only a subset of low-order bits in Level1. The smaller virtual address space mu
at least 43 bits and must be large enough that at least two bits of Level1 are implemented.

The level-number fields are a function of the page size; all page table entries at any g
level do not exceed one page. The PFN field in the PTE is always 32 bits wide. Thus, a
page size grows, the virtual and physical address size also grows.

Table 17–2 shows the virtual address options and physical address size (in bits) calcula
The physical address (bits) column is the maximum physical address allowed by the sma
the kseg size or available physical address bits for a given page size. The available ph
address bits is calculated by combining the number of bits in the PFN (always 32) with
number of bits in the byte_within_page field. The kseg segment size is calculated from th
tual address size minus 2.

Table 17–2 Virtual Address Options

Page Size
(bytes)

Byte_within_page
(bits)

Level Size
(bits)

Virtual
Address
(bits)

Maximum
Physical
Address (bits)

Physical
Address
Limited by

8K 13 10 43 41 kseg

16K 14 11 43–471

1 Level1 page table might be partially utilized for this page size.

45 kseg

32K 15 12 43–511 47 seg0/seg1

64K 16 13 44–551 48 seg0/seg1

Level3Level2Level1* byte_within_pageSEXT (VA<M>)

63 0M L

* Level1 <M:L+1> contains SEXT(VA<L>), where L is the highest numbered implemented VA bit.
17–2 Tru64 UNIX Software (II–B)
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17.1.2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in mem
kseg virtual address consists of a segment select field with a value of 102 and a physical

address field. The segment select field is the two bits va<vaSize–1:vaSize–2>. The ph
address field is va<vaSize–3:0>.

Figure 17–2: Kseg Virtual Address Format

17.2 Physical Address Space

Physical addresses are at most vaSize–2 bits. This allows all of physical memory
accessed via kseg. A processor may choose to implement a smaller physical address sp
not implementing some number of high-order bits.

The two most significant implemented physical address bits delineate the four regions i
physical address space. Implementations use these bits as appropriate for their system
example, in a workstation with a 30-bit physical address space,bit<29> might select between
memory and non-memory-like regions, and bit <28> could enable or disable cacheing
Section 5.2.4).

17.3 Memory Management Control

Memory management is always enabled. Implementations must provide an environme
PALcode to service exceptions and to initialize and boot the processor. For example PAL
might run with I-stream mapping disabled.

17.4 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate seg0 and seg1
addresses to physical addresses. A PTE contains hardware and software control inform
and the physical page frame number (PFN). A PTE is a quadword with fields as shown in
ure 17–3 and described in Table 17–3.

Segment Select=10 Physical AddressSEXT (segment_select<1>)

63 0

2

Memory Management (II–B)17–3
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Figure 17–3 Page Table Entry (PTE)

Table 17–3 Page Table Entry (PTE) Bit Summary

Bits Name Meaning

63–32 PFN Page frame number

The PFN field always points to a page boundary. If V is set, the PFN is conca
nated with the byte_within_page bits of the virtual address to obtain the phys
address.

31–16 SW Reserved for software.

15–14 RSV0 Reserved for hardware; SBZ.

13 UWE User write enable.

Enables writes from user mode. If this bit is 0 and a store is attempted while
user mode, an access-violation fault occurs. This bit is valid even when V=0.

Note:

If a write enable bit is set and the corresponding read enable bit
not, the operation of the processor is UNDEFINED.

12 KWE Kernel write enable.

Enables writes from kernel mode. If this bit is 0 and a store is attempted while
kernel mode, an access-violation fault occurs. This bit is valid even when V=0

11–10 RSV1 Reserved for hardware; SBZ.

9 URE User read enable.

Enables reads from user mode. If this bit is 0 and a load or instruction fetch
attempted while in user mode, an Access Violation occurs. This bit is valid ev
when V=0.

8 KRE Kernel read enable.

Enables reads from kernel mode. If this bit is 0 and a load or instruction fetch
attempted while in kernel mode, an access-violation fault occurs. This bit is va
even when V=0.

7 NOMB Translation buffer miss memory barrier.

When set, the requirement described in Section 5.6.4.3 is lifted for ensuring
all processors using a newly valid PTE also see any new contents of the rel
page. This allows the TB-miss code to avoid potentially expensive global s
chronization. Software is expected to set this bit on PTEs when it is known t
the page contents are already visible to all processors.

SW

63 8 0

A
S
M

F
O
E

F
O
W

F
O
R

V

67 5 4 3 2 132 31

GH
R N
S O
V M

U
R
E

K
R
E

12 11 10 9

R
S
V

U
W
E

K
W
E

16 15 14 13

PFN

1 B0
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6–5 GH Granularity hint (GH).

Software may set these bits as follows to supply a hint to translation buffer imp
mentations that a block of pages can be treated as a single larger page:

Notes:

1. The block is a group of physically contiguous pages that are natura
aligned both virtually and physically. Within the block, the PFN field in
each PTE must map the correct physical page for the virtual page
which the PTE corresponds.

2. Within the block, all PTEs have the same values for bits <15:0>, that
protection, fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry.

It is UNPREDICTABLE which PTE values within the block are used if the gran
ularity bits are set inconsistently.

Programming Note:

A granularity hint might be appropriate for a large memory structu
such as a frame buffer or nonpaged pool that, in fact, is mapped i
contiguous virtual pages with identical protection, fault, and val
bits.

4 ASM Address space match.

When set, this PTE matches all address space numbers. For a given VA, A
must be set consistently in all processes; otherwise, the address mappin
UNPREDICTABLE.

3 FOE Fault on execute.

When set, a Fault on Execute exception occurs on an attempt to execute any
tion in the page.

Table 17–3 Page Table Entry (PTE) Bit Summary (Continued)

Bits Name Meaning

PTE<6:5>
Page Size Before GH:
8KB 16KB 32KB 64KB

Resulting Page Size:

00 8KB 16KB 32KB 64KB

01 64KB 128KB 256KB 2MB

10 512KB 1MB 2MB 64MB

11 4MB 8MB 16MB 512MB
Memory Management (II–B)17–5
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17.4.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions. For
ple, the operating system may set or clear the V bit, change the PFN field as pages are m
to and from external storage media, or modify the software bits. The processor hardware
changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing a PT
field at a time can cause incorrect system operation, such as setting PTE<V> with one in
tion before establishing PTE<PFN> with another. Execution of an interrupt service rou
between the two instructions could use an address that would map using the inconsisten
Software can solve this problem by building a complete new PTE in a register and then
ing the new PTE to the page table by using an STQ instruction.

Multiprocessing complicates the problem. Another processor could be reading (or even c
ing) the same PTE that the first processor is changing. Such concurrent access must p
consistent results. Software must use some form of software synchronization to modify
that are already valid. Whenever a processor modifies a valid PTE, it is possible that othe
cessors in a multiprocessor system may have old copies of that PTE in their translation b
When software changes a PTE, each processor may use either the old or the new PTE
software performs a TB invalidate on that processor (after which, the processor may use o
the new PTE). An example of a case where either the old or new PTE could usefully be us
when the NOMB bit is transitioned from zero to one. Hardware must ensure that aligned q
word reads and writes are atomic operations. Hardware must not cache invalid PTEs (
with the V bit equal to 0) in translation buffers. See Section 17.7 for more information.

17.5 Memory Protection

Memory protection is the function of validating whether a particular type of access is allowed
to a specific page from a particular access mode. Access to each page is controlled by a p
tion code that specifies, for each access mode, whether read or write references are al
The processor uses the following to determine whether an intended access is allowed:

• The virtual address, which is used to either select kseg mapping or provide the i
into the page tables.

2 FOW Fault on write.

When set, a Fault on Write exception occurs on an attempt to write any loca
in the page.

1 FOR Fault on read.

When set, a Fault on Read exception occurs on an attempt to read any locatio
the page.

0 V Valid.

Indicates the validity of the PFN field. When V is set, the PFN field is valid fo
use by hardware. When V is clear, the PFN field is reserved for use by softw
The V bit does not affect the validity of PTE<15:1> bits.

Table 17–3 Page Table Entry (PTE) Bit Summary (Continued)

Bits Name Meaning
17–6 Tru64 UNIX Software (II–B)
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• The intendedaccess type (read or write).

• The current access mode base on processor mode.

For protection checks, the intended access is read for data loads and instruction fetche
write for data stores.

17.5.1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a running pro
stored in the processor status mode bit (PS<mode>).

17.5.2 Protection Code

Every page in the virtual address space is protected according to its use. A program m
prevented from reading or writing portions of its address space. A protection code associate
with each page describes the accessibility of the page for each processor mode.

For seg0 and seg1, the code allows a choice of read or write protection for each proc
mode. For each mode, access can be read/write, read-only, or no-access. Read and write
sibility and the protection for each mode are specified independently.

For kseg, the protection code is kernel read/write, user no-access.

17.5.3 Access-Violation Faults

An access-violation memory-management fault occurs if an illegal access is attempte
determined by the current processor mode and the page’s protection.

17.6 Address Translation for Seg0 and Seg1

The page tables can be accessed from physical memory, or (to reduce overhead) c
mapped to a linear region of the virtual address space.

Additionally, an optional reduced page table (RPT) mode is defined, which allows more
cient mapping of very large blocks of memory.

The following sections describe the access methods.

17.6.1 Physical Access for Seg0 and Seg1 PTEs

In systems with Virtual Address Boundary and System Page Table Base registers, the v
address is compared against the Virtual Address Boundary register. Lower addresses u
PTBR as a physical page table base; higher or equal addresses use the SYSPTBR registe

Seg0 and seg1 address translation can be performed by accessing entries in a multilevel page
table structure. The page table base register (PTBR or SYSPTBR) contains the physica
frame number (PFN) of the highest-level (Level 1) page table.

Bits <Level1> of the virtual address are used to index into the Level 1 page table to obtai
physical PFN of the base of the next level (Level 2) page table. Bits <Level2> of the vir
address are used to index into the Level 2 page table to obtain the physical PFN of the b
the next level (Level 3) page table. Bits <Level3> of the virtual address are used to inde
Memory Management (II–B)17–7
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Level 3 page table to obtain the physical PFN of the page being referenced. The PFN is c
enated with virtual address bits <byte_within_page> to obtain the physical address o
location being accessed.

If part of any page table does not reside in a memory-like region, or does reside in nonex
memory, the operation of the processor is UNDEFINED.

If all the first- and second-level PTEs are valid, the protection bits are ignored; the prote
code in the Level 3 PTE is used to determine accessibility. If a higher-level PTE (numeric
any below Level 3) is invalid, an access-violation fault occurs if the PTE<KRE> equals z
An access-violation fault on any higher-level PTE implies that all lower-level page tab
mapped by that PTE do not exist.

The algorithm to generate a physical address from a seg0 or seg1 virtual address follows:

IF {SEXT(VA<(vaSize-1):0>) neq VA} THEN
{ initiate access-violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN

ptbr_value <- PTBR
ELSE

ptbr_value <- SYSPTBR
ELSE

ptbr_value <- PTBR

! Read Physical
level1_pte ← (   {  ptbr_value * page_size} + { 8 * VA<level1} )

IF level1_pte<v> EQ 0 THEN
IF level1_pte<KRE> eq 0 THEN

{ initiate access-violation fault}
ELSE

{ initiate translation-not-valid fault}
! Read physical:
level2_pte ¨ ({level1_pte<PFN> * page_size} + {8 * VA<level2>} )
IF level2_pte<v> EQ 0 THEN

IF level2_pte<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

! Read physical:
level3_PTE ← ({level2_pte<PFN> * page_size} + {8 * VA<level3>} )

IF {{{level3_pte<UWE> eq 0}AND {write access} AND {ps<mode> EQ 1}} OR
{{level3_pte<URE> eq 0} AND {read access} AND {ps<mode> EQ 1}} OR
{{level3_pte<KWE> eq 0}AND {write access} AND {ps<mode> EQ 0}} OR
{{level3_pte<KRE> eq 0}AND {read access} AND {ps<mode> EQ 0}}}

THEN
{initiate memory-management fault}

ELSE
IF level3_pte<v> EQ 0 THEN

{initiate memory-management fault}
17–8 Tru64 UNIX Software (II–B)
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IF { level3_pte<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF { level3_pte<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}

IF { level3_pte<FOE> eq 1} AND {execute access} THEN
{initiate memory-management fault}

Physical_address ← {level3_pte<PFN> * page_size} OR VA<byte_within_page>

17.6.2 Virtual Access for Seg0 or Seg1 PTEs

The page tables can be mapped into a linear region of the virtual address space, reduc
overhead for seg0 and seg1 PTE accesses. If SYSPTBR and VIRBND are implemented
must be taken to ensure that the Level 3 page tables defined by both PTBR and SYSPTB
mapped at the same virtual address. This is required so a single VPTPTR can be used r
less of which base register is determined to be used based on the value in VIRBND.
physical PTE fetch defined in Section 17.6.1 enter the proper mappings into the TB.)
SYSPTBR and VIRBND registers are written by the wrsysptb and wrvirbnd PALcode inst
tions, described in Sections 16.2.21 and 16.2.24, respectively.

The mapping must be created exactly as follows because PALcode implementations m
depend on details of the mapping.

1. Select a 2(3*lg(pageSize/8))+3) byte-aligned region (an address wit
3*lg(pageSize/8)+3 low-order zeros) in the seg0 or seg1 address space.

2. Create a PTE in each of the page tables defined by PTBR and SYSPTBR (if im
mented) to map the page tables as follows.

PTE = 0 ! Initialize all fields to zero
! Set the PFN to the Level 1 pagetable:
PTE<63:32> = PFN of Level 1 pagetable
PTE<8> = 1 ! Set the kernel read enable bit
PTE<0> = 1 ! Set the valid bit

3. Set the page table entry that corresponds to the VPTPTR to the created Level 1 PT

4. Set all Level 1 and Level 2 valid PTEs to allow kernel read access. With this setu
place, the algorithm to fetch a seg0 or seg1 PTE is as follows, wherepSrepresents pag-
eSize:

tmp ←   LEFT_SHIFT (va, {64 - {{lg(pS)* 4} - 9}})
tmp ←   RIGHT_SHIFT (tmp, {64 - {{lg(pS)* 4} - 9} + lg(pS)-3})
tmp ← VPTB OR tmp
tmp<2:0> ← 0
level3_PTE ← (tmp) ! Load PTE using its virtual address

5. Set the virtual page table pointer (VPTPTR) with a write virtual page table poin
instruction (wrvptptr) to the selected value.

The virtual access method is used by PALcode for most TB fills.

Implementation Note:

Assume the following:

• A system with a 52-bit virtual address size.
Memory Management (II–B)17–9
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• VPTB is the index of the Level 1 PTE, which is self-referencing.

• The virtual address is in seg0 or seg1.

For a virtual address B, the address to virtually access the Level 3 PTE is as follows
double-miss TB fill flow is a three-level flow.

Figure 17–4: Three-Level Page Table Mapping

17.6.3 Reduced Page Table (RPT) Mode

The reduced page table (RPT) mode is an optional extension of 64KB page size mode. A
tion of the address space is mapped by one fewer page table levels, allowing each of the
in the lowest-level page table to map a 512MB page. In implementations that support gran
ity hints in hardware, applications can use these hints to make more efficient use o
translation buffer. Applications that can use the 512MB granularity hint in 64KB page
mode can use RPT mode for additional benefits.

With the 512MB granularity hint but without RPT, every entry in the Level3 page table m
the same 512MB page. With RPT, that Level3 page table is eliminated entirely, and the Le
PTE that would normally point to that Level3 page table is used to directly map the 512
page.

Therefore, in an RPT region, there is elimination of redundant page table pages and compre
sion of page table space. The compressed PTEs are more likely to fit in hardware cach
there is locality of reference, a new PTE that is needed to satisfy a mapping is more likely
present in the cache. Additionally, a single TB entry that maps the VA of the lowest-level p
table now allows access to PTEs mapping 4 TB, rather than 512 MB, of memory.

In order to use RPT mode, the feature must be available and enabled in the implement
and:

• Use the 64KB page size.

• Every L2 PTE in the reduced page table region must havePTE<GH>=112, that is, a
512MB page size.

• The PFN field of the PTE must refer to a 512 MB aligned page.

• The RPT region is selected by usings VAs such thatVA<vaSize-1:vaSize-2>=01 2.

17.6.3.1 Physical Access for Page Table Entries in Reduced Page Table Mode

Physical address translation is performed by accessing entries in a two-level page table
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number
of the highest-level (Level1) page table.

In systems that implement the Virtual Address Boundary register (VIRBND), the System P
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page ta
such systems, the virtual address to be translated is compared against the address st
VIRBND. Translations of Level2 addresses begin with the PFN in PTBR as the highest-

B<22:13>B<32:23>B<42:33> 0SEXT (VPTB)

63 0

VPTB

4243 3233 2223 1213 0203
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page table. Translations of Level1 addresses use the PFN in SYSPTBR as the highes
page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.24
13.3.18, respectively.

Level1 is the highest-level page table. Bits <Level1> of the virtual address are used to i
into the Level1 page table to obtain the physical PFN of the base of the next level (Lev
page table. Bits <Level2> of the virtual address are used to index into the Level2 page ta
obtain the physical PFN of the page being referenced. The PFN is concatenated with v
address bits <byte_within_page> to obtain the physical address of the location being acce

If part of any page table resides in I/O space, or in nonexistent memory, the operation o
processor is UNDEFINED.

If the Level1 PTE is valid, the protection bits are ignored; the protection code in the Le
PTE is used to determine accessibility. If a Level1 PTE is invalid, an access-violation
occurs if the PTE<KRE> equals zero. An Access-Violation fault on any Level1 PTE imp
that all Level2 page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<(vaSize-1):0>) neq VA} THEN
{ initiate access-violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN

ptbr_value <- PTBR
ELSE

ptbr_value <- SYSPTBR
ELSE

ptbr_value <- PTBR

! Read Physical
level1_pte ← (   {  ptbr_value * page_size} + { 8 * VA<level1} )

IF level1_pte<v> EQ 0 THEN
IF level1_pte<KRE> eq 0 THEN

{ initiate access-violation fault}
ELSE

{ initiate translation-not-valid fault}
! Read physical:
level2_pte ¨ ({level1_pte<PFN> * page_size} + {8 * VA<level2>} )

IF {{{level2_pte<UWE> eq 0}AND {write access} AND {ps<mode> EQ 1}} OR
{{level2_pte<URE> eq 0} AND {read access} AND {ps<mode> EQ 1}} OR
{{level2_pte<KWE> eq 0}AND {write access} AND {ps<mode> EQ 0}} OR
{{level2_pte<KRE> eq 0}AND {read access} AND {ps<mode> EQ 0}}}

THEN
{initiate memory-management fault}

ELSE
IF level2_pte<v> EQ 0 THEN

{initiate memory-management fault}

IF { level2_pte<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF { level2_pte<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}
Memory Management (II–B)17–11
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IF { level2_pte<FOE> eq 1} AND {execute access} THEN
{initiate memory-management fault}

Physical_Address ← {level2_pte<PFN> * page_size} OR VA<byte_within_RPT_page 1>

17.6.3.2 Virtual Access for Page Table Entries in Reduced Page Table Mode

To reduce overhead associated with the address translation in a multilevel page table stru
the page tables are mapped into a linear region of the virtual address space. The virtual a
of the base of the page table structure is set on a system-wide basis and is contained
VPTB IPR.

When a native mode DTB or ITB miss occurs, it is desirable that the TBMISS flow attemp
load the lowest-level PTE by using a single virtual load instruction without regard to whe
the missing VA is mapped by two levels (RPT) or three levels of page table. (See Section
for the 21364 implementation.)

17.7 Translation Buffer

In order to save actual memory references when repeatedly referencing the same pages
ware implementations include a translation buffer to remember successful virtual add
translations and page states.

When the process context is changed, a new value is loaded into the address space n
(ASN) internal processor register with a swap process context (swpctx) instruction. This c
address translations for pages with PTE<ASM> clear to be invalidated on a processor tha
not implement address space numbers.

Additionally, when the software changes any part (except the software field) of a valid PT
must also execute a tbi instruction. The entire translation buffer can be invalidated by tbia
all ASM=0 entries can be invalidated by tbiap. The translation buffer must not store inv
PTEs. Therefore, the software is not required to invalidate translation buffer entries when
ing changes for PTEs that are already invalid. Changes to PTE<NOMB> are also an exce
to this requirement. This bit only has an effect when a PTE is loaded into the translation bu
Thus, there is no need to invalidate the TB when the bit changes.

After software changes a valid first-, or second-level PTE, software must flush the transl
for the corresponding page in the virtual page table. Then software must flush the transla
of all valid pages mapped by that page. In the case of a change to a first-level PTE, this a
must be taken through a second iteration.

17.8 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space num
(process tags) to reduce the need for invalidation of cached address translations fo
cess-specific addresses when a context switch occurs. The supported address space
(ASN) range is 0…MAX_ASN; MAX_ASN is provided in the HWRPB MAX_ASN field.

1 byte_within_RPT_page contains those bits that would have been VA<Level3>, concatenated with th
VA<byte_within_page> field for 64KB page table mode.
17–12 Tru64 UNIX Software (II–B)
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The address space number for the current process is loaded by software in the addres
number (ASN) with a swpctx instruction. ASNs are processor specific and the hardware m
no attempt to maintain coherency across multiple processors. In a multiprocessor system
ware is responsible for ensuring the consistency of TB entries for processes that mig
rescheduled on different processors.

Systems that support ASNs should have MAX_ASN in the range 13…65535. The number of
ASNs should be determined by the market a system is targeting.

Programming Note:

System software should not assume that the number of ASNs is a power of two.
allows hardware, for example, to use N TB tag bits to encode (2**N)–3 ASN values,
value for ASM=1 PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several complication
multiprocessor system. Consider the case where a process that executed on process
rescheduled on processor–2. If a page is deleted or its protection is changed, the
processor–1 has stale data.

• One solution is to send an interprocessor interrupt to all the processors on which
process could have run and cause them to invalidate the changed PTE. That res
significant overhead in a system with several processors.

• Another solution is to have software invalidate all TB entries for a process on a
processor before it can begin execution, if the process executed on another proc
during its previous execution. This ensures the deletion of possibly stale TB entrie
the new processor.

• A third solution is to assign a new ASN whenever a process is run on a processor t
not the same as the last processor on which it ran.

17.9 Memory-Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in a1 to specify the
of fault encountered, as shown in Table 17–4.

• A translation-not-valid fault is taken when a read or write reference is attemp
through an invalid PTE in a zero (if one exists), first, second, or third-level page tab

Table 17–4: Memory-Management Fault Type Codes

Fault MMCSR Value

Translation not valid 0

Access-violation 1

Fault on read 2

Fault on execute 3

Fault on write 4
Memory Management (II–B)17–13
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• An access-violation (ACV) fault is taken under the following circumstances:

– An ACV fault is taken on a reference to a seg0 or seg1 address when the prote
field of the third-level PTE that maps the data indicates that the intended page r
ence would be illegal in the specified access mode.

– An ACV fault is taken if the KRE bit is a zero in an invalid first-, or second-lev
PTE. An access-violation fault is generated for any access to a kseg address
the mode is user (PS<mode> EQ 1).

– For reduced page table regions:

An ACV fault is taken when the protection field of the Level2 PTE that maps
the data indicates that the intended pagereferencewould be illegal in the speci-
fied access mode.

An ACV fault is also taken if the KRE bit is zero in an invalid Level1 PTE.

• A fault-on-read (FOR) fault occurs when a read is attempted with PTE<FOR> set.

• A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted w
PTE<FOE> set.

• A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW> set
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Chapter 18

Process Structure (II–B)

18.1 Process Definition

A process is a single thread of execution. It is the basic entity that can be scheduled and i
cuted by the processor. A process consists of an address space and both software and h
context. The hardware context of a process is defined by the following:

• Thirty integer registers (excludes R31 and SP)

• Thirty-one floating-point registers (excludes F31)

• The program counter (PC)

• The two per-process stack pointers (USP/KSP)

• The processor status (PS)

• The address space number (ASN)

• The charged process cycles

• The page table base register (PTBR)

• The process unique value (unique)

• The floating-point enable register (FEN)

• The performance monitoring enable bit (PME)

This information must be loaded if a process is to execute.

While a process is executing, some of its hardware context is being updated in the interna
isters. When a process is not being executed, its hardware context is stored in memor
software structure called the process control block (PCB). Saving the process context
PCB and loading new values from another PCB for a new context is called context switc
Context switching occurs as one process after another is scheduled for execution.
Process Structure (II–B)18–1
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18.2 Process Control Block (PCB)

As shown in Figure 18–1, the PCB holds the state of a process.

Figure 18–1 Process Control Block (PCB)

The contents of the PCB are loaded and saved by the swap process context (swpctx) in
tion. The PCB must be quadword aligned and lie within a single page of physical memo
should be 64-byte aligned for best performance.

The PCB for the current process is specified by the process control block base address r
(PCBB); see Table 15–3.

The swap privileged context instruction (swpctx) saves the privileged context of the cu
process into the PCB specified by PCBB, loads a new value into PCBB, and then load
privileged context of the new process into the appropriate hardware registers.

The new value loaded into PCBB, as well as the contents of the PCB, must satisfy certain con
straints or an UNDEFINED operation results:

1. The physical address loaded into PCBB must be quadword aligned and describes
contiguous quadwords that are in a memory-like region (see Section 5.2.4).

2. The value of PTBR must be the page frame number (PFN) of an existent page tha
a memory-like region.

It is the responsibility of the operating system to save and load the non-privileged part o
hardware context.

The swpctx instruction returns ownership of the current PCB to operating system softwar
passes ownership of the new PCB from the operating system to the processor. Any atte
write a PCB while ownership resides with the processor has UNDEFINED results. If the
is read while ownership resides with the processor, it is UNPREDICTABLE whether the o
nal or an updated value of a field is read. The processor is free to update a PCB field a
time. The decision as to whether or not a field is updated is made individually for each field

The charged process cycles is the total number of PCC register counts that are charged
process (modulo 2**32). When a process context is loaded by the swpctx instructions, the
tents of the PCC count field (PCC_CNT) is subtracted from the contents of PCB[24]<3
and the result is written to the PCC offset field (PCC_OFF):

:00

:08

:16

Kernel Stack Pointer (KSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

63 0

:24Address Space Number (ASN)

:32Process Unique Value (unique)

:40

:48

:56

F
E
N

132 31

Charged Process Cycles

Reserved to Compaq

Reserved to Compaq

P
M
E

62

I
M
B

61
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PCC<63:32> ← (PCB[24]<31:0> – PCC<31:0>)

When a process context is saved by the swpctx instruction, the charged process cycles i
puted by performing an unsigned add of PCC<63:32> and PCC<31:0>. That value is writt
PCB[24]<31:0>.

Software Programming Note:

The following example returns in R0 the current PCC register count (modulo 2**32) fo
process. Notice the care taken not to cause an unwanted sign extension.

RPCC R0 ; Read the processor cycle counter
SLL R0, #32, R1 ; Line up the offset and count fields
ADDQ R0, R1, R0 ; Do add
SRL R0, #32, R0 ; Zero extend the cycle count to 64 bits

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The process unique value is that value used in support of multithread implementations
value is stored in the PCB when the process is not active. When the process is active, the
may be cached in hardware internal storage or kept in the PCB only.

The FEN bit reflects the setting of the FEN IPR.

The IMB bit records that an IMB was issued in user mode.

Setting the PME bit alerts any performance hardware or software in the system to monito
performance of this process.

Kernel mode code must use the rdusp/wrusp instructions to access the USP. Kernel mod
can read the PTBR, the ASN, the FEN, and the PME for the current process from the PCB
unique value can be accessed with the rdunique and wrunique instructions.
Process Structure (II–B)18–3
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Chapter 19

Exceptions and Interrupts (II–B)

19.1 Introduction

At certain times during the operation of a system, events within the system require the e
tion of software outside the explicit flow of control. When such an event occurs, an Al
processor forces a change in control flow from that indicated by the current instruction str
The notification process for such an event is either an exception or an interrupt.

19.1.1 Exceptions

Exceptions occur primarily in relation to the currently executing process. Exception ser
routines execute in response to exception conditions caused by software. All exception s
routines execute in kernel mode on the kernel stack. Exception conditions consist of fa
arithmetic traps, and synchronous traps:

• A fault occurs during an instruction and leaves the registers and memory in a cons
state such that elimination of the fault condition and subsequent reexecution o
instruction gives correct results. Faults are not guaranteed to leave the machi
exactly the same state it was in immediately prior to the fault, but rather in a state
that the instruction can be correctly executed if the fault condition is removed. The PC
saved in the exception stack frame is the address of the faulting instruction. A
instruction to that PC reexecutes the faulting instruction.

• An arithmetic trap occurs at the completion of the operation that caused the excep
Since several instructions may be in various stages of execution at any point in tim
is possible for multiple arithmetic traps to occur simultaneously.

The PC that is saved in the exception frame on traps is that of the next instruction
would have been issued if the trapping conditions had not occurred. However, tha
is not necessarily the address of the instruction immediately following the instruc
that encountered the trap condition, and the intervening instructions are collect
called thetrap shadow. See Section 4.7.7.3 for information.

The intervening instructions may have changed operands or other state used b
instructions encountering the trap conditions. If such is the case, an rti instructio
that PC does not reexecute the trapping instructions, nor does it reexecute
intervening instructions; it simply continues execution from the point at which the t
was taken.

In general, it is difficult to fix up results and continue program execution at the po
of an arithmetic trap. Software can force a trap to be continued more easily wit
the need for complicated fixup code. This is accomplished by specifying any v
Exceptions and Interrupts(II–B) 19–1
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qualifier combination that includes the /S qualifier with each such instruction
following a set of code-generation restrictions in the code that could cause arithm
traps, allowing those traps to be completed by an OS completion handler.

The AND of all the exception completion qualifiers for trapping instructions
provided to the OS completion handler in the exception summary SWC bit. If SW
set, a completion handler may find the trigger instruction by scanning backward f
the trap PC until each register in the register write mask has been an instru
destination. The trigger instruction is the last instruction in I-stream order to get a
before the trap shadow. If the SWC bit is clear, no fixup is possible.

• A synchronous trap occurs at the completion of the operation that caused the exce
No instructions can be issued between the completion of the operation that cause
exception and the trap.

19.1.2 Interrupts

The processor arbitrates interrupt requests. When the interrupt priority level (IPL) of an
standing interrupt is greater than the current IPL, the processor raises IPL to the level o
interrupt and dispatches to entInt, the interrupt entry to the OS. Interrupts are serviced in
nel mode on the kernel stack. Interrupts can come from one of five sources: interproc
interrupts, I/O devices, the clock, performance counters, or machine checks.

19.2 Processor Status

The processor status (PS) is a four-bit register that contains the current mode (PS<mod
bit <3> and a three-bit interrupt priority level (PS<IPL>) in bits <2…0>. The PS<mode> bit is
zero for kernel mode and one for user mode. The PS<IPL> bits are always zero if the mo
user and can be zero to 7 if the mode is kernel. The PS is changed when an interrupt or
tion is initiated and by the rti, retsys, and swpipl instructions.

The uses of the PS values are shown in Table 19–1.

Table 19–1: Processor Status Summary

PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts

0 4 Kernel High priority device interrupts

0 5 Kernel Clock, and interprocessor interrupts

0 6 Kernel Real-time devices

0 6 Kernel Correctable error reporting

0 7 Kernel Machine checks
19–2 Tru64 UNIX Software (II–B)
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19.3 Stack Frames

There are three types of system entries: entries for the callsys instruction from user m
entries for exceptions and interrupts from kernel mode, and entries for interrupts from
mode.

Those three types of system entries use one of two stack frame layouts, as follows.

Entries for the callsys instruction from user mode, and entries for exceptions and inter
from kernel mode use the same stack frame layout, as shown in Figure 19–1. The stack
contains space for the PC, the PS, the saved GP, and the saved registers a0, a1, a2. O
the SP points to the saved PS.

The callsys entry saves the PC, the PS, and the GP. The exception and interrupt entries s
PC, the PS, the GP, and also save the registers a0…a2.

Figure 19–1 Stack Frame Layout for callsys and rti

Entries for interrupts from user mode use the stack frame layout as shown in Figure 19–2
stack frame must be aligned on a 64-byte boundary and contains the registers, at, SP, P
GP, and saved registers a0, a1, and a2.

Figure 19–2 Stack Frame Layout for urti
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19.4 System Entry Addresses

All system entries are in kernel mode. The interrupt priority PS bits (PS<IPL>) are se
shown in the following table. The system entry point address is set by the wrent instructio
described in Section 16.2.15.

19.4.1 System Entry Arithmetic Trap (entArith)

The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On entry, a0
tains the exception summary register and a1 contains the exception register write mask. S
19.4.1.1 describes the exception summary register and Section 19.4.1.2 describes the r
write mask.

19.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 19–3 and described in Table 19–3, re
the various types of arithmetic exceptions that can occur together.

Table 19–2 Entry Point Address Registers

Entry Point Value in a0 Value in a1 Value in a2 PS<IPL>

entArith Exception summary Register mask UNPREDICTABLE Unchanged

entIF Fault or trap type code UNPREDICTABLE UNPREDICTABLE Unchanged

entInt Interrupt type Vector Interrupt parameter Priority of interrupt

entMM VA MMCSR Cause Unchanged

entSys p0 p1 p2 Unchanged

entUna VA Opcode Src/Dst Unchanged
19–4 Tru64 UNIX Software (II–B)
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Figure 19–3 Exception Summary Register

Table 19–3 Exception Summary Register Bit Definitions

Bit Description

63–7 Zero.

6 Integer overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the desti-
nation precision.

An IOV trap is reported for any integer operation whose true result exceeds the destina
register size. Integer overflow trap enable can be specified in each arithmetic integer op
instruction and each floating-point convert-to-integer instruction. If integer overflow occurs,
the result register is written with the truncated true result.

5 Inexact result (INE)

A floating arithmetic or conversion operation gave a result that differed from the mathemati-
cally exact result.

An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact result
trap enable can be specified in each IEEE floating-point operate instruction. The roun
result value is stored in all cases.

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

An UNF trap is reported when the destination’s smallest finite number exceeds in magni
the non-zero rounded true result. Floating underflow trap enable can be specified in
floating-point operate instruction. If underflow occurs, the result register is written with
true zero.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

An OVF trap is reported when the destination’s largest finite number is exceeded in ma
tude by the rounded true result. Floating overflow traps are always enabled. If this
occurs, the result register is written with an UNPREDICTABLE value.
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19.4.1.2 Exception Register Write Mask

The exception register write mask parameter records all registers that were targets of in
tions that set the bits in the exception summary register. There is a one-to-one correspon
between bits in the register write mask quadword and the register numbers. The quad
starting at bit 0 and proceeding right to left, records which of the registers r0 through r31,
f0 through f31, received an exceptional result.

Note:

For a sequence such as:

ADDF F1,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF bit is set in the except
summary, and the F3 bit is set in the register mask, even though the overflowed sum
can be overwritten with an in-range product by the time the trap is taken. (This c
violates the destination reuse rule for exception completion. See Section 4.7.7.3 fo
destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next instru
This is defined as the virtual address of the first instruction not executed after the trap c
tion was recognized.

19.4.2 System Entry Instruction Fault (entIF)

The instruction fault or synchronous trap entry is called for bpt, bugchk, gentrap, and op

2 Division by zero (DZE)

An attempt was made to perform a floatingdivide operation with a divisor of zero.

A DZE trap is reported when a finite number is divided byzero. Floating divide by zero traps
are always enabled. If this trap occurs, the result register is written with an UNPREDIC
ABLE value.

1 Invalid operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison opera
and one or more of the operand values were illegal.

An INV trap is reported for most floating-point operate instructions with an input opera
that is an IEEE NaN, IEEE infinity, or IEEE denormal.

Floating invalid operation traps are always enabled. If this trap occurs, the result regist
written with an UNPREDICTABLE value.

0 Software completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate instruct
with the /S qualifier set. See Section 4.7.7.3 for rules about setting the /S qualifier in c
that may cause an arithmetic trap, and Section 19.1.1 for rules about using the SWC bi
trap handler.

Table 19–3 Exception Summary Register Bit Definitions (Continued)

Bit Description
19–6 Tru64 UNIX Software (II–B)
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synchronous traps, and for a FEN fault (floating-point instruction when the floating-point
is disabled, FEN EQ 0). On entry, a0 contains a 0 for a bpt, a 1 for bugchk, a 2 for gentra
for FEN fault, and a 4 for opDec. No additional data is passed in a1…a2. The saved PC at
(SP+00) is the address of the instruction that caused the fault for FEN faults. The saved
(SP+00) is the address of the instruction after the instruction that caused the bpt, bugchk
trap, and opDec synchronous traps.

19.4.3 System Entry Hardware Interrupts (entInt)

The interrupt entry is called to service a hardware interrupt or a machine check. Table
shows what is passed in a0…a2 and the PS<IPL> setting for various interrupts.

On entry to the hardware interrupt routine, the IPL has been set to the level of the interrup
hardware interrupts, register a1 contains a platform-specific interrupt vector. That
form-specific interrupt vector is typically the same value as the SCB offset value that wou
returned if the platform was running OpenVMS PALcode.

For a correctable error or machine check interrupt, a1 contains a platform-specific inte
vector and a2 contains the kseg address of the platform-specific logout area. The interrup
tor value and logout area format are typically the same as those used by the platform
running OpenVMS PALcode.

The machine check error summary (MCES) register, shown in Figure 19–4 and describ
Table 19–5, records the correctable error and machine check interrupts in progress.

Table 19–4 System Entry Hardware Interrupts

Entry Type Value in a0 Value in a1 Value in a2 PS<IPL>

Interprocessor interrupt 0 UNPREDICTABLE UNPREDICTABLE 5

Clock 1 UNPREDICTABLE UNPREDICTABLE 5

Correctable error 2 Interrupt vector Pointer to Logout Area 7

Machine check 2 Interrupt vector Pointer to Logout Area 7

I/O device

interrupt

3 Interrupt vector UNPREDICTABLE Level of device

Performance counter 4 Interrupt vector UNPREDICTABLE 6
Exceptions and Interrupts(II–B) 19–7
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Figure 19–4 Machine Check Error Status (MCES) Register

The MIP flag in the MCES register is set prior to invoking the machine check handler. If
MIP flag is set when a machine check is being initiated, a double machine check halt is
ated instead. The machine check handler needs to clear the MIP flag when it can handle
machine check.

Similarly, the SCE or PCE flag in the MCES register is set prior to invoking the appropr
correctable error handler. That error handler should clear the appropriate correctable e
progress when the logout area can be reused by hardware or PALcode. PALcode do
overwrite the logout area.

Correctable processor or system error reporting may be suppressed by setting the resp
DPC or DSC flag in the MCES register. When the DPC or DSC flag is set, the correspon
error is corrected, but no correctable error interrupt is generated.

19.4.4 System Entry MM Fault (entMM)

The memory-management fault entry is called when a memory management exception o
On entry, a0 contains the faulting virtual address and a1 contains the MMCSR (see Se
17.9). On entry, a2 is set to a minus one (–1) for an instruction fetch fault, to a plus one
for a fault caused by a store instruction, or to a 0 for a fault caused by a load instruction.

Table 19–5 Machine Check Error Status (MCES) Register Bit Definitions

Bit Symbol Description

63–32 IMP.

31–5 Reserved.

4 DSC Disable system correctable error in progress.

Set to disable system correctable error reporting.

3 DPC Disable processor correctable error in progress.

Set to disable processor correctable error reporting.

2 PCE Processor correctable error in progress.

Set when a processor correctable error is detected. Should be cleared by the
cessor correctable error handler when the logout frame may be reused.

1 SCE System correctable error in progress.

Set when a system correctable error is detected. Should be cleared by the sy
correctable error handler when the logout frame may be reused.

0 MIP Machine check in progress.

Set when a machine check occurs. Must be cleared by the machine check
dler when a subsequent machine check can be handled. Used to detect d
machine checks.

63 0
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19.4.5 System Entry Call System (entSys)

The system call entry is called when a callsys instruction is executed in user mode. On e
only registers (t8…t11) have been modified. The PC+4 of the callsys instruction, the user
bal pointer, and the current PS are saved on the kernel stack. Additional space for a0…a2 is
allocated. After completion of the system service routine, the kernel code execu
CALL_PAL retsys instruction.

19.4.6 System Entry Unaligned Access (entUna)

The unaligned access entry is called when a load or store access is not aligned. On en
contains the faulting virtual address, a1 contains the zero extended six-bit opcode
<31:26>) of the faulting instruction, and a2 contains the zero extended data source or de
tion register number (bits<25:21>) of the faulting instruction.

19.5 PALcode Support

19.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack that
produce a memory-management fault will result in a kernel-stack-not-valid halt. The s
pointer must always point to a quadword-aligned address. If the kernel stack is not quad
aligned on a PALcode access, a kernel-stack-not-valid halt is initiated.
Exceptions and Interrupts(II–B) 19–9
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The following chapters describe how the Alpha Linux operating system relates to the A
architecture:

• Chapter 20, Introduction to Alpha Linux (II–C)

• Chapter 21, PALcode Instruction Descriptions(II–C)

• Chapter 22, Memory Management (II–C)

• Chapter 23, Process Structure (II–C)

• Chapter 24, Exceptions and Interrupts(II–C)
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Chapter 20

Introduction to Alpha Linux (II–C)

The goals of this design are to provide a hardware interface between the hardwar
Alpha Linux that is implementation independent. The interface needs to provide the req
abstractions to minimize the impact of different hardware implementations on the oper
system. The interface also needs to be low in overhead to support high-performance sy
Finally, the interface needs to support only thefeatures used by Alpha Linux.

The register usage in this interface is based on the current calling standard used by
Linux. If the calling standard changes, this interface will be changed accordingly. The cu
calling standard register usage is shown in Table 20–1.

Table 20–1 Alpha Linux Register Usage

Register
Name

Software
Name

Use and Linkage

r0 v0 Used for expression evaluations and to hold integer function results.

r1…r8 t0…t7 Temporary registers; not preserved across procedure calls.

r9…r14 s0…s5 Saved registers; their values must be preserved across procedure cal

r15 FP or s6 Frame pointer or a saved register.

r16…r21 a0…a5 Argument registers; used to pass the first six integer type arguments; t
values are not preserved across procedure calls.

r22…r25 t8…t11 Temporary registers; not preserved across procedure calls.

r26 ra Contains the return address; used for expression evaluation.

r27 pv or t12 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across procedure calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r31 zero Always has the value 0.
Introduction to Alpha Linux(II–C) 20–1
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20.1 Programming Model

The programming model of the machine is the combination of the state visible either dir
via instructions, or indirectly via actions of the machine. Tables 20–2 and 20–3 define c
flow constants, state variables, terms, subroutines, and code flow terms that are used in t
of the document.

20.1.1 Code Flow Constants and Terms

Alpha Linux uses the following constants and terms.

20.1.2 Machine State Terms

Table 20–2 Code Flow Constants and Terms

Term Meaning and value

IPL = 2:0 The range 2:0 used in the PS to access the IPL field of the PS (PS <IPL>).

maxCPU The maximum number of processors in a given system.

mode = 3 Used as a subscript in PS to select current mode (PS <mode>).

opDec An attempt was made to execute a reserved instruction or execute a privileged instru
in user mode.

pageSize Size of a page in an implementation in bytes.

vaSize Size of virtual address in bits in a given implementation.

Table 20–3 Machine State Terms

Term Meaning

ASN An implementation-dependent size register to hold the current address s
number (ASN). The size and existence of ASN is an implementation choice.

entArith <63:0> The arithmetic trap entry address register. The entArith is an internal proce
register that holds the dispatch address on an arithmetic trap. There can
hardware register for the entArith or the PALcode can use private scratch m
ory.

entIF <63:0> The instruction fault or synchronous trap entry address register. The entIF
internal processor register that holds the dispatch address on an instruction
or synchronous trap. There can be a hardware register for the entIF or the P
code can use private scratch memory.

entInt <63:0> The interrupt entry address register. The entInt is an internal processor regi
that holds the dispatch address on an interrupt. There can be a hardware re
for the entInt or the PALcode can use private scratch memory.

entMM <63:0> The memory-management fault entry address register. The entMM is an inte
processor register that holds the dispatch address on a memory-manage
fault. There can be a hardware register for the entMM or the PALcode can
private scratch memory.
20–2 Alpha Linux Software (II–B)
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entSys <63:0> The system call entry address register. The entSys is an internal processor
ter that holds the dispatch address on a callsys instruction. There can be a
ware register for the entSys or the PALcode can use private scratch memory

entUna <63:0> The unaligned fault entry address register. The entUna is an internal proc
register that holds the dispatch address on an unaligned fault. There can
hardware register for the entUna or the PALcode can use private scratch m
ory.

FEN <0> The floating-point enable register. The FEN is a one-bit register, located at b
of PCB[40], that is used to enable or disable floating-point instructions. If
floating-point instruction is executed with FEN equal to zero, a FEN fault is in
tiated.

instruction <31:0> The current instruction being executed. This is a fake register used in the f
to CASE on differentinstructions.

intr_flag A per-processor state bit. The intr_flag bit is cleared if that processor execute
rti or retsys instruction.

KGP <63:0> The kernel global pointer. The KGP is an internal processor register that h
the kernel global pointer that is loaded into R15, the GP, when an exceptio
initiated. There can be a hardware register for the KGP or the PALcode can
private scratch memory.

KSP <63:0> The kernel stack pointer. The KSP is an internal processor register that hold
kernel stack pointer while in user mode. There can be a hardware register for
KSP or the storage space in the PCB can be used.

lock_flag <0> A one-bit register that is used by the load locked and store conditional inst
tions.

MCES <2:0> The machine check error summary register. The MCES is a 3-bit register
contains controls for machine check and system-correctableerror handling.

PC <63:0> The program counter. The PC is a pointer to the next instruction in the flo
The low-order two bits of the PC always read as zero and writes to them
ignored.

PCB The process control block. The PCB holds the state of the process.

PCBB <63:0> The process control block base address register. The PCBB holds the addr
the PCB for the current process.

PCC The PCC register consists of two 32-bit fields. The low-order 32 bits (PC
<31:0>) are an unsigned, wrapping counter, PCC_CNT. The high-order 32
(PCC <63:32>) are an offset, PCC_OFF. PCC_OFF is a value that, when ad
to PCC_CNT, gives the total PCC register count for this process, modulo 2**3

Table 20–3 Machine State Terms (Continued)

Term Meaning
Introduction to Alpha Linux(II–C) 20–3
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PME <62> The performance monitoring enable bit. The PME is a one-bit register, locate
bit 62 of PCB[40], that alerts any performance monitoring software/hardware
the system that this process is to have its performance monitored. The im
mentation mechanism for this bit is not specified; it is implementation depend
(IMP).

PS <3:0> The processor status. The PS is a four-bit register that stores the current mo
bit <3> and stores the three-bit IPL in bits <2:0>. The mode is 0 for kernel an
for user.

PTBR <63:0> The page table base register. The PTBR contains the physical page frame
ber (PFN) of the highest level page table.

SP <63:0> Another name for R30. The SP points to the top of the current stack.

PALcode only accesses the kernel stack. The kernel stack must be quadw
aligned whenever PALcode reads or writes it. If the PALcode accesses the
nel stack and the stack is not aligned, a kernel-stack-not-valid halt is initiat
Although PALcode does not access the user stack, that stack should also
least quadword aligned for best performance.

SYSPTBR The system page table physical base register.

Contains the page frame number (pfn) of the highest-level page table to be u
for system-wide addresses equal to or above the value of the virtual add
boundary register.

Not saved in a context switch.

sysvalue <63:0> The system value register. The sysvalue holds the per-processor unique
There can be a hardware register for the sysvalue register or the storage spa
the PALcode scratch memory can be used.

The sysvalue register can only be accessed by kernel mode code and there i
sysvalue register per CPU.

unique <63:0> The process unique value register. The unique register holds the per-pr
unique value. There can be a hardware register for the unique register or the
age space in the PCB can be used.

The unique register can be accessed by both user and kernel code and th
one unique register per process.

USP <63:0> The user stack pointer. The USP is an internal processor register that hold
user stack pointer while in kernel mode. There can be a hardware register for
USP or the storage space in the PCB can be used.

Table 20–3 Machine State Terms (Continued)

Term Meaning
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VIRBND The virtual address boundary register. Used to determine which page table p
ical base register is used. At processor initialization, VIRBND is initialized to
value of -1, which results in all translations using PTBR.

VPTPTR <63:0> The virtual page table pointer. The VPTPTR holds the virtual address of the
level page table.

whami <63:0> The processor number of the current processor. This number is in the r
0…maxCPU–1.

Table 20–3 Machine State Terms (Continued)

Term Meaning
Introduction to Alpha Linux(II–C) 20–5
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Chapter 21

PALcode Instruction Descriptions (II–C)

21.1 Unprivileged PALcode Instructions

Table 21–1 lists the Alpha Linux PALcode unprivileged instruction mnemonics, names,
the environment from which they can be called.

Table 21–1: Unprivileged PALcode Instructions

Mnemonic Name Calling Environment

bpt Breakpoint trap Kernel and user modes

bugchk Bugcheck trap Kernel and user modes

callsys System call User mode

clrfen Clear floating-point enable User mode

gentrap Generate trap Kernel and user modes

imb I-stream memory barrier Kernel and user modes

Described in Section 6.7.3.

rdunique Read unique Kernel and user modes

wrunique Write unique Kernel and user modes
PALcode Instruction Descriptions(II–C) 21–1
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21.1.1 Breakpoint Trap

Format:

Operation:
temp ← PS
if (ps<mode> NE 0) then

USP ← SP ! Mode is user so switch to kernel
SP ← KSP
PS ← 0

endif
SP ← SP - {6 * 8}
(SP+00) ← temp
(SP+08) ← PC
(SP+16) ← GP
(SP+24) ← a0
(SP+32) ← a1
(SP+40) ← a2
a0 ← 0
GP ← KGP
PC ← entIF

Exceptions:

Instruction Mnemonics:

Description:

The breakpoint trap (bpt) instruction switches mode to kernel, builds a stackframe on the
nel stack, loads the GP with the KGP, loads a value of 0 into a0, and dispatches t
breakpoint code pointed to by the entIF register. The registers a1…a2 are UNPREDICTABLE
on entry to the trap handler. The saved PC at (SP+08) is the address of the instruction fo
ing the trap instruction that caused the trap.

bpt ! PALcode format

Kernel stack not valid

bpt Breakpoint trap
21–2 Alpha Linux Software (II–B)
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21.1.2 Bugcheck Trap

Format:

Operation:
temp ← PS
if (PS<mode> NE 0) then

USP ← SP ! Mode is user so switch to kernel
SP ← KSP
PS ← 0

endif
SP ← SP - {6 * 8}
(SP+00) ← temp
(SP+08) ← PC
(SP+16) ← GP
(SP+24) ← a0
(SP+32) ← a1
(SP+40) ← a2
a0 ← 1
GP ← KGP
PC ← entIF

Exceptions:

Instruction Mnemonics:

Description:

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe o
kernel stack, loads the GP with the KGP, loads a value of 1 into a0, and dispatches t
breakpoint code pointed to by the entIF register. The registers a1…a2 are UNPREDICTABLE
on entry to the trap handler. The saved PC at (SP+08) is the address of the instruction fo
ing the trap instruction that caused the trap.

bugchk ! PALcode format

Kernel stack not valid

bugchk Bugcheck trap
PALcode Instruction Descriptions(II–C) 21–3
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21.1.3 System Call

Format:

Operation:
if (PS<mode> EQ 0) then

machineCheck
endif
USP ← SP
SP ← KSP
PS ← 0 ! Mode=kernel
SP ← SP - {6*8}
(SP+00) ← 8 ! PS of mode=user, IPL=0
(SP+08) ← PC
(SP+08) ← GP
GP ← KGP
PC ← entSys

Exceptions:

Instruction Mnemonics:

Description:

The system call (callsys) instruction is supported only from user mode. (Issuing a callsys
kernel mode causes a machine check exception.)

The callsys instruction switches mode to kernel and builds a callsys stack frame. The
loaded with the KGP. The exception then dispatches to the system call code pointed to b
entSys register. On entry to the callsys code, the scratch registers t0 and t8…t11 are
UNPREDICTABLE.

callsys ! PALcode format

Machine check – invalid kernel mode callsys

Kernel stack not valid

callsys System call
21–4 Alpha Linux Software (II–B)
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21.1.4 Clear Floating-Point Enable

Format:

Operation:
FEN ←  0
(PCBB+40)<0> ←  0

Exceptions:

Instruction Mnemonics:

Description:

The clear floating-point enable (clrfen) instruction writes a zero to the floating-point ena
register and to the PCB at offset (PCBB+40)<0>. On return from the clrfen instruction,
scratch registers t0 and t8…t11 are UNPREDICTABLE.

clrfen ! PALcode format

None

clrfen Clear floating-point enable
PALcode Instruction Descriptions(II–C) 21–5
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21.1.5 Generate Trap

Format:

Operation:
temp ← PS
if (PS<mode> NE 0) then

USP ← SP ! Mode is user so switch to kernel
SP ← KSP
PS ← 0

endif
SP ← SP - {6 * 8}
(SP+00) ← temp
(SP+08) ← PC
(SP+16) ← GP
(SP+24) ← a0
(SP+32) ← a1
(SP+40) ← a2
a0 ← 2
GP ← KGP
PC ← entIF

Exceptions:

Instruction Mnemonics:

Description:

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe o
kernel stack, loads the GP with the KGP, loads a value of 2 into a0, and dispatches t
breakpoint code pointed to by the entIF register. The registers a1…a2 are UNPREDICTABLE
on entry to the trap handler. The saved PC at (SP+08) is the address of the instruction fo
ing the trap instruction that caused the trap.

gentrap ! PALcode format

Kernel stack not valid

gentrap Generate trap
21–6 Alpha Linux Software (II–B)
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21.1.6 Read Unique Value

Format:

Operation:
v0 ← unique

Exceptions:

Instruction Mnemonics:

Description:

The read unique value (rdunique) instruction returns the process unique value in v0. The
unique value (wrunique) instruction, described in Section 21.1.7, sets the process unique
register.

rdunique ! PALcode format

None

rdunique Read unique value
PALcode Instruction Descriptions(II–C) 21–7
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21.1.7 Write Unique Value

Format:

Operation:
unique ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write unique value (wrunique) instruction sets the process unique register to the v
passed in a0. The read unique value (rdunique) instruction, described in Section 21.1.6, r
the process unique value.

wrunique ! PALcode format

None

wrunique Write unique value
21–8 Alpha Linux Software (II–B)
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21.2 Privileged PALcode Instructions

The Privileged Alpha Linux PALcode instructions (Table 21–2) provide an abstracted in
face to control the privileged state of the machine.

Table 21–2: Privileged PALcode Instructions

Mnemonic Name

cflush Cache flush

cserve Console service

draina Drain aborts. Described in Section 6.7.1.

halt Halt the processor. Described in Section 6.7.2.

rdmces Read machine check error summary register

rdps Read processor status

rdusp Read user stack pointer

rdval Read system value

retsys Return from system call

rti Return from trap, fault, or interrupt

swpctx Swap process context

swpipl Swap IPL

swppal Swap PALcode image

tbi TB (translation buffer) invalidate

whami Who am I

wrasn Write ASN

wrent Write system entry address

wrfen Write floating-point enable

wripir Write interprocessor interrupt request

wrkgp Write kernal global pointer

wrmces Write machine check error summary register

wrperfmon Performance monitoring function

wrsysptb Write system page table base

wrusp Write user stack pointer

wrval Write system value

wrvirbnd Write virtual address boundary

wrvptptr Write virtual page table pointer

wtint Wait for interrupt
PALcode Instruction Descriptions(II–C) 21–9
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21.2.1 Cache Flush

Format:

Operation:
! a0 contains the page frame number (PFN)
! of the page to be flushed

IF PS<mode> EQ 1 THEN
{Initiate opDec fault}

{Flush page out of cache(s)}

Exceptions:

Instruction Mnemonics:

Description:

The cflush instruction may be used to flush an entire physical page specified by the PFN
from any data caches associated with the current processor. All processors must impleme
instruction.

On processors that implement a backup power option that maintains only the contents of
ory if a powerfail occurs, this instruction is used by the powerfail interrupt handler to fo
data written by the handler to the battery backed-up main memory. After a cflush, the first
sequent load (on the same processor) to an arbitrary address in the target page is either
from physical memory or from the data cache of another processor.

In some multiprocessor systems, cflush is not sufficient to ensure that the data are ac
written to memory and not exchanged between processor caches. Additional platform-sp
cooperation between the powerfail interrupt handlers executing on each processor m
required.

On systems that implement other backup power options (including none), cflush may r
without affecting the data cache contents.

To order cflush properly with respect to preceding writes, an MB instruction is needed be
the cflush; to order cflush properly with respect to subsequent reads, an MB instructi
needed after the cflush.

cflush !PALcode format

Opcode reserved to Compaq

cflush Cache flush
21–10 Alpha Linux Software (II–B)
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21.2.2 Console Service

Format:

Operation:
! implementation specific

if PS<mode> EQ 1 then
{initiate opDec fault}

else
{implementation-dependent action}

Exceptions:

Instruction Mnemonics:

Description:

This instruction is specific to each PALcode and console implementation and is not inte
for operating system use.

cserve !PALcode format

Opcode reserved to Compaq

cserve Console service
PALcode Instruction Descriptions (II–C)21–11
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21.2.3 Read Machine Check Error Summary

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← MCES

Exceptions:

Instruction Mnemonics:

Description:

The read machine check error summary (rdmces) instruction returns the MCES (ma
check error summary) register in v0. On return from the rdmces instruction, registers t0
t8…t11 are UNPREDICTABLE.

rdmces ! PALcode format

Opcode reserved to Compaq

rdmces Read machine check error summary
21–12 Alpha Linux Software (II–B)
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21.2.4 Read Processor Status

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← PS

Exceptions:

Instruction Mnemonics:

Description:

The read processor status (rdps) instruction returns the PS in v0. On return from the
instruction, registers t0 and t8…t11 are UNPREDICTABLE.

rdps ! PALcode format

Opcode reserved to Compaq

rdps Read processor status
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21.2.5 Read User Stack Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← USP

Exceptions:

Instruction Mnemonics:

Description:

The read user stack pointer (rdusp) instruction returns the user stack pointer in v0. The
stack pointer is written by the wrusp instruction, described in Section 21.2.22. On return
the rdusp instruction, registers t0 and t8…t11 are UNPREDICTABLE.

rdusp ! PALcode format

Opcode reserved to Compaq

rdusp Read user stack pointer
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21.2.6 Read System Value

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← sysvalue

Exceptions:

Instruction Mnemonics:

Description:

The read system value (rdval) instruction returns the sysvalue in v0, allowing access to a
per-processor value for use by the operating system. On return from the rdval instruction
isters t0 and t8…t11 are UNPREDICTABLE.

rdval !PALcode format

Opcode reserved to Compaq

rdval Read system value
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21.2.7 Return from System Call

Format:

Operation:
if {PS<mode> EQ 1} then

{Initiate opDec fault}
endif
tmp ← (SP+08)
GP ← (SP+16)
KSP ← SP + {6*8}
SP ← USP
intr_flag = 0 ! Clear the interrupt flag
lock_flag = 0 ! Clear the load lock flag
PS ← 8 ! Mode=user
PC ← tmp

Exceptions:

Instruction Mnemonics:

Description:

The return from system call (retsys) instruction pops the return address and the user mod
bal pointer from the kernel stack. It then saves the kernel stack pointer, sets the mode to
sets the IPL to zero, and enters the user mode code at the address popped off the sta
return from the retsys instruction, registers t0 and t8…t11 are UNPREDICTABLE.

retsys ! PALcode format

Opcode reserved to Compaq
Kernel stack not valid (halt)

retsys Return from system call
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21.2.8 Return from Trap, Fault or Interrupt

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
tempps ← (SP+0)
temppc ← (SP+8)
GP ← (SP+16)
a0 ← (SP+24)
a1 ← (SP+32)
a2 ← (SP+40)
SP ← SP + {6 * 8}
if { tempps<3> EQ 1} then

KSP ← SP ! New mode is user
SP ← USP
tempps ← 8

endif
intr_flag = 0 ! Clear the interrupt flag
lock_flag = 0 ! Clear the load lock flag
PS ← tempps<3:0> ! Set new PS
PC ← temppc

Exceptions:

Instruction Mnemonics:

Description:

The return from fault, trap, or interrupt (rti) instruction pops registers (a0…a2, and GP), the
PC, and the PS, from the kernel stack. If the new mode is user, the kernel stack is saved a
user stack is restored.

rti ! PALcode format

Opcode reserved to Compaq

Kernel stack not valid (halt)

rti Return from trap, fault, or interrupt
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21.2.9 Swap Process Context

Format:

Operation:
if (PS<mode> EQ 1)

{Initiate opDec fault}
endif
(PCBB) ← SP ! Save current state
(PCBB+8) ← USP
tmp ← PCC
tmp1 ← tmp<31:0> + tmp<63:32>
(PCBB+24)<31:0> ← tmp1<31:0>
v0 ← PCBB ! Return old PCBB
PCBB ← a0 ! Switch PCBB
SP ← (PCBB) ! Restore new state
USP ← (PCBB+8)
oldPTBR ← PTBR
PTBR ← (PCBB+16)
tmp1 ← (PCBB+24)
PCC<63:32> ← {tmp1 - tmp}<31:0>
FEN ← (PCBB+40)
if {process unique register implemented} then

(v0+32) ← unique
unique ← (PCBB+32)

endif
if {ASN implemented}

ASN ← tmp1<63:32>
else

if (oldPTBR NE PTBR)
{Invalidate all TB entries with ASM=0}

endif
endif

Exceptions:

swpctx ! PALcode format

Opcode reserved to Compaq
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Instruction Mnemonics:

Description:

The swap process context (swpctx) instruction saves the current process data in the c
PCB. Then swpctx switches to the PCB passed in a0 and loads the new process contex
old PCBB is returned in v0.

The process context and the PCB are described in Chapter 12.

On return from the swpctx instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

swpctx Swap process context
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21.2.10 Swap IPL

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← PS<IPL>
PS<IPL> ← a0<2:0>

Exceptions:

Instruction Mnemonics:

Description:

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in v0 and
the IPL to the value passed in a0. On return from the swpipl instruction, registers t0, t8…t11,
and a0 are UNPREDICTABLE.

swpipl ! PALcode format

Opcode reserved to Compaq

swpipl Swap IPL
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21.2.11 Swap PALcode Image

Format:

Operation:
! a0 contains the new PALcode identifier
! a1:a5 contain implementation-specific entry parameters
! v0 receives the following status:
! 0 success (PALcode was switched)
! 1 unknown PALcode variant
! 2 known PALcode variant, but PALcode not loaded

if (PS<mode> EQ 1) then
(Initiate opDec fault)

else
if {a0 < 256} then

begin
if {a0 invalid} then

v0 ← 1
{return}

else if {PALcode not loaded} then
v0 ← 2
{return}

else
tmp1 ← {PALcode base}

end
else

tmp1 = a0
{flush instruction cache}
{invalidate all translation buffers}
{perform additional PALcode variant-specific initialization}
{transfer control to PALcode entry at physical address in tmp1}

Exceptions:

Instruction Mnemonics:

swppal !PALcode format

Opcode reserved to Compaq

swppal Swap PALcode image
PALcode Instruction Descriptions (II–C)21–21
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Description:

The swap Palcode image (swppal) instruction causes the current (active) PALcode
replaced by the specified new PALcode image. The swppal instruction is intended for us
operating systems only during bootstraps and by consoles during transitions to conso
mode.

The PALcode descriptor contained in a0 is interpreted as either a PALcode variant or the
physical address of the new PALcode image. If a variant, the PALcode image must have
loaded previously. No PALcode loading occurs as a result of this instruction.

After successful PALcode switching, the register contents are determined by the param
passed in a1…a5 or are UNPREDICTABLE. A common parameter is the address of a n
PCB. In this case, the stack pointer register and PTBR are determined by the contents o
PCB; the contents of other registers such as a0…a5 may be UNPREDICTABLE.

See Section 27.3.2, for information on using this instruction.
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21.2.12 TB Invalidate

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
case a0 begin

1: ! tbisi

{Invalidate ITB entry for va=a1 1}
break;

2: ! tbisd

{Invalidate DTB entry for va=a1 1}
break;

3: ! tbis

{Invalidate both ITB and DTB entry for va=a1 1}
break;

-1: ! tbiap
{Invalidate all TB entries with ASM=0}
break;

-2: ! tbia
{Flush all TBs}
break;

otherwise:
break;

endcase

Exceptions:

Instruction Mnemonics:

Description:

The TB invalidate (tbi) instruction removes specified entries from the I and D translation b
ers (TBs) when the mapping changes. The tbi instruction removes specific entry types bas
a CASE selection of the value passed in register a0. On return from the tbi instruction, r
ters t0, t8…t11, a0, and a1 are UNPREDICTABLE. See Section 22.7 for information
translation buffers and Section 22.8 for information on address space numbers (AS
because ASNs can implicitly modify TB operations.

tbi ! PALcode format

1 Operation assumes no behavior modification from ASNs.

Opcode reserved to Compaq

tbi TB (translation buffer) invalidate
PALcode Instruction Descriptions (II–C)21–23
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21.2.13 Who Am I

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
v0 ← whami

Exceptions:

Instruction Mnemonics:

Description:

The who am I (whami) instruction returns the processor number for the current processor in v0.
The processor number is in the range 0 to the number of processors minus one (0…maxCPU–
1) that can be configured in the system. On return from the whami instruction, registers t0
t8…t11 are UNPREDICTABLE.

whami ! PALcode format

Opcode reserved to Compaq

whami Who am I
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21.2.14 Write ASN

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif

ASN <- a0<31:0>
(PCBB+24)<63:32> <- a0<31:0>

Exceptions:

Instruction Mnemonics:

Description:

The write ASN (wrasn) instruction writes a new ASN. It also writes the value for ASN to
PCB at offset (PCBB+24)<63:32>. On return from the wrasn instruction, registers t0, t8 ...t1
and a0 are UNPREDICTABLE.

wrasn ! PALcode format

Opcode reserved to Compaq

wrasn Write ASN
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21.2.15 Write System Entry Address

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
case a1 begin

0: ! Write the EntInt:
entInt ← a0
break;

1: ! Write the EntArith:
entArith ← a0
break;

2: ! Write the EntMM:
entMM ← a0
break;

3: ! Write the EntIF:
entIF ← a0
break;

4: ! Write the EntUna:
entUna ← a0
break;

5: ! Write the EntSys:
entSys ← a0
break;

otherwise:
break;

endcase;

Exceptions:

Instruction Mnemonics:

Description:

The write system entry address (wrent) instruction determines the specific system entry
based on a CASE selection of the value passed in register a1. The wrent instruction the
the virtual address of the specified system entry point to the value passed in a0.

For best performance, all the addresses should be kseg addresses. (See Section 22.1 fo
nition of kseg addresses.) On return from the wrent instruction, registers t0, t8…t11, a0, and
a1 are UNPREDICTABLE.

wrent ! PALcode format

Opcode reserved to Compaq

wrent Write system entry address
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21.2.16 Write Floating-Point Enable

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
FEN ← a0<0>
(PCBB+40)<0> ← a0 AND 1

Exceptions:

Instruction Mnemonics:

Description:

The write floating-point enable (wrfen) instruction writes bit zero of the value passed in a
the floating-point enable register. The wrfen instruction also writes the value for FEN to
PCB at offset (PCBB+40)<0>. On return from the wrfen instruction, registers t0, t8…t11, and
a0 are UNPREDICTABLE.

wrfen ! PALcode format

Opcode reserved to Compaq

wrfen Write floating-point enable
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21.2.17 Write Interprocessor Interrupt Request

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
IPIR ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write interprocessor interrupt request (wripir) instruction generates an interprocessor
rupt on the processor number passed in register a0. The interrupt request is recorded
target processor and is initiated when the proper enabling conditions are present. On
from wripir, registers t0, t8…t11, and a0 are UNPREDICTABLE.

Programming Note:

The interrupt need not be initiated before the next instruction is executed on the reque
processor, even if the requesting processor is also the target processor for the reques

wripir ! PALcode format

Opcode reserved to Compaq

wripir Write interprocessor interrupt request
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21.2.18 Write Kernel Global Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
KGP ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write kernel global pointer (wrkgp) instruction writes the value passed in a0 to the ke
global pointer (KGP) internal register. The KGP is used to load the GP on exceptions
return from the wrkgp instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

wrkgp ! PALcode format

Opcode reserved to Compaq

wrkgp Write kernal global pointer
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21.2.19 Write Machine Check Error Summary

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
if (a0<0> EQ 1) then MCES<0> ← 0
if (a0<1> EQ 1) then MCES<1> ← 0
if (a0<2> EQ 1) then MCES<2> ← 0
MCES<3>← a0<3>
MCES<4>← a0<4>

Exceptions:

Instruction Mnemonics:

Description:

The write machine check error summary (wrmces) instruction clears the machine che
progress bit and clears the processor- or system-correctable error in progress bit in the M
register. The instruction also sets or clears the processor- or system-correctable error rep
enabled bit in the MCES register. On return from the wrmces instruction, registers t0, t8…t11
are UNPREDICTABLE.

wrmces ! PALcode format

Opcode reserved to Compaq

wrmces Write machine check error summary
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21.2.20 Performance Monitoring Function

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
! a0 contains implementation specific input values
! a1 contains implementation specific output values
! v0 may return implementation specific values
! Operations and actions taken are implementation specific

Exceptions:

Instruction Mnemonics:

Description:

The performance monitoring instruction (wrperfmon) alerts any performance monitoring
ware/hardware in the system to monitor the performance of this process. The wrperfmo
function arguments and actions are platform and chip dependent, and when defined
implementation, are described in Appendix E.

Registers a0 and a1 contain implementation-specific input values. Implementation-specifi
ues may be returned in register v0. On return from the wrperfmon instruction, registers a
t0, and t8…t11 are UNPREDICTABLE.

wrperfmon ! PALcode format

Opcode reserved to Compaq

wrperfmon Performance monitoring
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21.2.21 Write System Page Table Base

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif

SYSPTBR<−   a0

Exceptions:

Instruction Mnemonics:

Description:

The write system page table base (wrsysptb) instruction writes the System Page Table
cal Base (SYSPTBR) register. It contains the page frame number (pfn) of the highest
page table to be used for system-wide addresses equal to or above the value of the V
Address Boundary Register. The System Page Table and Virtual Address Boundary base
ters are described in Section 22.6.

On return from the wrsysptb instruction, registers t0, t8..t11, and a0 are UNPREDICTABLE

Note that this register is not context switched.

wrsysptb ! PALcode format

Opcode reserved to Compaq

wrsysptb Write system page table base
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21.2.22 Write User Stack Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
USP ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write user stack pointer (wrusp) instruction writes the value passed in a0 to the user
pointer. On return f rom the wrusp instruct ion, registers t0, t8… t11, and a0 are
UNPREDICTABLE.

wrusp ! PALcode format

Opcode reserved to Compaq

wrusp Write user stack pointer
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21.2.23 Write System Value

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
sysvalue ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write system value (wrval) instruction writes the value passed in a0 to a 64-bit sy
value register. The combination of wrval with the rdval instruction, described in Sec
21.2.6, allows access by the operating system to a 64-bit per-processor value. On return
the wrval instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

wrval !PALcode format

Opcode reserved to Compaq

wrval Write system value
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21.2.24 Write Virtual Address Boundary

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif

VIRBND <−   a0

Exceptions:

Instruction Mnemonics:

Description:

The write virtual address boundary (wrvirbnd) instruction writes the virtual address boun
register (VIRBND), used to determine which page table physical base register is used
System Page Table and Virtual Address Boundary base registers are described in Sectio
UNPREDICTABLE operations result if the address is not 64-bit aligned.

On return from the wrvirbnd instruction, registers t0, t8..t11, and a0 are UNPREDICTABLE

At processor initialization, VIRBND is initialized to a value of -1, which results in all trans
tions using PTBR. The value in SYSPTBR is thus effectively ignored.

wrvirbnd ! PALcode format

Opcode reserved to Compaq

wrvirbnd Write virtual address boundary
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21.2.25 Write Virtual Page Table Pointer

Format:

Operation:
if (PS<mode> EQ 1) then

{Initiate opDec fault}
endif
VPTPTR ← a0

Exceptions:

Instruction Mnemonics:

Description:

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed in a0 to
virtual page table pointer register (VPTPTR). The VPTPTR is described in Section 22.6.2
return from the wrvptptr instruction, registers t0, t8…t11, and a0 are UNPREDICTABLE.

wrvptptr ! PALcode format

Opcode reserved to Compaq

wrvptptr Write virtual page table pointer
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21.2.26 Wait for Interrupt

Format:

Operation:

! a0 contains the maximum number of interval clock ticks to skip
! v0 receives the number of interval clock ticks actually skipped

IF (implemented)
BEGIN

IF {Implementation supports skipping multiple
clock interrupts} THEN

{Ticks_to_skip ←  a0}

{Wait no longer than any non-clock interrupt or the first clock
interrupt after ticks_to_skip ticks have been skipped}

IF {Implementation supports skipping multiple
clock interrupts} THEN

v0 ←number of interval clock ticks actually skipped
ELSE

v0 ←  0
END
ELSE

v0 ←  0
{return}

Exceptions:

Instruction Mnemonics:

Description:

The wait for interrupt instruction (wtint) requests that, if possible, the PALcode wait for
first of either of the following conditions before returning:

• Any interrupt other than a clock tick

• The first clock tick after a specified number of clock ticks has been skipped

The wtint instruction returns in v0 the number of clock ticks that are skipped. The num
returned in v0 is zero on hardware platforms that implement this instruction, but where it is
possible to skip clock ticks.

wtint ! PALcode format

Opcode reserved to Compaq

wtint Wait for interrupt
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The operating system can specify a full 64-bit integer value in a0 as the maximum numb
interval clock ticks to skip. A value ofzero in a0 causes no clock ticks to be skipped.

Note the following if specifying in a0 the maximum number of interval clock ticks to skip:

• Adherence to a specified value in a0 is at the discretion of the PALcode; the PALc
may complete execution of wtint and proceed to the next instruction at any time u
the specified maximum, even if no interrupt or interval-clock tick has occurred. Tha
wtint may return before all requested clock ticks are skipped.

• The PALcode must complete execution of wtint if an interrupt occurs or if an int
val-clock tick occurs after the requested number of interval-clock ticks has b
skipped.

In a multiprocessor environment, only the issuing processor is affected by an issued
instruction.

The counter, PCC, may increment at a lower rate or maystop entirely during wtint execution.
This side effect is implementation dependent.
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Chapter 22

Memory Management (II–C)

22.1 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location within the vir
address space. Implementations subset the supported address space to one of several s
function of page size and page table depth. The minimal supported virtual address size
bits. If an implementation supports less than 64-bit virtual addresses, it must check that a
VA<63:vaSize> bits are equal to VA<vaSize–1>. This gives two disjoint ranges for valid
tual addresses. For example, for a 43-bit virtual address space, valid virtual address rang
0…3FFFFFFFFFF16 and FFFFFC000000000016…FFFFFFFFFFFFFFFF16. Access to virtual

addresses outside an implementation’s valid virtual address range cause an access-vi

fault1.

The virtual address space is divided into three segments: seg0, seg1, and kseg.

The two bits, va<vaSize–1:vaSize–2>, select a segment as shown in Table 22–1.

For kseg, the relocation, sharing, and protection are fixed. The base of kseg is loca
LEFT_SHIFT(FFFFFC000000000016 , (vaSize–43)).

For seg0 and seg1, the virtual address space is broken into pages, which are the units of
tion, sharing, and protection. The page size ranges from 8K bytes to 64K bytes. There
system software should allocate regions with differing protection on 64K-byte virtual add
boundaries to ensure image compatibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of the virtual ad
space to the available physical address space. The operating system controls th
tual-to-physical address mapping tables and saves the inactive (but used) parts of the
address space on external storage media.

1 The highest physical address that can be addressed by kseg in 43-bit addressing mode can be extended, under certain circu
stances, by an optional 48-bit/43-bit virtual addressing mode, described in Section E.2.1.

Table 22–1 Virtual Address Space Segments

VA<vaSize–1:vaSize–2> Name Mapping Access Control

00 seg0 Mapped via 3 levels of PTEs Programmed in PTE

01 seg0 Mapped via 2 levels of PTEs Programmed in PTE

10 kseg PA← SEXT(VA<(vaSize–3):0>) Kernel Read/Write

11 seg1 Mapped via the TB Programmed in PTE
Memory Management (II–C)22–1
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22.1.1 Segment Seg0 and Seg1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in mem
seg0 or seg1 virtual address consists of three level-number fields and a byte_within_page
as shown in Figure 22–1 .

Figure 22–1 Virtual Address Format

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a partic
implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes, 32K bytes, and
bytes. The low-order bit in each level-number field is 0 and each field is 0…n bits, where for
example,n is 9 for an 8K page size.

An implementation may support a smaller virtual address space than the page size allo
including only a subset of low-order bits in Level1. The smaller virtual address space mu
at least 43 bits and must be large enough that at least two bits of Level1 are implemented.

The level-number fields are a function of the page size; all page table entries at any given
do not exceed one page. The PFN field in the PTE is always 32 bits wide. Thus, as the
size grows, the virtual and physical address size also grows.

Table 22–2 shows the virtual address options and physical address size (in bits) calcula
The physical address (bits) column is the maximum physical address allowed by the sma
the kseg size or available physical address bits for a given page size. The available ph
address bits is calculated by combining the number of bits in the PFN (always 32) with
number of bits in the byte_within_page field. The kseg segment size is calculated from th
tual address size minus 2.

Table 22–2 Virtual Address Options

Page Size
(bytes)

Byte_within_page
(bits)

Level Size
(bits)

Virtual
Address (bits)

Maximum
Physical
Address (bits)

Physical Address
Limited by

8K 13 10 43 41 kseg

16K 14 11 43–471

1 Level1 page table might be partially utilized for this page size.

45 kseg

32K 15 12 43–511 47 seg0/seg1

64K 16 13 44–551 48 seg0/seg1

Level3Level2Level1* byte_within_pageSEXT (VA<M>)

63 0M L

* Level1 <M:L+1> contains SEXT(VA<L>), where L is the highest numbered implemented VA bit.
22–2 Alpha Linux Software (II–B)
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22.1.2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in mem
kseg virtual address consists of segment select field with a value of 102 and a physical address

field. The segment select field is the two bits va<vaSize–1:vaSize–2>. The physical ad
field is va<vaSize–3:0>.

Figure 22–2 Kseg Virtual Address Format

22.2 Physical Address Space

Physical addresses are at most vaSize–2 bits. This allows all of physical memory
accessed via kseg. A processor may choose to implement a smaller physical address sp
not implementing some number of high-order bits.

The two most significant implemented physical address bits delineate the four regions i
physical address space. Implementations use these bits as appropriate for their system
example, in a workstation with a 30-bit physical address space,bit<29> might select between
memory and non-memory-like regions, and bit <28> could enable or disable cacheing
Section 5.2.4).

22.3 Memory Management Control

Memory management is always enabled. Implementations must provide an environme
PALcode to service exceptions and to initialize and boot the processor. For example PAL
might run with I-stream mapping disabled.

22.4 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate seg0 and seg1
addresses to physical addresses. A PTE contains hardware and software control inform
and the physical page frame number (PFN). A PTE is a quadword with fields as shown in
ure 22–3 and described in Table 22–3.

Segment Select=10 Physical AddressSEXT (segment_select<1>)

63 0

2

Memory Management (II–C)22–3
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Figure 22–3 Page Table Entry (PTE)

Table 22–3 Page Table Entry (PTE) Bit Summary

Bits Name Meaning

63–32 PFN Page frame number.

The PFN field always points to a page boundary. If V is set, the PFN is conca
nated with the byte_within_page bits of the virtual address to obtain the phys
address.

31–16 SW Reserved for software.

15–14 RSV0 Reserved for hardware; SBZ.

13 UWE User write enable.

Enables writes from user mode. If this bit is 0 and a store is attempted while
user mode, an access-violation fault occurs. This bit is valid even when V=0.

Note:

If a write enable bit is set and the corresponding read enable bit
not, the operation of the processor is UNDEFINED.

12 KWE Kernel write enable.

Enables writes from kernel mode. If this bit is 0 and a store is attempted while
kernel mode, an access-violation fault occurs. This bit is valid even when V=0

11–10 RSV1 Reserved for hardware; SBZ.

9 URE User read enable.

Enables reads from user mode. If this bit is 0 and a load or instruction fetch
attempted while in user mode, an Access Violation occurs. This bit is valid ev
when V=0.

8 KRE Kernel read enable.

Enables reads from kernel mode. If this bit is 0 and a load or instruction fetch
attempted while in kernel mode, an access-violation fault occurs. This bit is va
even when V=0.

7 NOMB Translation buffer miss memory barrier.

When set, the requirement described in Section 5.6.4.3 is lifted for ensuring
all processors using a newly valid PTE also see any new contents of the rel
page. This allows the TB-miss code to avoid potentially expensive global s
chronization. Software is expected to set this bit on PTEs when it is known t
the page contents are already visible to all processors.

SW

63 8 0
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6–5 GH Granularity hint (GH).

Software may set these bits as follows to supply a hint to translation buffer imp
mentations that a block of pages can be treated as a single larger page:

Notes:

1. The block is a group of physically contiguous pages that are natura
aligned both virtually and physically. Within the block, the PFN field in
each PTE must map the correct physical page for the virtual page
which the PTE corresponds.

2. Within the block, all PTEs have the same values for bits <15:0>, that
protection, fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry.

It is UNPREDICTABLE which PTE values within the block are used if the gran
ularity bits are set inconsistently.

Programming Note:

A granularity hint might be appropriate for a large memory structu
such as a frame buffer or nonpaged pool that, in fact, is mapped i
contiguous virtual pages with identical protection, fault, and val
bits.

4 ASM Address space match.

When set, this PTE matches all address space numbers. For a given VA, A
must be set consistently in all processes; otherwise, the address mappin
UNPREDICTABLE.

3 FOE Fault on execute.

When set, a Fault on Execute exception occurs on an attempt to execute any
tion in the page.

Table 22–3 Page Table Entry (PTE) Bit Summary (Continued)

Bits Name Meaning

PTE<6:5>
Page Size Before GH:
8KB 16KB 32KB 64KB

Resulting Page Size:

00 8KB 16KB 32KB 64KB

01 64B 128KB 256KB 2MB

10 512KB 1MB 2MB 64MB

11 4MB 8MB 16MB 512MB
Memory Management (II–C)22–5
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22.4.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions. For
ple, the operating system may set or clear the V bit, change the PFN field as pages are m
to and from external storage media, or modify the software bits. The processor hardware
changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing a PT
field at a time can cause incorrect system operation, such as setting PTE<V> with one in
tion before establishing PTE<PFN> with another. Execution of an interrupt service rou
between the two instructions could use an address that would map using the inconsisten
Software can solve this problem by building a complete new PTE in a register and then
ing the new PTE to the page table by using an STQ instruction.

Multiprocessing complicates the problem. Another processor could be reading (or even c
ing) the same PTE that the first processor is changing. Such concurrent access must p
consistent results. Software must use some form of software synchronization to modify
that are already valid. Whenever a processor modifies a valid PTE, it is possible that othe
cessors in a multiprocessor system may have old copies of that PTE in their translation b
When software changes a PTE, each processor may use either the old or the new PTE
software performs a TB invalidate on that processor (after which, the processor may use o
the new PTE). An example of a case where either the old or new PTE could usefully be us
when the NOMB bit is transitioned from zero to one. Hardware must ensure that aligned q
word reads and writes are atomic operations. Hardware must not cache invalid PTEs (
with the V bit equal to 0) in translation buffers. See Section 22.7 for more information.

22.5 Memory Protection

Memory protection is the function of validating whether a particular type of access is allowed
to a specific page from a particular access mode. Access to each page is controlled by a p
tion code that specifies, for each access mode, whether read or write references are al
The processor uses the following to determine whether an intended access is allowed:

• The virtual address, which is used to either select kseg mapping or provide the i
into the page tables

2 FOW Fault on write.

When set, a Fault on Write exception occurs on an attempt to write any loca
in the page.

1 FOR Fault on read.

When set, a Fault on Read exception occurs on an attempt to read any locatio
the page.

0 V Valid.

Indicates the validity of the PFN field. When V is set, the PFN field is valid fo
use by hardware. When V is clear, the PFN field is reserved for use by softw
The V bit does not affect the validity of PTE<15:1> bits.

Table 22–3 Page Table Entry (PTE) Bit Summary (Continued)

Bits Name Meaning
22–6 Alpha Linux Software (II–B)
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• The intendedaccess type (read or write)

• The current access mode base on processor mode

For protection checks, the intended access is read for data loads and instruction fetche
write for data stores.

22.5.1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a running pro
stored in the processor status mode bit (PS<mode>).

22.5.2 Protection Code

Every page in the virtual address space is protected according to its use. A program m
prevented from reading or writing portions of its address space. A protection code associate
with each page describes the accessibility of the page for each processor mode.

For seg0 and seg1, the code allows a choice of read or write protection for each proc
mode. For each mode, access can be read/write, read-only, or no-access. Read and write
sibility and the protection for each mode are specified independently.

For kseg, the protection code is kernel read/write, user no-access.

22.5.3 Access-Violation Faults

An access-violation memory-management fault occurs if an illegal access is attempte
determined by the current processor mode and the page’s protection.

22.6 Address Translation for Seg0 and Seg1

The page tables can be accessed from physical memory, or (to reduce overhead) c
mapped to a linear region of the virtual address space.

Additionally, an optional reduced page table (RPT) mode is defined, which allows more
cient mapping of very large blocks of memory.

The following sections describe the access methods.

22.6.1 Physical Access for Seg0 and Seg1 PTEs

In systems with Virtual Address Boundary and System Page Table Base registers, the v
address is compared against the Virtual Address Boundary register. Lower addresses u
PTBR as a physical page table base; higher or equal addresses use the SYSPTBR registe

Seg0 and seg1 address translation can be performed by accessing entries in a multilevel page
table structure. The page table base register (PTBR or SYSPTBR) contains the physica
frame number (PFN) of the highest-level (Level 1) page table.

Bits <Level1> of the virtual address are used to index into the Level 1 page table to obtai
physical PFN of the base of the next level (Level 2) page table. Bits <Level2> of the vir
address are used to index into the Level 2 page table to obtain the physical PFN of the b
the next level (Level 3) page table. Bits <Level3> of the virtual address are used to inde
Memory Management (II–C)22–7
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Level 3 page table to obtain the physical PFN of the page being referenced. The PFN is c
enated with virtual address bits <byte_within_page> to obtain the physical address o
location being accessed.

If part of any page table does not reside in a memory-like region, or does reside in nonex
memory, the operation of the processor is UNDEFINED.

If all the first- and second-level PTEs are valid, the protection bits are ignored; the prote
code in the Level 3 PTE is used to determine accessibility. If a higher-level PTE (numeric
any below Level 3) is invalid, an access-violation fault occurs if the PTE<KRE> equals z
An access-violation fault on any higher-level PTE implies that all lower-level page tab
mapped by that PTE do not exist.

The algorithm to generate a physical address from a seg0 or seg1 virtual address follows:

IF {SEXT(VA<(vaSize-1):0>) neq VA} THEN
{ initiate access-violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN

ptbr_value <- PTBR
ELSE

ptbr_value <- SYSPTBR
ELSE

ptbr_value <- PTBR

! Read Physical
level1_pte ← (   {  ptbr_value * page_size} + { 8 * VA<level1} )

IF level1_pte<v> EQ 0 THEN
IF level1_pte<KRE> eq 0 THEN

{ initiate access-violation fault}
ELSE

{ initiate translation-not-valid fault}
! Read physical:
level2_pte ¨ ({level1_pte<PFN> * page_size} + {8 * VA<level2>} )
IF level2_pte<v> EQ 0 THEN

IF level2_pte<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

! Read physical:
level3_PTE ← ({level2_pte<PFN> * page_size} + {8 * VA<level3>} )

IF {{{level3_pte<UWE> eq 0}AND {write access} AND {ps<mode> EQ 1}} OR
{{level3_pte<URE> eq 0} AND {read access} AND {ps<mode> EQ 1}} OR
{{level3_pte<KWE> eq 0}AND {write access} AND {ps<mode> EQ 0}} OR
{{level3_pte<KRE> eq 0}AND {read access} AND {ps<mode> EQ 0}}}

THEN
{initiate memory-management fault}

ELSE
IF level3_pte<v> EQ 0 THEN

{initiate memory-management fault}
22–8 Alpha Linux Software (II–B)
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IF { level3_pte<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF { level3_pte<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}

IF { level3_pte<FOE> eq 1} AND {execute access} THEN
{initiate memory-management fault}

Physical_address ← {level3_pte<PFN> * page_size} OR VA<byte_within_page>

22.6.2 Virtual Access for Seg0 or Seg1 PTEs

The page tables can be mapped into a linear region of the virtual address space, reduc
overhead for seg0 and seg1 PTE accesses. If SYSPTBR and VIRBND are implemented
must be taken to ensure that the Level 3 page tables defined by both PTBR and SYSPTB
mapped at the same virtual address. This is required so a single VPTPTR can be used r
less of which base register is determined to be used based on the value in VIRBND.
physical PTE fetch defined in Section 22.6.1 enter the proper mappings into the TB.)
SYSPTBR and VIRBND registers are written by the wrsysptb and wrvirbnd PALcode inst
tions, described in Sections 21.2.21 and 21.2.24, respectively.

The mapping must be created exactly as follows because PALcode implementations m
depend on details of the mapping.

1. Select a 2(3*lg(pageSize/8))+3) byte-aligned region (an address wit
3*lg(pageSize/8)+3 low-order zeros) in the seg0 or seg1 address space.

2. Create a PTE in each of the page tables defined by PTBR and SYSPTBR (if im
mented) to map the page tables as follows.

PTE = 0 ! Initialize all fields to zero
! Set the PFN to the Level 1 pagetable:
PTE<63:32> = PFN of Level 1 pagetable
PTE<8> = 1 ! Set the kernel read enable bit
PTE<0> = 1 ! Set the valid bit

3. Set the page table entry that corresponds to the VPTPTR to the created Level 1 PT

4. Set all Level 1 and Level 2 valid PTEs to allow kernel read access. With this setu
place, the algorithm to fetch a seg0 or seg1 PTE is as follows, wherepSrepresents pag-
eSize:

tmp ←   LEFT_SHIFT (va, {64 - {{lg(pS)* 4} - 9}})
tmp ←   RIGHT_SHIFT (tmp, {64 - {{lg(pS)* 4} - 9} + lg(pS)-3})
tmp ← VPTB OR tmp
tmp<2:0> ← 0
level3_PTE ← (tmp) ! Load PTE using its virtual address

5. Set the virtual page table pointer (VPTPTR) with a write virtual page table poin
instruction (wrvptptr) to the selected value.

The virtual access method is used by PALcode for most TB fills.

Implementation Note:

Assume the following:

• A system with a 52-bit virtual address size.
Memory Management (II–C)22–9
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• VPTB is the index of the Level 1 PTE, which is self-referencing.

• The virtual address is in seg0 or seg1.

For a virtual address B, the address to virtually access the Level 3 PTE is as follows.
double-miss TB fill flow is a three-level flow.

Figure 22–4 Three-Level Page Table Mapping

22.6.3 Reduced Page Table (RPT) Mode

The reduced page table (RPT) mode is an optional extension of 64KB page size mode. A
tion of the address space is mapped by one fewer page table levels, allowing each of the
in the lowest-level page table to map a 512MB page. In implementations that support gran
ity hints in hardware, applications can use these hints to make more efficient use o
translation buffer. Applications that can use the 512MB granularity hint in 64KB page
mode can use RPT mode for additional benefits.

With the 512MB granularity hint but without RPT, every entry in the Level3 page table m
the same 512MB page. With RPT, that Level3 page table is eliminated entirely, and the Le
PTE that would normally point to that Level3 page table is used to directly map the 512
page.

Therefore, in an RPT region, there is elimination of redundant page table pages and compre
sion of page table space. The compressed PTEs are more likely to fit in hardware cach
there is locality of reference, a new PTE that is needed to satisfy a mapping is more likely
present in the cache. Additionally, a single TB entry that maps the VA of the lowest-level p
table now allows access to PTEs mapping 4TB, rather than 512MB, of memory.

In order to use RPT mode, the feature must be available and enabled in the implement
and:

• Use the 64KB page size.

• Every L2 PTE in the reduced page table region must havePTE<GH>=112, that is, a
512MB page size.

• The PFN field of the PTE must refer to a 512 MB aligned page.

• The RPT region is selected by usings VAs such thatVA<vaSize-1:vaSize-2>=01 2.

22.6.3.1 Physical Access for Page Table Entries in Reduced Page Table Mode

Physical address translation is performed by accessing entries in a two-level page table
ture. The Page Table Base Register (PTBR) contains the physical Page Frame Number
of the highest-level (Level1) page table.

In systems that implement the Virtual Address Boundary register (VIRBND), the System P
Table Base Register (SYSPTBR) contains the PFN of an alternate highest-level page ta
such systems, the virtual address to be translated is compared against the address st
VIRBND. Translations of Level2 addresses begin with the PFN in PTBR as the highest-

B<22:13>B<32:23>B<42:33> 0SEXT (VPTB)

63 0

VPTB

4243 3233 2223 1213 0203
22–10 Alpha Linux Software (II–B)
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page table. Translations of Level1 addresses use the PFN in SYSPTBR as the highes
page table. The VIRBND and SYSPTBR registers are described in Sections 13.3.24
13.3.18, respectively.

Level1 is the highest-level page table. Bits <Level1> of the virtual address are used to i
into the Level1 page table to obtain the physical PFN of the base of the next level (Lev
page table. Bits <Level2> of the virtual address are used to index into the Level2 page ta
obtain the physical PFN of the page being referenced. The PFN is concatenated with v
address bits <byte_within_page> to obtain the physical address of the location being acce

If part of any page table resides in I/O space, or in nonexistent memory, the operation o
processor is UNDEFINED.

If the Level1 PTE is valid, the protection bits are ignored; the protection code in the Le
PTE is used to determine accessibility. If a Level1 PTE is invalid, an access-violation
occurs if the PTE<KRE> equals zero. An access-violation fault on any Level1 PTE imp
that all Level2 page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<(vaSize-1):0>) neq VA} THEN
{ initiate access-violation fault}

IF (VIRBND in use) THEN
IF (VA LTU VIRBND) THEN

ptbr_value <- PTBR
ELSE

ptbr_value <- SYSPTBR
ELSE

ptbr_value <- PTBR

! Read Physical
level1_pte ← (   {  ptbr_value * page_size} + { 8 * VA<level1} )

IF level1_pte<v> EQ 0 THEN
IF level1_pte<KRE> eq 0 THEN

{ initiate access-violation fault}
ELSE

{ initiate translation-not-valid fault}
! Read physical:
level2_pte ¨ ({level1_pte<PFN> * page_size} + {8 * VA<level2>} )

IF {{{level2_pte<UWE> eq 0}AND {write access} AND {ps<mode> EQ 1}} OR
{{level2_pte<URE> eq 0} AND {read access} AND {ps<mode> EQ 1}} OR
{{level2_pte<KWE> eq 0}AND {write access} AND {ps<mode> EQ 0}} OR
{{level2_pte<KRE> eq 0}AND {read access} AND {ps<mode> EQ 0}}}

THEN
{initiate memory-management fault}

ELSE
IF level2_pte<v> EQ 0 THEN

{initiate memory-management fault}

IF { level2_pte<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF { level2_pte<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}
Memory Management (II–C)22–11
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IF { level2_pte<FOE> eq 1} AND {execute access} THEN
{initiate memory-management fault}

Physical_Address ← {level2_pte<PFN> * page_size} OR VA<byte_within_RPT_page 1>

22.6.3.2 Virtual Access for Page Table Entries in Reduced Page Table Mode

To reduce overhead associated with the address translation in a multilevel page table stru
the page tables are mapped into a linear region of the virtual address space. The virtual a
of the base of the page table structure is set on a system-wide basis and is contained
VPTB IPR.

When a native mode DTB or ITB miss occurs, it is desirable that the TBMISS flow attemp
load the lowest-level PTE by using a single virtual load instruction without regard to whe
the missing VA is mapped by two levels (RPT) or three levels of page table. (See Section
for the 21364 implementation.)

22.7 Translation Buffer

In order to save actual memory references when repeatedly referencing the same pages
ware implementations include a translation buffer to remember successful virtual add
translations and page states.

When the process context is changed, a new value is loaded into the address space n
(ASN) internal processor register with a swap process context (swpctx) instruction. This c
address translations for pages with PTE<ASM> clear to be invalidated on a processor tha
not implement address space numbers.

Additionally, when the software changes any part (except the software field) of a valid PT
must also execute a tbi instruction. The entire translation buffer can be invalidated by tbia
all ASM=0 entries can be invalidated by tbiap. The translation buffer must not store inv
PTEs. Therefore, the software is not required to invalidate translation buffer entries when
ing changes for PTEs that are already invalid. Changes to PTE<NOMB> are also an exce
to this requirement. This bit only has an effect when a PTE is loaded into the translation bu
Thus, there is no need to invalidate the TB when the bit changes.

After software changes a valid first-, or second-level PTE, software must flush the transl
for the corresponding page in the virtual page table. Then software must flush the transla
of all valid pages mapped by that page. In the case of a change to a first-level PTE, this a
must be taken through a second iteration.

22.8 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space num
(process tags) to reduce the need for invalidation of cached address translations fo
cess-specific addresses when a context switch occurs. The supported address space
(ASN) range is 0…MAX_ASN; MAX_ASN is provided in the HWRPB MAX_ASN field.

1 byte_within_RPT_page contains those bits that would have been VA<Level3>, concatenated with th
VA<byte_within_page> field for 64KB page table mode .
22–12 Alpha Linux Software (II–B)
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The address space number for the current process is loaded by software in the addres
number (ASN) with a swpctx instruction. ASNs are processor specific and the hardware m
no attempt to maintain coherency across multiple processors. In a multiprocessor system
ware is responsible for ensuring the consistency of TB entries for processes that mig
rescheduled on different processors.

Systems that support ASNs should have MAX_ASN in the range 13…65535. The number of
ASNs should be determined by the market a system is targeting.

Programming Note:

System software should not assume that the number of ASNs is a power of two.
allows hardware, for example, to use N TB tag bits to encode (2**N)–3 ASN values,
value for ASM=1 PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several complication
multiprocessor system. Consider the case where a process that executed on process
rescheduled on processor–2. If a page is deleted or its protection is changed, the
processor–1 has stale data.

• One solution is to send an interprocessor interrupt to all the processors on which
process could have run and cause them to invalidate the changed PTE. That res
significant overhead in a system with several processors.

• Another solution is to have software invalidate all TB entries for a process on a
processor before it can begin execution, if the process executed on another proc
during its previous execution. This ensures the deletion of possibly stale TB entrie
the new processor.

• A third solution is to assign a new ASN whenever a process is run on a processor t
not the same as the last processor on which it ran.

22.9 Memory-Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in a1 to specify the
of fault encountered, as shown in Table 22–4.

• A translation-not-valid fault is taken when a read or write reference is attemp
through an invalid PTE in a zero (if one exists), first, second, or third-level page tab

Table 22–4: Memory-Management Fault Type Codes

Fault MMCSR Value

Translation not valid 0

Access-violation 1

Fault on read 2

Fault on execute 3

Fault on write 4
Memory Management (II–C)22–13
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• An access-violation (ACV) fault is taken under the following circumstances:

– An ACV fault is taken on a reference to a seg0 or seg1 address when the prote
field of the third-level PTE that maps the data indicates that the intended page r
ence would be illegal in the specified access mode.

– An ACV fault is taken if the KRE bit is a zero in an invalid first-, or second-lev
PTE. An access-violation fault is generated for any access to a kseg address
the mode is user (PS<mode> EQ 1).

– For reduced page table regions:

An ACV fault is taken when the protection field of the Level2 PTE that maps
the data indicates that the intended pagereferencewould be illegal in the speci-
fied access mode.

An ACV fault is also taken if the KRE bit is zero in an invalid Level1 PTE.

• A fault-on-read (FOR) fault occurs when a read is attempted with PTE<FOR> set.

• A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted w
PTE<FOE> set.

• A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW> set
22–14 Alpha Linux Software (II–B)
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Chapter 23

Process Structure (II–C)

23.1 Process Definition

A process is a single thread of execution. It is the basic entity that can be scheduled and i
cuted by the processor. A process consists of an address space and both software and h
context. The hardware context of a process is defined by the following:

• Thirty integer registers (excludes R31 and SP)

• Thirty-one floating-point registers (excludes F31)

• The program counter (PC)

• The two per-process stack pointers (USP/KSP)

• The processor status (PS)

• The address space number (ASN)

• The charged process cycles

• The page table base register (PTBR)

• The process unique value (unique)

• The floating-point enable register (FEN)

• The performance monitoring enable bit (PME)

This information must be loaded if a process is to execute.

While a process is executing, some of its hardware context is being updated in the interna
isters. When a process is not being executed, its hardware context is stored in memor
software structure called the process control block (PCB). Saving the process context
PCB and loading new values from another PCB for a new context is called context switc
Context switching occurs as one process after another is scheduled for execution.
Process Structure (II–C)23–1
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23.2 Process Control Block (PCB)

As shown in Figure 23–1, the PCB holds the state of a process.

Figure 23–1 Process Control Block (PCB)

The contents of the PCB are loaded and saved by the swap process context (swpctx) in
tion. The PCB must be quadword aligned and lie within a single page of physical memo
should be 64-byte aligned for best performance.

The PCB for the current process is specified by the process control block base address r
(PCBB); see Table 20–3.

The swap privileged context instruction (swpctx) saves the privileged context of the cu
process into the PCB specified by PCBB, loads a new value into PCBB, and then load
privileged context of the new process into the appropriate hardware registers.

The new value loaded into PCBB, as well as the contents of the PCB, must satisfy certain con
straints or an UNDEFINED operation results:

1. The physical address loaded into PCBB must be quadword aligned and describes
contiguous quadwords that are in a memory-like region (see Section 5.2.4).

2. The value of PTBR must be the page frame number (PFN) of an existent page tha
a memory-like region.

It is the responsibility of the operating system to save and load the non-privileged part o
hardware context.

The swpctx instruction returns ownership of the current PCB to operating system softwar
passes ownership of the new PCB from the operating system to the processor. Any atte
write a PCB while ownership resides with the processor has UNDEFINED results. If the
is read while ownership resides with the processor, it is UNPREDICTABLE whether the o
nal or an updated value of a field is read. The processor is free to update a PCB field a
time. The decision as to whether or not a field is updated is made individually for each field

The charged process cycles is the total number of PCC register counts that are charged
process (modulo 2**32). When a process context is loaded by the swpctx instructions, the
tents of the PCC count field (PCC_CNT) is subtracted from the contents of PCB[24]<3
and the result is written to the PCC offset field (PCC_OFF):

:00

:08

:16

Kernel Stack Pointer (KSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

63 0

:24Address Space Number (ASN)

:32Process Unique Value (unique)

:40

:48

:56

F
E
N

132 31

Charged Process Cycles

Reserved to Compaq

Reserved to Compaq
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M
E
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I
M
B

61
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PCC<63:32> ← (PCB[24]<31:0> – PCC<31:0>)

When a process context is saved by the swpctx instruction, the charged process cycles i
puted by performing an unsigned add of PCC<63:32> and PCC<31:0>. That value is writt
PCB[24]<31:0>.

Software Programming Note:

The following example returns in R0 the current PCC register count (modulo 2**32) fo
process. Notice the care taken not to cause an unwanted sign extension.

RPCC R0 ; Read the processor cycle counter
SLL R0, #32, R1 ; Line up the offset and count fields
ADDQ R0, R1, R0 ; Do add
SRL R0, #32, R0 ; Zero extend the cycle count to 64 bits

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The process unique value is that value used in support of multithread implementations
value is stored in the PCB when the process is not active. When the process is active, the
may be cached in hardware internal storage or kept in the PCB only.

The FEN bit reflects the setting of the FEN IPR.

The IMB bit records that an IMB was issued in user mode.

Setting the PME bit alerts any performance hardware or software in the system to monito
performance of this process.

Kernel mode code must use the rdusp/wrusp instructions to access the USP. Kernel mod
can read the PTBR, the ASN, the FEN, and the PME for the current process from the PCB
unique value can be accessed with the rdunique and wrunique instructions.
Process Structure (II–C)23–3
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Chapter 24

Exceptions and Interrupts (II–C)

24.1 Introduction

At certain times during the operation of a system, events within the system require the e
tion of software outside the explicit flow of control. When such an event occurs, an Al
processor forces a change in control flow from that indicated by the current instruction str
The notification process for such an event is either an exception or an interrupt.

24.1.1 Exceptions

Exceptions occur primarily in relation to the currently executing process. Exception ser
routines execute in response to exception conditions caused by software. All exception s
routines execute in kernel mode on the kernel stack. Exception conditions consist of fa
arithmetic traps, and synchronous traps:

• A fault occurs during an instruction and leaves the registers and memory in a cons
state such that elimination of the fault condition and subsequent reexecution o
instruction gives correct results. Faults are not guaranteed to leave the machi
exactly the same state it was in immediately prior to the fault, but rather in a state
that the instruction can be correctly executed if the fault condition is removed. The PC
saved in the exception stack frame is the address of the faulting instruction. A
instruction to that PC reexecutes the faulting instruction.

• An arithmetic trap occurs at the completion of the operation that caused the excep
Since several instructions may be in various stages of execution at any point in tim
is possible for multiple arithmetic traps to occur simultaneously.

The PC that is saved in the exception frame on traps is that of the next instruction
would have been issued if the trapping conditions had not occurred. However, tha
is not necessarily the address of the instruction immediately following the instruc
that encountered the trap condition, and the intervening instructions are collect
called thetrap shadow. See Section 4.7.7.3 for information.

The intervening instructions may have changed operands or other state used b
instructions encountering the trap conditions. If such is the case, an rti instructio
that PC does not reexecute the trapping instructions, nor does it reexecute
intervening instructions; it simply continues execution from the point at which the t
was taken.

In general, it is difficult to fix up results and continue program execution at the po
of an arithmetic trap. Software can force a trap to be continued more easily wit
the need for complicated fixup code. This is accomplished by specifying any v
Exceptions and Interrupts(II–C) 24–1
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qualifier combination that includes the /S qualifier with each such instruction
following a set of code-generation restrictions in the code that could cause arithm
traps, allowing those traps to be completed by an OS completion handler.

The AND of all the exception completion qualifiers for trapping instructions
provided to the OS completion handler in the exception summary SWC bit. If SW
set, a completion handler may find the trigger instruction by scanning backward f
the trap PC until each register in the register write mask has been an instru
destination. The trigger instruction is the last instruction in I-stream order to get a
before the trap shadow. If the SWC bit is clear, no fixup is possible.

• A synchronous trap occurs at the completion of the operation that caused the exce
No instructions can be issued between the completion of the operation that cause
exception and the trap.

24.1.2 Interrupts

The processor arbitrates interrupt requests. When the interrupt priority level (IPL) of an
standing interrupt is greater than the current IPL, the processor raises IPL to the level o
interrupt and dispatches to entInt, the interrupt entry to the OS. Interrupts are serviced in
nel mode on the kernel stack. Interrupts can come from one of five sources: interproc
interrupts, I/O devices, the clock, performance counters, or machine checks.

24.2 Processor Status

The processor status (PS) is a four-bit register that contains the current mode (PS<mod
bit <3> and a three-bit interrupt priority level (PS<IPL>) in bits <2…0>. The PS<mode> bit is
zero for kernel mode and one for user mode. The PS<IPL> bits are always zero if the mo
user and can be zero to 7 if the mode is kernel. The PS is changed when an interrupt or
tion is initiated and by the rti, retsys, and swpipl instructions.

The uses of the PS values are shown in Table 24–1.

Table 24–1: Processor Status Summary

PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts

0 4 Kernel High priority device interrupts

0 5 Kernel Clock, and interprocessor interrupts

0 6 Kernel Real-time devices

0 6 Kernel Correctable error reporting

0 7 Kernel Machine checks
24–2 Alpha Linux Software (II–B)
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24.3 Stack Frames

There are three types of system entries: entries for the callsys instruction from user m
entries for exceptions and interrupts from kernel mode, and entries for interrupts from
mode.

Those three types of system entries use one of two stack frame layouts, as follows.

Entries for the callsys instruction from user mode, and entries for exceptions and inter
from kernel mode use the same stack frame layout, as shown in Figure 24–1. The stack
contains space for the PC, the PS, the saved GP, and the saved registers a0, a1, a2. O
the SP points to the saved PS.

The callsys entry saves the PC, the PS, and the GP. The exception and interrupt entries s
PC, the PS, the GP, and also save the registers a0…a2.

Figure 24–1 Stack Frame Layout for callsys and rti

Entries for interrupts from user mode use the stack frame layout as shown in Figure 24–2
stack frame must be aligned on a 64-byte boundary and contains the registers, at, SP, P
GP, and saved registers a0, a1, and a2.

Figure 24–2 Stack Frame Layout for urti
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24.4 System Entry Addresses

All system entries are in kernel mode. The interrupt priority PS bits (PS<IPL>) are se
shown in the following table. The system entry point address is set by the wrent instructio
described in Section 21.2.15.

24.4.1 System Entry Arithmetic Trap (entArith)

The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On entry, a0
tains the exception summary register and a1 contains the exception register write mask. S
24.4.1.1 describes the exception summary register and Section 24.4.1.2 describes the r
write mask.

24.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 24–3 and described in Table 24–3, re
the various types of arithmetic exceptions that can occur together.

Table 24–2 Entry Point Address Registers

Entry Point Value in a0 Value in a1 Value in a2 PS<IPL>

entArith Exception summary Register mask UNPREDICTABLE Unchanged

entIF Fault or trap type code UNPREDICTABLE UNPREDICTABLE Unchanged

entInt Interrupt type Vector Interrupt parameter Priority of interrupt

entMM VA MMCSR Cause Unchanged

entSys p0 p1 p2 Unchanged

entUna VA Opcode Src/Dst Unchanged
24–4 Alpha Linux Software (II–B)
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Figure 24–3 Exception Summary Register

Table 24–3 Exception Summary Register Bit Definitions

Bit Description

63–7 Zero.

6 Integer overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the desti-
nation precision.

An IOV trap is reported for any integer operation whose true result exceeds the destina
register size. Integer overflow trap enable can be specified in each arithmetic integer op
instruction and each floating-point convert-to-integer instruction. If integer overflow occurs,
the result register is written with the truncated true result.

5 Inexact result (INE)

A floating arithmetic or conversion operation gave a result that differed from the mathemati-
cally exact result.

An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact result
trap enable can be specified in each IEEE floating-point operate instruction. The roun
result value is stored in all cases.

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

An UNF trap is reported when the destination’s smallest finite number exceeds in magni
the non-zero rounded true result. Floating underflow trap enable can be specified in
floating-point operate instruction. If underflow occurs, the result register is written with
true zero.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

An OVF trap is reported when the destination’s largest finite number is exceeded in ma
tude by the rounded true result. Floating overflow traps are always enabled. If this
occurs, the result register is written with an UNPREDICTABLE value.

Zero

63 0

U
N
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24.4.1.2 Exception Register Write Mask

The exception register write mask parameter records all registers that were targets of in
tions that set the bits in the exception summary register. There is a one-to-one correspon
between bits in the register write mask quadword and the register numbers. The quad
starting at bit 0 and proceeding right to left, records which of the registers r0 through r31,
f0 through f31, received an exceptional result.

Note:

For a sequence such as:

ADDF F1,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF bit is set in the except
summary, and the F3 bit is set in the register mask, even though the overflowed sum
can be overwritten with an in-range product by the time the trap is taken. (This c
violates the destination reuse rule for exception completion. See Section 4.7.7.3 fo
destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next instru
This is defined as the virtual address of the first instruction not executed after the trap c
tion was recognized.

2 Division by zero (DZE)

An attempt was made to perform a floatingdivide operation with a divisor of zero.

A DZE trap is reported when a finite number is divided byzero. Floating divide by zero traps
are always enabled. If this trap occurs, the result register is written with an UNPREDIC
ABLE value.

1 Invalid operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison opera
and one or more of the operand values were illegal.

An INV trap is reported for most floating-point operate instructions with an input opera
that is an IEEE NaN, IEEE infinity, or IEEE denormal.

Floating invalid operation traps are always enabled. If this trap occurs, the result regist
written with an UNPREDICTABLE value.

0 Software completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate instruct
with the /S qualifier set. See Section 4.7.7.3 for rules about setting the /S qualifier in c
that may cause an arithmetic trap, and Section 24.1.1 for rules about using the SWC bi
trap handler.

Table 24–3 Exception Summary Register Bit Definitions (Continued)

Bit Description
24–6 Alpha Linux Software (II–B)
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24.4.2 System Entry Instruction Fault (entIF)

The instruction fault or synchronous trap entry is called for bpt, bugchk, gentrap, and op
synchronous traps, and for a FEN fault (floating-point instruction when the floating-point
is disabled, FEN EQ 0). On entry, a0 contains a 0 for a bpt, a 1 for bugchk, a 2 for gentrap
for FEN fault, and a 4 for opDec. No additional data is passed in a1…a2. The saved PC at
(SP+00) is the address of the instruction that caused the fault for FEN faults. The saved
(SP+00) is the address of the instruction after the instruction that caused the bpt, bugchk
trap, and opDec synchronous traps.

24.4.3 System Entry Hardware Interrupts (entInt)

The interrupt entry is called to service a hardware interrupt or a machine check. Table
shows what is passed in a0…a2 and the PS<IPL> setting for various interrupts.

On entry to the hardware interrupt routine, the IPL has been set to the level of the interrup
hardware interrupts, register a1 contains a platform-specific interrupt vector. That
form-specific interrupt vector is typically the same value as the SCB offset value that wou
returned if the platform was running OpenVMS PALcode.

For a correctable error or machine check interrupt, a1 contains a platform-specific inte
vector and a2 contains the kseg address of the platform-specific logout area. The interrup
tor value and logout area format are typically the same as those used by the platform
running OpenVMS PALcode.

The machine check error summary (MCES) register, shown in Figure 24–4 and describ
Table 24–5, records the correctable error and machine check interrupts in progress.

Table 24–4 System Entry Hardware Interrupts

Entry Type Value in a0 Value in a1 Value in a2 PS<IPL>

Interprocessor interrupt 0 UNPREDICTABLE UNPREDICTABLE 5

Clock 1 UNPREDICTABLE UNPREDICTABLE 5

Correctable error 2 Interrupt vector Pointer to Logout Area 7

Machine check 2 Interrupt vector Pointer to Logout Area 7

I/O device

interrupt

3 Interrupt vector UNPREDICTABLE Level of device

Performance counter 4 Interrupt vector UNPREDICTABLE 6
Exceptions and Interrupts(II–C) 24–7



the
initi-
a new

iate
rror in
es not

ective
ding

ccurs.
ction
(+1)

pro-

stem

han-
ouble
Figure 24–4 Machine Check Error Status (MCES) Register

The MIP flag in the MCES register is set prior to invoking the machine check handler. If
MIP flag is set when a machine check is being initiated, a double machine check halt is
ated instead. The machine check handler needs to clear the MIP flag when it can handle
machine check.

Similarly, the SCE or PCE flag in the MCES register is set prior to invoking the appropr
correctable error handler. That error handler should clear the appropriate correctable e
progress when the logout area can be reused by hardware or PALcode. PALcode do
overwrite the logout area.

Correctable processor or system error reporting may be suppressed by setting the resp
DPC or DSC flag in the MCES register. When the DPC or DSC flag is set, the correspon
error is corrected, but no correctable error interrupt is generated.

24.4.4 System Entry MM Fault (entMM)

The memory-management fault entry is called when a memory management exception o
On entry, a0 contains the faulting virtual address and a1 contains the MMCSR (see Se
22.9). On entry, a2 is set to a minus one (–1) for an instruction fetch fault, to a plus one
for a fault caused by a store instruction, or to a 0 for a fault caused by a load instruction.

Table 24–5 Machine Check Error Status (MCES) Register Bit Definitions

Bit Symbol Description

63–32 IMP.

31–5 Reserved.

4 DSC Disable system correctable error in progress.

Set to disable system correctable error reporting.

3 DPC Disable processor correctable error in progress.

Set to disable processor correctable error reporting.

2 PCE Processor correctable error in progress.

Set when a processor correctable error is detected. Should be cleared by the
cessor correctable error handler when the logout frame may be reused.

1 SCE System correctable error in progress.

Set when a system correctable error is detected. Should be cleared by the sy
correctable error handler when the logout frame may be reused.

0 MIP Machine check in progress.

Set when a machine check occurs. Must be cleared by the machine check
dler when a subsequent machine check can be handled. Used to detect d
machine checks.
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24.4.5 System Entry Call System (entSys)

The system call entry is called when a callsys instruction is executed in user mode. On e
only registers (t8…t11) have been modified. The PC+4 of the callsys instruction, the user
bal pointer, and the current PS are saved on the kernel stack. Additional space for a0…a2 is
allocated. After completion of the system service routine, the kernel code execu
CALL_PAL retsys instruction.

24.4.6 System Entry Unaligned Access (entUna)

The unaligned access entry is called when a load or store access is not aligned. On en
contains the faulting virtual address, a1 contains the zero extended six-bit opcode
<31:26>) of the faulting instruction, and a2 contains the zero extended data source or de
tion register number (bits<25:21>) of the faulting instruction.

24.5 PALcode Support

24.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack that
produce a memory-management fault will result in a kernel-stack-not-valid halt. The s
pointer must always point to a quadword-aligned address. If the kernel stack is not quad
aligned on a PALcode access, a kernel-stack-not-valid halt is initiated.
Exceptions and Interrupts(II–C) 24–9





Console Interface Architecture (III)

This part describes an architected console interface and contains the following chapters:

• Chapter 25, Console Subsystem Overview (III)

• Chapter 26, Console Interface to Operating System Software (III)

• Chapter 27, System Bootstrapping (III)
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Chapter 25

Console Subsystem Overview (III)

On an Alpha system, underlying control of the system platform hardware is provided by a
sole. The console:

• Initializes, tests, and prepares the system platform hardware for Alpha system softw

• Bootstraps (loads into memory and starts the execution of) system software.

• Controls and monitors the state and state transitions of each processor in a multipr
sor system in the absence of operating system control.

• Provides services to system software that simplify system software control of
access to platform hardware.

• Provides a means for a "console operator" to monitor and control the system.

The console interacts with system platform hardware to accomplish the first three tasks
mechanisms of these interactions are specific to the platform hardware; however, th
effects are common to all systems. Chapter 27 describes these functions.

The console interacts with system software once control of the system platform hardwar
been transferred to that software. Chapter 26 discusses the basic functions of a console
interaction with Alpha system software.

The console interacts with the console operator through a virtual display device or consol
minal. The console operator may be a person or a management application. The co
terminal forms the interface between the console and a console presentation layer.The
tions of that presentation layer and the display formats are described in Section 25.3.

An Alpha multiprocessor system has one primary processor and one or more secondary p
sors. The primary processor:

• Can legally refer to the console I/O devices

• Can legally send characters to the console terminal

• Can legally receive characters from the console terminal

• Has direct access to a BB_WATCH on the system

• Is named in response to an inquiry as to which processor is primary

All other processors in the system are secondary processors.
Console Subsystem Overview (III)25–1
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25.1 Console Implementations

The implementation of an Alpha console varies from system to system. Regardless of im
mentation, the console on each system provides the functionality described in this chapte
in Chapters 2 and 3. The console may be implemented as:

• "Embedded," or co-resident in the hardware platform complex that contains the pro
sors

• "Detached," or resident on a separate hardware platform

• Any hybrid of the above

The distinction is somewhat arbitrary. A detached console may have cooperating specia
that executes on one of the processors; an embedded console may have a cooperating m
ment application that executes on a remote machine.

Regardless of the actual implementation, each console must provide:

• A virtual display device, the default "console terminal."

This device allows the console operator to issue commands and receive displays.
no hardware errors and with the proper console-lock setting, the default con
terminal device provides reliable communication with the rest of the console.

• Reliable access to console functionality by system software and the console opera

All console functionality must appear to reside within the console at all times.
console functions must be accessible in a timely manner, without prior notificat
and reliably.

• Secure communications with system software and the console operator.

All console communication paths must be able to be made secure by either phy
measures or encryption methods.

• A mechanism by which the console can gain control of a processor that is exec
system software.

This mechanism must preserve the execution state of system software; it mu
possible for the console to gain control of the processor and subsequently con
system software execution successfully.

Note:

Continuation of system software by the CONTINUE command may be restric
to the early stages of booting for hardware configurations where the con
keyboard is connected by way of USB.

• A mechanism that locks the console.

A console lock prohibits the user from accessing a selected subset (or all) of con
functions. The console lock may be a console password, a key switch, jumper, o
other implementation-specific mechanism. The lock is either "locked" or "unlocked
25–2 Console Interface Architecture (III)
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25.2 Console Implementation Registry

This chapter, and Chapters 26 and 27, specify required console functions. Some of these
tions have attributes that may vary with console implementation; consoles may also pro
more than the required functions. Console functions or attributes that may vary with imple
tation include:

• Supported console terminal blocks (CTBs)

• Supported environment variables

• Environment variable value formats, such as BOOT_DEV or BOOT_OSFLAGS

• Configuration data block format

• Supported callback routines

• Supported bootstrap media

• Implementation-specific HALT codes or messages

The goal of the Alpha console architecture is to promote a consistent interface across all
systems. Some console functionality is inherently implementation specific and cann
required of all Alpha systems; some may be applicable to more than one Alpha system. T
vent the proliferation of interfaces and achieve commonality of function whenever poss
the Alpha console architecture requires that:

• Any console function that is visible to system software and is not specified by th
chapters must be registered with the Alpha architecture group.

• Any console function that is visible to an on-site or remote console operator (includ
Field Service engineers) and is not specified by these chapters must be registeredwith
the Alpha architecture group.

• Whenever possible, implementations must use previously registered functions r
than inventing new variations.

Console functions intended for use solely by development engineering or expert-level r
and diagnosis are excluded from these requirements.

25.3 Console Presentation Layer

The following functions are assumed to be provided in the console presentation layer:

• BOOT (bootstrap the system)

• CONTINUE (continue execution)

• STARTCPU (start a given secondary)

• INITIALIZE (initialize system)

• INITIALIZECPU (initialize a given processor)

• HALTCPU (force a given processor into console I/O mode)

• HALTCRASH (cause a given processor to initiate a crash)
Console Subsystem Overview (III)25–3
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25.4 Messages

The console generates a binary message code to the console presentation layer to sign
sages, such as audit trail or error messages. The console presentation layer interprets the
code into something that is meaningful to the console operator.

25.5 Security

The means by which the console achieves a secure communications path with system so
and with the console operator is implementation specific. Embedded consoles have the b
capability of secure communications with system software. Detached consoles can achie
security by residing in the same room as the Alpha system and communicating with it o
private connection. Detached consoles can also achieve security by using an encrypted
col over a shared connection. This latter method allows a workstation over a netwo
function as the console.

25.6 Internationalization

Wherever possible, console implementations should support the goals of internationalizat

• Each message has a binary message code. The console presentation layer interp
code into a meaningful message display of the appropriate language and characte

• Consoles should avoid explicitly interpreting character set encoding (such as
Latin–1). Character strings are to be viewed as simple byte strings. Thus, the G
console callback routine supports from one-to-four-byte character encodings, dep
ing on the currently selected language and character set; the PUTS routine output
a byte stream.

• ASCII strings are used in certain fields of the HWRPB and certain interprocessor c
munications due to COMPAQ STD 12 and to present a common interface to sy
software.

• The currently selected character set encoding and language to be used for the c
terminal are defined by the CHAR_SET and LANGUAGE environment variables.

• The end of a character string passed between the console and the operating system as an
argument to a console callback routine is determined by passing its length.

• Console callback routines should be written to be independent from character set
encoding and language. At a minimum, every implementation must support ISO La
1 character set encodings, which requires the following properties:

1. The GETC console callback routine returns a one byte character (see Se
26.3.4).

2. The PROCESS_KEYCODE console callback routine returns a one-byte c
acter (see Section 26.3.4).

3. English console presentation layers are strongly encouraged to use the a
values as defined in Table 26–6, rather than creating aliases.

Other supported character set encodings are determined by platform pro
requirements.
25–4 Console Interface Architecture (III)
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• The console presentation layer is independent of the required console function
interface.

25.7 Documentation Note

Chapters 25 through 27 apply to the OpenVMS, Tru64 UNIX, and ALpha Linux operating
tems. The few functional descriptions that are unique to one operating system are descri
such. However, because of contextual equivalence in this section and in the interests of
ity, any text concerning the OpenVMS hardware privileged context block (HWPCB) app
equally to the Tru64 UNIX and Alpha Linux privileged context block (PCB).
Console Subsystem Overview (III)25–5
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Chapter 26

Console Interface to Operating System Software (III)

This chapter describes the interactions between the console subsystem and system so
These services depend on state that is shared between the console and system software
state is contained in the Hardware Restart Parameter Block (HWRPB) and a number of
ronment variables. The HWRPB is a data structure that is directly accessed by both the co
and system software; the environment variables are indirectly accessed by system sof
Specifically:

• Section 26.1 describes the HWRPB.

• Section 26.2 describes the environment variables.

• Section 26.3 describes the service, or callback, routines provided by the console to
tem software.

• Section 26.4 describes the communication between the console and system softw

26.1 Hardware Restart Parameter Block (HWRPB)

The Hardware Restart Parameter Block (HWRPB) is a page-aligned data structure t
shared between the console and system software. The HWRPB is a critical resource d
bootstraps, powerfail recoveries, and other restart situations. An overview of the HWRP
shown in Figure 26–1. The individual HWRPB fields are shown in Figure 26–2 and descr
in Table 26–1.

The console creates the HWRPB and the required per-CPU, CTB, CRB, MEMDSC,
DSRDB offset blocks as a physically contiguous structure during console initialization. Fi
within the HWRPB and the required offset blocks are updated by the console and system
ware during and after system bootstrapping. The console must be able to locate the HW
and the required offset blocks at all times. Neither the console nor system software may
the HWRPB or the required offset blocks to different physical memory locations; subseq
operation of the system is UNDEFINED if such an attempt is made.
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Figure 26–1 HWRPB Overview

The HWRPB and the required offset blocks must comprise a virtually contiguous structu
all times. Before transferring control to system software, the console maps the HWRPB an
required offset blocks into contiguous addresses beginning at virtual address 0000 0000
000016 in the initial bootstrap address space. If system software subsequently changes th
tual mapping, any new mapping must preserve the relative offsets of all fields and block
physically contiguous pages must remain virtually contiguous. Some of the data struc
located by HWRPB fields need not be contiguous with the HWRPB. The structures that
be discontiguous are the PALcode spaces, the logout areas, the CRB pages, the FRU tab
the tested memory bitmaps located by the MEMDSC table.

HWRPB

General Information

Per-CPU Offset
CTB Table Offset

CRB Offset
MEMDSC Offset
CONFIG Offset

FRU Table Offset
(Restart Routine Linkage Pair)

Per-CPU Slots

PALcode Pointers

Logout Area Pointers

Console Terminal Block
(CTB) Table

Console Routine Block
(CRB)

CRB Map Entries

Memory Data
Descriptor Table

Register # 1 Bitmap Pointer

Register # n Bitmap Pointer

CPU Restart Routine

Optional FRU Table

PALcode Spaces

CPU Logout Areas

CRB Pages

Cluster # 1 Bitmap

Cluster # n Bitmap

RX/TX Block
DSRDB Offset

Dynamic System Recognition
Data Block (DSRDB)

Optional RX/TX
Extension Block

TRB Offset

Translation Buffer
Hint Block (TRB)
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All offset blocks must be at least quadword aligned. The starting address of an offset blo
determined by adding the contents of the HWRPB offset field to the starting address o
HWRPB. For example, the starting address of the MEMDSC block is given by:

MEMDSC Address = HWRPB address + MEMDSC OFFSET
= HWRPB address + (HWRPB[200])

The total size of the HWRPB and the required offset blocks is on the order of 8K bytes to
bytes. The size is contained in the HWRPB_SIZE field at HWRPB[24]. The required of
blocks may be offset from the HWRPB in any order; the HWRPB offset fields must no
used to infer the size of the HWRPB or any offset block.
Console Interface to Operating System Software (III)26–3



Figure 26–2: Hardware Restart Parameter Block Structure

:HWRPB

:+08

:+16

:+24

:+32

:+40

:+48

Physical Address of the HWRPB

"HWRPB"

HWRPB Revision

HWRPB Size

Primary CPU ID

Page Size (Bytes)

Number of PA Bits

:+56Maximum Valid ASN

:+64System Serial Number (SSN)

:+80System Type

:+88System Variation

:+96System Revision

:+104Interval Clock Interrupt Frequency

:+112Cycle Counter Frequency

:+120Virtual Page Table Base

:+144Number of Processor Slots

:+152Per-CPU Slot Size

:+160Offset to Per-CPU Slots

:+168Number of CTBs

:+176CTB Size

:+184Offset to Console Terminal Block Table

:+192Offset to Console Callback Routine Block

:+200Offset to Memory Data Descriptor Table

:+208Offset to Configuration Data Block (If Present)

:+216Offset to FRU Table (If Present)

:+224Virtual Address of Terminal Save State Routine

:+232Procedure Value of Terminal Save State Routine

:+240Virtual Address of Terminal Restore State Routine

:+248Procedure Value of Terminal Restore State Routine

63 0

:+128Reserved for Architecture Use

:+136Offset to Translation Buffer Hint Block

32 31

Number of Extension VA Bits
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Figure 26-2 : Hardware Restart Parameter Block Structure (Continued)

:+264Procedure Value of CPU Restart Routine

:+272Reserved for System Software

:+280Reserved for Hardware

:+288Checksum

:+256Virtual Address of CPU Restart Routine

:+296
RX/TX Block

:+304

:+(HWRPB[160])

:+(HWRPB[184])

Per-Processor Slots

Console Terminal Block

:+(HWRPB[192])

Console Callback Routine Block

:+(HWRPB[200])

Memory Data Descriptor Table

63 0

:+(HWRPB[136])

Translation Buffer Hint Block

:+(HWRPB[208])

Optional Configuration Data Block

Offset to Dynamic System Recognition Data Block Table :+312

:+(HWRPB[216])

Optional Field Replaceable Unit Table

:+(HWRPB[296])

:+(HWRPB[312])

Dynamic System Recognition Data Block

Optional RX/TX Extension Block
Console Interface to Operating System Software (III)26–5
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Table 26–1 HWRPB Fields

Offset Description

HWRPB HWRPB PA1

Starting physical address of the HWRPB field. This field is used by the cons
to validate the HWRPB.

+08 HWRPB VALIDATION 1

Quadword containing "HWRPB<0><0><0>" (0000 0042 5052 574816). This

field is used by the console to validate the HWRPB.

+16 HWRPB REVISION1

Format of the HWRPB. See Section 26.1.1. The HWRPB revision level for th
version of the architecture specification is 13.

+24 HWRPB SIZE1

Size in bytes of the HWRPB and required physically contiguous TBB, per-CP
CTB, CRB, MEMDSC, RX/TX Extension, and DSRDB offset blocks. The siz
of the FRU table is included if the table is physically contiguous with th
HWRPB and the required offset blocks. Unsigned field.

+32 PRIMARY CPU ID1,3

WHAMI of the primary processor. System software modifies this field only
primary switch; see Section 27.5.6. Unsigned field.

+40 PAGE SIZE1

Number of bytes within a page for this Alpha processor implementatio
Unsigned field.

+48 PA SIZE1

Size of the physical address space in bits for this Alpha processor impleme
tion. PA SIZE must be 48 bits or less. Unsigned 32-bit field.

+52 EXTENDED VA SIZE2

If this processor implementation supports mixed 48-bit/43-bit VA mode and t
processor is running in mixed mode, field is set to 5; otherwise, field is set
zero. Unsigned 32-bit field.

+56 MAX VALID ASN 1

Maximum ASN value allowed by this Alpha processor implementatio
Unsigned field.

+64 SYSTEM SERIAL NUMBER1

Full COMPAQ STD 12 serial number for this Alpha system. This octaword fie
contains a 10-character ASCII serial number determined at the time of manu
ture; see COMPAQ STD 12 for format information. See Section 26.1.1.1.

+80 SYSTEM TYPE1

Family or system hardware platform. See Section 26.1.1. Unsigned field.
26–6 Console Interface Architecture (III)
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+88 SYSTEM VARIATION1,3

Subtype variation of the system. This may include the member of the sys
family and whether the system has optional features such as multiprocessor
port or special power supply conditioning. See Sections 26.1.1 and 26.1.1.2
optional features.

+96 SYSTEM REVISION CODE1

COMPAQ STD 12 revision field for this Alpha system. Four ASCII characters.
See Section 26.1.1.1.

+104 INTERVAL CLOCK INTERRUPT FREQUENCY1

Number of interval clock interrupts per second (scaled by 4096) in this Alp
system. Interrupts occur only if enabled. Unsigned field.

+112 CYCLE COUNTER FREQUENCY1

Number of SCC and PCC updates per second for the primary CPU in this Alp
system. See the RPCC instruction (Section 4.11.9) and, for OpenVMS,
CALL_PAL RSCC instruction (Section 10.1.12). Unsigned field.

+120 VIRTUAL PAGE TABLE BASE2,3

Virtual address of the base of the entire page table structure. The console set
field at system bootstraps and restores the virtual page table base reg
(pointer) with this value at all processor restarts. System software is respons
for updating this field whenever the virtual page table base register (pointer
modified. See Sections 27.4.1.3, 27.4.3.5, and 27.5.1.

+128 Reserved for architecture use; SBZ.

+136 TB HINT OFFSET1

Unsigned offset to the starting address of the Translation Buffer Hint Blo
(TBB). See Section 26.1.2.

+144 NUMBER OF PER-CPU SLOTS1

Number of per-CPU slots present. See Section 26.4 for constraints on the m
mum value that may be stored here. See Section 26.1.3 for the per-CPU slot
mat. Unsigned field.

+152 PER-CPU SLOT SIZE1

Size in bytes of each per-CPUslot rounded up to the next integer multiple of 128
See Section 26.1.3. Unsigned field.

+160 CPU SLOT OFFSET1

Unsigned offset to the first per-CPU slot in the HWRPB. See Section 26.1.3.

Table 26–1 HWRPB Fields (Continued)

Offset Description
Console Interface to Operating System Software (III)26–7



ee

B

B)

ock

ble

N-

ble

tine
the

ft-
ee

rou-
by
+168 NUMBER OF CTB1

Number of Console Terminal Blocks (CTBs) contained in the CTB table. S
Section 26.3.8.2. Unsigned field.

+176 CTB SIZE1

Size in bytes of the largest Console Terminal Block (CTB) contained in the CT
table. See Section 26.3.8.2. Unsigned field.

+184 CTB OFFSET1

Unsigned offset to the starting address of the Console Terminal Block (CT
table. See Section 26.3.8.2.

+192 CRB OFFSET1

Unsigned offset to the starting address of the Console Callback Routine Bl
(CRB). See Section 26.3.8.1.

+200 MEMDSC OFFSET1

Unsigned offset to the starting address of the Memory Data Descriptor Ta
(MEMDSC). See Sections 26.1.5 and 27.4.1.1.

+208 CONFIG OFFSET1

Unsigned offset to the starting address of the Configuration Data Table (CO
FIG). If zero, no CONFIG table exists. See Section 26.1.4.

+216 FRU TABLE OFFSET1

Unsigned offset to the starting address of the Field Replaceable Unit Ta
(FRU). If zero, no FRU table exists. See Sections 26.1.5 and 27.4.1.1.

+224 SAVE_TERM RTN VA2,3

Starting virtual address of a routine that saves console terminal state. This rou
is optionally provided by system software. See Section 27.5.7. Set to zero by
console at system bootstraps.

+232 SAVE_TERM VALUE2,3

Procedure value of the SAVE_TERM routine optionally provided by system so
ware. The console copies this value into R27 before invoking the routine. S
Section 27.5.7. Set to zero by the console at system bootstraps.

+240 RESTORE_TERM RTN VA2,3

Starting virtual address of a routine that restores console terminal state. This
tine is optionally provided by system software. See Section 27.5.7. Set to zero
the console at system bootstraps.

Table 26–1 HWRPB Fields (Continued)

Offset Description
26–8 Console Interface Architecture (III)
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+248 RESTORE_TERM VALUE2,3

Procedure value of the RESTORE_TERM routine optionally provided by syst
software. The console copies this value into R27 before invoking the routine. See
Section 27.5.7. Set to zero by the console at system bootstraps.

+256 RESTART RTN VA2,3

Starting virtual address of a CPU restart routine provided by system softwa
The console restarts system software by transferring control to this routine. See
Section 27.5. Set to zero by the console atsystem bootstraps.

+264 RESTART VALUE2,3

Procedure value of the CPU restart routine provided by system software. Du
the restart process, the console copies this value into R27 before transferring con-
trol to the CPU restart routine. See Section 27.5. Set tozero by the console at sys-
tem bootstraps.

+272 RESERVED FOR SYSTEM SOFTWARE2,3

Reserved for use by system software. Set to zero by the console at system
straps.

+280 RESERVED FOR HARDWARE1

Reserved for use by hardware.

+288 HWRPB CHECKSUM2,3

Checksum of all the quadwords of the HWRPB from offset [00] to [280], inclu
sive. Computed as a 64-bit sum, ignoring overflows. Used to validate
HWRPB during warm bootstraps, restarts, and secondary starts. Set by con
initialization; recomputed and updated whenever a HWRPB field with offset [0
to [280], inclusive, is modified by the console or system software.

+296 RX/TX BLOCK

Receive/transmit control block. Interpreted as shown in Table 26–2 and descr
in Section 26.4. Two unsigned quadwords.

+312 DSRDB OFFSET1

Unsigned offset to the starting address of the Dynamic System Recognition D
Block.

+(HWRPB[136]) TB HINT BLOCK2,3

Quadword-aligned block that describes the characteristics of the transla
buffer (TB) granularity hints. See Section 26.1.2.

+(HWRPB[160]) Per-CPU SLOTS2,3

128 byte-aligned slots that describe each processor in the system. See Se
26.1.3.

Table 26–1 HWRPB Fields (Continued)

Offset Description
Console Interface to Operating System Software (III)26–9
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26.1.1 Serial Number, Revision, Type, and Variation Fields

The HWRPB contains several serial number, revision, type, and variation fields that des
the Alpha system platform hardware and PALcode. System software uses these fields to
tify hardware-dependent support code that must be loaded or enabled. These field
examined early in operating system bootstrap; if one of the fields contains a value that is u
ognized or incompatible with the operating system, the bootstrap attempt fails. Diagn
software uses these fields to guide field installation and upgrade procedures and for ma
and parts control.

In multiprocessor systems, the processor type and PALcode revisions need not be identi
all processors. Console and system software can use these fields to determine if multip
sor operation is viable. This evaluation may be performed by the running primary, the sta
secondary, or a combination of both. For an example, see Section 27.4.3.3.

+(HWRPB[184]) CTB TABLE1

Quadword-aligned Console Terminal Block Table. Set at console initializatio
modified by console terminal callbacks. See Section 26.3.8.2.

+(HWRPB[192]) CONSOLE CALLBACK ROUTINE BLOCK2,3

Quadword-aligned block that describes the location and mapping of the con
callback routines. Set at system bootstrap; modified by console FIXUP callba
See Section 26.3.8.1.

+(HWRPB[200]) MEMDSC1,3

Quadword-aligned Memory Data Descriptor Table. Set at console initializatio
preserved across warm bootstraps. See Sections 26.1.5 and 27.4.1.1.

+(HWRPB[208]) CONFIG BLOCK1

Optional implementation-dependent configuration block. See Section 26.1.4.

+(HWRPB[216]) FRU TABLE1, 3

Optional implementation-dependent field replaceable unit table. This table m
contain distributed memory descriptors. See Sections 26.1.5 and 27.4.1.1.

+(HWRPB[296]) RX/TX EXTENSION BLOCK

Optional receive/transmit extension block. See Table 26–2 and Section 26.4.

+(HWRPB[312]) DSRDB1

Quadword-aligned Dynamic System Recognition Data Block (DSRDB).

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all
warm system bootstraps.

2 Initialized by the console at all system bootstraps (cold or warm).
3 May be modified by system software.

Table 26–1 HWRPB Fields (Continued)

Offset Description
26–10 Console Interface Architecture (III)
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26.1.1.1 Serial Number and Revision Fields

The revision fields include:

• HWRPB revision — HWRPB[16]

This field identifies the format of the HWRPB. Since the HWRPB is shared betw
the console and system software, both must agree on the field offsets, formats
interpretations.

• System serial number and revision — HWRPB[64] and HWRPB[96]

These fields identify the system platform hardware serial number and revi
according to COMPAQ STD 12.

The system serial number and revision fields must be distinct from the processor s
number and revision fields in the per-CPU table, pointed to by HWRPB[152].
particular, on multiprocessing systems, the system fields must not be simply replic
from the fields of the primary processor. The system fields must be constant regar
of which processor serves as primary and must have persistence across pro
failures and/or replacement.

• Processor type and processor variation (capabilities) — SLOT[176] and SLOT[184

These per-CPU slot fields identify each Alpha processor and its capabilities. The
field (SLOT[176]) contains a major and minor subfield. The major subfield identif
the processor family and the minor subfield identifies the particular membership in
family.

The variation (capabilities) field (SLOT[184]) identifies any system-specific attribute
(such as local memory or cache size)

Processor type and variation field assignments are listed in Appendix D.

• Processor Revision — SLOT[192]

This per-CPU slot field identifies the processor hardware revision according
COMPAQ STD 12.

• PALcode Revision — SLOT[168]

This field identifies the PALcode revision required and/or in use by the proces
System software uses the PALcode variation and PALcode compatibility subfie
The variation subfield indicates whether the PALcode image includes extension
functional variations necessary to a given operating system or application.

Programming Note:

For example, a PALcode variation may contain a different TB fill routine. Syst
software (and optionally the console) uses the compatibility subfield to ensure
all processors in a multiprocessor system are using compatible PALcode imag

PALcode revisions are specific to the system platform and processor major type.
file name of distributed PALcode images must contain sufficient information
distinguish the intended system platform and processor.

• PALcode Revisions Available — SLOT[464]

This field identifies the PALcode variant revisions that have been previously loade
this processor. System software uses these fields to determine if a given PAL
Console Interface to Operating System Software (III)26–11
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variant and revision are present before PALcode switching. The format follows
PALcode revision field in SLOT[168].

PALcode variation assignments are listed in Appendix D.

26.1.1.2 System Type and Variation Fields

The system type and system variation fields are HWRPB[80] and HWRPB[88].

These fields identify the Alpha system platform. System software infers attributes suc
physical address offsets and I/O device locations from the system type. The system type
contains the family and member identification numbers, along with the major and minor
field identifiers. It is described in Appendix D.The system variation field is described in Ta
26–2.

Hardware platforms that belong to the same family must use the same major and minor
console revision values.

The system variations are defined in Table 26–2.

Table 26–2 System Variation Field (HWRPB[88])

Bits Description

63 – 34 Additional feature specifications — These bits are defined within the context of ECOs

33 RX/TX EXTENT — Indicates how the RXRDY/TXRDY bitmasks are implemented.
clear, the RX/TX Block at HWRPB+296 contains a 64-bit RXRDY bitmask and a 64-
TXRDY bitmask, and no RX/TX Extension Block exists. If set, the RX/TX Block a
HWRPB+296 contains an offset from the beginning of the HWRPB to the RX/TX Exte
sion Block. See Section 26.4.

32 Separate Page Table Structures. If set, support for the Virtual Address Boun
(VIRBND) register exists.

31 – 24 Reserved — MBZ

23 – 16 Platform-specific variations. Registered values to be provided by system and platform
resentatives.

15 – 10 System Type Specific (STS). Registered system identifiers for system member ident
tion.

9 GRAPHICS — If set, indicates that the platform contains an embedded graphics proce
Initialized by the console at all cold bootstraps.

8 POWERFAIL RESTART — If set, indicates that the console should restart all availa
processors on a powerfail recovery. If clear, only the primary processor will be restar
Cleared by the console at system bootstraps; may be set by system software.
26–12 Console Interface Architecture (III)
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26.1.2 Translation Buffer Hint Block

The Translation Buffer Hint Block (TBB) contains information on the characteristics of
instruction stream translation buffer (ITB) and data stream translation buffer (DTB) granular-
ity hints (GH). All processors in a multiprocessor Alpha system must implement the s
granularity hints. The granularity hint fields are listed in Table 26–3.

Implementation Note:

The granularity hint fields described in Table 26–3 have not been implemented in
Alpha console through the 21364/EV7x.

7 – 5 POWERFAIL — Indicates the type of powerfail (if any) implemented by this platform
See Section 27.5.3 for more information. Defined values include:

Initialized by the console at all cold bootstraps.

4 – 1 CONSOLE — Indicates the type of console. Defined values include:

Initialized by the console at all cold bootstraps.

0 MPCAP — If set, indicates this system platform is capable of being configured as a m
processor; all support for multiprocessing is present, even if only one processor is pre
If clear, this system supports a uniprocessor only. Initialized by the console at all cold b
straps.

Table 26–2 System Variation Field (HWRPB[88]) (Continued)

Bits Description

<7:5> Interpretation

000 Reserved
001 United

010 Separate
011 Full battery backup of system platform hardware

<4:1> Interpretation

0000 Reserved
0001 Detached service processor

0010 Embedded console
Other Reserved for future use
Console Interface to Operating System Software (III)26–13
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The TBB consists of 8 quadwords, 4 for each of the translation buffers (ITB and DTB). Th
quadwords contain 16 word fields; each word contains the number of entries in the trans
buffer that implement a combination of granularity hints (including none).

26.1.3 Per-CPU Slots in the HWRPB

Information on the state of a processor is contained in a "per-CPU slot" data structure fo
processor. The per-CPU slots form a contiguous array indexed by CPU ID. The sta
address of the first per-CPU slot is given by the offset HWRPB[160] relative to the star
address of the HWRPB. The number of per-CPU slots is given in HWRPB[144]. E
per-CPU slot must be 128-byte-aligned to ensure natural alignment of the hardware privi
context block (HWPCB) at SLOT[0]. The slot size, rounded up to the nearest multiple of 128
bytes, is given in HWRPB[152].

CPU IDs are determined by the implementation. The only requirement is that they be i
range of zero to the maximum number of processors the particular platform supports m
one.

Software Note:

OpenVMS supports CPU IDs in the range 0–31 only.

Table 26–3: Granularity Hint Fields

Offset 16 Granularity Hint

0 None

2 1 page

4 8 pages

6 1 and 8 pages

8 64 pages

A 1 and 64 pages

C 8 and 64 pages

E 1, 8, and 64 pages

10 512 pages

12 1 and 512 pages

14 8, and 512 pages

16 1, 8, and 512 pages

18 64 and 512 pages

1A 1, 64, and 512 pages

1C 8, 64, and 512 pages

1E 1, 8, 64, and 512 pages
26–14 Console Interface Architecture (III)
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Each per-CPU slot contains information necessary to bootstrap, start, restart or halt the p
sor. The format is shown in Figure 26–3 and described in Table 26–4. The hardware privi
context block (HWPCB) specifies the context in which the loaded system software
execute.

The console must initialize the per-CPU slot for the primary processor before system b
strap. The per-CPU slot fields for secondary processors are set by a combination of the co
and system software. The console updates the halt information at error halts and before p
sor restarts.

Slots corresponding to nonexistent processors are zeroed. There may be more per-CP
than are necessary in any given Alpha system. A system implementation may reserve HW
space for processors that are not present at system bootstrap.

An Alpha system may support internally different, yet software compatible, PALcode for
ferent processors in a multiprocessor implementation. Each per-CPU slot contains a PAL
memory descriptor that locates the PALcode used by that processor. See Section 27.3
information on PALcode loading and initialization on the primary processor and Sec
27.4.3.3 for information on PALcode loading and initialization on secondary processors.

The starting address of a per-CPU slot is calculated by:

Slot Address = {CPU ID * slot size} + offset + HWRPB base
= {CPU ID * HWRPB[152]} + HWRPB[160] + #HWRPB

The address may be physical or virtual.
Console Interface to Operating System Software (III)26–15
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Figure 26–3 Per-CPU Slot in HWRPB

Table 26–4 Per-CPU Slot Fields

Offset Description

SLOT HWPCB1,2

Hardware privileged context block (HWPCB) for this processor. See Table 27–10 for
contents as set by the console.

+128 STATE FLAGS1,2

Current state of this processor. See Table 26–5 for the interpretation of each bit.

+136 PALCODE MEMORY SPACE LENGTH3,4,5

Number of bytes required by this processor for PALcode memory. Unsigned field.

:+128

:+464

Per-CPU State Flag Bits

PALcode Revisions Available Block

:+136PALcode Memory Length

:+144PALcode Scratch Length

:+152Physical Address of PALcode Memory Space

:SLOTBootstrap/Restart HWPCB

:+160Physical Address of PALcode Scratch Space

:+168PALcode Revision Required by Processor

:+176Processor Type

:+184Processor Variation

:+192Processor Revision

:+200Processor Serial Number

:+216Physical Address of Logout Area

:+224Logout Area Length

:+232Halt PCBB

:+240Halt PC

:+248Halt PS

:+256Halt Argument List (R25)

:+264Halt Return Address (R26)

:+272Halt Procedure Value (R27)

:+280Reason for Halt

:+288Reserved for Software

:+296Interprocessor Console Buffer Area

:+592

:+608

:+624

Console Data Log Physical Address

Cache Information

Reserved for Architecture Use

Processor Software Compatibility Field

Console Data Log Length

Cycle Counter Frequency

:+600

:+616

:+632
26–16 Console Interface Architecture (III)
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+144 PALCODE SCRATCH SPACE LENGTH3,4,5

Number of bytes required by this processor for PALcode scratch space.Unsigned field.

+152 PA OF PALCODE MEMORY SPACE2,3,5

Starting physical address of PALcode memory space for this processor. PALcode me
space must be page aligned. See Section 27.3.1 or Section 27.4.3.3.

+160 PA OF PALCODE SCRATCH SPACE2,3,5

Starting physical address of PALcode scratch space for this processor. PALcode scratch
space must be page aligned. See Section 27.3.1 or Section 27.4.3.3.

+168 PALCODE REVISION2,3,4,6

PALcode revision level for this processor:

This field identifies the PALcode revision required by the console and/or processor ini
ization. The major and minor PALcode revisions are set at console initialization; the rem
ing fields are set during PALcode loading and initialization. This field must be updated a
PALcode switching toreflect the new PALcode environment. See Sections 26.1.1 and S
tion 27.4.3.3. Also see

+176 PROCESSOR TYPE3,4

Type of this processor:

The processor types are defined in Appendix D.

Table 26–4 Per-CPU Slot Fields (Continued)

Offset Description

Bits Interpretation

63 – 48 Maximum number of processors that can share this PALcode image

47 – 32 PALcode compatibility (0–65535):
0 Unknown

1–65535 Compatibility revision
31 – 24 SBZ

23 – 16 PALcode variation (0–255)
15 – 8 PALcode major revision (0–255)

7 – 0 PALcode minor revision (0–255)

Bits Interpretation

63 – 32 Minor type
31 – 0 Major type
Console Interface to Operating System Software (III)26–17
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+184 PROCESSOR VARIATION3,4

The following processor variations are defined:

+192 PROCESSOR REVISION3,4

Full COMPAQ STD 12 revision field for this processor. This quadword field contains fo
ASCII characters. See Section 26.1.1.

+200 PROCESSOR SERIAL NUMBER3,4

Full DEC STD serial number for this processor module. This octaword field contain
10-character ASCII serial number determined at the time of manufacture; see COMP
STD 12 for format information.

+216 PA OF LOGOUT AREA3,4

Starting physical address of PALcode logout area for this processor. Logout areas must
least quadword aligned.

+224 LOGOUT AREA LENGTH3,4

Number of bytes in the PALcode logout area for this processor.

+232 HALT PCBB1,7

Value of the PCBB register when a processor halt condition is encountered by this pro
sor. Initialized to the address of the hardware privileged context block (HWPCB) at of
[0] from this per-CPU slot at system bootstraps or secondary processor starts.

+240 HALT PC1,7

Value of the PC when a processor halt condition is encountered by this processor. Zero
system bootstraps or secondary processor starts.

+248 HALT PS1,7

Value of the PS when a processor halt condition is encountered by this processor. Zero
system bootstraps or secondary processor starts.

Table 26–4 Per-CPU Slot Fields (Continued)

Offset Description

Bit Description

63–3 RESERVED — MBZ

2 PRIMARY ELIGIBLE (PE) — If set, indicates that this processor is eligible to
become a primary processor. The processor has direct access to the console
BB_WATCH, and all I/O devices. See Chapter 27.

1 IEEE-FP — If set, indicates this processor supports IEEE floating-point opera
tions and data types. If clear,this processor has no such support.

0 VAX-FP — If set, indicates this processor supports VAX floating-point opera-
tions and data types. If clear,this processor has no such support.
26–18 Console Interface Architecture (III)
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+256 HALT ARGUMENT LIST1,7

Value of R25 (argument list) when a processor halt condition is encountered by this pro
sor. Zeroed at system bootstraps or secondary processor starts.

+264 HALT RETURN ADDRESS1,7

Value of R26 (return address) when a processor halt condition is encountered by this pr
sor. Zeroed at system bootstraps or secondary processor starts.

+272 HALT PROCEDURE VALUE1,7

Value of R27 (procedure value) when a processor halt condition is encountered by this
cessor. Zeroed at system bootstraps or secondary processor starts.

+280 REASON FOR HALT1,7

Indicates why this processor was halted. Values include:

Codeis set to "0" at console initialization.

+288 RESERVED FOR SOFTWARE2

Reserved for use by system software. Zeroed at system bootstraps or secondary pro
starts.

+296 RXTX BUFFER AREA

Used for interprocessor console communication. See Section 26.4.

Table 26–4 Per-CPU Slot Fields (Continued)

Offset Description

Code 16 Reason

0 Bootstrap, processor start, or powerfail restart

1 Console operator requested a system crash
2 Processor halted due to kernel-stack not-valid halt

3 Invalid SCBB
4 Invalid PTBR

5 Processor executed CALL_PAL HALT instruction in kernel mode
6 Double error abort encountered

7 Machine check while in PALcode environment
8 – FFF Reserved

Other Implementation-specific
Console Interface to Operating System Software (III)26–19
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+464 PALCODE AVAILABLE 3,4

Block of 16 quadwords that list previously loaded PALcode variations that are availabl
the console or operating system for PALcode switching.

The first offset (SLOT[464]) is reserved for an overall firmware revision field for this pro-
cessor, the format of which is determined by the HWRPB revision level found
HWRPB[16]. If HWRPB[16] contains 6 or less, the format for SLOT[464] is platform sp
cific. If HWRPB[16] is greater than 6, the format for SLOT[464] is as follows:

The format of each subsequent quadword follows the PALcode revision field (SLOT[16
Each quadword is indexed by PALcode variant. If the quadword is non-zero, the PALc
variant has been loaded and the operating system may switch to that PALcode varia
passing the variant number to CALL_PAL SWPPAL.

+592 PROCESSOR SOFTWARE COMPATIBILITY FIELD8

Type of pre-existing processor that is software compatible with existing processor. Fo
follows SLOT[176].

Table 26–4 Per-CPU Slot Fields (Continued)

Offset Description

Bits Interpretation

63–48 Maximum number of processors that can share this console

47–32 Console build sequence number (0–16383)
31–24 SBZ

23–16 Variant (0 for console version)
15–8 Console major revision (0–255)

7–0 Console minor revision (0–255)

Bits Interpretation

63–32 Minor type
31–0 Major type
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+600 Console Data Log Physical Address

Physical address of in-memory buffer of console data to be passed to the operating sy
(if any, otherwise zero).

+608 Console Data Log Length

Length in bytes of console data (if any, otherwise zero).

+616 Description of the cache that implements that level in the memory hierarchy of mostsignifi-
cance to software page coloring techniques, and management by buffering of large data

+624 Cycle Counter Frequency

Number of SCC and PCC updates per second for this CPU. If this field is zero, the c
counterfrequency is found at HWRPB[112] and that value should be used.

1 Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary
before processor start.

2 May by modified by system software for a secondary before processor start.
3 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the

console at all other times.
4 Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the

console at all other times.
5 Support PALcode loading as described in Section 27.3.
6 May be modified by system software for the primary.
7 Set by the console at all processor halts.
8 Initialized by the console at cold bootstrap and never written by system software or console.

Table 26–4 Per-CPU Slot Fields (Continued)

Offset Description

Bits Interpretation
63:56 Degree of set associativity, expressed in the following values:

55:48 Cache characteristics mask, as follows:

47:32 Size of an individual cache block, expressed as the log base–2 value of the blo
size in bytes.

31:0 Total size of the cache in units of KBytes.

Value Meaning
0 Fully associative cache

1 Direct-mapped cache
n Numbern of sets in the cache

Bits Interpretation
55:49 Reserved for future use

48 Set for write-back; clear for write-through
Console Interface to Operating System Software (III)26–21
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Table 26–5 Per-CPU State Flags

Bit Description

63:24 RESERVED; MBZ.

23:16 HALT REQUESTED1,2,3

Indicates the console action requested by system software executing on this processor. V
include:

Set to "0" at system bootstraps and secondary processor starts. May be set to non-zero b
tem software before processor halt and subsequent processor entry into console I/O mod
Sections 27.5.7 and 27.4.5.

15:9 RESERVED; MBZ.

8 PALCODE LOADED (PL)3,4,5

Indicates that this processor’s PALcode image has been loaded into the address given
processor’s slot PALcode memory space address field. See Sections 27.3.1 and 27.4.3.3

7 PALCODE MEMORY VALID (PMV)3,4,5

Indicates that this processor’s PALcode memory and scratch space addresses are valid. Set
after the necessary memory is allocated and the addresses are written into the processor
See Sections 27.3.1 and 27.4.3.3.

6 PALCODE VALID (PV)4,5

Indicates that this processor’s PALcode is valid. Set after PALcode has been succes
loaded and initialized. See Sections 27.3.1 and 27.4.3.3.

5 CONTEXT VALID (CV) 1,3

Indicates that the HWPCB in this slot is valid. Set after the console or system software ini
izes the HWPCB in this slot. See Sections 27.3.1 and 27.4.3.

4 OPERATOR HALTED (OH)1,6

Indicates that this processor is in console I/O mode as the result of explicit operator action.
See Section 27.5.8.

3 PROCESSOR PRESENT (PP)4,5

Indicates that this processor is physically present in the configuration.

Code 16 Reason

0 Default (no specific action)
1 SAVE_TERM/RESTORE_TERM exit

2 Cold bootstrap requested
3 Warm bootstrap requested

4 Remain halted (no restart)
5 System power-off requested; requires at least HWRPB revision 8.

Other Reserved
26–22 Console Interface Architecture (III)
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26.1.4 Configuration Data Block

Systems may have a Configuration Data Block (CONFIG). The format of the block
whether it exists in a system is implementation specific. If present, the block must be ma
in the bootstrap address space. The CONFIG offset at HWRPB[208] contains the block offset
address; if no CONFIG block exists, the offset is zero. The first quadword of a CONFIG b
must contain the size in bytes of the block. The second quadword must contain a checksu
the block. The checksum is computed as a 64-bit sum, ignoring overflows, of all quadwor
the configuration data block except the checksum quadword.

26.1.5 Field Replaceable Unit Table

Systems may have a field replaceable unit (FRU) table. The format of the table and whet
exists in a system is implementation specific. If present and physically contiguous to
HWRPB and the required offset blocks, the table must be mapped in the bootstrap ad
space and its size included in the HWRPB SIZE field.

The FRU table offset at HWRPB[216] contains the physical offset from the base of
HWRPB; if no FRU table exists, the offset is zero. Comparing the offset value to the HWR
SIZE indicates whether or not the FRU table is contiguous to the HWRPB and the required
set blocks.

2 PROCESSOR AVAILABLE (PA)4,5

Indicates that this processor is available for use by system software. The PA bit may d
from the PP bit based on self-test or other diagnostics, or as the result of a console com
that explicitly sets this processor unavailable.

1 RESTART CAPABLE (RC)1,2,3,6

Indicates that system software executing on this processor is capable of being restarte
detected error halt, powerfail recovery, or other error condition occurs. Cleared by the console
and set by system software. See Sections 27.4.1.3, 27.4.3.6, and 27.5.1.

0 BOOTSTRAP IN PROGRESS (BIP)1,2,3

For the primary, this bit indicates that this processor is undergoing a system bootstrap.
secondary, this bit indicates that a CPU start operation is in progress. Set by the consol
cleared by system software. See Sections 27.4.1.3, 27.4.3.6, and 27.5.1.

1 Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary
before processor start.

2 May be modified by system software for the primary.
3 May be modified by system software for a secondary before processor start.
4 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the con

sole at all other times.
5 Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the

console at all other times.
6 Set by the console at all processor halts.

Table 26–5 Per-CPU State Flags (Continued)

Bit Description
Console Interface to Operating System Software (III)26–23
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As of HWRPB Revision 12, a system may choose to distribute memory descriptors such
they are contained within the structure located by the FRU table offset at HWRPB[216].
Section 27.4.1.1.

26.2 Environment Variables

The environment variables provide an easily extensible mechanism for managing com
console state. Such state may be variable length, may change with system software
change as a result of console state changes, and may be established by the console p
tion layer. Environment variables may be read, written, or saved.

An environment variable consists of an identifier (ID) and a byte stream value maintaine
the console. There are three classes of environment variables:

1. Common to all implementations: ID = 0 to 3F16.

These have meaning to both the console and system software. All consoles
implement all of these environment variables.

2. Specific to a given console implementation: ID = 40 to 7F16.

These have meaning to a given console implementation and system soft
implementation. Support for these environment variables is optional.

3. Specific to system software: ID = 80 to FF16.

These have meaning to a given system software application or implementation
console passes these environment variables between the console presentation la
the target application without interpretation. Support for these environment variabl
optional.

If a console supports optional environment variables, they must be described in the rel
console implementation specification and registered with theAlpha architecture group.

The value, format, and size of each environment variable depends on the environment va
and the console implementation. The size of an environment variable value is specifi
bytes. The byte stream value of most environment variables consists of an ASCII string.

The booting environment variables, BOOT_DEV, BOOTDEF_DEV, and BOOTED_DE
contain values that can consist of multiple fields and lists. For those variables, the value
parsed as follows:

• Each field is delimited by one and only one space " " (2016).

• Each list element is delimited by one and only one comma "," (2C16).

• Any numeric quantities are expressed in decimal.

• All characters are case-blind and may be expressed in uppercase or lowercase.

Other examples of environment variables that have list values are BOOTED_OSFLAGS
DUMP_DEV.

Programming Note:

For example, BOOT_DEV might consist of "0 4 MSCP,0 1 MOP" and BOOT_OSFLAG
might consist of "7,2,28".
26–24 Console Interface Architecture (III)
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System software uses the console environment variable routines to access the enviro
variables. Each environment variable is identified by an identification number (ID). If the c
sole resolves the ID, the associated byte stream value is returned. The console enviro
variable routines present system software with a consistent interface to environment var
regardless of the presentation layer and internal console representation. The console op
interacts with the console presentation layer to access environment variables. See Sectio
for details.

In a multiprocessor system, the console must ensure that the dynamic state created by th
ronment variables is common to all processors. It must not be possible for a value observ
a secondary to differ from that observed on the primary or another secondary. This is n
sary to support bootstrapping, restarting a processor, and switching the primary.

Some environment variables contain critical state that must be maintained across conso
tializations and system power transitions. Other environment variables contain dynamic
that must be initialized at console initialization and retained across warm bootstraps. Stil
ers contain dynamic state that is initialized at each system bootstrap.

Environment variable values that must be maintained across console initializations mu
retained in some sort of nonvolatile storage. Default values for these environment vari
must be set before system shipment. Thus, there are three possible values: the dynamic
the default value retained in nonvolatile storage, and the initial default value set in nonvo
storage before system shipment. The console need not preserve the initial default value.
sole implementation preserves the initial default value, that value is accessible only t
console presentation layer; system software accesses only the dynamic and default (las
ten) values. The dynamic and default values may differ at any time after console initializa
as the result of changes by system software or the console operator.

The internal mechanisms for representing and implementing environment variables are
mined by the console and are unknown to both system software and the console presen
layer. The method of handling the required nonvolatile storage also depends on
implementation.
Console Interface to Operating System Software (III)26–25



ID is
here in
racter

l-

s-

p
l-
T
t
-

a
n-

n
n

a-

p
t.
ole

nd
or
n-
yer

e-
ys-
Table 26–6 lists the environment variables maintained by the console. Each environment
also assigned a symbolic name that is used to reference the environment variable elsew
this specification. Tables 26–7 and 26–8, respectively, list supported languages and cha
sets.

Table 26–6 Required Environment Variables

Environment Variable
ID16 Symbol Description

00 Reserved

01 AUTO_ACTION1,2 Console action following an error halt or powerup. Defined va
ues and the action invoked are:

• "BOOT" (544F 4F4216) bootstrap

• "HALT" (544C 414816) halt

• "RESTART" (54 5241 5453 455216) restart

Any other value causes a halt; The default value when the sy
tem is shipped is "HALT". See Section 27.1.1.

02 BOOT_DEV2 Device list used by the last (or currently in progress) bootstra
attempt. The console modifies BOOT_DEV at console initia
ization and when a bootstrap attempt is initiated by a BOO
command. The value of BOOT_DEV is set from the device lis
specified with the BOOT command or, if no device list is spec
ified, BOOTDEF_DEV. The console uses BOOT_DEV with-
out change on all bootstrap attempts that are not initiated by
BOOT command. See Section 27.4.1.5. The format is indepe
dent of the console presentation layer.

03 BOOTDEF_DEV1,2 Device list from which bootstrapping is to be attempted whe
no path is specified by a BOOT command. See Sectio
27.4.1.5. The format follows BOOT_DEV. The default value
when the system is shipped indicates a valid implement
tion-specific device or NULL (0016).

04 BOOTED_DEV3 Device used by the last (or currently in progress) bootstra
attempt. Value is one of the devices in the BOOT_DEV lis
See Section 27.4.1.5. The format is independent of the cons
presentation layer.

05 BOOT_FILE1,2 File name to be used when a bootstrap requires a file name a
when the bootstrap is not the result of a BOOT command
when no file name is specified on a BOOT command. The co
sole passes the value between the console presentation la
and system software without interpretation; the value is pr
served across warm bootstraps. The default value when the s
tem is shipped is NULL (0016).
26–26 Console Interface Architecture (III)
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06 BOOTED_FILE3 File name used by the last (or currently in progress) bootstr
attempt. The value is derived from BOOT_FILE or the curren
BOOT command. The console passes the value between
console presentation layer and system software without int
pretation.

07 BOOT_OSFLAGS1,2 Additional parameters to be passed to system software wh
the bootstrap is not the result of a BOOT command or when
parameters are specified on a BOOT command. The cons
preserves the value across warm bootstraps and passes
value between the console presentation layer and system s
ware without interpretation. The default value when the syste
is shipped is NULL (0016).

08 BOOTED_OSFLAGS3 Additional parameters passed to system software during the l
(or currently in progress) bootstrap attempt. The value
derived from BOOT_OSFLAGS or the current BOOT com
mand. The console passes the value between the console
sentation layer and system software without interpretation.

09 BOOT_RESET1,2 Indicates whether a full system reset is performed in respon
to an error halt or BOOT command. Defined values and th
action invoked are:

• "OFF" (46 464F16) warm bootstrap, no full system
reset is performed.

• "ON" (4E4F16) cold bootstrap, a full system reset is
performed.

See Sections 27.4.1 and 27.4.2. The default value when the s
tem is shipped is implementation specific.

0A DUMP_DEV1,2 Device used to write operating system crash dumps. The form
follows BOOTED_DEV and is independent of the console pre
sentation layer. The value is preserved across warm bootstra
The default value when the system is shipped indicates
implementation-specific device or NULL (0016).

0B ENABLE_AUDIT1,2 Indicates whether audit trail messages are to be generated d
ing bootstrap. Defined values and the action invokedare:

• "OFF" (46 464F16). Audit trail messages suppressed.

• "ON" (4E4F16). Audit trail messages generated.

The default value when the system is shipped is "ON."

0C LICENSE1,3 Software license in effect. The value is derived in an impleme
tation-specific manner during console initialization.

Table 26–6 Required Environment Variables (Continued)

Environment Variable
ID16 Symbol Description
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0D CHAR_SET1,2 Current console terminal character set encoding. Defined v
ues are given in Table 26–8. The default value when the system
is shipped is determined by the manufacturing site.

0E LANGUAGE1,2 Current console terminal language. Defined values are given
Table 26–7. The default value when the system is shipped
determined by the manufacturing site.

0F TTY_DEV1,2,3 Current console terminal unit. Indicates which entry of the CT
table corresponds to the actual console terminal. The value
preserved across warm bootstraps. The default value is "
(3016).

10– 3F Reserved for Compaq.

40 – 7F Reserved for console implementation use.

80 – FF Reserved for system software use.

1 Nonvolatile. The last value saved by system software or set by console commands is preserved acro
system initializations, cold bootstraps, and long power outages.

2 Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and
restarts.

3 Read-only. The variable cannot be modified by system software or console commands.

Table 26–7 Supported Languages

LANGUAGE 16 Language Character Set GETC Bytes

0 None (cryptic) ISO Latin–1 1

30 Dansk ISO Latin–1 1

32 Deutsch ISO Latin–1 1

34 Deutsch (Schweiz) ISO Latin–1 1

36 English (American) ISO Latin–1 1

38 English (British/Irish) ISO Latin–1 1

3A Espanol ISO Latin–1 1

3C Francais ISO Latin–1 1

3E Francais (Canadian) ISO Latin–1 1

40 Francais (Suisse Romande) ISO Latin–1 1

42 Italiano ISO Latin–1 1

44 Nederlands ISO Latin–1 1

46 Norsk ISO Latin–1 1

48 Portugues ISO Latin–1 1

Table 26–6 Required Environment Variables (Continued)

Environment Variable
ID16 Symbol Description
26–28 Console Interface Architecture (III)



ck rou-
urally

sys-
this
con-
fully

uire
ker-

D. If
f the

y the

e fol-
26.3 Console Callback Routines

System software can access certain system hardware components through a set of callba
tines provided by the Alpha console. These routines give system software an architect
consistent and relatively simple interface to those components.

All of the console callback routines may be used by system software when the operating
tem has only restricted functionality, such as during bootstrap or crash. When invoked in
context, the console may assume full control of system platform hardware. Some of the
sole callback routines may be used by system software when the operating system is
functional. Such usage imposes constraints on the console implementation.

All routines must be called by system software executing in kernel mode. All routines req
that the HWRPB and the per-CPU, CTB, and CRB offset blocks are virtually mapped and
nel read/write accessible. If these conditions are not met, the results are UNDEFINE
conditions from within user mode are not met, the results are UNPREDICTABLE. Some o
routines execute correctly only at or above certain IPLs.

The routines must never modify any processor registers except those explicitly indicated b
routine descriptions.

26.3.1 System Software Use of Console Callback Routines

The console callback routines present an environment to the operating system in which th
lowing behavior must be implemented. These routines must:

• Not alter the current IPL

• Not alter the current execution mode

• Not disable or mask interrupts

• Not alter any registers except as explicitly defined by the routine interface

• Not alter the existing memory management policy

• Not usurp any existing interrupt mechanisms

• Be interruptible

4A Suomi ISO Latin–1 1

4C Svenska ISO Latin–1 1

4E Vlaams ISO Latin–1 1

Other Reserved

Table 26–8 Supported Character Sets

CHAR_SET16 Character Set

0 ISO Latin–1

Other Reserved

Table 26–7 Supported Languages (Continued)

LANGUAGE 16 Language Character Set GETC Bytes
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Table
• Ensure timely completion

Once the operating system is bootstrapped, the console must not reclaim resources tran
to that operating system. This includes both the issuing and servicing of I/O device interr
interprocessor interrupts, and exceptions.

It is the responsibility of the console implementation to ensure that these console callback
tines may be invoked at multiple IPLs, may be interrupted, and may be invoked by mul
system software threads. The operation of these routines must appear to be atomic to th
ing system software even if that software thread is interrupted.

In a multiprocessor system, some console routines may be invoked only on the primary pr
sor. A secondary processor may invoke only a subset of these routines and then only u
limited set of conditions. These conditions are explicitly stated in the routine description
violated, the results are UNDEFINED.

26.3.2 System Software Invocation of Console Callback Routines

With the exception of the FIXUP routine, all of the routines are accessed uniformly throu
common DISPATCH procedure. The target routine is identified by a function code. All c
sole callback routines are invoked using the Alpha standard calling conventions.

Any memory management exceptions generated by incorrect mapping or inaccessibil
console callback routine parameters produce UNDEFINED results. This occurs natural
those console callback routines that are intended for use while the operating system is
functional; these routines execute in the unmodified context of the operating system.

For those routines intended for use only while the operating system has restricted funct
ity, the DISPATCH routine must ensure that any conflicts in mapping or accessibility
resolved before permitting the console to gain control of the system platform hardware.

26.3.3 Console Callback Routine Summary

The console callback routines fall into four functional groups:

1. Console terminal interaction

2. Generic I/O device access

3. Environment variable manipulation

4. Miscellaneous

The hexadecimal function code, name, and function for each routine are summarized in
26–9.

Table 26–9 Console Callback Routines

Code 16 Name Function Invoked

Console Terminal Routines

01 GETC Get character from console terminal

02 PUTS Put byte stream to console terminal

03 RESET_TERM Reset console terminal to default

04 SET_TERM_INT Set console terminal interrupts
26–30 Console Interface Architecture (III)
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All Alpha consoles must implement:

• All console terminal routines except PROCESS_KEYCODE

• All console generic I/O device routines

• All environment variable routines except SAVE_ENV

• The FIXUP and DISPATCH miscellaneous routines

The PSWITCH routine is required for all Alpha multiprocessor systems that support dyna
primary switching. See Section 27.5.6.

05 SET_TERM_CTL Set console terminal controls

06 PROCESS_KEYCODE Process and translate keycode

07 CONSOLE_OPEN Opens the console terminal I/O device for use

08 CONSOLE_CLOSED Terminates use of the console terminal I/O device

09 – F Reserved

Console Generic I/O Device Routines

10 OPEN Open I/O device for access

11 CLOSE Close I/O device for access

12 IOCTL Perform I/O device-specific operations

13 READ Read I/O device

14 WRITE Write I/O device

15 – 1F Reserved

Console Environment Variable Routines

20 SET_ENV Set (write) an environment variable

21 RESET_ENV Reset (default) an environment variable

22 GET_ENV Get (read) an environment variable

23 SAVE_ENV Save current environment variables

Console Miscellaneous Routines

30 PSWITCH Switch primary processor

(None) FIXUP Remap console callback routines

(None) DISPATCH1 Access console callback routine

32 BIOS_EMUL Run BIOS emulation callback routine

Other Reserved

1 DISPATCH is not a callback routine. It is a routine that transfers control to callback routines. DIS-
PATCH accepts the function code of any callback routine as an input parameter and transfers contro
to the selected callback routine. Therefore, there is no specific section to describe DISPATCH.

Table 26–9 Console Callback Routines (Continued)

Code 16 Name Function Invoked
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26.3.4 Console Terminal Routines

Alpha consoles provide system software with a consistent interface to the console term
regardless of the physical realization of that terminal. This interface consists of the consol
minal block (CTB) table and a number of console terminal routines. Each CTB contains
characteristics of a terminal device that can be accessed through the console terminal ro
see Section 26.3.8.2.

There isonly oneconsole terminal. The CTB table may contain multiple CTBs and the c
sole terminal routines may be used to access multiple terminal devices. Each terminal de
identified by a "unit number" that is the index of its CTB within the CTB table. Th
TTY_DEV environment variable indicates the unit, hence the CTB, of the console term
The console terminal unit is determined at system bootstrap and cannot be altered by s
software. Console terminal device interrupts are delivered at the console terminal device I
the primary processor; interrupts can be redirected to a secondary only when switching th
mary processor.

The console terminal routines permit system software toaccess the console terminal in
device-independent way. These routines may be invoked while the operating system is
functional as well as during operating system bootstrap or crash. All console terminal rou
are subject to the constraints given in Section 26.3.1. These routines must:

• Not alter the current IPL or current mode.

These routines must be invoked in kernel mode at or above the console terminal d
IPL.

• Not alter the existing memory management policy.

All internal pointers must have been remapped by FIXUP.

• Not block interrupts.

The operating system must be capable of continuing to receive hardware interru
higher IPLs.

• Be interruptible and re-entrant.

These routines may be invoked at multiple IPLs and their execution may
interrupted. However, console terminal callback operations are not necessarily at
In the event of re-entrant invocations, it is UNPREDICTABLE whether or not t
interrupted operation will fail and characters may be transmitted or received ou
order.

The time required for console terminal routines to complete is UNPREDICTABLE; howeve
console implementation will attempt to minimize the time whenever possible.

Software Note:

Implementations must limit the execution time to significantly less than the interval cl
interrupt period. A return after partial operation completion is preferable to long latency
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When invoking these routines, system software must:

• Be executing in kernel mode at or above the console terminal device IPL.

If these routines are invoked in other modes, their execution cau
UNPREDICTABLE operation. If invoked at lower IPLs, their execution caus
UNDEFINED operation.

• Be executing on the primary processor in a multiprocessor configuration.

If these routines are invoked on secondary processors in kernel mode, their exec
causes UNDEFINED operation.

• Be prepared to service any resulting console terminal interrupts, if enabled.

System software must provide valid interrupt service routines for the console term
transmit and receive interrupts. The operating system interrupt service routines mu
established before enabling interrupts; otherwise the operation of the syste
UNDEFINED.

Programming Note:

Any console terminal interrupt service routines established by the console bef
transferring control to operating system software are not transferred to the oper
system nor are they remapped by FIXUP. Any console terminal interrupts will be deliv
only after the operating system lowers IPL from the console terminal device IPL.

Implementation Note:

The implementation of console terminal I/O interrupts is specific to the system hardw
platform. An example of implementation-specific characteristics is console terminal S
vectors.
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26.3.4.1 GETC — Get Character from Console Terminal

Format:

Inputs:

Outputs:

GETC attempts to read one character from a console terminal device and, if successful, r
that character in R0<31:0>. The character is not echoed on the terminal device. The size
returned character is from one to four bytes and is a function of the current character set e
ing and language (see Table 26–7). The routine performs any necessary keycode mappin

For implementations that support multiple directly addressable terminal devices, R17 con
the unit number from which to read the character. If the implementation does not support
tiple terminal devices or if the devices are not directly addressable, R17 should be zero
unit number from which the character was read is returned in R0<39:32>. If the impleme
tion does not support multiple terminal devices, R0<39:32> is returned as zero.

GETC returns character reception status in R0<63:61>. If received characters are buffered by
the console terminal, R0<61> is set to ‘1’ whenever additional characters are availab
GETC returns a character without error, R0<63:62> is set to ‘00’. If no character is yet re
R0<63:62> is set to ‘10’. If an error is encountered obtaining a character, R0<63:62> is s
‘11’. Examples of errors during character reception include data overrun or loss of carrier.

char = DISPATCH ( GETC,unit )

GETC = R16; GETC function code – 0116

unit = R17; Terminal device unit number

retadr = R26; Return address

char = R0; Returned character and status:

R0<63:61> ‘000’ Success, character received

‘001’ Success, character received, more to
be read

‘100’ Failure, character not yet ready for
reception

‘110’ Failure, character received with error

‘111’ Failure, character received with error,
more to be read

R0<60:48> Device-specific error status

R0<47:40> SBZ
R0<39:32> Terminal device unit number returning char-

acter
R0<31:0> Character read from console terminal
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When an error is returned by GETC, the contents of R0<31:0> and R0<60:48> depend o
capabilities of the underlying hardware. Implementations in which the hardware return
character in error must provide that character in R0<31:0>. Additional device-specific e
status may be contained in R0<60:48>.

When appropriate, GETC performs special keyboard operations such as turning keyb
LEDs on or off. Such action is based on the incoming stream of keycodes delivered by the
sole terminal.

The return address indicated by R26 should be mapped and executable by the kernel.
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26.3.4.2 PUTS — Put Stream to Console Terminal

Format:

Inputs:

Outputs:

PUTS attempts to write a number of bytes to a console terminal device. R18 contains the
virtual address of the memory-resident byte stream; R19 contains its 32-bit size in bytes
byte stream is written in order with no interpretation or special handling. The count of
bytes transmitted is returned in R0<31:0>.

Programming Note:

For multiple-byte character set encodings, the returned byte count may indicate a p
character transmission.

For implementations that support multiple terminal devices, R17 contains the unit numb
which the byte stream is to be written; otherwise, R17 should be zero.

PUTS returns byte stream transmission status in R0<63:61>. If only a portion of the
stream was written, R0<61> is set to ‘1’. If no error is encountered, R0<63:62> is set to ‘00
no bytes were written because the terminal was not ready, R0<63:62> is set to ‘10’. If an
is encountered writing a byte, R0<63:62> is set to ‘00’. Examples of errors during byte tr
mission include data overrun or loss of carrier.

When an error is returned by PUTS, additional device-specific error status may be contain
R0<60:48>.

wcount = DISPATCH ( PUTS,unit,address,length )

PUTS = R16; PUTS function code – 0216

unit = R17; Terminal device unit number

address = R18; Virtual address of byte stream to be written

length = R19; Count of bytes to be written

retadr = R26; Return address

wcount = R0; Count of bytes written and status:

R0<63:61> ‘000’ Success, all bytes written

‘001’ Success, some bytes written
‘100’ Failure, no bytes written

Terminal error encountered

‘111’ Failure, some bytes written
Terminal error encountered

R0<60:48> Device-specific error status

R0<47:32> SBZ
R0<31:0> Count of bytes written (unsigned)
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Multiple invocations of PUTS may be necessary because the console terminal may accep
a very few bytes in a reasonable period of time.

The output byte stream located by R18 should be mapped and read accessible by the k
the return address indicated by R26 should be mapped and executable by the kernel.
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26.3.4.3 RESET_TERM — Reset Console Terminal to Default Parameters

Format:

Inputs:

Outputs:

RESET_TERM resets a console terminal device and its CTB to their initial, default state
errors in the CTB are cleared. For implementations that support multiple terminal devices
contains the unit number to be reset; otherwise, R17 should be zero.

The CTB describes the capabilities of the terminal device and its initial, default state. Dep
ing on the terminal device type and particular console implementation, other terminal de
may be affected by the routine.

Programming Note:

For example, if multiple terminal units share a common interrupt, that interrupt may be
disabled or enabled for all.

If the console terminal is successfully reset, RESET_TERM returns with R0<63> set to ‘0
errors are encountered, the routine attempts to return the console terminal to a usable sta
then returns with R0<63> set to ‘1’.

The return address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH ( RESET_TERM,unit )

RESET_TERM = R16; RESET_TERM function code – 0316

unit = R17; Terminal device unit number

retadr = R26; Return address

status = R0; Status:

R0<63> ‘0’ Success, terminal reset
‘1’ Failure, terminal not fully reset

R0<62:0> SBZ
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26.3.4.4 SET_TERM_INT — Set Console Terminal Interrupts

Format:

Inputs:

Outputs:

SET_TERM_INT reads, enables, and disables transmit and receive interrupts from a co
terminal device and updates its CTB. For implementations that support multiple term
devices, R17 contains the unit number to be reset; otherwise, R17 should be zero.

If the interrupt settings are successfully changed, the routine returns with R0<63> set to ‘
the terminal device does not support the requested setting, the routine returns with R0<6
to ‘1’.

Programming Note:

For example, a device that has a unified transmit/receive interrupt would not supp
request to enable transmit interrupts while leaving receive interrupts disabled.

status = DISPATCH ( SET_TERM_INT,unit,mask )

SET_TERM_INT = R16; SET_TERM_INT function code – 0416

unit = R17; Terminal device unit number

mask = R18; Bit encoded mask:

retadr = R26; Return address

status = R0; Status:

R18<63:10> SBZ

R18<9:8> ‘01’ No change to receive interrupts
‘00’ Disablereceiveinterrupts

‘1X’ Enable receive interrupts
R18<7:2> SBZ

R18<1:0> ‘01’ No change to transmit interrupts
‘00’ Disable transmit interrupts

‘1X’ Enable transmit interrupts

R0<63> ‘0’ Success
‘1’ Failure, operation not supported

R0<62:2> SBZ
R0<0> ‘1’ Transmit interrupts enabled

‘0’ Transmit interrupts disabled
R0<1> ‘1’ Receive interrupts enabled

‘0’ Receive interrupts disabled
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Regardless of success or failure, the routine always returns with the previous settin
R0<1:0>. The current state of the interrupt settings can be read without change by invo
SET_TERM_INT with R18<1:0> and R18<9:8> set to ‘01’.

The return address indicated by R26 should be mapped and executable by the kernel.
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26.3.4.5 SET_TERM_CTL — Set Console Terminal Controls

Format

Inputs

Outputs:

SET_TERM_CTL, if successful, changes the characteristics of a console terminal devic
updates its CTB. The changes are specified by fields contained in a CTB located by R18
characteristics that can be changed, hence the active CTB fields, depend on the console
nal device type.

For implementations that support multiple terminal devices, R17 contains the unit numb
be reset; otherwise, R17 should be zero.

If the console terminal characteristics are successfully changed, SET_TERM_CTL returnswith
R0<63> set to ‘0’. If errors are encountered or if the terminal device does not suppor
requested settings, the routine attempts to return the device to the previous usable sta
then returns with R0<63> set to ‘1’ and R0<31:0> set to the offset of an offending or un
ported field in the CTB located by R18. Regardless of success or failure, the device CTB
entry always contains the current device characteristics upon routine return. SET_TERM_
returns the CTB located by R18 without modification.

The CTB located by R18 should be mapped and read accessible by the kernel; the r
address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH (SET_TERM_CTL, unit, ctb )

SET_TERM_CTL = R16; SET_TERM_CTL function code – 0516

unit = R17; Terminal device unit number

ctb = R18; Virtual address of CTB

retadr = R26; Return address

status = R0; Status:

R0<63> ‘0’ Success, requested change com-
pleted

‘1’ Failure, change not completed
R0<62:32> SBZ

R0<31:0> Offset to offending CTB field (unsigned)
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26.3.4.6 PROCESS_KEYCODE — Process and Translates Keycode

Format:

Inputs:

Outputs:

PROCESS_KEYCODE attempts to translate the keycode contained in R18 and, if succe
returns the character in R0<31:0>. The translation is based on the current character set
ing, language, and console terminal device state contained in the appropriate CTB
translated character may be from one to four bytes. For implementations that support mu
terminal devices, R17 contains the unit number of the keyboard; otherwise, R17 shou
zero.

Implementation Note:

For ISO Latin–1 character set encoding, PROCESS_KEYCODE returns a one
character.

char = DISPATCH( PROCESS_KEYCODE,unit,keycode,again)

PROCESS_KEYCODE = R16; PROCESS_KEYCODE function code – 0616

unit = R17; Terminal device unit number

keycode = R18; Keycode to be processed

again = R19; ‘1’ if calling again for same keycode

‘0’ otherwise

retadr = R26; Return address

char = R0; Translated character and status:

R0<63:61> ‘000’ Success, character returned
‘101’ Failure, more time needed to

process keycode
‘110’ Failure, device not supported

by routine or routine not sup-
ported

‘111’ Failure, no character; more
keycodes needed or illegal
sequence encountered

R0<60> ‘0’ Success in correcting severe
error

‘1’ Failure in correcting severe
error

R0<59:32> SBZ

R0<31:0> Translated character
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PROCESS_KEYCODE returns keycode translation status in R0<63:61>. The processing
into one of several cases:

1. The keycode, along with previous keycodes if any, translates into a character from the
currently selected character set. In this case, R0<63:61> is set to ‘000’.

2. The keycode, along with previously entered keycodes if any, does not translate i
character from the currently selected character set.This is because either:

– Not yet enough keycodes have been entered to produce a character in the cur
selected character set.

– The keycodes entered to this point indicate a severe keyboard error status.

– The keycodes entered to this point form an illegal or unsupported keyc
sequence.

In this case, R0<63:61> is set to ‘111’.

3. The console terminal device for which keycode translation is being performed is
supported by the PROCESS_KEYCODE implementation or the console impleme
tion does not support PROCESS_KEYCODE. In this case, R0<63:61> is set to ‘11

4. The keycode cannot be processed in a reasonable amount of time; multiple invoca
of PROCESS_KEYCODE are necessary. In this case, the routine returns
R0<63:61> set to ‘101’. The subsequent call(s) should be made with the same key
in R18 and R19 set to ‘1’.

Implementation Note:

It may not be possible for an implementation to perform all the actions associ
with special keycodes (such as turning on LEDs) in a timely manner. T
PROCESS_KEYCODE routine must return after partial completion of
operation if necessary. It is the responsibility of the console to ensure
subsequent calls make forward progress. The delay between successive ope
system calls is UNPREDICTABLE, although the operating system should atte
to complete the operation in a timely fashion. See Section 26.3.4.

In all but the first case, the contents of R0<31:0> are UNPREDICTABLE.

When certain severe keyboard errors are encountered, PROCESS_KEYCODE attempts
rect them by performing special keyboard operations. Those severe errors that m
corrected are device specific and contained in the terminal device CTB. If an error is enc
tered and the attempt to correct the error is unsuccessful, R0<60> is set to ‘1’; other
R0<60> is set to ‘0’.

The keyboard state recorded in the CTB is updated appropriately as the input stream o
codes is processed. If appropriate, PROCESS_KEYBOARD may buffer some of the keyc
in the CTB keycode buffer. The supported keyboard state changes are device specific a
listed in the device CTB.

The return address indicated by R26 should be mapped and executable by the kernel.
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26.3.4.7 CONSOLE_OPEN — Open Console Terminal

Format:

Inputs:

Outputs:

CONSOLE_OPEN opens the console terminal input/output device for use. All other con
terminal callbacks should be attempted only after a successful CONSOLE_OPEN.

CONSOLE_OPEN attempts to open the console terminal input/output device and, if suc
ful, R0<63:61> is returned as '000', otherwise, R0<63:61> is returned as '100'. Additi
device-specific error status may be contained in R0<60:48>.

The return address indicated by R26 should be mapped and executable by the kernel.

char = DISPATCH ( OPEN_CONSOLE )

GETC = R16; OPEN_CONSOLE function code – 0716

retadr = R26; Return address

char = R0; Returned character and status:

R0<63:61> ‘000’ Success, console opened

‘100’ Failure, console not opened
R0<60:48> Device-specific error status

R0<47:40> SBZ
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26.3.4.8 CONSOLE_CLOSE — Close Terminal

Format:

Inputs:

Outputs:

CONSOLE_CLOSE terminates use of the console terminal input/output device.

CONSOLE_CLOSE attempts to close the console terminal input/output device and, if suc
ful, R0<63:61> is returned as '000', otherwise, R0<63:61> is returned as '100'. Additi
device-specific error status may be contained in R0<60:48>.

The return address indicated by R26 should be mapped and executable by the kernel.

char = DISPATCH ( CONSOLE_CLOSE )

CONSOLE_CLOSE = R16; CONSOLE_CLOSE function code – 0816

retadr = R26; Return address

char = R0; Returned character and status:

R0<63:61> ‘000’ Success, console closed

‘100’ Failure, console not closed
R0<60:48> Device-specific error status

R0<47:0> SBZ
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26.3.5 Console Generic I/O Device Routines

The Alpha console provides primitive generic I/O device routines for system software use
ing the bootstrap or crash process. These routines serve in place of the more sophist
system software I/O drivers until such time as these drivers can be established. These ro
may also be used to access console-private devices that are not directly accessible by the
processor.

During the bootstrap process, these routines can be used to acquire a secondary bootstr
gram from a system bootstrap device or write messages to a terminal other than the lo
console terminal. When the operating system is about to crash, these routines can be u
write dump files.

These routines arenot intended for use while the operating system is fully functional. The
routines may:

• Alter the current IPL.

The console may raise the current IPL. It may lower the current IPL only insofar as th
state presented to the operating system remains consistent, as though the IPL h
been lowered. The console must ensure that interrupts that would not have
delivered at the caller’s IPL are pended and delivered to the operating system a
conclusion of the callback.

• Block interrupts.

These routines may cause any and all interrupts to be blocked or delivered to
serviced by the console for the duration of the routine execution.

• Block exceptions.

These routines may cause any and all exceptions to be blocked or delivered to
serviced by the console for the duration of the routine execution.

• Alter the existing memory management policy.

The console may substitute a console-private (or bootstrap address) mapping fo
duration of the routine execution.

Programming Note:

The console must resolve any virtually addressed arguments before alterin
existing memory management policy.

• Take any length of time for completion.

The operating system cannot guarantee timeliness when invoking these routines
operating system timer may have expired before their return. The time necessar
completion is UNPREDICTABLE; however, a console implementation will attempt
minimize the time whenever possible.

Before returning to the invoking system software, these routines must restore any altere
cessor state. These routines must return to the calling system software at the IPL and
memory management policy of that software.
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System software invokes these routines synchronously. When invoking these routines, s
software must:

• Be executing in kernel mode.

If these routines are invoked in other modes, their execution cau
UNPREDICTABLE operation.

• Be executing on the primary processor in a multiprocessor configuration.

If these routines are invoked on other processors, their execution causes UNDEF
operation.
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26.3.5.1 OPEN — Open Generic I/O Device for Access

Format:

Inputs:

Outputs:

OPEN prepares a generic I/O device for use by the READ and WRITE routines. R17 con
the base virtual address of a byte string that specifies the complete device specification
I/O device. The length of the string is given in R18. The format and contents of the de
specification string follow that of the BOOTED_DEV environment variable.

The routine assigns a unique channel number to the device. The channel number is retur
R0 and must be used to reference the device in subsequent calls to the READ, WRITE
CLOSE routines.

OPEN returns status in R0<63:62>. If the I/O device exists and can be prepared for s
quent accesses, R0<63:62> is set to ‘00’. If the device does not exist, R0<63:62> is set to
If the device exists, but errors are encountered in preparing the device, R0<63:62> is
‘11’ and additional device-specific status is recorded in R0<59:32>. In the latter two fai
cases, the channel number returned in R0<31:0> is UNPREDICTABLE.

All console implementations must support at least two concurrently opened generic
devices. Additional generic I/O devices may be supported.

For magnetic tape devices, OPEN does not affect the current tape position, nor is any rewind of
the tape performed.

Multiple channels cannot be assigned to the same device; the second and any subseque
to OPEN fail with R0<63:62> set to ‘11’ and R0<31:0> as UNPREDICTABLE. The status
the first opened channel is unaffected.

channel = DISPATCH ( OPEN,devstr,length )

OPEN = R16; OPEN function code – 1016

devstr = R17; Starting virtual address of byte string that contains the devic
specification

length = R18; Length of byte buffer

retadr = R26; Return address

channel = R0; Assigned channel number and status:

R0<63:62> ‘00’ Success

‘10’ Failure, device does not exist
‘11’ Failure, error, device cannot be

accessed or prepared

R0<61:60> SBZ
R0<59:32> Device-specific error status

R0<31:0> Assigned channel number of device
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The input string located by R17 should be mapped and read accessible by the kernel; the
address indicated by R26 should be mapped and executable by the kernel.
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26.3.5.2 CLOSE — Close Generic I/O Device for Access

Format:

Inputs:

Outputs:

CLOSE deassigns the channel number from a previously opened block storage I/O devic
channel number is free to be reassigned. The I/O device must be reopened before any
quent accesses.

CLOSE returns status in R0<63>. If the channel was open and the close is successful, R
is set to ‘0’; otherwise R0<63> is set to ‘1’ and additional device-specific status is recorde
R0<59:32>.

For magnetic tape devices, CLOSE does not affect the current tape position, nor is any r
of the tape performed.

The return address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH ( CLOSE,channel )

CLOSE = R16; CLOSE function code – 1116

channel = R17; Channel to close

retadr = R26; Return address

status = R0; Status:

R0<63> ‘0’ Success
‘1’ Failure

R0<62:60> SBZ
R0<59:32> Device-specific error status

R0<31:0> SBZ
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26.3.5.3 IOCTL — Perform Device-Specific Operations

Format:

Inputs:

Outputs:

IOCTL performs special device-specific operations on I/O devices. The operation perfor
and the interpretation of any additional arguments passed in R18–R21 are functions
device type as designated by the channel number passed in R17.

For magnetic tape devices, the following operations are defined:

• ‘01’ — IOCTL relocates the current tape position by skipping over a number of int
record gaps. The direction of the skip and the number of gaps skipped is given b
signed 32-bit count in R19. Skipping with a count of ‘0’ does not change the cur
tape position. The number of gaps actually skipped is returned in R0<31:0>.

count = DISPATCH ( IOCTL,channel,R18,R19,R20,R21 )

IOCTL = R16; IOCTL function code – 1216

channel = R17; Channel number of device to be accessed

retadr = R26; Return address

For Magnetic Tape Devices Only:

operate = R18; Tape positioning operation:

count = R19; Number of skips to perform (signed)

= R20 –

R21

Reserved for future use as inputs

For Magnetic Tape Devices Only:

count = R0; Number of skips performed and status:

‘01’ For skip to next/previous interrecord gap

‘02’ For skip over tape mark
‘03’ For rewind

‘04’ For write tape mark

R0<63:62> ‘00’ Success

‘10’ Failure, position not found
‘11’ Hardware failure

R0<61:60> SBZ
R0<59:32> Device-specific error status

R0<31:0> Number of skips actually performed (signed)
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• ‘02’ — IOCTL relocates the current tape position by skipping over a number of ta
marks. The direction of the skip and the number of marks skipped is given by
signed 32-bit count in R19. Skipping with a count of ‘0’ does not change the cur
tape position. The number of tape marks actually skipped is returned in R0<31:0>.

• ‘03’ — IOCTL rewinds the tape to the position just after the Beginning-of-Tape (BO
marker. R0<31:0> is returned as SBZ.

• ‘04’ — IOCTL writes a tape mark starting at the current position. R0<31:0> is return
as SBZ.

IOCTL returns magnetic tape operation status in R0<63:62>. If the operation was succe
R0<63:62> is set to ‘00’. If the tape positioning was not successful, the tape is left at the
tion where the error occurred and R0<63:62> is set to ‘10’. Tape positioning may fail du
encountering a BOT marker (R18 ‘01’ or ‘02’), encountering a tape mark (R18 ‘01’), or r
ning off the end of the tape. If a hardware device error is encountered, the final position o
tape is UNPREDICTABLE and R0<63:62> is set to ‘11’. In the event of an error, additio
device-specific status is recorded in R0<59:32>.

The return address indicated by R26 should be mapped and executable by the kernel.
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26.3.5.4 READ — Read Generic I/O Device

Format:

Inputs:

Outputs:

READ causes data to be read from the generic I/O device designated by the channel num
R17 and written to a memory buffer pointed to by R19. The 32-bit transfer byte count, h
length of the buffer, is contained in R18. The buffer must be quadword aligned, virtually
mapped, and resident in physical memory.

READ returns transfer status in R0<63:60> and the number of bytes actually read, if an
R0<31:0>. If the routine is successful, R0<63> is set to ‘0’. If an error is encountere
accessing the device, R0<63> is set to ‘1’. Additional device-specific status may be return
R0<59:32>.

The transfer byte count should be a multiple of the record length of the device. If the spec
byte count is not a multiple of the record length, R0<61> is set to ‘1’. If the count exceeds
record length, the count is rounded down to the nearest multiple of the record length and

rcount = DISPATCH ( READ,channel,count,address,block )

READ = R16; READ function code – 1316

channel = R17; Channel number of device to be accessed

count = R18; Number of bytes to be read (should be multiple of the device
record length) (unsigned)

address = R19; Virtual address of buffer to read data into

block = R20; Logical block number of data to read (used only by disk
devices)

retadr = R26; Return address

rcount = R0; Number of bytes read and status:

R0<63> ‘0’ Success
‘1’ Failure

R0<62> ‘1’ EOT or Logical End of Device condi-
tion encountered

‘0’ Otherwise

R0<61> ‘1’ Illegal record length specified
‘0’ Otherwise

R0<60> ‘1’ Run off end of tape
‘0’ Otherwise

R0<59:32> Device-specific error status
R0<31:0> Number of bytes actually read (unsigned)
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READ attempts to read that number of bytes. If the record length exceeds the count
UNPREDICTABLE whether READ attempts to access the device. If no read attempt is m
R0<63> is set to ‘1’.

For magnetic tape devices, READ does not interpret the tape format or differentiate bet
ANSI formatted and unformatted tapes. The routine reads the requested transfer byte
starting at the current tapeposition. READ terminates when one of the following occurs:

• The specified number of bytes have been read. In this case, R0<63:60> is set to ‘0

• An interrecord gap is encountered. In this case, the tape is positioned to the next
tion after the gap and R0<63:60> is set to ‘0000’.

• A tape mark is encountered. In this case, the tape is positioned to the next position
the tape mark and R0<63:60> is set to ‘0100’. (After calling READ and finding a ta
mark, the caller can determine if the logical End-of-Volume or an empty file section
been found by calling READ again. The condition exists if the second READ retu
with zero bytes read and a tape mark found.)

• The routine runs off the end of tape. In this case, R0<63:60> is set to ‘1001’.

READ ignores End-of-Tape (EOT) markers.

For disk devices, READ does not understand the file structure of the device. The routine
the requested transfer byte count starting at the logical block number specified by R20
transfer continues until either the specified number of bytes has been read or the last lo
block on the device has been read. If the logical end of the device is encountered, then
R0<63:62> is set to ‘01’.

For network devices, READ interprets and removes any device-specific or protocol-spe
packet headers. If a packet has been received, the remainder of the packet is copied in
specified buffer. If a packet has not been received, the routine returns with R0<31:0> set t
Only those network packets that are specifically addressed to this system and are of the
fied protocol type are returned; broadcast packets are not returned. The actual packet
dependent on the device and protocol; the characteristics of the network device and pro
are specified at the time of the channel OPEN.

The buffer pointed to by R19 should be mapped and write accessible by the kernel; the r
address indicated by R26 should be mapped and executable by the kernel.
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26.3.5.5 WRITE — Write Generic I/O Device

Format:

Inputs:

Outputs:

WRITE causes data to be written to the generic I/O device designated by the channel nu
in R17 and read from a memory buffer pointed to by R19. The 32-bit transfer byte co
hence length of the buffer, is contained in R18. The buffer must be quadword aligned, v
ally mapped, and resident in physical memory.

WRITE returns transfer status in R0<63:60> and the number of bytes actually written, if
in R0<31:0>. If the routine is successful, R0<63> is set to ‘0’. If an error is encountere
accessing the device, R0<63> is set to ‘1’. Additional device-specific status may be return
R0<59:32>.

The transfer byte count should be a multiple of the record length of the device. If the spec
byte count is not a multiple of the record length, R0<61> is set to ‘1’. If the count exceeds
record length, the count is rounded down to the nearest multiple of the record length and

wcount = DISPATCH ( WRITE,channel,count,address,block )

WRITE = R16; WRITE function code – 1416

channel = R17; Channel number of device to be accessed

count = R18; Number of bytes to be written (should be multiple of the
device’s record length) (unsigned)

address = R19; Virtual address of buffer to read data from

block = R20; Logical block number of data to be written (used only by disk
devices)

retadr = R26; Return address

wcount = R0; Number of bytes written and status:

R0<63> ‘0’ Success

‘1’ Failure
R0<62> ‘1’ EOT or Logical End of Device con-

dition encountered

‘0’ Otherwise
R0<61> ‘1’ Illegal record length specified

‘0’ Otherwise

R0<60> ‘1’ If run off end of tape
‘0’ Otherwise

R0<59:32> Device-specific error status
R0<31:0> Number of bytes actually written (unsigned)
Console Interface to Operating System Software (III)26–55



it is
t is

ween
count

ape

r was

tine
R20.

e last
red,

. The
l over
ol; the
nnel

eturn
WRITE attempts to write that number of bytes. If the record length exceeds the count,
UNPREDICTABLE whether WRITE attempts to access the device. If no write attemp
made, R0<63> is set to ‘1’.

For magnetic tape devices, WRITE does not interpret the tape format or differentiate bet
ANSI formatted and unformatted tapes. The routine writes the requested transfer byte
starting at the current tapeposition. WRITE terminates when any of the following occur:

• The specified number of bytes has been written without detecting an End-of-T
(EOT) marker. In this case, R0<63:60> is set to ‘0000’.

• The specified number of bytes has been written and an End-of-Tape (EOT) marke
detected. In this case, R0<63:60> is set to ‘0100’.

• The routine runs off the end of tape. In this case, R0<63:60> is set to ‘1001’.

For disk devices, WRITE does not understand the file structure of the device. The rou
writes the requested transfer byte count starting at the logical block number specified by
The transfer continues until either the specified number of bytes has been written or th
logical block on the device has been written. If the logical end of the device is encounte
then R0<63:62> is set to ‘01’.

For network devices, WRITE appends any device-specific or protocol-specific headers
routine transmits the specified requested transfer bytes with the proper network protoco
the appropriate network. The actual packet size is dependent on the device and protoc
characteristics of the network device and protocol are specified at the time of the cha
OPEN.

The buffer pointed to by R19 should be mapped and write accessible by the kernel; the r
address indicated by R26 should be mapped and executable by the kernel.
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26.3.6 Console Environment Variable Routines

System software accesses the environment variables indirectly through console callbac
tines. These routines may be invoked while the operating system is fully functional as well as
during operating system bootstrap or crash. The GET_ENV, SET_ENV, and RESET_
routines are subject to the constraints given in Section 26.3.1. These routines must:

• Not alter the current IPL or current mode.

These routines must be invoked in kernel mode.

• Not alter the existing memory management policy.

All internal pointers must be remapped by FIXUP.

• Not block interrupts.

The operating system must be capable of continuing to receive hardware and sof
interrupts.

The constraints on SAVE_ENV differ; see Section 26.3.6.4.

The time necessary for these routines to complete is UNPREDICTABLE; however, a con
implementation will attempt to minimize the time whenever possible.

Software Note:

Implementations must limit the execution time of these routines to significantly less
the interval clock interrupt period.

The console implementation must ensure that any access to an environment variable is a
The console implementation must resolve multiple competing accesses by system softw
well as competing accesses by system software and the console presentation layer.

When invoking these routines, system software must be executing in kernel mode. If thes
tines are invoked in other modes, their execution causes UNPREDICTABLE operation.

These routines may be invoked on both the primary and secondary processors in a multip
sor configuration. It is recommended that system software serialize competing accesse
given environment variable; a stale value may be returned if GET_ENV is invoked simu
neously with SET_ENV or RESET_ENV.
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26.3.6.1 SET_ENV — Set an Environment Variable

Format:

Inputs:

Outputs:

SET_ENV causes the environment variable specified by the ID in R17 to have the value s
fied by the byte stream value pointed to by the virtual address in R18. The size in bytes o
input buffer is contained in R19.

SET_ENV returns status in R0<63:61>. If the environment variable is successfully set t
new value, R0<63:61> is set to ‘000’. If the variable is not recognized, R0<63:61> is s
‘110’. If the variable is read-only, the value is unchanged and R0<63:61> is set to ‘100’. If
input buffer exceeds the maximum value length, the value is unchanged and R0<63:61>
to ‘111’. In all cases, the maximum value length is returned in R0<31:0>.

The byte stream indicated by R18 should be mapped and read accessible by the kern
return address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH ( SET_ENV,ID,value,length )

SET_ENV = R16; SET_ENV function code - 2016

ID = R17; ID of environment variable

value = R18; Starting virtual address of byte stream containing value

length = R19; Number of bytes in buffer (unsigned)

retadr = R26; Return address

status = R0; Status:

R0<63:61> ‘000’ Success
‘100’ Failure, variable read-only

‘110’ Failure, variable not recognized
‘111’ Failure, byte stream exceeds value

length
R0<60:31> SBZ

R0<31:0> Maximum value length (unsigned)
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26.3.6.2 RESET_ENV — Reset an Environment Variable

Format:

Inputs:

Outputs:

RESET_ENV causes the environment variable specified by the ID in R17 to be reset t
system default value and that default value to be returned in the byte stream specified b
virtual address in R18. The size in bytes of the input buffer is contained in R19.

RESET_ENV returns status in R0<63:61>. If the environment variable is successfully res
the default value, R0<63:62> is set to ‘00’. If the variable is recognized but read-only,
value is unchanged and R0<63:62> is set to ‘10’. In both cases, the default value is copie
the byte stream and R0<31:0> is set to the number of bytes copied; if the value must be
cated, R0<61> is set to ‘1’. If the variable is not recognized, R0<63:61> is set to ‘110’
R0<31:0> is set to ‘0’.

The byte stream indicated by R18 should be mapped and write accessible by the kern
return address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH ( RESET_ENV,ID,value,length )

RESET_ENV = R16; RESET_ENV function code – 2116

ID = R17; ID of environment variable

value = R18; Starting virtual address of byte stream to contain returned
value

length = R19; Number of bytes in buffer (unsigned)

retadr = R26; Return address

status = R0; Status:

R0<63:61> ‘000’ Success

‘001’ Success, byte stream truncated
‘100’ Failure, variable read-only

‘101’ Failure, variable read-only, byte
stream truncated

‘110’ Failure, variable not recognized

R0<60:32> SBZ
R0<31:0> Count of bytes returned (unsigned)
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26.3.6.3 GET_ENV — Get an Environment Variable

Format:

Inputs:

Outputs:

GET_ENV causes the value of the environment variable specified by the ID in R17 t
returned in the byte stream specified by the virtual address in R18. The size in bytes o
input buffer is contained in R19.

GET_ENV returns status in R0<63:61>. If the environment variable is recognized, R0<63
is set to ‘00’, its current value is copied into the byte stream, and R0<31:0> is set to the n
ber of bytes copied. If the value must be truncated, R0<61> is set to ‘1’. If the variable is
recognized, R0<63:61> is set to ‘110’ and R0<31:0> is set to ‘0’.

The byte stream indicated by R18 should be mapped and write accessible by the kern
return address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH ( GET_ENV,ID,value,length )

GET_ENV = R16; GET_ENV function code – 2216

ID = R17; ID of environment variable

value = R18; Starting virtual address of buffer to contain returned value

length = R19; Number of bytes in buffer (unsigned)

retadr = R26; Return address

status = R0; Status:

R0<63:61> ‘000’ Success
‘001’ Success, byte stream truncated

‘110’ Failure, variable not recognized
R0<60:32> SBZ

R0<31:0> Count of bytes returned (unsigned)
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26.3.6.4 SAVE_ENV — Save Current Environment Variables

Format:

Inputs:

Outputs:

SAVE_ENV attempts to update the nonvolatile storage of those environment variables
must be retained across console initializations and system power transitions.

Programming Note:

For example, SAVE_ENV may cause an EEPROM to be updated. That update may
all "NV" environment variable values to the EEPROM, or may only write those variab
that have been modified since the last update or console initialization.

This routine is not subject to the constraints given in Section 26.3.6. The console may u
operating system control of the system platform hardware, but must restore any such con
altered state before return. The console must not service any interrupts or exceptions th
otherwise intended for the operating system.

The nonvolatile storage update may take significant time and multiple invocation
SAVE_ENV may be necessary. The time necessary for this routine to complete is UNP
DICTABLE. A console implementation will attempt to minimize the time whenever possi
and must return in a timely fashion. The routine must return after partial operation comple
if necessary. It is the responsibility of the console to ensure that subsequent calls mak
ward progress. The operating system may delay for extended periods between subse
calls; the console must not rely on timely invocations of SAVE_ENV.

Implementation Note:

Implementations must limit the execution time of these routines to significantly less
the interval clock interrupt period. A return after partial operation completion is prefera
to long latency.

status = DISPATCH ( SAVE_ENV )

SAVE_ENV = R16; SAVE_ENV function code – 2316

retadr = R26; Return address

status = R0; Status:

R0<63:61> ‘000’ Success, all values saved

‘001’ Success, some bytes saved, addi-
tional values to be saved

‘110’ Failure, routine unsupported
‘111’ Failure, error encountered saving

values

R0<60:0> SBZ
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SAVE_ENV returns status on the update in R0<63:61>. When the update has succes
completed and all relevant variables have been saved, the routine returns with R0<63:6
to ‘000’. If SAVE_ENV returns after only a partial update to ensure timely respon
R0<63:61> is set to ‘001’. If an unrecoverable error is encountered, the routine returns
R0<63:61> set to ‘111’. The contents of the nonvolatile storage are UNDEFINED.

Implementation of SAVE_ENV is optional. If the console does not support SAVE_ENV,
routine returns with R0<63:61> set to ‘110’.

On a multiprocessor system with an embedded console, the routine must be invoked on
processor in the configuration. Section 27.8.1

It is recommended that system software ensure that calls to SET_ENV or RESET_ENV ar
issued while an update operation is in progress on any processor. It is UNPREDICTA
whether the updated environment value is saved.

The return address indicated by R26 should be mapped and executable by the kernel. Th
tine does not affect the current value of any environment variable maintained by the console.
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26.3.7 Miscellaneous Routines

26.3.7.1 PSWITCH — Switch Primary Processors

Format:

Inputs:

Outputs:

PSWITCH attempts to perform any implementation-specific functions necessary to sup
primary switching. R17 indicates the requested primary transition action. R18 contain
CPU ID (WHAMI IPR) of the new primary.

PSWITCH is invoked by the old primary, the secondary that is to become the new primar
both. See Section 27.5.6 for a full description of PSWITCH usage, functionality, and e
returns.

If PSWITCH is successful, it returns with R0<63> set to ‘0’. If PSWITCH is unsuccessful
any reason, it returns with R0<63> set to ‘1’ and implementation-specific status in R0<62:

PSWITCH is invoked at the highest IPL level or it produces UNDEFINED results. The ret
address indicated by R26 should be mapped and executable by the kernel.

status = DISPATCH ( PSWITCH,action )

PSWITCH = R16; PSWITCH function code – 3016

action = R17; Action requests:

cpu_id = R18; New primary CPU ID

retadr = R26; Return address

status = R0; Status:

R17<63:2> SBZ

R17<1:0> ‘01’ Transition from primary
‘10’ Transition to primary

‘11’ Switch primary

R0<63> ‘0’ Success
‘1’ Failure, operation not supported

R0<62:0> Implementation-specific error status
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26.3.7.2 FIXUP — Fixup Virtual Addresses in Console Routines

Format:

Inputs:

Outputs:

FIXUP adjusts virtual address references in all other console callback routines using the
starting virtual address in R16, the new starting virtual address of the HWRPB in R17, an
current contents of the CRB. See Section 26.3.8.1.2 for a full description of FIXUP usage
functionality.

If FIXUP is successful, it returns with R0<63> set to ‘0’. If FIXUP is not successful, cons
internal state has been compromised. The console attempts a cold bootstrap if the state
tion in Figure 27–1 indicates a bootstrap and the BOOT_RESET environment variable is
"ON" (4E4F16). Otherwise, the system remains in console I/O mode.

This routine must be called in kernel mode and in the context of the existing memory m
ping; otherwise its execution causes UNPREDICTABLE or UNDEFINED operation.

Software Note:

FIXUP must be called while the original address space mapping is in effect.

The return address indicated by R26 should be mapped and executable by the kernel.

status = FIXUP ( NEW_BASE_VA, HWRPB_VA )

NEW_BASE_VA = R16; New starting virtual address of the console callback routines

HWRPB_VA = R17; New starting virtual address of the HWRPB

retadr = R26; Return address

status = R0; Status:

R0<63> ‘0’ Success
‘1’ Failure

R0<62:0> SBZ
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26.3.7.3 BIOS_EMUL — Run BIOS Emulation Callback

Format:

Inputs

status = DISPATCH (BIOS_EMUL, int86, input_flags, x86_regs, additional_dat

func_code = R16; BIOS_EMUL function code – 3216

int86 = R17; BIOS interrupt number (also called the BIOS service number

input_flags = R18; The following input flags:

x86_regs = R19; Virtual address of x86 register data block that represents t
x86 register set for BIOS calls.

Use the appropriate register structure for the type of BIOS
emulator:

16-bit emulator — Use register structure 1 (Figure 26–4)
32-bit emulator — Use register structure 2 (Figure 26–4)

64-bit emulator — Not defined for this version of the
architecture

Additional_data = R20; Virtual address of additional argument data. Specific to BIO
call

Retaddr = R26; Return address

R18<63:5> SBZ

R18<4> ‘1’ Use data in R20

‘0’ Ignore R20

R18<3:1> Type of BIOS emulator to service the call:
‘000’
‘001’
‘010’
‘011’
‘100’
‘101’
‘110’
‘111’

16-bit emulator type
32-bit emulator type
64-bit emulator type
Reserved
Reserved
Reserved
Reserved
Reserved

R18<0> Type of call:

‘1’ Emulator type inquiry
‘0’ Service
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Outputs:

The BIOS_EMUL callback provides access to the BIOS emulator, allowing emulation of
x86 INT assembler instruction.

The int86 value specifies the BIOS interrupt number to be emulated. A data block represe
the x86 register set is used as input and is updated on return because operation of BIO
requires setting the x86 register set before the BIOS call and receiving data in them a
result of a BIOS call.

Programming Notes:

If a platform or pre-existing version of the firmware does not support BIOS_EMU
R0<63> returns ‘1’ .

The caller can determine the type of BIOS emulator in the console by setting R18<0
‘1’. BIOS_EMUL returns the type in R0<58:56>.

Because multiple BIOS emulators can be built into the console, use R18<3:1> to sp
the type of BIOS emulator and register structure. If the console does not suppo
specified type, R0<63> and R0<62> return ‘1’.

status = R0 Status:

If R18<0> = 0, R0 has the following meaning:

R0<63> ‘0’ Callback supported
‘1’ Callback not supported

R0<62> ‘0’ Emulator type supported
‘1’ Emulator type not supported

R0<61> ‘0’ Service number supported
‘1’ Service number not supported

R0<60:56> SBZ

R0<55:0> Implementation-specific

If R18<0> = 1, R0 has the following meaning:

R0<63> ‘0’ Callback supported
‘1’ Callback not supported

R0<62:59> SBZ

R0<58:56> Return console’s emulator type:

R0<55:0> SBZ

The resulting x86 register state from the BIOS call is placed in the data block located
x86_regs (R19). Success or failure of the BIOS call is specific to the attempted call and th
expected result in x86_regs.

‘000’ No emulator in this console

‘001’ 16-bit emulator in this console
‘010’ 32-bit emulator in this console

‘011’ 64-bit emulator in this console
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BIOS_EMUL supports only INT10 service calls, and for any other service numb
R0<63> returns ‘1’.

The caller should maintain the integrity of the register structure as input/output ac
multiple calls. The routine uses the register structure values as passed and returns t
values in the same structure.

The return address indicated by R26 should be mapped and kernel-executable.

Figure 26–4: BIOS Emulator Register Structures

Background Notes on BIOS Emulation:

• BIOS

BIOS, or Basic Input Output System, is firmware that initializes the hardware and
it to a known state or to a state that is chosen by the hardware vendor or the sy
user. The BIOS code performs a power-up self-test (POST), configures buses
devices, and provides an interface toboot the operating system. BIOS code can al
provide a set of functions that allows other system software to program devices
given mode or state. Those functions are device-dependent, but follow an ind
standard that is supported by most hardware vendors. Most BIOS code is written i
x86 assembly language.

• BIOS Emulation

To support standard BIOS firmware (x86-based) on Alpha-based platforms, the A
console has a built-in emulator that emulates the x86 instruction set. The emu
supports VGA BIOS functions and is limited to the less complex, INT10, VGA BIO
calls. The emulator supports a large number of third-party graphics cards
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The emulator can be 16 bit or 32 bit. A 16-bit emulator limits its support to the 16
register and instruction sets. A 32-bit emulator supports the 32-bit register
instruction sets, as well as the 16-bit instruction set.

• BIOS_EMUL Callback Routine

The BIOS_EMUL callback routine provides a generic interface to the BIOS emulator.
It provides a mechanism to request the console’s BIOS emulator type and re
appropriate status and error codes that indicate supported and unsupported argu
Operating systems require this interface to support third-party graphics cards
differentAlpha platforms.

Commodity PC graphics cards (SVGA) rely heavily on the BIOS to set the grap
mode. Vendors generally do not document how to set a graphics mode by reg
programming (like 1280x1024), but instead refer to the BIOS INT10 call, which
used to set up the card. Without the interface provided by BIOS_EMUL, the operating
system has no access to BIOS emulation, and the graphics cards must be progra
by specialized code in the driver. Further, BIOS_EMUL allows the operating system
maintain support for graphics cards when vendors release new versions, becau
interface lets the operating system continue to correctly interact with any chan
mode parameters.

26.3.8 Console Callback Routine Data Structures

The console and system software share two data structures that are necessary for the c
callback routines: the Console Routine Block (CRB) and the Console Terminal Block (C
table. Both are located by offset fields in the HWRPB as shown in Figure 26–5.

The CRB locates all addresses necessary for console callback routine function. The base
cal address of the CRB is obtained by adding the CRB OFFSET field at HWRPB[192] to
base physical address of the HWRPB. The CRB format is shown in Figure 26–6 and desc
in Table 26–10.

The CTB table contains information necessary to describe the console terminal devices
base physical address of the CTB table is obtained by adding the CTB TABLE OFFSET field
at HWRPB[184] to the base physical address of the HWRPB. The CTB format is show
Figure 26–7 and described in Table 26–8.
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26.3.8.1 Console Routine Block

Before transferring control to system software, the console ensures that the console ca
routines, console-private data structures, and associated local I/O space locations are m
into region 0 of initial bootstrap address space. All necessary pages are located by the c
routine block (CRB).

[

[Offset to CTB

] :HWRPB

[ ]
[Offset to CRB

[ ] :CTB
[
[

]
]

[VA of DISPATCH Procedure Value] :CRB
[PA of DISPATCH Procedure Value]
[VA of FIXUP Procedure Value ]
[PA of FIXUP Procedure Value ]
[Number of Entries in Map ]
[Number of Pages in Map ]
[Virtual/Physical Map ]

[Procedure Descriptor 1st Quadword]
[VA of DISPATCH Entry ]

[DISPATCH Procedure]

] :

] :

[ ]
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Table 26–10 CRB Fields

Offset Description

CRB DISPATCH VA — The virtual address of the OpenVMS procedure descriptor for the D
PATCH procedure.

+08 DISPATCH PA — The physical address of the OpenVMS procedure descriptor for
DISPATCH procedure.

+16 FIXUP VA — The virtual address of the OpenVMS procedure descriptor for the FIXU
procedure.

+24 FIXUP PA — The physical address of the OpenVMS procedure descriptor for the FIX
procedure.

+32 ENTRIES — The number of entries in the virtual-physical map. Unsigned integer.

+40 PAGES — The total number of physical pages to be mapped. Unsigned integer.

+48 ENTRY — Each entry identifies a collection of physically contiguous pages to
mapped. Each map entry consists of three quadwords:

:CRB

:+08

:+16

:+24

:+32

:+40

:+48

:+56

:+72

Virtual Address of DISPATCH Procedure Descriptor

Physical Address of DISPATCH Procedure Descriptor

Virtual Address of FIXUP Procedure Descriptor

Physical Address of FIXUP Procedure Descriptor

Number of Entries in the Virtual-Physical Map

Number of Pages To Be Mapped

Virtual Address for Entry 1

Physical Address for Entry 1

Page Count for Entry 1

Virtual Address for Entry Last

Physical Address for Entry Last

Page Count for Entry Last

63 0

Offset Name Description

+00 ENTRY_VA Base virtual address for entry

+08 ENTRY_PA Base physical address for entry
+16 ENTRY_PAGES Number of contiguous physical pages to be

mapped. Unsigned integer.
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The CRB must be quadword aligned. The DISPATCH and FIXUP addresses must be q
word aligned; all unused bits should be zero. The ENTRY addresses must be page aligne
all unused bits should be zero.

The DISPATCH and FIXUP procedure descr iptors located by DISPATCH_P
DISPATCH_VA, FIXUP_PA and FIXUP_VA must be contained within the pages located
the first virtual-physical map entry.

26.3.8.1.1 Console Routine Block Initialization

Before transferring control to system software, the console initializes all fields of the CRB. The
console fills in all physical and virtual address fields, the number of entries in the virtual-ph
cal map (ENTRIES), the total number of pages to be mapped (PAGES), and the vi
addresses contained in the OpenVMS procedure descriptors for the DISPATCH and F

procedures.1 PAGES is the sum of the contents of all ENTRY_PAGES fields.

All addresses are initially mapped within region 0 of the initial bootstrap address space. T
addresses include the contents of the CRB and all addresses contained within the DISP
and FIXUP procedure descriptors. The mapping must permit kernel access with appro
read/write/execute access. The KRE, KWE, and FOx PTE fields are never subsequently a
by system software. The initial mapping need not be virtually contiguous.

26.3.8.1.2 Console Routine Remapping

When the console transfers control to the system software, the console callback routines may
be invoked by the system software without additional setup. All necessary virtual mapp
into initial bootstrap address space must be performed by the console before transfe
control.

The system software may virtually remap the console callback routines. Remapping pe
the system software to relocate the routines to virtual addresses other than those assig
initial bootstrap address space. Relocation requires that the console adjust (or fix up) vario
internal virtual address references.

The system software invokes the FIXUP routine to enable the console to perform the n
sary internal relocations. The FIXUP routine virtually relocates all console routines and ad
any console-private virtual address pointers such as those used to locate a local I/O dev
HWRPB data structure. If system software virtually remaps the HWRPB, FIXUP mus
invoked before calling any other console callback routine; it is recommended that system
ware remap both the HWRPB and the console routines together. Calling the console ca
routines after the HWRPB has been remapped from its original bootstrap address loc
results in UNDEFINED operation of the system.

To remap the console callback routines, the system software and the console cooper
follows:

1. System software must be executing on the primary processor in a multiprocesso
tem.

2. System software determines the new base virtual address of the HWRPB; this re
ping is optional. System software does not perform any remapping of the HWRPB at
this step.

1 The OpenVMS calling standard specifies that the second quadword of a procedure descriptor contai
the entry address (virtual) of the procedure itself.
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System software need not remap the memory data descriptor table locate
HWRPB[200]. See Section 26.1 for a description of the HWRPB and its size.

3. System software determines the new base virtual address of the console callbac
tines. The CRB entries will be mapped into a set of virtually contiguous pages.
CRB PAGES field (CRB[40]) is used to determine the number of pages that mus
mapped. System software does not perform any remapping of the console callbac
tines at this step.

4. System software passes control to the console by calling FIXUP (NEW_BASE_
NEW_HWRPB_VA), initiating the remapping. NEW_BASE_VA is the new base v
tual address as established in step 3. NEW_HWRPB_VA is the new starting vi
address of the HWRPB as established in step 2. The remapping process is only ini
at this step; do not attempt to access the HWRPB or CRB using the new VAs.

5. The console first locates the HWRPB, then locates the CRB using the CRB OFF
field. The console then locates all internal pointers and adjusts them. All linkage
tions and other console-internal pointers must be modified. These data structures c
located during FIXUP because the initial bootstrap address space mapping is in e
any console-internal pointers are valid until modified.

System software need not remap the optional CONFIG block or FRU table locate
HWRPB OFFSET fields. If these blocks are physically contiguous to the HWRPB
the required offset blocks and if they will subsequently be used by the console,
must be located by console-internal pointers and those pointers must be mod
during FIXUP.

DISPATCH and FIXUP are not uniquely remapped by the system software.
FIXUP must update the DISPATCH and FIXUP procedure descriptors located
CRB[8] and CRB[24]. The physical pages containing the procedure descriptors an
routines themselves must be included in the virtual-physical map.

The relative virtual address offsets of the pages located by the entry map are
guaranteed to be retained across the FIXUP. The initial bootstrap address mapp
the physical pages located by the entry map is not required to be virtually contigu
The system software remapping is required to be virtually contiguous. Any offsets
cross physical pages may have to be modified by FIXUP.

6. The console returns from FIXUP. If the FIXUP was not successful, console inte
state has been compromised. The console attempts a cold bootstrap if the state
tion in Figure 27–1 indicates a bootstrap and the BOOT_RESET environment var
is set to "ON" (4E4F16). Otherwise, the system remains in console I/O mode.

7. System software updates each virtual-physical map entry of the CRB:

a. The PTE and TB entries that correspond to the range of old virtual address are
idated using the old ENTRY_VA and ENTRY_PAGES values.

b. The new starting virtual address is written into the ENTRY_VA. This virtual addre
is computed by adding the NEW_BASE_VA to the sum of the PAGE_COUNTs
each preceding entry.

c. New PTEs are constructed for each physical page. The new PTE FOx and prote
fields are copied from the original bootstrap address PTE.

Programming Note:

It is the responsibility of the console to judiciously set both the protection and F
26–72 Console Interface Architecture (III)
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bits in the bootstrap address PTE. In particular, if the console sets the FOE
there is no architectural guarantee that the console exception handler will
control as a result, nor is there any obvious appropriate response for the oper
system handler.

8. System software updates the DISPATCH and FIXUP VA’s. The first virtual-physi
map entry locates the physical page that contains the DISPATCH and FIXUP proce
descriptors.

9. System software updates all PTEs and invalidates all appropriate TB entries asso
with the remapped HWRPB and any remapped OFFSET blocks.

At the completion of this process, the console callback routines are remapped and may
be used by system software. Since FIXUP itself is relocated, system software may rema
routines more than once.

26.3.8.2 Console Terminal Block Table

The Console Terminal Block (CTB) table indicates the current identity and characteristic
each console terminal device. The CTB table is the only data structure shared by the co
and system software that describes the terminal devices accessible by console ca
routines.

The CTB table contains an array of CTBs. Each CTB is a quadword-aligned structure with
mat as shown in Figure 26–7 and described in Table 26–8. The index of the CTB in the
table is the unit number of the terminal device. The CTB format consists of two parts: a he
and a device-specific segment. The format of the header is common to all CTBs; the form
the device-specific segment is dependent on the unique device type.

There isonly oneconsole terminal. The console terminal unit is selected by the console pre
tation layer before bootstrapping the operating system. See Section 25.3. Once the ope
system is bootstrapped, the console terminal unit should not be changed by the console p
tation layer. Any attempt to do so results in UNDEFINED operation of the conso
Specifically, if the console presentation layer halts the operating system, alters the conso
minal unit, then restarts or continues operating system execution, the operation of the co
is UNDEFINED. The console terminal unit is identified by the TTY_DEV environment va
able. During console initialization, the console:

1. Locates all console terminal devices.

2. Selects the console terminal.

3. Builds a CTB for each.

4. Initializes the CTB OFFSET field of the HWRPB.

5. Initializes each console terminal device.

6. Records the default state of each console terminal device in its CTB.

7. Records the unit number of the console terminal in the TTY_DEV environment v
able.

Whenever the console changes the state of a console terminal device, the console must
its CTB to reflect the change. The console may record extended status on character tra
(GETC/PUTS) in the CTB.
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System software uses the CTB to determine console terminal device characteristics. S
software never directly modifies the contents of a CTB; such modifications can resu
UNDEFINED operation of the console terminal device either as the result of a subsequen
to a console terminal routine or as the result of a console internal need to access a conso
minal device (for example, as the result of a halt). System software calls the SET_TERM_
console terminal routine to change console terminal device characteristics.

Figure 26–7 Console Terminal Block

Figure 26–8 CTB Fields

Offset Description

CTB DEVICE TYPE — Console terminal device type and format of the device-specific segm
Defined device types are:

+08 DEVICE ID — The physical device and channel that sends and receives the console t
nal stream. This field is necessary for configurations that include multiple-channel dev
or multiple single-channel devices. The field has two subfields:

For implementations that support only a single directly connected console terminal device
this field is set to zero. The device ID is not necessarily related to the console terminal
device unit number.

:CTB

:+08

:+16

:+24

:+32

Device Type

Device ID

Reserved

Length of Device-Specific Data in Bytes

Device-Specific Data Segment

63 031

Type Description

0 No console present

1 Detached service processor
2 Serial line UART

3 Graphics display with LK keyboard connected to serial line UART
4 Multipurpose

Other Reserved

Bits Description

<63:32> Device index

<31:0> Channel index
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26.4 Interprocessor Console Communications

This section considers only those communications between a running processor and a c
processor. Communications paths between running processors are external to the co
Communications paths between console processors are internal to the console.

Commands are transmitted from a running primary to a console secondary; message
requests) are transmitted from a console secondary to a running primary. Message
requests may also be passed from the console primary to the running primary. This can
when the primary processor is temporarily in console mode and wants to pass an unso
message to the operating system before returning to program mode. The message p
mechanism is identical to that used by console secondaries.

Commands and messages are passed via receive (RX) and transmit (TX) buffers contai
each per-CPU slot of the HWRPB. The use of these buffers is controlled by the Receive B
Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags.

The transmit and receive buffers are named from the point of view of the console secon
The console secondary receives commands in the RX buffer and transmits messages in
buffer.

26.4.1 Interprocessor Console Communications Flags

The Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags are use
control the interprocessor console communications. The RXRDY and TXRDY flags are g
ered into bitmasks in the HWRPB at one of two possible locations, determined by the RX
EXTENT bit <33> in the System Variation Field (HWRPB+88), as shown in Table 26–2.

The mapping of the RXRDY and TXRDY flags, as determined by the RX/TX EXTENT bit,
shown in Figure 26–9.

+16 RESERVED — This field is reserved for future expansion and may not be used by the
sole or system software.

+24 DSD LENGTH — This field specifies the number of bytes in the device-specific data fie
DSD.

+32 DSD — This field contains device-specific data associated with the unique console term
type. Device-specific data may include such parameters as baud rate, flow control en
and the current state of the CAPS LOCK key. The DSD field should contain only those
items that must be shared between the console and system software.

Figure 26–8 CTB Fields (Continued)

Offset Description
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is
it-
rom 0

e
an
nd
d at

t one

are
the

to

ism,
to

sec-
umed
m-
Figure 26–9: RXRDY and TXRDY Bitmasks in the HWRPB

As shown in Figure 26–9, if the RX/TX EXTENT bit (<33>) in the System Variation Field
clear, then the RX/TX Block in the HWRPB directly contains the RXRDY and TXRDY b
masks. Each bitmask is exactly 64 bits in length, constraining the CPU namespace to be f
to 63.

If the RX/TX EXTENT bit is set, the RX/TX Block in the HWRPB does not contain th
RXRDY and TXRDY bitmasks. Instead, the first quadword in the RX/TX Block contains
offset from the start of the HWRPB to an RX/TX Extension Block, where the RXRDY a
TXRDY bitmasks may be found. The length of each bitmask is a function of the value store
HWRPB+144, which is rounded up to the nearest multiple of 64, then divided by 64 to deter-
mine a quadword count for each bitmask. The bitmasks must each contain at leas
quadword.

Implementation Note:

HWRPB revision #11 introduces the extended RX/TX mechanism. Existing softw
coded to earlier HWRPB revisions is not required to examine the RX/TX Extent bit in
System Variation Field. Firmware updates for existing platforms are not allowed
implement this extension without coordinating with software.

New platforms are encouraged to implement only the extended RX/TX mechan
regardless of CPU count. This allows platform specific software to avoid having
examine the state of the RX/TX Extent bit.

The running primary sets the appropriate RXRDY flag to indicate to the receiving console
ondary that a command is contained in the secondary’s RX buffer. The secondary is ass
to be polling its RXRDY flag. The RXRDY flag is cleared by the secondary after the co
mand has been read from the RX buffer and before executing the command.

HW RPB HW RPB

(HWRPB+88) <33> = 0 (HWRPB+88) <33> = 0

TXRDY Bitmask

TXRDY Bitmask

<63:1> = SBZ

TXRDY
Summary

RXRDY Bitmask

RXRDY Bitmask

Offset to RX/TX
Extension Block

RX/TX Block

RX/TX
Extension

Block

+296

+304
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A console secondary sets its TXRDY flag to indicate to the running primary that a messa
contained in the secondary’s TX buffer. The console generates an interprocessor interr
the primary to notify it that a message is ready. System software clears the TXRDY flag
the message has been read from the TX buffer and before processing the message.

Implementation Note:

The quadword at HWRPB+304 minimizes interprocessor interrupt service overhea
reducing the number of required memory lookups.

26.4.2 Interprocessor Console Communications Buffer Area

Each per-CPU slot of the HWRPB includes an RXTX Buffer Area that provides the comm
cations path between processors. The buffer area is controlled by the RXRDY and TX
flags. The format is shown in Figure 26–10 and described in Table 26–11.

Figure 26–10 Inter-Console Communications Buffer

26.4.3 Sending a Command to a Secondary

The running primary manipulates the secondary’s RXRDY flag and RX buffer in the follo
ing manner to send a command to a console secondary.

Table 26–11 Inter-Console Communications Buffer Fields

Offset Description

SLOT+296 RXLEN — If the bit corresponding to this processor is set in the RXRDY bitmask,
RXLEN field contains the length in bytes of the command in the RX buffer.

+300 TXLEN — If the bit corresponding to this processor is set in the TXRDY bitmask, th
TXLEN field contains the length in bytes of the message in the TX buffer.

+304 RX BUFFER — Buffer used by this console secondary to receive a command from
running primary. Only command data is passed through this buffer; a console secondary
does not receive messages from the running primary. Commands must end
"<CR><LF>" (0A0D16).

+384 TX BUFFER — Buffer used by this console secondary (or primary temporarily in con
sole mode) to transmit a message to the running primary. Only message data is p
through this buffer; a console secondary (or primary temporarily in console mode) do
not send commands to the running primary. Messages must end with the console
ondary’s prompt, "<CR><LF>Pnn>>>" (3E3E 3Enn nn50 0A0D16).

:SLOT+296

:SLOT+304

:SLOT+384

:SLOT+464

TXLEN RXLEN

Rx Buffer
80    Bytes

Tx Buffer
80    Bytes

63 032 31

10

10
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Programming Note:

The RXRDY flag is a software lock variable; the primary and the secondary must
LDQ_L/STQ_C instructions to set and clear bitn. They must also use MB instructions to
order accesses to binn and commands in the RX buffer. See Chapter 5.

In the following sequence, the console secondary is assumed to have CPU ID =n.

1. The primary examines bitn of the RXRDY bitmask. If the bit is clear, proceed to step

2. The primary polls bitn of the RXRDY bitmask until clear or until some timeout i
reached. If a timeout occurs, system software reports an error and takes appro
action.

3. The primary moves the text of the desired console command into the RX buffer in the
secondary’s HWRPB slot (thenth per-CPU slot).

4. The primary sets the length of the command into the RXLEN field in the seconda
HWRPB slot (thenth per-CPUslot).

5. The primary issues an MB instruction.

6. The primary sets bitn of the RXRDY bitmask to indicate there is a command waiting

7. The secondary is assumed to be polling bitn of the RXRDY bitmask.

8. When the secondary notices that bitn of the RXRDY bitmask is set, it issues an MB
instruction.

9. The secondary removes the command from its RX buffer.

10. The secondary clears bitn of the RXRDY bitmask, indicating that its RX buffer is again
available.

11. The secondary attempts to process the command.

26.4.4 Sending a Message to the Primary

The console secondary (or primary temporarily in console mode) manipulates its TXRDY
and TX buffer in the following manner to return a message to the running primary.

Programming Note:

The TXRDY flag is a software lock variable; the primary and the secondary must
LDQ_L/STQ_C instructions to set and clear bitn. They must also MB instructions to orde
accesses to bitn and messages in the TX buffer. See Chapter 5.

Again, the console secondary is assumed to have CPU ID =n.

1. The secondary examines bitn of the TXRDY bitmask. If the bit is clear, proceed to ste
3.

2. The secondary polls this bit until it clears or until a long timeout occurs. (See step 1

3. The secondary moves the text of its response message into the TX buffer in the se
ary’s HWRPB slot (thenth per-CPU slot).

4. The secondary sets the length of the message into the TXLEN field in the second
HWRPB slot (thenth per-CPUslot).

5. The secondary issues an MB instruction.
26–78 Console Interface Architecture (III)
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6. The secondary sets bitn of the TXRDY bitmask to indicate there is a message waitin

7. The secondary issues an MB instruction.

8. If extended RX/TX support is not implemented (see Table 26–2), go to step 10.

If extended RX/TX support is implemented, the secondary sets the TXRDY Summ
bit in HWRPB+304.

9. The secondary issues an MB instruction.

10. The console secondary (or the pimary temporarily in console mode) issues an interpro
cessor interrupt to the primary. This is always done; the primary need not poll for bi
the TXRDY bitmask.

11. The secondary polls the TXRDY bitmask until bitn clears or until a long timeout
expires. This prevents the secondary from performing any action that might caus
message to be lost before the primary can process it.

Programming Note:

The secondary may be restarted once it has transmitted the error halt messa
the primary. However, it must wait for the primary to have a reasonable chanc
respond to the interprocessor interrupt and process the message before the
proceeds, because that message is important visible evidence of theerror halt
condition. On the other hand, the secondary should not wait too long for
primary to respond because the primary may be affected by the same cond
that caused the secondary to error halt. Hence, the need for a timeout that
reasonable length.

12. As a result of the interprocessor interrupt, the interrupt service routine running on
primary issues an MB instruction.

13. The running primary loads the quadword at HWRPB+304. Whether or not exten
RT/TX support is implemented, the primary loads a non-zero value from this locat
indicating that a message has been posted for processing by the primary.

14. If extended RX/TX support is not implemented, go to step 16.

If extended RX/TX support is implemented, the primary clears the TXRDY Summ
bit in HWRPB+304.

15. The primary issues an MB instruction.

16. The primary notices that bitn of the TXRDY bitmask is set.

17. The primary removes the message from the TX buffer in thenth per-CPU slot.

18. The primary clears bitn of the TXRDY bitmask, indicating that the TX buffer is again
available.

19. The primary attempts to process the message.
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Chapter 27

System Bootstrapping (III)

This chapter describes the net effects of the action of the console to control the system
form hardware. The major system state transitions and the role of the console in contro
those transitions are described in Section 27.1.1. When power is applied to an Alpha sy
the console initializes the system as explained in Section 27.2. The console actions nec
to bootstrap system software include processor initialization (Section 27.4.1.5), memory s
and testing (Section 27.4.1.1), building an initial virtual address space (Section 27.4.1.1)
loading the bootstrap (Section 27.6). The console actions to restart system softwar
described in Section 27.5.

27.1 Processor States and Modes

27.1.1 States and State Transitions

An Alpha processor can be in one of five major states:

1. Powered off — no system power supplied to the processor

2. Halted — operating system software execution suspended

3. Bootstrapping — attempting to load and start the operating system software

4. Restarting — attempting to restart the operating system software

5. Running — operating system software functioning

As shown in Figure 27–1, the transitions between the major states are determined by th
rent state and by a number of variables and events, including:

• Whether power is available to the system

• The console AUTO_ACTION environment variable, which specifies a "Halt actio
(see CALL_PAL HALT, Section 6.7.2)

• The console lock setting

• The Bootstrap–in–Progress (BIP) flags

• The Restart–Capable (RC) flags

• Processor error halts

• The CALL_PAL HALT instruction

• Console commands
System Bootstrapping (III)27–1
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Figure 27–1: Major State Transitions

Key to Figure 27–1

To effect major state transitions, the console obeys these rules:

• If the console is unlocked when power is restored or when the processor halts, ent
state selected by the console AUTO_ACTION environment variable.

• If the console is locked when power is restored or when the processor halts, attem
processor restart.

• When processor restart fails, attempt a bootstrap of that processor. One cause of a
restart is the processor’s RC flag being clear when the console attempts the restar

• When system bootstrap fails, halt. One cause of a failed bootstrap is the processor
flag being set before the console attempting the bootstrap. Only the processor that
bootstrap will halt.

• When system bootstrap or processor restart succeeds, the processor starts runnin

• When the primary processor is halted and the console is unlocked, the console B
command causes a system bootstrap.

• When a secondary processor is halted and the console is unlocked, the console S
–CPU command causes the console to attempt to start that processor running.

• When a processor is halted and the console is unlocked, the console CONTINUE
mand causes the processor to continue running as though no halt was incurred.

A Console is unlocked and AUTO_ACTION is "HALT".

B Console is unlocked and AUTO_ACTION is "BOOT".

C Console is unlocked and AUTO_ACTION is "RESTART" or console is locked.

D Console is unlocked, the processor is forced into console I/O mode.

Powerfail

A and Power Restored
B and Power Restored
C and Power Restored

BOOT and Console Is Locked
START or CONTINUE (and) 

Console Is Unlocked

Bootstrap Fails or D
Bootstrap Succeeds

D
Restart Fails
Restart Succeeds

A and Processor Halts or D
B and Processor Halts
C and Processor Halts

Off

Halted Booting Restart Running

Off Off Off Off

Halted
Booting
Restart

Booting
Running

Halted
Running

Halted
Booting
Running

Halted
Booting
Restart

Final
State

Initial StateAction Causing
Transition to
Final State Off
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Note:

Continuation of system software by the CONTINUE command causes
processor to continue running as though no HALT has occurred.

• If the console is unlocked and a specified processor is running or booting or resta
that processor is halted by a console HALT –CPU command.

Implementation Note:

In an embedded console implementation, the primary processor must be fo
into the console I/O mode before issuing the HALT –CPU command.

27.1.2 Major Modes

In addition to the major states, the console and processor are described as being in one o
modes:

1. Program I/O mode

The processor is running. The processor interprets instructions, services interrupt
exceptions, and initiates I/O operations under the control of the operating system.

2. Console I/O mode

The processor is halted or bootstrapping or restarting. The console provides co
over the system; the operating system has either relinquished control or has yet to
control. The operating system does not service interrupts or exceptions or initiate I/O
operations. The actions of the console are determined by internal console stat
commands from the console operator.

3. Console Initialization mode

The console has yet to acquire control of the processor. The console itself may
require initialization, such as when power is first applied to the system.

A given processor may be in one of four modes:

• Primary processor in program I/O mode or "running primary"

• Primary processor in console I/O mode or "console primary"

• Secondary processor in program I/O mode or "running secondary"

• Secondary processor in console I/O mode or "console secondary"

As noted in Section 25.1, implementations must include a mechanism to force a processo
cuting in program I/O mode into console I/O mode.

27.2 System Initialization

An Alpha system must be initialized when power is restored. System initialization also oc
as the result of a system bootstrap when the BOOT_RESET environment variable is
"ON", or as the result of the console INITIALIZE command. Initialization involves all impl
mentation-specific, system-wide actions necessary to allow the system to boot system so
on the primary processor. Table 27–1 summarizes the effects of initialization as seen b
tem software.
System Bootstrapping (III)27–3
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Initialization may include initialization of the console itself. During console initialization, t
console must build the HWRPB and all associated data structures necessary to permit th
sole to accept console commands and boot system software.

System initialization may also include any necessary system bus, processor, or I/O devic
tialization. The initialization of a processor performed as part of system initialization is
necessarily that performed just before transfer of control to the operating system bootstra
Section 27.4.1.5 for a description of processor initialization as seen by system software.

27.3 PALcode Loading and Switching

27.3.1 PALcode Loading

The console loads PALcode into good memory within a memory cluster that is not availab
system software. If PALcode scratch space is required, the console allocates good me
within a memory cluster that is not available to system software. PALcode memory and sc
space are at least page aligned. The console records the starting physical address and le
PALcode memory and scratch space and then sets the PALcode Memory Valid (PMV) fl
the per-CPU slot of the primary processor. The PMV flag indicates that the PALcode des
tors are valid.

After PALcode loading and initialization, the console sets the PALcode Loaded (PL) and P
code Valid (PV) flags in the primary’s per-CPU slot. The PL flag indicates that PALcode
been loaded; the PV flag indicates that any necessary PALcode initialization has
performed.

PALcode loading and initialization are implementation specific. The PALcode source may
special console device, ROM, a system device, a communications line, or any other imple
tation-specific source. The state of the console and system must be such that the sou
accessible. The console determines the PALcode variant in an implementation-specific
ion; console implementations that are dependent on a given variant load that variant. Co
and platform implementations may select any PALcode variant and may load multiple P
code variants.

Table 27–1 Effects of Power-Up Initialization

Processor State Initialized State

BIP and RC flags Cleared

Reason for halt code ‘0’ (bootstrap)

Integer and floating-point registers UNPREDICTABLE

System memory Unaffected if preserved by battery backup; otherwise, UNPR
DICTABLE

Environment variables Unaffected if nonvolatile; otherwise, set to default

BB_WATCH Unaffected

I/O device registers UNPREDICTABLE
27–4 Console Interface Architecture (III)
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Note:

Tru64 UNIX and Alpha Linux support PALcode switching but do not support PALco
loading. Any platform that supports either operating system must either use the T
UNIX or Alpha Linux variant as the default or must load (but need not switch to) t
variant before system bootstrap.

The means by which any PALcode internal state is initialized is implementation specific.

27.3.2 PALcode Switching

PALcode switching is accomplished when one ("current") PALcode transfers contro
another ("new") PALcode. PALcode switching can be initiated by the console or the opera
system software.

Note:

OpenVMS does not support PALcode switching. Any platform that supports OpenV
must either use the OpenVMS variant as the default or must switch to the OpenV
variant before system bootstrap.

PALcode switching is performed by PALcode without intervention from the console or ope
ing system software. The current PALcode must be able to locate the new PALcode im
The new PALcode may perform minimal sanity checks.

To support PALcode switching, all PALcode images must implement a PALcode switch
entry point at the image base (offset 0). During PALcode switching, the new PALcode im
receives control from the current PALcode image at this offset.

For the purposes of switching, a PALcode image is identified by one of the following:

• PALcode variant

PALcode variants are in the range 0 < variant < 256 and permit switching betw
cooperating, previously loaded PALcode images. PALcode variants are interprete
the current PALcode without assistance from the console or operating system.

• The physical address of the switching entry point.

Entry point addresses are used whenever the operating system or console must
PALcode image. Entry point addresses must meet the alignment requirements o
processor implementation and may occupy the lowest memory page.

System software initiates PALcode switching during system bootstrap whenever the va
required is not identical to that supplied by the console. Once a new variant has been e
lished by system software, the console must restore that variant across all subse
transitions from console I/O mode to program I/O mode. The console must ensure that th
tem software PALcode variant appears unchanged when:

1. A processor is restarted.

2. A secondary processor is started.

3. The operator forces a processor into console I/O mode, then continues program e
tion (HALT followed by CONTINUE).

4. System software invokes a callback routine that requires transition to console I/O m
System Bootstrapping (III)27–5
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System software is never required to restore a PALcode variant. The console may switch
code at entries to console I/O mode, but must restore the variant established by sy
software at subsequent re-entry to program I/O mode.

27.3.2.1 PALcode Switching Procedure

PALcode switching proceeds as follows:

1. The current PALcode is entered by the CALL_PAL SWPPAL instruction. The PALcode
image identifier (variant or switching entry point address) is contained in R16. Re
ters R17 through R21 contain parameters that are passed without change to th
PALcode image. The interpretation of R17 through R21 is specific to the new PALc
image.

2. If the current PALcode is not supplied by Compaq and does not support PALc
switching, the current PALcode sets R0 = 1 and returns from the CALL_PAL SWPP
instruction.

3. The current PALcode determines if R16 contains a PALcode variant or switching e
point address. If the latter, execution continues at step 7.

4. The current PALcode validates the PALcode variant. If unsuccessful, the oper
fails, the current PALcode sets R0 = 1 and returns from the CALL_PAL SWPP
instruction.

5. The current PALcode determines if the PALcode associated with the PALcode token
has been loaded. If not, the operation fails, the current PALcode sets R0 = 2 and re
from the CALL_PAL SWPPAL instruction.

6. The current PALcode determines the base physical address associated with the
code token.

7. The current PALcode branches to the new PALcode image at the switching entry
(physical) address determined in step 3 or 6.

8. The new PALcode performs any necessary implementation-specific PALcode initia
tion.

9. The new PALcode invalidates all TB entries and establishes the new memory ma
ment algorithm. (For example, PALcode for Tru64 UNIX and Alpha Linux loads t
VPTB with a value supplied to the CALL_PAL SWPPAL instruction.)

10. The new PALcode performs any implementation-specific actions using the e
parameters contained in R17 through R21. The resulting changes in processor sta
summarized for each PALcode variant in Section 27.3.2.3.

11. The new PALcode clears R0 and passes control to the code thread determined
entry parameters. Control is always passed in kernel mode with interrupts disabl
blocked.

If a hardware failure occurs when accessing any of the addresses specified by the calling
ments or other dependent locations, a hardware reset and system initialization are perform
27–6 Console Interface Architecture (III)
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Implemention Note:

A common implementation is that the switching entry point is identical to the hardw
reset entry. PALcode must distinguish the two cases. In the case of hardware
PALcode must perform any necessary hardware initialization and pass control to
console. In the case of switching, PALcode must pass control to the code th
determined by the entry parameters.

Notes:

• System software must update the PALcode revision field (SLOT[168]) after PALc
switching. The console uses that field to determine if PALcode must be switched (to
system software-specific image) before passing control on system restarts.

Similarly, system software may need to update the PALcode revision field in
per-CPUslot (SLOT[168]) of each secondary processor before starting the second
There is only one system restart routine. The console uses the PALcode revision
to determine if PALcode must be switched (to the system software-specific image)
before passing control on secondary processor starts.

• PALcode switching is initiated by invoking the CALL_PAL SWPPAL instruction
Before invoking SWPPAL, the caller should ensure that the system is quiescent.
recommended that SWPPAL be invoked with interrupts either disabled or blocked
After a successful PALcode switch, the operating system may need to update the V
field in the HWRPB or restart HWPCB in each per-CPU slot.

• PALcode switching does not implicitly load PALcode. During system bootstrap,
operating system must ensure that the desired PALcode variant is loaded. If load
required, the operating system must allocate sufficient physically contiguous phy
memory for the new PALcode image and any additional PALcode scratch space,
load the PALcode image in an implementation-specific manner.

• After a PALcode switch, the operating system may need to invoke the FIXUP con
callback routine. FIXUP must be invoked after any operation thataffects virtual address
translation and before subsequent invocations of other callback routines. See S
26.3.7.2.

27.3.2.2 Specific PALcode Switching Implementation Information

OpenVMS does not currently support PALcode switching. Tru64 UNIX and Alpha Linux s
ports PALcode switching as shown in Table 27–2.

Table 27–2: Tru64 UNIX and Alpha Linux PALcode Switching

Register CALL_PAL swppal Parameter Usage

R17 (a1) New PC

R18 (a2) New PCBB

R19 (a3) New VPTB
System Bootstrapping (III)27–7



trans-
seen
. The
par-

n INI-
hese

ap is a

0

27.3.2.3 Processor State at Exit from PALcode Switching Instruction

27.4 System Bootstrapping

This section describes the operations performed by the Alpha console to locate, load, and
fer control to a primary bootstrap. The responsibilities of the console and the initial state
by system software are presented for multiprocessor and uniprocessor environments
actions of the console for cold bootstrap (full hardware initialization) and warm bootstrap (
tial hardware initialization) are described.

A system bootstrap can occur as the result of a powerfail recovery, a processor halt, or a
TIALIZE or BOOT console command. See Section 27.1.1 for a complete description of t
state transitions.

27.4.1 Cold Bootstrapping in a Uniprocessor Environment

This section describes a cold bootstrap in a uniprocessor environment. A system bootstr
cold bootstrap when any of the following occur:

• Power is first applied to the system.

• The bootstrap is requested by system software.

Table 27–3: Processor State at Exit from swppal

Processor State At Exit from swppal:

ASN Address space number ASN in PCB passed to swppal

FEN Floating enable FEN in PCB passed to swppal

Integer and floating-point registers UNPREDICTABLE, except SP and R

IPL Interrupt priority level 7

KSP Kernel stack pointer KSP in PCB passed to swppal

MCES Machine checkerror summary Zero

Other IPRs UNPREDICTABLE

PC Program counter PC passed to swppal

PCBB Privileged context block Address of PCB passed to swppal

PS Processor status IPL=7, CM=K

PTBR Page table base register PTBR in PCB passed to swppal

R0 Zero

Sysvalue System value Unchanged

Unique Processor unique value Unique in PCB passed to swppal

VIRBND Virtual Boundary Register –1

WHAMI Who-Am-I Unchanged
27–8 Console Interface Architecture (III)
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• A console INITIALIZE command is issued and the AUTO_ACTION environme
variable is set to "BOOT".

• The BOOT_RESET environment variable is set to "ON".

The console must perform the following steps in the cold bootstrap sequence.

1. Perform a system initialization

2. Size memory

3. Test sufficient memory for bootstrapping

4. Load PALcode

5. Build a valid Hardware Restart Parameter Block (HWRPB)

6. Build a valid set of Memory Cluster Descriptors

7. Initialize bootstrap page tables and map initial regions

8. Locate and load the system software primary bootstrap image

9. Initialize processor state on all processors

10. Transfer control to the system software primary bootstrap image

The steps leading up to the transfer of control to system software may be performed in
order. The final state seen by system software is defined, but the implementation-sp
sequence of these steps is not. Before beginning a bootstrap, the console must clear an
nally pended restarts to any processor.

27.4.1.1 Memory Sizing and Testing

Memory sizing is the responsibility of the console. The console must also test sufficient m
ory to permit control to be passed to the primary bootstrap image. The results of con
memory sizing and testing are passed to system software using memory cluster descripto

Each memory cluster descriptor describes a physically contiguous extent of physical me
that contains no holes. The memory within a cluster is either available to system softwa
reserved for console use. Usage within a cluster cannot be mixed; if the cluster contains a
reserved for console use, system software cannot allocate any page within the cluste
memory cluster descriptor contains a cluster usage field that indicates the cluster availabi
system software. The primary bootstrap image must reside in clusters available to sy
software.

The memory within each cluster may be fully tested, partially tested, or untested by the
sole. If the memory is untested, no cluster memory bitmap is built. The console must
enough memory to allow the primary bootstrap image to be loaded and control to be pas
that image. This memory includes:

• PALcode memory and scratch areas

• CPU logout areas

• Memory bitmaps

• HWRPB and all offset blocks

• Console CRB map entries

• Bootstrap address space page tables
System Bootstrapping (III)27–9
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• Primary bootstrap image

• One page for the initial bootstrap stack

Any additional memory testing by the console is implementation specific. It is the respons
ity of system software to test any memory not tested by the console.

A cluster bitmap is built if the cluster is available to system software and the console test
memory within the cluster. Each page in the cluster is represented by a bit in the bitmask.
in the bitmap means that the corresponding page is "good"; the page was tested without
A ‘0’ in the bitmap means that the corresponding page is "bad"; the page is either untest
was tested but encountered correctable (Corrected Read Data) errors or hard (Read Da
stitute) errors.

Cluster bitmaps must be at least quadword aligned and must be an integral number of
words; any unused bits in the highest addressed quadword must be zero.

Implementation Notes:

Every implementation cannot be required to test all of memory before booting
operating system. Partial memory testing is recommended whenever testin
time-consuming and would significantly delay the bootstrapping process; the choic
implementation specific. The high-water mark mechanism allows implementation
completely size memory without testing all of it and indicate to the operating system where
testing ended.

Clusters reserved for the use of the console and PALcode do not have associated bitm

The console does not alter the Memory Cluster Descriptors or any bitmaps across
bootstraps. This permits system software to propagate information on system sof
memory testing and intermittent errors across operating system bootstraps. For exa
system software could set the "bad" bit of a page that incurred repeated CRD errors.

27.4.1.2 Passing Memory Cluster Descriptors to System Software

Memory cluster descriptors are passed to system software in one of two ways:

• They may be statically built into the Memory Data Descriptor (MEMDSC) tab
located by HWRPB[200]. This is used by all platforms supporting HWRPB Revis
11 or earlier. See Section 27.4.1.2.1.

• Starting at HWRPB Revision 12, they may be distributed (dynamically built a
deleted) by using a combination of the MEMDSC table located by HWRPB[200] a
the FRU table located by HWRPB[216]. See Sections 26.1.5 and 27.4.1.2.2.

The format of a static memory cluster descriptor in the MEMDSC table differs from that of a
distributed memory cluster descriptor in the FRU table.

27.4.1.2.1 Static Memory Clusters in the MEMDSC Table

The memory data descriptor (MEMDSC) table contains one or more static memory clu
descriptors. Static cluster descriptors are ordered by increasing physical address; the range
PFNs described by clustern is of lower address than the range of PFNs described by clus
n+1.
27–10 Console Interface Architecture (III)
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The MEMDSC table must be quadword aligned and both physically and virtually contigu
The MEMDSC table format is shown in Figure 27–2; the memory cluster descriptor form
shown in Figure 27–3. The size of the MEMDSC table can be determined by the numb
clusters contained in MEMDSC[16]. The size of the table and the offset to the last quad
of the table are given by:

MEMDSC_SIZE = ((7 * MEMDSC[1016]) + 3) * 8

MEMDSC_END = MEMDSC_SIZE – 8

Figure 27–2 Memory Data Descriptor (MEMDSC) Table

Figure 27–3 Static Memory Cluster Descriptor

Table 27–4 Memory Data Descriptor Table Fields

Offset Description

MEMDSC CHECKSUM — Checksum of all the quadwords from offset MEMDSC+8 throug
MEMDSC_END. Computed as a 64-bit sum, ignoring overflows. The checksum d
not include any of the cluster bitmaps or any optional implementation-specific data.

:MEMDSC

:MEMDSC_END

Checksum

Static Memory Cluster Descriptor Last

:+08PA of Optional Implementation-Specific Information

:+16Number of Clusters ( 2)

:+24Static Memory Cluster Descriptor 1

63 0

:MEMC

:+08

:+16

:+24

:+32

:+40

:+48

:+56

Starting PFN of Cluster

Count of Pages in Cluster

Count of Tested Pages in Cluster Bitmap

VA of Cluster Bitmap or Zero

PA of Cluster Bitmap or Zero

Checksum of Cluster Bitmap

Usage of Cluster

63 0
System Bootstrapping (III)27–11
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27.4.1.2.2 Distributed Memory Cluster Descriptors in the FRU Table

HWRPB Revision 12 introduces an option for presenting the results of memory sizing and
ing to system software. This option distributes the memory cluster descriptors to the FRU
(Section 26.1.5) where they may be organized more flexibly than is possible with only
MEMDSC table. Such flexibility better supports memory reconfiguration while system s
ware (one or more "Instances" of which) is active, including:

+08 IMP_DATA_PA — Physical address of additional implementation-specific informati
(if any). If no additional implementation-specific information exists, the field must co
tain a zero.

+16 CLUSTERS — Number of clusters in the memory data cluster descriptor ta
Unsigned integer greater than or equal to two (at least one cluster for console memory
and once cluster for software memory, with no null descriptor present). See Figure 2

+24 CLUSTER — Each static memory cluster descriptor describes an extent of phys
memory. See Figure 27–3.

Table 27–5 Static Memory Cluster Descriptor Fields

Offset Description

MEMC PFN — Starting PFN of the memory cluster.

+08 PAGES — Number of pages in the memory cluster. Unsigned integer.

+16 TESTED_PAGES — Number of tested memory pages in the cluster. If only a limit
extent of the cluster memory was tested, a bitmap is built, and this high-water mark in
cates the number of pages that were tested. The tested range is always the lowest-or
part of the range within this cluster.

+24 BITMAP_VA — Starting virtual address of the cluster memory testing bitmap in the boo
strap address space. If the memory is untested, no bitmap is built and this field is se
zero.

+32 BITMAP_PA — Starting physical address of the cluster memory testing bitmap. If t
memory is untested, no bitmap is built and this field is set to zero.

+40 BITMAP_CHECKSUM — Checksum of the cluster memory testing bitmap. Compute
as a 64-bit sum, ignoring overflows, over the TESTED_PAGES active bits only.

+48 USAGE — Indicates whether the cluster is available for use by system software.

• If USAGE<0> is ‘0’, system software may allocate and use the cluster.

• If USAGE<0> is ‘0’ and USAGE<1> is ‘1’, the cluster is available for use by the
system software, but is in nonvolatile memory.

• If USAGE<0> is ‘1’, the cluster is reserved for console use and must not be al
cated by system software.

• USAGE<63:2> should be zero.

Table 27–4 Memory Data Descriptor Table Fields (Continued)

Offset Description
27–12 Console Interface Architecture (III)
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• Partitioning memory such that multiple Instances may execute simultaneously,
within a designated "Instance-private" complement (partition) of memory

• Dynamic reallocation of memory among partitions while Instances are active

• Designating memory as shareable among a cooperative community of Instances

• Hot-addition of memory to a running Instance

• Hot-removal of memory from a running Instance

This presentation option leverages the MEMDSC table. Instead of containing static me
cluster descriptors, the MEMDSC table includes only a 'null' memory descriptor that ef
tively points to memory cluster descriptors that are distributed to the FRU table. Th
distributed memory cluster descriptors are linked into a list that altogether describes the p
cal memory available to an Instance. The console may locate the distributed memory c
descriptors anywhere within the FRU table; they are not packed together nor arranged i
particular order as is the case for the static descriptors embedded in the MEMDSC table.

Figure 27–4 shows and Table 27–6 describes the MEMDSC table format when used to
cate that memory cluster descriptors are distributed to the FRU table.

Figure 27–4 MEMDSC Table with Null Memory Cluster Descriptor

Table 27–6 MEMDSC Table Fields with Null Memory Cluster Descriptor

Offset Description

MEMDSC CHECKSUM1,2 – Checksum of all the quadwords from offset MEMDSC+8
through MEMDSC_END. Computed as a 64-bit sum, ignoring overflows. T
checksum does not include any optional implementation-specific data.

+08 IMP_DATA_PA3,2 – Physical address of additional implementation-specif
information (if any). If no additional implementation-specific information exists
the field must contain a zero.

+16 CLUSTERS3,4 – Number of clusters in the Memory Data Descriptor table
Unsigned integer equal to one (a single null cluster descriptor present; i.e. no s
memory cluster descriptors (Figure 3-3) will be present).

+24 PFN3,4 – Starting PFN of the memory cluster set to –1, an invalid PFN.

:+08

:+16

:+24

:+32

:MEMDSC

Null
Cluster
Descriptor

:+40

:+48

:+56

:+64

:+MEMDSC_END

PA of Optional Implementation-Specific Information

Number of Clusters = 1

Starting PFN = -1

Count of Pages = 0

Checksum

Reserved (MBZ)

Physical offset to Listhead of Shared MCDs

Physical offset to First Instance-Private MCD

Reserved (MBZ)

Reserved (MBZ)

63 0
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Figure 27–5 shows and Table 27–7 describes the format of a distributed memory clu
descriptor. This differs from the format of the static memory cluster descriptor depicted in
ure 27–3.

+32 PAGES3,4 – Number of pages in the memory cluster set to zero.

+40 Reserved for future use - MBZ

+48 SHARED_MCDS3 – Physical offset to the listhead for distributed memory clust
descriptors that describe memory that has been designated as shareable am
cooperative community of Instances. Offset is from the base of the FRU table
located by HWRPB+216. Signed integer.

+56 PRIVATE_MCDS3,1 – Physical offset to the first distributed memory cluste
descriptor that describes memory reserved for use by this instance of system
ware. Offset is from the base of the FRU table as located by HWRPB+216. Sig
integer.

+64 Reserved for future use - MBZ

MEMDSC_END Reserved for future use - MBZ

1 May be modified by the console.
2 May be modified by system software.
3 Initialized by the console at cold system bootstrap only. Preserved unchanged by the conso

at all warm system bootstraps.
4 May be used to discern the presence of a null memory cluster descriptor.

Table 27–6 MEMDSC Table Fields with Null Memory Cluster Descriptor
27–14 Console Interface Architecture (III)



h
m

in
by

a
his
ge is
Figure 27–5 Distributed Memory Cluster Descriptor

Table 27–7 Distributed Memory Cluster Descriptor Fields

Offset Description

DMEMC CHECKSUM1,2 – Checksum of all the quadwords from offset DMEMC+8 throug
DMEMC_END. Computed as a 64-bit sum, ignoring overflows. The checksu
does not include any of the cluster bitmaps.

+08 OFFSET3,1 – Physical offset to the next distributed memory cluster descriptor
the list, or –1 if none. Offset is from the base of the FRU table as located
HWRPB+216. Signed integer.

+16 PFN3,1 – Starting PFN of the memory cluster.

+20 PAGES3,1 – Number of pages in the memory cluster. Unsigned integer.

+24 TESTED_PAGES3,2 – Number of tested memory pages in the cluster. If only
limited extent of the cluster memory was tested, a bitmap is built, and t
high-water mark indicates the number of pages that were tested. The tested ran
always the lowest-ordered part of the range within this cluster.

:+08

:+16

:+24

:+32

:DMEMC

:+40

:+48

:+56

:+64

:+DMEMC_END

Physical offset to next MCD in List or -1

Count of Pages in Cluster Starting PFN of Cluster

Usage of Cluster Count of Tested Pages in Cluster Bitmap

PA of Cluster Bitmap or Zero

Checksum

Checksum of Cluster Bitmap

Reserved (MBZ)

Reserved (MBZ)

Reserved (MBZ)

Reserved (MBZ)

63 0
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Figure 27–6 illustrates how these structures are linked together.

+28 USAGE3,1 – Indicates characteristics of this memory cluster.

+32 BITMAP_PA3 – Starting physical address of the cluster memory testing bitmap
the memory is untested, no bitmap is built and this field is set to zero.

+40 BITMAP_CHECKSUM3,2 – Checksum of the cluster memory testing bitmap
Computed as a 64-bit sum, ignoring overflows, over the TESTED_PAGES act
bits only.

+48 through

DMEMC_END

Reserved for future use - MBZ

1 May be modified by the console.
2 May be modified by system software.
3 Initialized by the console at cold system bootstrap only. Preserved unchanged by the conso

at all warm system bootstraps.

Table 27–7 Distributed Memory Cluster Descriptor Fields (Continued)

Bits Meaning
31:4 Reserved for future use and should be zero.

3 When set, the cluster descriptor is FIXED such that it cannot be deleted
agglomeratedwith another cluster descriptor while this instance of system
software remains active. The console may set FIXED for a cluster reserv
for console use to indicate to software that the console is incapable of ev
ing the contents of that cluster.

2 Indicates the list that includes this cluster descriptor. When clear, indica
the PRIVATE_MCDS list (see Figure 27–4); when set, indicates th
SHARED_MCDS list.

1 When set, the cluster is in nonvolatile memory.
0 When clear, system software may allocate and use the cluster. When set

cluster is reserved for console use and must not be allocated by system s
ware.
27–16 Console Interface Architecture (III)
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Figure 27–6 Distributed Memory Cluster Descriptors

27.4.1.3 Bootstrap Address Space

All system software, including the primary bootstrap image, runs in a virtual memory envi
ment. The console creates the initial page tables that define the initial bootstrap address
for the primary bootstrap. System software may replace this bootstrap address space
time after the console passes control to the primary bootstrap image.

The bootstrap address space consists of four regions. All regions must be located in good
ory within clusters that are available to system software. The regions are:

Region 0

This region maps console or PALcode data structures that must be shared with system
ware. These structures include the HWRPB in its entirety, all physically contiguous blo
located by HWRPB offsets, the console callback routines, and all tested memory bitm
located by static memory descriptors in the Memory Data Descriptor (MEMDSC) ta
Region 0 begins at address 256MB, virtual address 0000 0000 1000 000016. The starting

address of the HWRPB is the base of Region 0.

MEMDSC

HWRPB

FRU Table

Physical FRU Offset

Physical offset to
shared MCD listhead

Physical Offset to first
Instance-private MCD

MEMDSC Offset

Instance Private MCD’s

Null
Cluster
Descriptor

Shared MCD listhead

MCD

MCD

MCD

MCD
MCD

MCD
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The primary bootstrap image is loaded into this region. The region must be at least
enough to load system software plus three pages. The three additional pages are used as
tial bootstrap stack and stack guard pages. The stack guard pages are virtually adjacen
bootstrap stack page and marked no-access. All other pages in the region are mapp
valid. Region 1 begins at address 512MB, virtual address 0000 0000 2000 000016.

Software Note:

This region must be set to the size of the primary bootstrap image plus 3 page
OpenVMS and at least 256K bytes for Tru64 UNIX and Alpha Linux.

Region 2

This region, or "page table space," contains the bootstrap address space page tables. R
begins at address 1GB, virtual address 0000 0000 4000 000016. The range depends on the pag

size:

This region includes the Level 2 and Level 3 page tables used to map all three regions com
ing bootstrap address space. The Level 2 page table maps itself as a Level 3 page tab
address of the Level 2 page table page and the PTE within the page that is used for self
ping also depend on the page size.

Implemention Note:

Region 2 allows the primary bootstrap code to start with 32-bit pointers that execute
32-bit context. Thus, Region 2 allows primary bootstrap software to be written w
32-bit-oriented language compilers.

The initial page tables that map the virtual address regions are shown in Figure 27–7 and
trated in Figure 27–8.

Page Size Page Table Space Address Range

8KB 1GB to 1GB+8MB

16KB 1GB to 1GB+16MB

32KB 1GB to 1GB+32MB

64KB 1GB to 1GB+64MB

Page Size
Virtual Address of
Level 2 Page Table

L2PTE Number
Used for Self-Mapping

8KB 1GB+1MB 128

16KB 1GB+512KB 32

32KB 1GB+256KB 8

64KB 1GB+128KB 2
27–18 Console Interface Architecture (III)
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This region maps the entire page table structure, including all levels of page table, that w
be required to map the entire virtual address space supported by this implementation
Level 1 page table is self-mapped by the second PTE in the page.

Region 3 exists to support virtual page table lookup for Translation Buffer misses. Regi
exists at a virtual address that is inaccessible to code that is compiled to support only a
virtual address space. As such, Region 3 is not the primary page table space that is prese
bootstrap software.

Programming Note:

Due to the self-mapping, Region 3 maps all page table pages. The Level 2 and Le
page table pages are in both Region 2 and Region 3.

Figure 27–7: Initial Virtual Memory Regions

Page Size Virtual Address of Page Table Space (VPTB)

8KB 8GB

16KB 64GB
32KB 512GB

64KB 4TB

Region 0

Memory Bitmaps

Region 2

Console Service
Routines

HWRPB Pages (Includes
Memory Data Descriptor

Table and CRB)

:VA=1000 0000 (hex)

Region 1

1 Page Stack

No-Access

Loaded System Software :VA=2000 0000 (hex)

No-Access
:SP

Unused

Level 3 Page Table
Map Region 0

Unused

Level 3 Page Table
Map Region 1

Level 2, 3 Page Table
(Maps Itself and Region 2)

Unused

:VA=4000 0000 (hex)

Region 3

Level 1 Page Table

:VPTB
System Bootstrapping (III)27–19
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All valid pages allow read/write access from kernel mode and deny all access from oth
modes. All fault bits (FOR, FOW, FOE) are clear, as well as Address Space Match (ASM)
Granularity Hint (GH).

The self-mapping of the Level 2 page table excludes the Level 1 page table from Region
this case, the Level 1 page table has two active PTEs. The first L1PTE points to the PFN
Level 2 page table page, which maps page table space (Region 2). The second L1PTE co
the PFN of the Level 1 page table itself, thus defining Region 3. Only these two entries w
the Level 1 page table are valid; all other Level 1 PTEs are zero.

Figure 27–8: Initial Page Tables

The self-mapping of the Level 2 page table also causes the addresses of the Level 2 and
3 PTEs for a given virtual address to be functions of that address. For every virtual ad
within the bootstrap address space, there is exactly one location within page table space
Level 2 PTE that maps that virtual address, and exactly one location for the Level 3 PTE
maps that virtual address.

Level 1 PT

PTE 0

Last PTE

Level 2 PT

Maps VA=256 MB

Maps VA=512 MB

Maps VA=1 GB

Level 3 PT

First
Region 0

Page Table

Level 3 PT

Region 1
Page Table

PTBR:

The level 2 PT maps Region 2 (page table
space) at 1 GB.   The level 2 PT maps itself
as its own level 3 PT.

The level 1 PT is not mapped.
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Thus, the Level 2 and Level 3 PTE virtual addresses for a given virtual address (VA) w
bootstrap address space can be calculated given the page size. The following bit range
tions provide convenient notation for referring to the constituent parts of a virtual address
example, VA<L2> is equivalent to VA<32:23> for an 8K byte page size.

The base of page table space is a constant value:

1. PT_Base = 1GB

The virtual address of the Level 3 PTE (L3PTE_VA) of any virtual address (VA)
given by:

2. L3PTE_VA(VA) = PT_Base + (page_size*VA<L2>) + (8*VA<L3>)

Thus, the virtual address of the Level 3 PTE that maps the lowest address of page
space is given by:

L3PTE_VA(PT_Base) = PT_Base + (page_size * PT_Base<L2>)

Since the Level 2 page table is self-mapped, the above is also the base virtual ad
of the Level 2 page table. Thus:

3. L2PT_Base = PT_Base + (page_size * PT_Base<L2>)

Finally, the virtual address of the Level 2 PTE (L2PTE_VA) of any virtual addre
(VA) is given by:

L2PTE_VA(VA) = L2PT_Base + (8 * VA<L2>)

4. L2PTE_VA(VA) = PT_Base + (page_size * PT_Base<L2>) + (8 * VA<L2>)

27.4.1.4 Bootstrap Flags

The Bootstrap-in-Progress (BIP) and Restart-Capable (RC) processor state flags in the p
processor’s per-CPU slot are used to detect failed bootstraps. If the primary re-enters co
I/O mode while the BIP flag is set and the RC flag is clear, the bootstrap attempt fails, an
subsequent console action is determined by Figure 27–1.

Page Size L1 L2 L3

8KB 42:33 32:23 22:13
16KB 46:36 35:25 24:14

32KB 50:39 38:27 26:15
64KB 54:42 41:29 28:16

L1 L3L2 Byte in PageVA:
System Bootstrapping (III)27–21
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The console sets the BIP flag and clears the RC flag before transferring control to system
ware. System software sets the RC flag to indicate that sufficient context has been estab
to handle a restart attempt. System software clears the BIP flag to indicate that the boo
operation has been completed. The RC flag should be set before clearing the BIP flag.
27–8 gives the console interpretation of BIP and RC flags.

27.4.1.5 Loading of System Software

The console is responsible for loading system software at the base of Region 1 beginn
virtual address 512MB. This software is expected to be a primary bootstrap program th
responsible for loading other system software, but may be diagnostic or other special-pu
software. Section 27.6 contains descriptions of the format of each supported bootstrap me

The console uses the BOOT_DEV environment variable to determine the bootstrap devic
the path to that device. Environment variables contain lists of bootstrap devices and paths
list element specifies the complete path to a given bootstrap device. If multiple element
specified, the console attempts to load a bootstrap image from each in turn.

The console uses the BOOTDEF_DEV, BOOT_DEV, and BOOTED_DEV environment v
ables as follows:

• At console initialization, the console sets the BOOTDEF_DEV and BOOT_DEV en
ronment variables to be equivalent. The format of these environment variables dep
on the console implementation and is independent of the console presentation laye
value may be interpreted and modified by system software.

• When a bootstrap results from a BOOT command that specifies a bootstrap devic
the console uses the list specified with the command. The console mod
BOOT_DEV to contain the specified device list.

Note:

This may require conversion from the presentation layer format to the regist
format.

• When a bootstrap is the result of a BOOT command that does not specify a boot
device list, the console uses the bootstrap device list contained in the BOOTDEF_
environment variable. The console copies the value of BOOTDEF_DEV
BOOT_DEV.

• When a bootstrap is not the result of a BOOT command, the console uses the boo
device list contained in the BOOT_DEV environment variable. The console does
modify the contents of BOOT_DEV.

Table 27–8: Console Interpretation of BIP and RC Flags

BIP RC Interpretation at Entry to Console I/O Mode

set clear Failed bootstrap

set set Halt condition encountered during bootstrap, restart processor

clear clear Failed restart

clear set Halt condition encountered, restart processor
27–22 Console Interface Architecture (III)
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• The console attempts to load a bootstrap image from each element of the boo
device list. If the list is exhausted before successfully transferring control to sys
software, the bootstrap attempt fails and the subsequent console action is determin
Figure 27–1.

• The console indicates the actual bootstrap path and device used in the BOOTED_
environment variable. The console sets BOOTED_DEV after loading the primary b
strap image and before transferring control to system software. The BOOTED_DEV
format follows that of a BOOT_DEV list element.

• If the bootstrap device list is empty, BOOTDEF_DEV or BOOT_DEV are NUL
(0016), and the action is implementation specific. The console may remain in con
I/O mode or attempt to locate a bootstrap device in an implementation-specific ma

The BOOT_FILE and BOOT_OSFLAGS environment variables are used as default value
the bootstrap file name and option flags. The console indicates the actual bootstrap imag
name (if any) and option flags for the current bootstrap attempt in BOOTED_FILE and
BOOTED_OSFLAGS and environment variables. The BOOT_FILE default bootstrap im
file name is used whenever the bootstrap requires a file name and either none was speci
the BOOT command or the bootstrap was initiated by the console as the result of a major
transition. The console never interprets the bootstrap option flags, but simply passes
between the console presentation layer and system software.

27.4.1.6 Processor Initialization

Before control is transferred to system software, certain IPRs and other processor state m
initialized as shown in Table 27–9 and Section 27.3.2.3 for each PALcode variant. Proc
initialization is performed by the console before booting a processor, before restarting a
cessor, or as the result of the INITIALIZE –CPU console command.

The Context Valid (CV) flag in the processor’s per-CPU slot must be valid for processor
tialization to be successful. If the CV flag is clear, the HWPCB contained in the per-CPU
is not valid, and the console must not transfer control to system software. If this or any
occurs in initializing the processor, the console retains control of the system and generat
binary error message ERROR_PROC_INIT.

Table 27–9 Processor Initialization

Processor State Initialized State

ASN Address Space Number Zero

ASTEN1 AST Enable ASTEN in processor’s HWPCB

ASTSR1 AST Summary ASTSR in processor’s HWPCB

BIP and RC flags Unaffected

Cache, instruction buffer, or write buffer Empty or valid

Environment variables Unaffected

FEN Floating Enable FEN in processor’s HWPCB

Halt Data Log PA Physical address of in-memory buffer of conso
data to be passed to the operating system (if an
otherwise 0).
System Bootstrapping (III)27–23
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27.4.1.7 Transfer of Control to System Software

Before transferring control to system software, the console must define valid hardware p
leged context for that software. The console builds that context in the hardware privile
context block (HWPCB ) in the primary processor’s per-CPU slot. The initialized contex
summarized in Table 27–10 and Section 27.3.2.3 for each PALcode variant.

The initial KSP points to the lowest addressed quadword in the higher addressed stack
page (top-of-stack) of Region 1 of the bootstrap address space. The PTBR points to the L
page table page. All other scalar and floating-point register contents are UNPREDICTABL

Halt Data Log Length Length in bytes of console data (if any, otherwi
0).

Integer and floating-point registers Unaffected, except SP

IPL Interrupt Priority Level Highest

Main memory Unaffected

MCES Machine Check Error Summary 8 (bit 3=1)

Other HWRPB fields Unaffected

Other IPRs UNPREDICTABLE

PCBB Privileged Context Block Address of processor’s HWPCB

PS Processor Status IPL=highest, VMM=0, CM=K, SW=0

PTBR Page Table Base Register PFN value in processor’s HWPCB

Reason for Halt code Unaffected

SCC1 System Cycle Counter Zero

SISR1 Software Interrupt Summary Zero

SP Kernel Stack Pointer KSP in processor’s HWPCB

Translation buffer Invalidated

VIRBND Virtual Boundary Register –1

WHAMI Who-Am-I CPU identifier

1 OpenVMS only.

Table 27–9 Processor Initialization (Continued)

Processor State Initialized State
27–24 Console Interface Architecture (III)
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After building the HWPCB for the primary processor, the console sets the Context Valid (
flag in the primary’s per-CPU slot. All other bootstrap information is passed from the con
to system software by environment variables. See Section 26.2 for more details.

Control is transferred to system software in kernel mode at the highest IPL with virtual m
ory management enabled. Control is transferred to the first longword of the system soft
image loaded into Region 1, virtual address 0000 0000 2000 000016. Before transferring con-
trol, the console ensures that the SP contains the KSP value in the HWPCB. System so
should assume that the stack is initially empty.

The transfer of control transitions the primary processor from the halted state into the run
state and from console I/O mode into program I/O mode. The rest of the uniprocessor
strap process is the responsibility of system software.

27.4.2 Warm Bootstrapping in a Uniprocessor Environment

The actions of the console on a warm bootstrap are a subset of those for a cold bootst
system bootstrap will be a warm bootstrap whenever the BOOT_RESET environment va
is set to "OFF", and console internal state permits.

The console performs the following steps in the warm bootstrap sequence:

1. Locate and validate the Hardware Restart Parameter Block (HWRPB)

2. Locate and load the system software primary bootstrap image

3. Initialize processor state on all processors

4. Initialize bootstrap page tables and map initial regions

Table 27–10: Initial HWPCB Contents

HWPCB Field Initialized State

KSP Top-of-stack (contents of SP)

ESP1

1 OpenVMS systems only.

UNPREDICTABLE

SSP1 UNPREDICTABLE

USP UNPREDICTABLE

PTBR PFN of Level 1 page table

ASN Zero

ASTSR1 Zero

ASTEN1 Zero (all disabled)

FEN Zero (disabled)

PCC Zero

Unique value Zero

PALcode scratch Implementation specific
System Bootstrapping (III)27–25
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5. Transfer control to the system software primary bootstrap image

At warm bootstrap, the console does not load PALcode, does not modify the Memory
Descriptors, and does not reinitialize any environment variables. If the console cannot l
and validate the previously initialized HWRPB and Memory Cluster Descriptors, the con
must initiate a cold bootstrap. Before beginning a bootstrap, the console must clear any
nally pended restarts to any processor.

Programming Note:

Warm bootstrap permits system software to preserve limited context across bootstrap

27.4.2.1 HWRPB Location and Validation

After console initialization, the console must preserve the location of the HWRPB in an im
mentation-specific manner. On warm bootstraps and restarts, the console locates the HW
and verifies it by ensuring that:

1. The first quadword of the table contains the physical address of the table.

2. The second quadword of the table contains "HWRPB" (0000 0042 5052 574816).

3. The quadword at offset HWRPB[288] contains the 64-bit sum, ignoring overflows
the quadwords from offset HWRPB[00] to HWRPB[280], inclusive, relative to t
beginning of the potential HWRPB.

4. The quadword at offset [0] of the MEMDSC block contains the 64-bit sum, ignor
overflows, of the quadwords from MEMDSC+8 through MEMDSC_END of th
block. The MEMDSC block is located by the MEMDSC offset at HWRPB[200]. S
Figure 27–2.

5. As of HWRPB Revision 12, the type of memory cluster descriptors embedded w
the MEMDSC block is checked. If the MEMDSC block contains static memory clus
descriptors (Figure 3-3), then skip this step.

If the MEMDSC block contains a null memory cluster descriptor (Figure 27–4), th
instance-private distributed memory cluster descriptors exist in the FRU table
must be verified, as follows:

a. The FRU table's physical address (FRU_ADDR) is calculated by adding the FR
Table Offset at HWRPB[216] to the base physical address of the HWRPB.

b. The physical address of the first memory descriptor (MCD_ADDR) is the sum o
FRU_ADDR and the offset value found in MEMDSC[56]. See Figure 27–4.

c. The quadword at offset [0] of the memory descriptor at MCD_ADDR contains t
64-bit sum, ignoring overflows, of the quadwords from DMEMC+8 through
DMEMC_END of that descriptor. See Figure 27–5.

d. The physical offset to the next memory descriptor is found at MCD_ADDR[8]. I
that offset is not –1, add it to FRU_ADDR to calculate a new MCD_ADDR and g
to Step C.

If one or more of the above conditions is not true, the HWRPB is not valid. The warm b
strap (or restart) fails. The subsequent console action is determined by Figure 27–1
bootstrap is indicated, a cold bootstrap will be performed.

The console must not search memory for a HWRPB; searching memory constitutes a security
hole.
27–26 Console Interface Architecture (III)
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27.4.3 Multiprocessor Bootstrapping

Multiprocessor bootstrapping differs from uniprocessor bootstrapping primarily in areas r
ing to synchronization between processors. In a shared memory system, processors
independently load and start system software; bootstrapping is controlled by the prim
processor.

27.4.3.1 Selection of Primary Processor

The primary processor is selected by the console during system initialization before any a
to main memory by any processor. Selection of the primary processor may be done in
fashion that guarantees choosing exactly one primary processor.

Once a primary processor has been selected, the secondary processors take no furthe
until appropriately notified by the primary processor. In particular, secondary processors
not access main memory.

27.4.3.2 Actions of Console

After selection, the console proceeds to bootstrap the primary processor, after the norma
processor bootstrap as described in Section 27.4.1.

The console must correctly initialize all HWRPB fields used for synchronization or comm
cation between the processors. The console must initialize the PRIMARY CPU ID fiel
HWRPB[32], zero the TXRDY and RXRDY bitmasks (see Section 26.4), and recompute
HWRPB checksum at HWRPB[288].

The console must also initialize each per-CPU slot for the secondary processors, even for
processors that are not yet present. The console must:

• Clear the BIP, RC, OH, and CV flags

• Clear the Halt Request code field

• Set the PP flag if the processor is present

• Set the PA flag if the processor is present and available for use by system software

• Set the PMV and PL flags if the console has loaded PALcode on this processor

• Set the PV flag if the console has initialized PALcode on this processor

• Set the PE processor variation flag if the processor is eligible to become a primary

• Set the Console Data Log physical address entry to the physical address of the Co
Data Log (if any, otherwise 0).

• Set the Console Data Log length to the length in bytes of the Console Data Log (if
otherwise 0).

After initializing each processor’s per-CPU slot, the console must notify each console sec
ary processor of the existence and location of the valid HWRPB.
System Bootstrapping (III)27–27
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27.4.3.3 PALcode Loading on Secondary Processors

Most console implementations load PALcode on all secondary processors before boot
ping the primary processor. Console implementations may delay the loading or initializatio
PALcode on a secondary processor. If delayed, PALcode loading and initialization requir
cooperation of system software executing on the running primary and the console execut
behalf of the secondary.

The console secondary must have performed any necessary initialization as described i
tion 27.4.3.5. All interprocessor console communications follow the mechanisms describ
Section 26.4.

The following procedure applies only to initial PALcode loading on a console secondary.
PALcode variant to be loaded must be identical to that of the running primary processor b
any PALcode switching by system software. This procedure cannot be used to load ope
system-specific PALcode variants:

1. The console secondary initializes the PALcode memory and scratch space length
in its per-CPU slot.

2. The console secondary sets the PALcode major revision, minor revision, and com
bility subfields in the PALcode revision field in its per-CPU slot.

3. The console secondary notifies the primary that PALcode loading is requested by t
mitting a message to the running primary as described in Section 26.4.

4. The console secondary polls the PALcode Memory Valid (PMV) flag in its per-CPU
slot.

5. The running primary detects the console secondary request.

6. The running primary verifies that the Processor Available (PA) flag is set in the sec
ary’s per-CPUslot. If the flag is not set, the operation fails.

7. The running primary compares the major and minor revision subfields of the PALc
revision field in its per-CPU slot to that in the secondary’s per-CPU slot. If the revision
levels do not match, the running primary proceeds to step 12.

8. The running primary compares the number of processors currently sharing its PAL
image to the maximum contained in the subfield of the PALcode revision field of
per-CPU slot. If the current number is the maximum, no additional console secon
can share the PALcode image. The running primary proceeds to step 12.

Programming Note:

The running primary can determine the number of processors currently shari
given PALcode image by counting the number of per-CPU slots with the sa
valid PALcode memory space descriptors. A PALcode memory space descript
valid if the PALcode Loaded (PL) flag is set in the per-CPU slot.

9. The running primary copies the PALcode memory and scratch space descriptors
its per-CPU slot into the secondary’s per-CPUslot.

10. The running primary copies the PALcode variation, compatibility, and maximum n
ber of processors subfields of the PALcode revision field from its per-CPU slot into
secondary’s per-CPU slot.

11. The running primary sets the PALcode Loaded (PL) flag in the secondary’s per-
slot, then proceeds to step 13.
27–28 Console Interface Architecture (III)
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12. The running primary allocates physical memory for PALcode memory and scr
areas and records the addresses in the secondary’s per-CPU slot.

13. The running primary sets the PALcode Memory Valid (PMV) flag in the seconda
per-CPU slot.

14. The console secondary observes that the PMV flag is set in its per-CPUslot.

15. If the PL flag in its per-CPU slot is not set, the console secondary loads PALcode
the allocated PALcode memory and scratch space. In this case, the console seco
sets the PALcode Loaded (PL) flag in its per-CPU slot.

16. The console secondary ensures that any required implementation-specific PALcod
tialization is performed.

17. The console secondary sets the PALcode Valid (PV) flag in the secondary’s per-CPU
slot.

The PALcode memory and scratch space must be page aligned. If not allocated by the co
before system bootstrap, the allocation management of PALcode memory for secondar
cessors is the responsibility of system software.

It is the responsibility of console and system software to ensure that the initially loaded P
code variation and revision levels of all processors are compatible. This may be perform
the primary before starting the secondary, by the starting secondary, or any combin
thereof. PALcode images of the same PALcode variation but different revision levels are
patible if the PALcode revision compatibility subfields match.

27.4.3.4 Actions of the Running Primary

System software executing on the primary processor must initialize the HWPCB for each
ondary processor. The HWPCB contains the necessary privileged context for the execut
system software and successful restarts. The HWPCB must be initialized before requestin
the console secondary perform any START command. After initializing the HWPCB, system
software sets the Context Valid (CV) flag.

Once the PALcode is valid on a console secondary, the secondary waits for a STAR
other) command from the running primary. System software issues the necessary console
mands that instruct the secondary to begin executing software. The exchange of comman
messages between the running primary and a secondary is described in Section 26.4.

System software may start secondary processors at any time. In particular, secondary p
sors may be started before or after switching PALcode on the running primary. If sys
software switches to an operating system-specific PALcode before starting a secondary p
sor, system software must update the PALcode revision field in the per-CPU slot (SLOT[1
of each secondary before starting the secondary. See Section 27.3.1.

Programming Note:

All commands sent to a console secondary are implicitly targeted to the secondary.

27.4.3.5 Actions of a Console Secondary

After failing to become the primary, a console secondary uses an implementation-spe
mechanism to determine when a valid HWRPB has been constructed in main memory
console secondary then locates the HWRPB in an implementation-specific manner.
System Bootstrapping (III)27–29
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Once the HWRPB is located, the secondary locates its per-CPU slot using its CPU ID
index. The secondary verifies that its slot exists by comparing its CPU ID to the numbe
per-CPU slots at HWRPB[144]. If its CPU ID exceeds the number of per-CPU slots, the
ondary must not leave console mode or continue to access main memory. If PALcode lo
is necessary, the console secondary follows the procedure given in Section 27.4.3.3.

Once PALcode is valid, the console secondary waits for a START (or other) command
the running primary by polling the appropriate flag in the RXRDY bitmask. The exchang
commands and messages between the running primary and a secondary is described in
26.4.

In response to a START command, the console secondary:

1. Verifies that the Context Valid (CV) flag is set in its per-CPU slot.

2. Sets the Bootstrap-in-Progress (BIP) flag in its per-CPU slot.

3. Clears the Restart-Capable (RC) flag in its per-CPU slot.

4. Initializes the processor (see Table 27–9).

5. Set the Cache Information fields in its per-CPUslot.

6. Set the Console Data Log PA and Length fields in its per-CPUslot (zero if none).

7. If necessary, switches to the system software specific PALcode variant identified i
PALcode revision field in its per-CPUslot.

8. Loads the privileged context specified by the HWPCB in its per-CPUslot.

9. Loads the procedure value at HWRPB[264] into R27.

10. Clears R26 and R25.

11. Loads the virtual page table base (VPTB) register with the value stored
HWRPB[120].

12. Transfers control to the CPU Restart routine, whose virtual address is store
HWRPB[256].

The CV flag indicates that the HWPCB in the slot contains valid hardware privileged stat
system software. If the CV flag is not set, the processor remains in console I/O mode.

The console uses the PALcode revision field in the per-CPU slot to determine if system
ware has switched PALcode to a system software-specific variant. The console must re
that variant before passing control to the CPU restart routine.

27.4.3.6 Bootstrap Flags

The Bootstrap-in-Progress (BIP) and Restart-Capable (RC) processor state flags in the c
secondary processor’s per-CPU slot are used to control error recovery during secondary
If the secondary re-enters console I/O mode while the BIP flag is set and the RC flag is c
the start attempt fails. Failed starts are equivalent to failed bootstraps, and the subseque
sole action is determined by Figure 27–1. See Section 27.4.1.3 and Table 27–8.

27.4.4 Addition of a Processor to a Running System

A processor may be added to a running system at any time if a slot has been provided fo
the HWRPB. The new console secondary processor follows the secondary start proc
given in Sections 27.4.3.3 and 27.4.3.5, with one minor difference. If no PALcode loadin
27–30 Console Interface Architecture (III)
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necessary, the console secondary sends a ?STARTREQ? message to the running prima
message notifies the primary that a new processor has been added to the configuration
sending the ?STARTREQ? message, the console secondary waits for a START (or other
mand from the running primary. See Section 26.4 for a description of interprocessor co
communication.

27.4.5 System Software Requested Bootstraps

System software can request that the console perform a system bootstrap. This request
made on any processor in a multiprocessor system and overrides the setting o
AUTO_ACTION and BOOT_RESET environment variables.

To request a bootstrap, system software sets one of the codes requested by the bootstra
Halt Request field of its per-CPU slot, then executes a CALL_PAL HALT instruction. If a c
bootstrap is requested, the "Cold Bootstrap Requested" code (‘2’) is set; the "Warm Boo
Requested" (‘3’) code is set to request a warm bootstrap.

Instead of initiating the normal error halt processing described in Section 27.5.4, the co
initiates the appropriate system bootstrap as described in Sections 27.4.1 and 27.4.2. Th
strap attempt is unconditional; the AUTO_ACTION or the BOOT_RESET environm
variables do not affect the bootstrap attempt.

27.5 System Restarts

The console is responsible for restarting a processor halted by powerfail or by error halt
console follows the same sequence for a primary or secondary processor.

27.5.1 Actions of Console

The console begins the restart sequence by locating and then validating the HWRPB, usi
procedure given in Section 27.4.2.1. If the HWRPB is not valid, the restart attempt fails.
Section 27.1.1 for console actions at major state transitions.

If the HWRPB is valid, the console uses the processor CPU ID as an index to calculat
address of that processor’s HWRPB slot. The console:

1. Verifies that the processor’s PALcode Valid (PV) flag is set. If the PV flag is cle
PALcode is not valid, and the restart attempt fails.

2. Verifies that the processor’s Context Valid (CV) flag is set. If the CV flag is clear,
HWPCB does not contain valid software context for the restart, and the restart att
fails.

3. If the Reason for Halt is anything other that "powerfail restart", the console exam
the processor’s Restart-Capable (RC) flag. If RC is set, the console proceeds wit
restart at step 5. If RC is clear, system software is not capable of attempting the re
and the restart attempt fails.

Ignoring the RC flag for powerfail restart avoids unnecessary bootstraps that
caused by repeated power failures that in turn, are caused by a bouncing power s
that prevents software from having sufficient time to set the RC flag.
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4. Examines the Bootstrap-in-Progress (BIP) flag. If BIP is clear, and
AUTO_ACTION environment variable is "BOOT", a system bootstrap is attempt
Otherwise, the processor remains in console I/O mode. See Figure 27–1.

5. Examines the PALcode revision field in its per-CPU slot. If the revision field does
match the PALcode revision in use by the console, the console must switch PAL
before passing control to the CPU Restart routine.

6. Loads the privileged context specified by the HWPCB in its per-CPUslot.

7. Loads the procedure value at HWRPB[264] into R27.

8. Clears R26 (return address) and R25 (argument information).

9. Loads the virtual page table base (VPTB) register with the value stored
HWRPB[120].

10. Transfers control to the CPU Restart routine, whose virtual address is store
HWRPB[256].

On all restart attempt failures the console initiates the action indicated by Figure 27–1. Th
and CV flags should never be clear for the primary processor; if either flag is clear, then
restart fails. Also, no PALcode or system software is loaded during a restart.

It is the responsibility of system software to complete the restart operation and to set th
flag at the point where a subsequent restart can be handled correctly.

27.5.2 Powerfail and Recovery — Uniprocessor

On Alpha systems, the system power supply conditions external power and transforms
use by the processor, memory, and I/O subsystems. Backup options are available on som
tems to supply power after external power fails. The backup option may supply power to a
the system platform hardware or only a subset. The effect of an external power failure dep
on the backup option:

• If no backup option exists, the processor cannot be restarted after power is restored
processor must be bootstrapped or left halted in console I/O mode.

• If the backup option maintains power to all of the system platform hardware, execu
of system software is unaffected by thepower failure. It must be possible for system
software to determine that a transition to backup power has occurred.

• If the backup option maintains only the contents of memory and keeps system time
the BB_WATCH, the power supply must request a powerfail interrupt. After reques
the interrupt, the power supply must continue to supply power to the processor fo
implementation-specific period to allow system software to save state.

Powerfail recovery is possible only if adequate system state is preserved durin
interruption of power to the processor. System software must save all volatile state
perform any operating system-specific actions necessary to ensure later succ
recovery.

When power is restored, the console determines that the HWRPB is still valid, then exam
the console lock and AUTO_ACTION environment variable. If the console is locked,
AUTO_ACTION environment variable is "RESTART", the console attempts an operating
tem restart. See Section 27.1.1.
27–32 Console Interface Architecture (III)
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The processor may lose state when power is lost. For example, if a processor is halted
power fails, the action on power-up is still determined by the console switches and env
ment variables. The system does not necessarily stay halted.

Software Note:

As explained in Chapter 14 for OpenVMS and Chapters 19 and 24 for Tru64 UNIX
Alpha Linux, respectively, a powerfail interrupt is delivered at an appropriate IPL to
interrupt service routine located at SCB offset 64016 for that operating system.

27.5.3 Powerfail and Recovery — Multiprocessor

There are two basic approaches to powerfail recovery on multiprocessor systems:

• United

All available processors effectively experience the powerfail event identically.

• Split

Each available processor effectively experiencesindependent powerfail events.

A processor is "available" if the Processor Available (PA) flag is set in the process
per-CPU slot. The powerfail system variation flag at HWRPB[88] indicates the type of power-
fail and restart action.

A multiprocessor Alpha system that supports powerfail recovery must implement the un
powerfail mode. The split mode may be implemented optionally as an alternative, selec
system bootstrap.

Software Note:

OpenVMS supports only the united powerfail and recovery mode at this time. Powerfail
recovery is possible only when the primary is restarted; all secondaries should rema
console I/O mode.

27.5.3.1 United Powerfail and Recovery

In united powerfail and recovery mode, all available processors experience powerfail i
rupts, halts, and restorations uniformly. If one available processor experiences a pow
event, all other available processors experience that event. Therefore, if one processor p
fails and recovers, all processors must do so. Even if a separately powered processor do
actually lose power, that processor will still receive the powerfail interrupt and mus
restarted as if power had been lost.

When power is restored and a restart is to be attempted, the console must determine whe
restart all available processors or only the primary processor. The console determine
appropriate action by the Powerfail Restart (PR) flag in the system variation field of
HWRPB[88]. If the PR flag is set, the console attempts to restart all available processors;
is clear, the console attempts to restart only the primary processor. In both cases, it
responsibility of system software to coordinate and synchronize further powerfailrecovery.
System Bootstrapping (III)27–33
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27.5.3.2 Split Powerfail and Recovery

In split powerfail andrecovery mode, only the available processors that actually experien
loss of power will experience a powerfail interrupt and subsequent recovery. Available pro
sors that are separately powered and do not lose power do not experience a powerfail inte

When power is restored and a restart is to be attempted, the console must determine whe
restart any available processor or only the primary processor. As in the united mode, the
sole determines the appropriate action by the Powerfail Restart (PR) flag in the sy
variation field of the HWRPB[88]. If the PR flag is set, the console attempts to restart
available processor. If PR is clear, the console attempts to restart only the primary proce
on a secondary, the console sends the ?STARTREQ? message and waits for a START (o
command) from the running primary as discussed in Section 27.4.3.5. Again, system sof
has the responsibility for further coordination and synchronization of powerfail recovery.

27.5.4 Error Halt and Recovery

A number of serious error conditions can prevent a processor from executing the current t
of software. Such error conditions are detected by PALcode and halt the processor.

When a halt is encountered, the console must ensure that the processor hardware state
ble to the console operator and to system software after a subsequent restart attempt. Th
includes the current values in PS, PC, SP,PCBB, HWPCB, allinteger registers, all float-
ing-point registers, and the name of the halt condition. The console must:

1. Ensure that the contents of the integer and floating-point registers appear unaffected.

2. Write the current hardware context to the HWPCB located by the current PCBB.

3. Write the current PS, PC, and PCBB register contents into the processor’s per-CPUslot.

4. Write the current R25, R26, and R27 register contents into the processor’s per-CPU
slot.

5. Set the appropriate code into the Reason for Halt field of the processor’s per-CPU

The values of R25, R26, and R27 must be explicitly saved in the per-CPU slot to permi
console to invoke the CPU restart routine.

Section 27.1.1 and Table 26–4 list the defined halt conditions that transition an Alpha pro
sor from the running state to a halted state and that may lead to an attempt to resta
processor. Each condition is passed to the operating system in the Reason for Halt quadw
the processor’s HWRPB slot.

When an error halt occurs, the console examines the console lock setting. If the cons
locked, the console attempts a restart. If unlocked, the console action is determined by th
ting of the AUTO_ACTION environment variable (see Figure 27–1). See Section 27.5.1 f
description of the restart attempt process.

The processor must be initialized after an error halt. If the processor starts running aft
error halt without an intervening processor initialization, the operation of the process
UNDEFINED. The effects of processor initialization are summarized in Table 27–9.

An error halt directly affects only the processor that incurred it, although multiple proces
may simultaneously and coincidentally incur their own error halt conditions. If restarts
enabled, each halted processor must be independently restarted by the console. The res
individual processors may occur in a different order than the error halts occurred, but i
27–34 Console Interface Architecture (III)
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console restarts any halted processor, it must restart all halted processors in a timely fa
unless a bootstrap is requested in the meantime. A bootstrap nullifies any pending rest
the multiprocessor.

27.5.5 Operator Requested Crash

When the operating system does not respond to normal program requests, the console o
may request that the console request an operating system crash. A console requested cr
fers from a console halt of a processor in that system software can write a crash dump.

The console operator interacts with the console presentation layer and requests the crash
HALT –CRASH command. The console converts this command to an error halt restart of
tem software. After gaining control of the processor, the console preserves the hardware
(see Section 27.5.4). The console passes the crash request to system software by us
"Console Operator requests system crash" code in the Reason for Halt field in the prim
per-CPU slot. It is the responsibility of the system software restart routine to initiate the c
in an implementation-specific fashion.

27.5.6 Primary Switching

System software may find it necessary to replace the primary processor with one of the
ning secondary processors without bootstrapping the system. This "switch" of the run
primary may be caused by an error encountered by the primary or by a program req
Switching a running primary must be initiated by system software; the console cannot fo
switch to occur.

Support for primary switching is optional to system software, console implementations,
system platforms. The system platform hardware must permit the selected secondary to a
the functions of a primary. The selected secondary must have direct access to the con
BB_WATCH, and all I/O devices. Direct access to the console ensures that the seconda
access console I/O devices and the console terminal. Direct access to a BB_WATCH en
that the secondary can act as the system timekeeper. Direct access to all I/O devices e
that the secondary can initiate I/O requests to and receive I/O interrupts from all I/O dev
and that the secondary can reinitialize all devices as part of powerfail recovery.

If the processor is eligible to become a primary, the console will set the Primary Eligible (
processor variation flag in the processor’s per-CPU slot during processor initialization.
Table 26–4.

Primary switching requires cooperation between system software and the console. System
ware is responsible for the selection of the new primary and any necessary redirection o
interrupts. The console is responsible for any necessary configuration of the console ter
or other console device interface.

27.5.6.1 Sequence on an Embedded Console

The sequence of events differs depending on the type of console implementation. On a s
with an embedded console, the operation proceeds as follows:

1. System software performs any actions specific to system software synchronization

2. System software executing on the old primary ensures that the console terminal i
quiescent state. In particular, character reception from the terminal must be suspended
System Bootstrapping (III)27–35



ble as

back

the

RT

ftware

ware

ected

nsole

y and
econd-

ftware

tware

rminal.

-
at
on.

TCH
in

.

s in a
.

ble as

lback
3. System software selects the new primary. The selected secondary must be eligi
indicated by the PE processor variation flag in its per-CPUslot.

4. System software executing on the old primary invokes the PSWITCH console call
specifying the "transition from primary" action.

5. The console attempts to perform any necessary hardware state changes to transform
old primary into a secondary.

Hardware/Software Coordination Note:

An example of such a hardware state change is disabling a console UA
physically located on the processor board.

6. If the state change is completed, PSWITCH returns success status. System so
may proceed with the primary switch at step 8.

7. If the state change is not effected, PSWITCH returns failure status. System soft
must take other appropriate action.

8. System software executing on the old primary notifies system software on the sel
secondary of the successful PSWITCH completion.

9. System software executing on the selected secondary invokes the PSWITCH co
callback specifying the "transition to primary" action.

10. The console verifies that the selected secondary is eligible to become a primar
attempts to perform any necessary hardware state changes to transform the old s
ary into the new primary.

11. If the state change is completed, PSWITCH returns success status. System so
may proceed with the primary switch at step 13.

12. If the state change is not effected, PSWITCH returns failure status. System sof
must select a different potential primary or takeother appropriate action.

13. System software executing on the selected secondary reactivates the console te
In particular, character reception from the terminal isre-enabled.

14. System software performs any additional systemreconfiguration, updates the PRI
MARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum
HWRPB[288], and performs any actions specific to system software synchronizati

27.5.6.2 Sequence on a Detached Console

On a system with a detached console, the operation is similar, but only one call to PSWI
is required. Additional calls to PSWITCH with the "switch primary" action may result
UNDEFINED operation. The operation proceeds as follows:

1. System software performs any actions specific to system software synchronization

2. System software executing on the old primary ensures that the console terminal i
quiescent state. In particular, character reception from the terminal must be suspended

3. System software selects the new primary. The selected secondary must be eligi
indicated by the PE processor variation flag in its per-CPUslot.

4. System software executing on any processor invokes the PSWITCH console cal
specifying the "switch primary" action and the CPU ID of the new primary.
27–36 Console Interface Architecture (III)
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5. The console verifies that the selected secondary is eligible to become a primary
attempts to perform any necessary hardware state changes to transform the old p
into a secondary and to transform the selected secondary into the primary.

6. If the state change is completed, PSWITCH returns success status. System so
may proceed with the primary switch at step 9.

7. If the state change is not effected and the resulting hardware state permits a return t
system software, PSWITCH returns failure status. System software must select a dffer-
ent potential primary or take other appropriate action.

8. If the state change is not effected and the resulting hardware state does not permit
return to system software, the console takes the action associated with a failed res

9. System software executing on the selected secondary reactivates the console te
In particular, character reception from the terminal isre-enabled.

10. System software performs any additional systemreconfiguration, updates the PRI
MARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum
HWRPB[288], and performs any actions specific to system software synchronizati

27.5.7 Transitioning Console Terminal State During HALT/RESTART

Abrupt transitions from program I/O mode to console I/O mode may occur. Such transit
may be caused by execution of a CALL_PAL HALT instruction, a catastrophic error, or a c
sole operator forcing the processor into console I/O mode. Upon transition to console
mode, the console must be able to regain control of the console terminal, even though s
software may have changed the device characteristics.

The console may seize control of the console terminal without regard to system software
the transition is such that no return to program I/O mode is possible. Such transitions are
mally associated with a catastrophic error.

If system software execution may be continued, the console must be able to restore the
ing state of the console terminal. The console must regain and subsequently relinquish c
of the console terminal with the cooperation of system software.

Hardware/Software Coordination Note:

This is particularly desirable on workstations when the console operator forces
processor into console I/O mode.

System software may provide SAVE_TERM and RESTORE_TERM routines that can
called by the console to save and restore the state of the console terminal. To provide
optional routines, system software loads the SAVE_TERM and RESTORE_TERM sta
virtual address and procedure descriptor fields in the HWRPB and recomputes the HW
checksum at HWRPB[288]. At system bootstraps, the console sets these fields to zero.

The console calls SAVE_TERM and RESTORE_TERM in kernel mode at the highest IP
the memory management policy established by system software. The console loads the r
procedure value into R27, clears R25 and R26, and then transfers control to system softw
the starting virtual address. The procedure value and starting virtual address for SAVE_T
are contained in HWRPB[224] and [232]; those for RESTORE_TERM are containe
HWRPB[240] and [248]. These routines are invoked only on the primary processor and
System Bootstrapping (III)27–37
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upon an unexpected entry into console I/O mode. The console must preserve sufficient
ware state to permit the processor to be restarted before invoking these routines. See S
27.5.4.

Exit from these routines must be accomplished by using the CALL_PAL HALT instruction
return the processor to console I/O mode; these routines do not use the RET subroutine
instruction. Before exiting, these routines must set the "SAVE_TERM/RESTORE_TE
exit" code (‘1’) in the Halt Request field of the primary’s per-CPU slot and indicate succ
(‘0’) or failure (‘1’) status in R0<63>. The console will not attempt to continue system so
ware if a failure status is returned.

SAVE_TERM and RESTORE_TERM may be called when system software has encoun
an unexpected CALL_PAL HALT or other halt condition; system state may be corrupt. Th
routines must be written with few or no dependencies on possibly corrupt system state.

Hardware/Software Coordination Note:

A console terminal on a serial line may or may not have state that needs to be sav
console terminal on a workstation may require the system software to "roll down"
current screen to expose the "console window" and "roll up" the "console window
expose the current screen.

27.5.7.1 SAVE_TERM — Save Console Terminal State

Format:

Inputs:

Outputs:

SAVE_TERM is called by the console after an unexpected entry to console mode. The ro
performs any implementation-specific and device-specific actions necessary to save the s
the console terminal as established by system software. When the routine exits and cons
mode is restored, the console is free to modify the existing console terminal state in
manner.

status = SAVE_TERM

R27 = Procedure value (HWRPB[232])

status = R0; status:

R0<63> ‘0’ Success, terminal state saved
‘1’ Failure, terminal state not saved

R0<62:0> SBZ
27–38 Console Interface Architecture (III)
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27.5.7.2 RESTORE_TERM — Restore Console Terminal State

Format:

Inputs:

Outputs:

RESTORE_TERM is called by the console just before continuing system software. The
tine performs any implementation-specific and device-specific actions necessary to resto
state of the console terminal as established by system software.

27.5.8 Operator Forced Entry to Console I/O Mode

The console operator can force a processor into console I/O mode with a HALT -CPU c
mand. When a processor enters console I/O mode in this way, the console sets the Op
Halted (OH) flag in its per-CPU slot. The console does not update the Reason for Halt o
other processor halt state in its per-CPU slot. The console sets the OH flag only as the re
an explicit operator action. The OH flag is not set on transitions to console I/O mode that r
from error halt conditions, powerfails, CALL_PAL HALT instructions in kernel mode, co
sole operator requests of a system crash, or software-directed processor shutdowns.

The console clears the OH flag before returning to program I/O mode as the result of a C
TINUE or BOOT command. The console may clear OH flag i f an error ha l t
operator-induced condition is encountered that precludes a subsequent CONTINUE com
Such a condition is treated as an error halt (see Section 27.5.4).

27.6 Bootstrap Loading and Image Media Format

An Alpha console may load a primary bootstrap image from one or more of the device cla
listed in Table 27–11. Subsequent sections describe how the console locates, sizes, an
the bootstrap image for each device class.

status = RESTORE_TERM

R27 = Procedure value (HWRPB[248])

status = R0; Status:

Table 27–11: Bootstrap Devices and Image Media

Device Class Data Link Protocol

Local Disk N/A Bootblock

R0<63> ‘0’ Success, terminal state restored
‘1’ Failure, terminal state not restored

R0<62:0> SBZ
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As explained in Section 27.4.1.4, the console attempts to load a bootstrap image from eac
ment of a bootstrap device list until a successful image load is achieved. If the bootstrap i
cannot be located or if the load fails for any reason, the console retains control of the sy
generates the binary error messageAUDIT_BSTRAP_ABORT, and then attempts to load
bootstrap image from the next bootstrap device list element. After a bootstrap image is
cessfully located and loaded, the console transfers control to system software as descr
Section 27.4.

As the loading of the bootstrap image proceeds, the console optionally generates an aud
of progress messages. The ENABLE_AUDIT environment variable controls audit trail gen
tion. The audit trail begins with the AUDIT_BOOT_STARTS message. The audit tr
continues with messages that are specific to the bootstrap device.Each consists of a
message code that is interpreted by the console presentation layer.

27.6.1 Disk Bootstrapping

An Alpha primary bootstrap may be loaded from a directly accessed disk device. The co
loads the "boot block" contained in the first logical block (LBN 0) of the disk. The boot blo
contains the starting logical block number (LBN) of the primary bootstrap program and
count of contiguous LBNs that make up that image.

The first 512 bytes of the boot block are structured as shown in Figure 27–9. The console
the primary bootstrap without knowledge of the operating system file system. The boot b
is (previously) initialized by the operating system. The actual size of a logical bloc
device-specific and may exceed 512 bytes.

Figure 27–9 Alpha Disk Boot Block

A local disk bootstrap proceeds as follows:

1. The console reads the boot block from LBN 0 of the specified disk device.

Local Tape N/A ANSI Bootblock

Network NI, FDDI MOP Bootp

ROM N/A ROM Bootblock

Table 27–11: Bootstrap Devices and Image Media (Continued)

Device Class Data Link Protocol

Reserved (VAX Compatibility)

Reserved (Expansion)

Count (LBNs)

Starting LBN

Flags

Checksum

:BB

:+136

:+480

:+488

:+496

:+504

:+512

63 0

Reserved :+472
27–40 Console Interface Architecture (III)
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2. The console validates the boot block CHECKSUM; if the checksum is not valida
the bootstrap image load attempt aborts. The console computes the checksum
first 63 quadwords in the block as a 64-bit sum, ignoring overflow. The computa
includes both reserved regions. The computed checksum is compared to the CH
SUM.

3. The console generates the AUDIT_CHECKSUM_GOOD message if the audit tra
enabled.

4. The console ensures that the FLAG quadword is zero; otherwise the bootstrap i
load attempt aborts.

5. The console ensures that the COUNT is non-zero; otherwise the bootstrap image
attempt aborts. The count field indicates the number of contiguous logical blocks
contain the primary bootstrap.

6. The console generates the AUDIT_LOAD_BEGINS message if the audit trai
enabled.

7. The console reads the primary bootstrap image specified by COUNT and START
LBN into system memory; in any error occurs, the bootstrap image load attempt ab

The transfer begins at the logical block given by the STARTING LBN; a contiguo
COUNT number of logical blocks is read. The image is read into a virtua
contiguous system memory buffer; the starting virtual address
0000 0000 2000 000016. (See Section 27.4.1.1.)

Errors include device hardware errors, the specified STARTING LBN not be
present on the disk, or unexpectedly encountering the last logical block on the
during the read.

8. The console generates the AUDIT_LOAD_DONE message when the load has
pleted; the message is generated only if the audit trail is enabled.

9. The console prepares to transfer control to the bootstrap program as described in
tion 27.4.1.6.

Implementation Notes:

Unlike the VAX boot block support,no native Alpha code is contained in the boot block
the boot block containsonly the LBN descriptor for the Alpha primary bootstrap imag
An Alpha boot can contain pointers to primary bootstrap images for both VAX and Al
simultaneously.

Because the boot block includes an LBN and block count, the console need hav
knowledge of the operating system file system or on-disk structure.

The first 136 bytes of the boot block are currently used by the VAX disk boot block
mechanism. The next 80 bytes are not currently used either by VAX or Alpha boot blo
For future expansions, VAX boot blocks should expand towards higher addresses
Alpha boot blocks expand towards lower addresses; each region remains contig
These 216 bytes are ignored by the Alpha console except for the purposes of comp
the boot block checksum.

The boot block FLAGS word is reserved for future expansion. Flag<0> is reserve
indicate a discontiguous bootstrap image; Flag <63:1> are reserved for future defin
There are no current plans by any Compaq operating system to have a discontig
primary bootstrap image.
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27.6.2 Tape Bootstrapping

An Alpha primary bootstrap may be loaded from a directly accessed tape device. Before
ing the primary bootstrap, the console must determine the tape format and locate the pr
bootstrap on the tape. The console:

1. Rewinds the tape on the specified tape device to the beginning of the tape (BOT).

2. Reads the first record.

3. Determines the record length.

– If the record length is 80 bytes, the tape may be an ANSI-formatted tape. The
sole proceeds as described in Section 27.6.2.1.

– If the record length is 512 bytes, the tape is "boot blocked." The console proc
as described in Section 27.6.2.2.

– If the length is other than 80 or 512 bytes, the bootstrap image load attempt ab

27.6.2.1 Bootstrapping from ANSI-Formatted Tape

Before loading the primary bootstrap image from an ANSI-formatted tape, the console
ensure that the format is valid. To verify that a given record contains a particular ANSI la
the console checks for the ASCII label name string at the beginning of the record. For e
ple, a record containing a VOL1 label begins with the ASCII string "VOL1." All other reco
bytes are ignored when verifying the label.

A primary bootstrap image file name may be specified explicitly on a BOOT command
implicitly by the BOOT_FILE environment variable. If no file name is specified, the first fi
located will be used.

A local ANSI-formatted tape bootstrap proceeds as follows:

1. The console verifies that the first record contains a VOL1 label; if the verification fa
the bootstrap image load attempt aborts.

2. The console generates the AUDIT_TAPE_ANSI message if the audit trail is enable

3. If no file name was specified, the console advances the tape position to the End-of
(EOT) side of the the first tape mark. The console proceeds to step 5.

4. If a file name was specified, the console attempts to locate that file on the tape. I
file cannot be located, the attempt to load the bootstrap image aborts. The console
pares the specified file name with the file name present in each HDR1 label on the
At the first match, the console proceeds to step 5.

The console searches for the specified file, starting with the second tape record
console reads 80-byte records from the tape until it encounters an HDR1 label,
proceeds as follows:

a. The console generates the AUDIT_FILE_FOUND<filename> message, where
<filename> is the value of the HDR1 label. The message is generated only if th
audit trail is enabled.

b. The console compares the specified file name with the 17-character File Identifier
Field found in the HDR1 label.

c. If a match occurs, the console advances the tape position to after the next tape
and proceeds to step 5. (Any HDR2 or HDR3 labels are ignored.)
27–42 Console Interface Architecture (III)
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d. If no match occurs, the console advances the tape position over the next three
marks and reads the next record. If another tape mark is found, the logical end
volume has been encountered and the attempt to load the bootstrap image abo
Otherwise, the record should be the HDR1 label for the next file on the tape and
console proceeds at step A.

The console aborts the attempt to load the bootstrap image whenever an unexp
tape mark is encountered, the tape runs off the end, or a hardware error occurs.

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trai
enabled.

6. The console reads the primary bootstrap image from tape into system memory; i
error occurs or if the tape runs off the end, the attempt to load the bootstrap im
aborts.

The transfer from tape begins at the current tape position and continues until a tape
mark is encountered. The image is read into a virtually contiguous system mem
buffer; the starting virtual address is 0000 0000 2000 000016. (See Section 27.4.1.1.)

7. The console checks that the bootstrap file was properly closed by:

a. Reading the record after the tape mark and verifying that the record is an EOF
label. If not, the attempt to load the bootstrap image aborts.

b. Searching for a subsequent tape mark. If a tape mark is not found, the bootstra
was improperly closed and the attempt to load the bootstrap image aborts. (An
EOF2 and EOF3 labels are ignored.)

8. The console generates the AUDIT_LOAD_DONE message if the audit trail is enab

9. The console prepares to transfer control to the bootstrap as described in Se
27.4.1.6. The console does not rewind or otherwise change the position of the tape
reading the bootstrap image.

27.6.2.2 Bootstrapping from Boot-Blocked Tape

Bootstrapping from a boot-blocked tape is similar to the local disk bootstrapping describ
Section 27.6.1. The first tape record must be 512 bytes and must follow the format give
disk boot blocks as shown in Figure 27–9. The STARTING LBN and FLAGS fields are M
for tape boot boot blocks.

All tape records that comprise the primary bootstrap must be 512 bytes in size. If the co
encountersrecords of any other size, the attempt to load thebootstrap image aborts.

A local tape boot block bootstrap proceeds as follows:

1. The console generates the AUDIT_TAPE_BBLOCK message if the audit trai
enabled.

2. The console validates the boot block CHECKSUM; if the checksum is not valida
the attempt to load the bootstrap image aborts. The console computes the checks
the first 63 quadwords in the block as a 64-bit sum, ignoring overflow. The computa
includes both reserved regions and the MBZ fields. The computed checksum is
pared to the CHECKSUM at [BB+504].

3. The console generates the AUDIT_CHECKSUM_GOOD message if the audit tra
enabled.
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4. The console ensures that the COUNT is non-zero; otherwise the attempt to loa
bootstrap image aborts. The count field indicates the number of subsequent 512
records that contain the primary bootstrap.

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trai
enabled.

6. The console reads the count field subsequent records from the tape into system
ory. The attempt to load the bootstrap image aborts if the console encounters any
encounters any record size other than 512 bytes, or the tape runs off the end.

The image is read into a virtually contiguous system memory buffer; the star
virtual address is 0000 0000 2000 000016. (See Section 27.4.1.1.)

7. The console generates the AUDIT_LOAD_DONE message if the audit trail is enab

8. The console prepares to transfer control to the bootstrap as described in Se
27.4.1.6. The console does not rewind or otherwise change the position of the tape
reading the bootstrap image.

27.6.3 ROM Bootstrapping

An Alpha console may support bootstrapping from read-only memory (ROM). Bootstrap R
is assumed to appear in multiple discontiguous regions of the physical address space. A
ROM region may contain multiple bootstrap images. A given bootstrap image must not
ROM regions.

Each ROM bootstrap image is page aligned and begins with a boot block as shown in F
27–10. The ROM boot block is similar to the local disk and tape boot block shown in Fig
27–9.

Figure 27–10 Alpha ROM Boot Block

A ROM bootstrap proceeds as follows:

1. The console locates the specified ordinal ROM bootstrap image; if the bootstrap im
cannot be located, the attempt to load the bootstrap image aborts.

The console locates the ROM bootstrap image by searching ROM regions begin
with the ROM region with the lowest physical address and proceeding upward to
ROM region with the highest physical address.

The search proceeds as follows:

a. The console verifies that the page contains a ROM bootstrap image:

– The low-order byte of the first quadword must be 8016.

:BB

:+08

Image Offset

Image Length (Bytes)

Bootstrap ID

0x80

Checksum

:+16

:+24

:+32

:+40

:+48

Image Checksum

ReservedComplement Check

63 032 31 8 7
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– The high-order longword of the first quadword must be the one’s complem
of the low-order longword.

– The sixth quadword must contain the checksum of the first five quadwo
The checksum is computed as a 64-bit sum, ignoring overflow.

b. The console generates the AUDIT_BOOT_TYPE<string> message for each va
boot block, if the audit trail is enabled. The <string> is the ISO Latin–1 string co
tained in the BOOTSTRAP ID quadword.

c. If the specified ordinal image number has been reached, the console proceeds
step 2.

d. Otherwise, the console uses the IMAGE LENGTH at [BB+24] to determine the
set to the next ROM region page to be searched. The console repeats the proc
step A.

2. The console computes the starting physical address of the bootstrap image by a
the physical address OFFSET at [BB+16] to the starting physical address of the
block [BB].

3. The console verifies the accessibility of each page of the bootstrap image. If any pa
inaccessible, the attempt to load the bootstrap image is aborted.

4. The console generates theAUDIT_BSTRAP_ACCESSIBLE message if the audit tra
is enabled.

5. If requested, the console validates the IMAGE CHECKSUM at [BB+08]; if the che
sum is not validated, the attempt to load the bootstrap image aborts. The console
putes the checksum of all quadwords in the bootstrap image as a 64-bit sum, ign
overflow. The existence and implementation of the mechanism for requesting this
dation is implementation specific.

6. The console generates the AUDIT_BSTRAP_GOOD message if the audit tra
enabled.

7. If requested, the console copies the bootstrap image from ROM into system me
(RAM). The image is copied into a virtually contiguous buffer starting at virtual
address 0000 0000 2000 000016. (See Section 27.4.1.1.) The console generates
AUDIT_LOAD_BEGINS message before beginning the copy and t
AUDIT_LOAD_DONE after the copy completes successfully if the audit trail
enabled.

8. The console prepares to transfer control to the bootstrap as described in Se
27.4.1.6.

27.6.4 Network Bootstrapping

An Alpha system may support bootstrapping over one or more network communica
devices and data link protocols. The console actions depend on the network device, da
protocol, and remote server capabilities.

An Alpha system can use the Compaq Network Architecture Maintenance Operations Pro
(MOP), or the BOOTP–UDP/IP network protocol, to bootstrap an Alpha system. See the M
or BOOTP–UDP/IP specification for a detailed description.
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A network bootstrap proceeds as follows:

1. The console determines if a bootstrap file name is to be used. The file name is
from the BOOT command or the BOOT_FILE environment variable. If no file name
specified on the BOOT command and BOOT_FILE is null, no file name will be use

2. The console generates the AUDIT_BOOT_REQ<filename> message if the audit tr
enabled.

3. The console issues the appropriate (MOP or BOOTP–UDP/IP) bootstrap request
sage(s).

4. The console receives an appropriate response (MOP or BOOTP–UDP/IP) fro
remote bootstrap server. If no such response isreceived, the attempt to load theboot-
strap image aborts.

5. The console generates the AUDIT_BSERVER_FOUND message if the audit tra
enabled.

6. The bootstrap load proceeds, using the appropriate network protocol.

7. When the console receives the first portion of the bootstrap image, the console g
ates the AUDIT_LOAD_BEGINS message if the audit trail is enabled.

8. The console loads the initial portion of the bootstrap image into a virtually contigu
system memory buffer; the starting virtual address is 0000 0000 2000 000016. (See Sec-
tion 27.4.1.1.)

9. When the bootstrap image has been loaded, the console generates
AUDIT_LOAD_DONE message if the audit trail is enabled.

10. The console prepares to transfer control to the bootstrap program as described i
tion 27.4.1.6.

If any error occurs, the attempt to load the bootstrap image aborts.

27.7 BB_WATCH

The following list offers important points about BB_WATCH:

1. BB_WATCH is the correct name for this entity. Although incorrect terminology, TO
TODR, and watch chip, when used in the context of an Alpha system, are equivale
meaning to the BB_WATCH.

2. System software must directly manipulate the BB_WATCH through an impleme
tion-dependent interface.

3. System software makes the decision where to acquire known time; if a BB_WATC
present, it may be used as the provider of known time.

4. Systems are not required to have a BB_WATCH.

Software Note:

However, all systems that support OpenVMS, Tru64 UNIX, and Alpha Lin
must have a BB_WATCH.

5. If a BB_WATCH is present in a system, it meets the following requirements:

– It has an accuracy of at least 50 ppm regardless of whetherpower is applied to the
system.
27–46 Console Interface Architecture (III)



sec-

sec-

must
ces-

or
es is

ces-

per-
ly

nder
le cli-
n

irec-
g ini-

sor
ection

tem,
.

r as the
e pro-
cuting

xcep-

t soft-
after

pro-
nsole
e Sec-
– It has a resolution of at least 1 second (that is, it is read and written in units of a
ond or better).

– Changing the entirety of the time maintained by the BB_WATCH takes under 1
ond.

– It has battery backup to survive a loss of power.

6. A BB_WATCH is always accessible to the primary processor. That is, a processor
be able to access a BB_WATCH directly (it must not need to go through another pro
sor to access it) in order to be a candidate for primary processor.

7. The number of BB_WATCH entities in a system is either one for the entire system
one for each processor in the system; which of the two options a system choos
implementation dependent. If the latter option is chosen (one BB_WATCH per pro
sor), writing one BB_WATCH does not update another.

8. Although writing the BB_WATCH takes less than one second, it may not be a fast o
ation. Software should avoid frequently writing the BB_WATCH lest it negative
impact performance.

9. The processor and its PALcode never changes the value of BB_WATCH except u
the direction of system software. (The console, boot programs, and remote conso
ents are not system software.) The console, its PALcode, and any console applicatio
(including a diagnostic supervisor) never changes BB_WATCH except under the d
tion of the console operator — even when the CPU is halted, the processor is bein
tialized, or the BB_WATCH has an invalid time.

Programming Note:

The Primary-Eligible (PE) bit in the per-CPU slot of the HWRPB for each proces
indicates, among other things, whether the CPU has access to a BB_WATCH. See S
26.1.3.

The description of primary switching details the actions taken in a multiprocessor sys
including the requirement for the primary processor to have access to the BB_WATCH

27.8 Implementation Considerations

27.8.1 Embedded Console

In an embedded console implementation, the console executes on the same processo
operating system. In such an implementation, the state transitions as experienced by th
cessor are more conceptual. For example, the processor acting as the console will be exe
instructions when in the halted state. The processor may also field console I/O mode e
tions and interrupts.

An embedded console may be implemented as an extension of PALcode or as a distinc
ware entity. The console may execute from dedicated RAM or ROM on the processor or,
console initialization, may execute from main memory.

An embedded console implementation must include a mechanism by which the primary
cessor can be forced into console I/O mode from program I/O mode. This enables the co
operator to gain control of the system regardless of the state of the system software. Se
tion 25.1 for recommended and required mechanisms.
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27.8.1.1 Multiprocessor Considerations

In a multiprocessor system, selection of the primary processor occurs before any acc
main memory by any of the processors. At system cold start, each of the processors w
executing in console I/O mode. The necessary memory for console execution must be ind
dent of main memory; the console must be executing from dedicated console RAM or R
and/or a suitably configured processor cache.

The selection of the console primary requires one or more hardware registers with state
shared by all processors. One possible example is a mutex contained in a single-bit re
accessed only with LDQ_L/STQ_C instructions. The primary successfully gains ownersh
the mutex. Implementations should include mechanisms for operator override of the selection
process and for recovery if the selection process fails.

Once a console primary has been selected, the console secondaries take no further actio
appropriately notified by the primary. In particular, console secondaries must not access
memory. The console primary is responsible for building the HWRPB and any console-i
nal data structures (such as environment variables) for the secondaries. When these str
have been initialized, the console primary must be able to signal one or more of the seco
ies by additional hardware register(s).

The console primary allocates a HWRPB in main memory, initializes it, and stores its phy
address in an implementation-specific, nonvolatile manner. The console primary then
c at es the p re se n ce o f t he HW R P B a nd i ts lo c at ion to a l l s e co nd ar ie s b y
implementation-specific mechanism.

On system restarts, the console primary identifies itself by comparing its WHAMI register
tents with the Primary CPU ID value stored in the HWRPB.

When executing in console I/O mode, all processors must observe the same values of a
sole environment variables. The values of the AUTO_ACTION and BOOT_RES
environment variables are particularly important. After failing to become the console prim
processor, a console secondary waits to be notified that a valid HWRPB exists. Upon
notification by the primary, the console secondaries use the address provided by the prim
locate the HWRPB. The primary may be in either program I/O mode or console I/O mode.

On cold bootstrap, a console secondary must not access main memory until notified by th
mary that a valid HWRPB exists. Thus, there must exist a mechanism that is not based on
memory whereby the primary may signal each of the secondaries. On warm bootstr
restart, a secondary processor must locate its per-CPU slot in the HWRPB and poll its RX
bit.

Console processors must locate the HWRPB without searching memory; such a search
tutes a security hole. One possible implementation is to use an environment variable or
shared console data structure. The address of the HWRPB must be nonvolatile across
failures in systems that support powerfail recovery.

Console implementations that support SAVE_ENV must be able to execute the routine s
taneously on each processor. System software use of SAVE_ENV requires care. S
software must invoke SAVE_ENV on all available processors, but cannot ensure that the
volatile storage is updated on processors that are not available at the time of upda
mismatch occurs, the console uses the nonvolatile values preserved by the primary proce
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27.8.2 Detached Console

In a detached console implementation, the console executes on a separate and distinc
ware platform. A detached console may have cooperating special code that executes on
the processors in the system configuration.

Detached console implementations should provide a keep-alive function. System sof
should be able to detect failures of the path between the system platform and the consol
mechanism may be a single dedicated signal or periodic message exchange. System so
should be able to continue to execute if a keep-alive failure occurs, and restoration of the
nection (or console state) should not cause a system crash or other major state transitio
console should buffer any messages if a keep-alive failure occurs until reconnection occur

Detached consoles may maintain a local console log. The logging device and format are i
mentation specific.
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Appendix A

Software Considerations

The typical audience for this appendix should think of the following documents as compri
a recommended set of documentation:

• This document

• Compiler Writer’s Guide for the Alpha 21264/21364(if appropriate)

• The hardware reference manual (HRM) for the particular implementation of interes

The latter two are available at:ftp.compaq.com/pub/products/alphaCPUdocs.

A.1 Hardware-Software Compact

The Alpha architecture, like all RISC architectures, depends on careful attention to data a
ment and instruction scheduling to achieve high performance.

Because there will be various implementations of the Alpha architecture, it is not obvious
compilers can generate high-performance code for all implementations. This chapter
some scheduling guidelines that, if followed by all compilers and respected by all impleme
tions, will result in good performance. As such, this section represents a good-faith com
between hardware designers and software writers. It represents a set of common goals
set of architectural requirements. Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below provide an advantage only fo
quently executed code. For rarely executed code, they may produce a bigger program
not any faster. Some of the branching optimizations also depend on good prediction of w
path from a conditional branch is more frequently executed. These optimizations are best
mined by using an execution profile, either an estimate generated by compiler heuristics
real profile of a previous run, such as that gathered by using the Compaq Continuous Pro
Infrastructure (DCPI) with ProfileMe, as described in Sections E.2.3 through E.2.5.

Each computer architecture has a "natural word size." For the PDP-11, it is 16 bits; for V
32 bits; and for Alpha, 64 bits. Other architectures also have a natural word size that v
between 16 and 64 bits. Except for very low-end implementations, ALU data paths, c
access paths, chip pin buses, and main memory data paths are all usually the natural wor

As an architecture becomes commercially successful, high-end implementations inev
move to double-width data paths that can transfer analigned(at an even natural word address
pair of natural words in one cycle. For Alpha, this means 128-bit wide data paths. It is diff
to get much speed advantage from paired transfers unless the code being executed has
Software ConsiderationsA–1
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tions and data appropriately aligned on aligned octaword boundaries. Because this is difficult
to retrofit to old code, the following sections sometimes encourage "over-aligning" to o
word boundaries for high-speed Alpha implementations.

In some cases, there are performance advantages to aligning instructions or data to cach
boundaries, or putting data whose use is correlated into the same cache block, or try
avoid cache conflicts by not having data whose use is correlated placed at addresses t
equal modulo the cache size. Because the Alpha architecture has many implementatio
exact cache design cannot be outlined here.

In each case below, the performance implication is given by an order-of-magnitude numb
3, 10, 30, or 100. A factor of 10 means that the performance difference being discusse
likely range from 3 to 30 across all Alpha implementations.

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruction stream.

A.2.1 Instruction Alignment

Code PSECTs should be octaword aligned. Targets of frequently taken branches should
least quadword aligned, and octaword aligned for very frequent loops. Compilers could
execution profiles to identify frequently taken branches.

Quadword I-fetch implementations should give first priority to executing aligned quadwo
quickly. Octaword-fetch implementations should give first priority to executing aligned octa
words quickly and second priority to executing aligned quadwords quickly.

Dual-issue implementations should give first priority to issuing both halves of an aligned q
word in one cycle, and second priority to buffering and issuing other combinations.

Compilers should consider the following points when choosing a near-term and long-r
strategy for branch target alignment:

• The 21064 issue-stalls on UNOP if Rx is busy (that is, an operation or load that
been issued and has not yet delivered a new value to Rx).

• FNOP cannot be used when the compiler is producing "INTEGER_ONLY" co
Therefore, on the 21064, UNOP may be a better choice than NOP in many cases.

• The 21164 generally performs better whenUNOP is used to align branch targets. (Th
exception to this is any case where NOP or FNOP can improve performance in a
cific implementation by preventing "splitting." Splitting occurs when at least one o
set of instructions sent to the issue stage is operand issue-stalled or destin
issue-stalled. Splitting prevents the issue stage of the pipeline from emptying an
next set of instructions from being sent to the issue stage. It is an implementation
cific effect.)

• The 21264 and 21364 can use any NOP instruction to align branch targets, but UN
recommended to maintain backwards compatibility.

• OpenVMS, Tru64 UNIX, and Alpha Linux use R30 as the stack pointer. Utilities t
symbolize instructions may chose to recognize only LDQ_U R31,0(R30) for UN
and compilers generate this as the preferred form.
A–2 Alpha Linux Software (II–B)
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A.2.2 Multiple Instruction Issue — Factor of 3

Alpha implementations issue multiple instructions in a single cycle. To improve the odd
multiple-issue, compilers should choose pairs of instructions to put in aligned quadwords.

In general, the following rules will give a good hardware-software match, but compilers sh
implement model-specific switches to generate code tuned more exactly to a spe
implementation.

21064 and 21164

Pick one from column A and one from column B (but only a total of one load/store/branch
pair). Implementors of multiple-issue machines should give first priority to dual-issuing at l
the following pairs, and second priority to multiple-issue of other combinations.

21264 and 21364

Because the 21264 and 21364 can rearrange instruction order to achieve maximum thr
put, a table like that above is insufficient. Instead, look atCompiler Writer’s Guide for the
21264/21364at ftp.compaq.com/pub/products/alphaCPUdocs.

A.2.3 Branch Prediction and Minimizing Branch-Taken — Factor of 3

With in-order instruction-issue Alpha implementations, an unexpected change in I-str
address results in at least 10 lost instruction times, with many more lost in out-of-order, sp
lative-issue implementations. "Unexpected" may mean any branch-taken or may m
mispredicted branch. In many implementations, even a correctly predicted branch to a
word target address is slower than straight-line code.

Compilers should follow these rules to minimize unexpected branches:

1. Branch prediction is implementation specific. Based on execution profiles, comp
should physically rearrange code so that it has matching behavior.

2. Make basic blocks as big as possible. A good goal is 20 instructions on ave
between branch-taken. This requires unrolling loops so that they contain at lea
instructions, and putting subroutines of less than 20 instructions directly in line. It
requires using execution profiles to rearrange code so that the frequent case of a c
tional branch falls through. For very high-performance loops, it will be profitable to
move instructions across conditional branches to fill otherwise wasted instruction i
slots, even if the instructions moved will not always do useful work. Note that using
Conditional Move instructions can sometimes avoid breaking up basic blocks.

3. In an if-then-else construct for which the execution profile is skewed even slig
away from 50%-50% (51-49 is enough), put the infrequent case completely out of
so that the frequent case encounterszero branch-takens, and the infrequent cas
encounterstwo branch-takens. If the infrequent case is rare (5%), put it far enou

Column A Column B

Integer Operate Floating Operate

Floating Load/Store Integer Load/Store

Floating Branch Integer Branch

BR/BSR/JSR
Software ConsiderationsA–3



error

n in

TOs.
nd not
ted

hese
target

:14>
uals

al
et

che

bits
the

ome

ome
ush

ible
ign of
ting
ck of
away that it never comes into the I-cache. If the infrequent case is extremely rare (
message code), put it on a page of rarely executed code and expect that pageneverto be
paged in.

4. There are two functionally identical branch-format opcodes, BSR and BR, as show
Figure A–1.

Figure A–1: Branch-Format BSR and BR Opcodes

Compilers should use the first one for subroutine calls, and the second for GO
Some implementations may push a stack of predicted return addresses for BSR a
push the stack for BR. Failure to compile the correct opcode will result in mispredic
return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction, shown in Figure A–2, has 16 unused bits. T
should be used by the compilers to communicate a hint about expected branch-
behavior (see Section 4.3.3).

Figure A–2: Memory-Format JSR Instruction

If the JSR is used for a computed GOTO or a CASE statement, compile bits <15
as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0> eq
(likely_target_addr) <15:0>. In other words, pick the low 14 bits so that a norm
PC+displacement*4 calculation will match the low 16 bits of the most likely targ
longword address. (Implementations will likely prefetch from the matching ca
block.)

If the JSR is used for a computed subroutine call, compile bits <15:14> as 01, and
<13:0> as above. Some implementations will prefetch the call target using
prediction and also push updated PC on a return-prediction stack.

If the JSR is used as a subroutine return, compile bits <15:14> as 10. S
implementations will pop an address off a return-prediction stack.

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. S
implementations will pop an address off a return-prediction stack and also p
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code as quickly as poss
with no branch-takens, second priority to predicting conditional branches based on the s
the displacement field (backward taken, forward not-taken), and third priority to predic
subroutine return addresses by running a small prediction stack. (VAX traces show a sta
two to four entries correctly predicts most branches.)

031 21 20

Displacement Branch Format

Branch FormatDisplacement

BSR Ra

RaBR

26 25

031 16 15

JSR Ra Rb Memory Format
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A.2.4 Improving I-Stream Density — Factor of 3

Compilers should try to use profiles to make sure almost 100% of the bytes brought in
I-cache are actually executed. This requires aligning branch targets and putting rarely exe
code out of line.

A.2.5 Instruction Scheduling — Factor of 3

The performance of Alpha programs is sensitive to how carefully the code is scheduled to
imize instruction-issue delays.

"Result latency" is defined as the number of CPU cycles that must elapse between an in
tion writing a result register and an instruction using that register, if execution-time stalls a
be avoided. Thus, with a latency of zero, the instruction writes a result register and the ins
tion that uses that register can be multiple-issued in thesamecycle. With a latency of 2, if the
writing instruction is issued at cycle N, the reading instruction can issue no earlier than c
N+2. Latency is implementation specific.

Most Alpha instructions have a non-zero result latency. Compilers should schedule co
that a result is not used too soon, at least in frequently executed code (inner loops, as ide
by execution profiles). In general, this will require unrolling loops and inlining sho
procedures.

Assume that all implementations can at least dual-issue instructions. Specific multiple ins
tion-issue rules and instruction latencies can be found in the hardware reference manual
particular implementation. Scheduling techniques are located in theCompiler Writer’s Guide
for the Alpha 21264/21364. The manuals and guide are available at the following ftp si
ftp.compaq.com/pub/products/alphaCPUdocs.

Compilers should add implementation-specific switches to schedule code to match the la
rules and also to match the multiple-issue rules. If doing both is impractical for a partic
sequence of code, the latency rules are more important because they apply even in singl
implementations.

Implementors should give first priority to minimizing the latency of back-to-back integer op
ations, of address calculations immediately followed by load/store, of load immedia
followed by branch, and of compare immediately followed by branch. Give second priorit
minimizing latencies in general.

A.3 Data-Stream Considerations

The following sections describe considerations for the data stream.

A.3.1 Data Alignment — Factor of 10

Data PSECTs should be at least octaword aligned, so that aggregates (arrays, some r
subroutine stack frames) can be allocated on aligned octaword boundaries to take advan
any implementations with aligned octaword data paths, and to decrease the number of
fills in almost all implementations.
Software ConsiderationsA–5
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Aggregates (arrays, records, common blocks, and so forth) should be allocated on a
aligned octaword boundaries whenever language rules allow. In some implementatio
series of writes that completely fill a cache block may be a factor of 10 faster than a seri
writes that partially fill a cache block, when that cache block would give a read miss. Th
true of write-back caches that read a partially filled cache block from memory, but optim
away the read for completely filled blocks.

For such implementations, long strings of sequential writes will be faster if they start
cache-block boundary (a multiple of 64 bytes will do well for most, if not all, Alpha impleme
tations). This applies to array results that sweep through large portions of memory, a
register-save areas for context switching, graphics frame buffer accesses, and other
where exactly 8, 16, 32, or more quadwords are stored sequentially. Allocating the targ
multiples of 8, 16, 32, or more quadwords, respectively, and doing the writes in orde
increasing address will maximize the write speed.

Items within aggregates that are forced to be unaligned (records, common blocks) should
erate compile-time warning messages and inline byte extract/insert code. Users mu
educated that the warning message means that they are taking a factor of 30 perform
hit.Compilers should consider supplying a switch that allows the compiler to pad aggrega
avoid unaligned data.

Compiled code for parameters should assume that the parameters are aligned. Unaligne
als will cause run-time alignment traps and very slow fixups. The fixup routine, if invok
should generate warning messages to the user, preferably giving the first few statement num-
bers that are doing unaligned parameter access, and at the end of a run the total num
alignment traps (and perhaps an estimate of the performance improvement if the data
aligned). Users must be educated that the trap routine warning message means they are t
factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated in m
should normally be allocated an aligned quadword to itself, even if the datum is only a
wide. This allows aligned quadword loads and stores and avoids partial-quadword w
(which may be half as fast as full-quadword writes, due to such factors as read-modify-w
quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second pri
to fast writes of full cache blocks.

A.3.2 Shared Data in Multiple Processors — Factor of 3

Software locks are aligned quadwords and should be allocated to large cache blocks that
contain no other data or read-mostly data whose usage is correlated with the lock.

Whenever there is high contention for a lock, one processor will have the lock and be usin
guarded data, while other processors will be in a read-only spin loop on the lock bit. U
these circumstances,anywrite to the cache block containing the lock will likely cause excess
bus traffic and cache fills, thus affecting performance on all processors that are involved
the buses between them. In some decomposed FORTRAN programs, refills of the cache
containing one or two frequently used locks can account for a third of all the bus bandwidt
program consumes.
A–6 Alpha Linux Software (II–B)
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Whenever there is almost no contention for a lock, one processor will have the lock an
using the guarded data. Under these circumstances, it might be desirable to keep the g
data in thesamecache block as the lock.

For the high-sharing case, compilers should assume thatalmost allaccesses to shared dat
result in cache misses all the way back to main memory, for each distinct cache block
Such accesses are likely to be at least a factor of 30 slower than cache hits. It is helpful to
correlated shared data into a small number of cache blocks. It is helpful also to segr
blocks written by one processor from blocks read by others.

Therefore, accesses to shared data, including locks, should be minimized. For exam
four-processor decomposition of some manipulation of a 1000-row array should avoid ac
ing lock variables every row, but instead might access a lock variable every 250 rows.

Array manipulation should be partitioned across processors so that cache blocks do not
between processors. Having each of four processors work on every fourth array ele
severely impairs performance on any implementation with a cache block of four elemen
larger. The processors all contend for copies of thesamecache blocks and use only one qua
ter of the data in each block. Writes in one processor severely impair cache performance
processors.

A better decomposition is to give each processor the largest possible contiguous chunk o
to work on (N/4 consecutive rows for four processors and row-major array storage; N/4
umns for column-major storage). With the possible exception of three cache blocks a
partition boundaries, this decomposition results in each processor caching data that is to
by no other processor.

Operating-system scheduling algorithms should attempt to minimize process migration
one processor to another. Any time migration occurs, there are likely to be a large numb
cache misses on the new processor.

Similarly, operating-system scheduling algorithms should attempt to enforce some aff
between a given device’s interrupts and the processor on which the interrupt-handler run
control data structures and locks for different devices should be disjoint. Observing t
guidelines allows higher cache hit rates on the corresponding I/O control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of transferring is
lated lock values and other isolated, shared write data between processors.

Implementors should assume that the amount of shared data will continue to increase, s
time the need for efficient sharing implementations will also increase.

A.3.3 Avoiding Cache Conflicts — Factor of 1

Occasionally, programs that run with a direct-mapped cache will thrash, taking excessive
misses. With some work, thrashing can be minimized at compile time.

In a frequently executed loop, compilers could allocate the data items accessed from me
so that, on each loop iteration, all of the memory addresses accessed are either inexactly the
samealigned 64-byte block or differ in bits VA<10:6>. For loops that go through arrays i
common direction with a common stride, this requires allocating the arrays, checking tha
first-iteration addresses differ, and if not, inserting up to 64 bytes of paddingbetweenthe
arrays. This rule will avoid thrashing in small direct-mapped data caches with block sizes
64 bytes and total sizes of 2K bytes or more.
Software ConsiderationsA–7
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Example:

REAL*4 A(1000),B(1000)
DO 60 i=1,1000

60 A( i ) = f(B( i ))

Figures A–3, A–4, and A–5 show bad, better, and best allocation in cache, respectively.

BAD allocation (A and B thrash in 8KB direct-mapped cache):

Figure A–3 Bad Allocation in Cache

BETTER allocation (A and B offset by 64 mod 2KB, so 16 elements of A and 16 of B can
in cache simultaneously):

Figure A–4 Better Allocation in Cache

BEST allocation (A and B offset by 64 mod 2KB, so 16 elements of A and 16 of B can b
cache simultaneously,andboth arrays fit entirely in 8KB or bigger cache):

Figure A–5 Best Allocation in Cache

In a frequently executed loop, compilers could allocate the data items accessed from me
so that, on each loop iteration, all of the memory addresses accessed are either inexactly the
same 8KBpage, or differ in bits VA<17:13>. For loops that go through arrays in a comm
direction with a common stride, this requires allocating the arrays, checking that the first-i
tion addresses differ, and if they do not, inserting up to 8K bytes of paddingbetweenthe
arrays. This rule will avoid thrashing in some large direct-mapped data caches with total
of 32 pages (256KB) or more.

Usually, this padding will meanzeroextra bytes in the executable image, just a skip in virtu
address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-stream, in addition to all the
D-stream references. Some implementations will have combined I-stream/D-stream
caches.

Both of the rules above can be satisfied simultaneously, thus often eliminating thrashing
anticipated direct-mapped cache implementations.

A B

0 4K 8K 16K12K

A B

0 4K 8K+64 16K12K

A B

0 4K-64 8K 16K12K
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A.3.4 Sequential Read/Write — Factor of 1

All other things being equal, sequences of consecutive reads or writes should use asce
(rather than descending) memory addresses. Where possible, the memory address for
of 2**Kbytes should be on a 2**K boundary, since this minimizes the number of differe
cache blocks used and minimizes the number of partially written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword lo
store instructions should be broken up with intervening instructions (if there is any useful w
to be done).

For consecutive reads, implementors should give first priority to prefetching ascending c
blocks and second priority to absorbing up to eight consecutive quadword load instruc
(aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read overhead
fully written aligned cache blocks and second priority to absorbing up to eight consecu
quadword store instructions (aligned on a 64-byte boundary) without stalling.

A.3.5 Avoid Replay Traps — Factor of 3

21264 and 21364 Only

Although programs are expressed using sequential control flow, a program may contain p
tial, instruction level parallelism (ILP) that can be exploited. For example, evaluation
complex arithmetic formula may involve multiple data dependencies between variables
allow more than one arithmetic operation to be executed concurrently given sufficient pro
sor resources.

Alpha implementations may use techniques such as register renaming, multiple function
and out-of-order execution to identify and exploit potential ILP. These techniques must re
true data dependencies and preserve architectural program correctness. Register renam
example, can be used to preserve correctness of register data dependencies.

The relative time to access data from primary memory is increasing as processor cycle
continues to decrease. Memory latency, the time to access data from memory, has bec
dominating factor in program performance. (This is why prefetching and good cache me
behavior are important to good performance.) Alpha implementations may execute me
operations out-of-order as well as register-to-register operations to overlap memory oper
with computational operations thereby mitigating the effect of relatively long memory access
latencies. Preservation of correctness, however, becomes a more challenging problem to
ware designers.

Consider the following code sequence.

addq R1,R2,R5
stq R5,0(R7)
ldq R6,0(R8)
subq R6,R2,R3

An Alpha implementation may choose to speculate the load operation and begin its exec
before the add. This dynamic reordering lets the load operation begin early so that its
may be readily available for the subtract instruction. If the load and store access diffe
addresses and the memory data items do not overlap, the load can be successfully an
rectly speculated. If the value in R7 equals the value in R8, however, the load and store re
Software ConsiderationsA–9
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the same memory quadword, and speculated execution of the load before the store wi
duce the wrong value. In order to preserve correctness, an Alpha implementation must b
to detect cases of incorrect speculation and recover. Significant penalties may be asso
with such recovery operations.

Compilers should perform pointer analysis to determine if memory operations refer to the
or overlapping data items in memory and to schedule instructions accordingly. Comp
should also schedule code requiring store followed by read sequences such as register-t
spill and fill operations. Compiler writers and programmers alike should be mindful of "h
den," non-explicit data dependencies due to pointer aliasing and strive to make memory
dependencies as explicit as possible.

See alsoThe Compiler Writer’s Guide for the Alpha 21264/21364for more information about
replay traps.

A.3.6 Prefetching — Factor of 3

Prefetching is very important (by a factor of 2) for loops dominated by memory latenc
bandwidth. The 21264 and 21364 both support three styles of prefetch, but the 21364 has
highly developed support for marking a cache block as having a short temporal cache life
theevict nextqualifier:

Table A–1 Prefetch Instruction Support

Prefetch Type Instruction
Processor
Support Description

Normal prefetch PREFETCH 21264 and 21364 Prefetch for loading data that is
expected to be read only. Reduces th
latency to read memory.

Normal prefetch, evict
next

PREFETCH_EN 21264 and 21364 Normal prefetch and mark for prefer-
ential eviction in future cache fills.

Prefetch with modify
intent

PREFETCH_M 21264 and 21364 Prefetch for data that will probably be
written. Reduces the latency to read
memory and bus traffic.

Prefetch with modify
intent, evict next

PREFETCH_MEN 21364 only Prefetch with modify intent and mark
for preferential eviction in future
cache fills.

Write hint – 64 bytes WH64 21264 and 21364 Execute if the program intends to
write an entire aligned block of 64
bytes. Reduces the amount of mem
ory bandwidth required to write a
block of data.

Write hint – 64 bytes,
evict next

WH64EN 21364 only Hint to the processor that the corre-
sponding block should be marked for
preferential eviction in future cache
fills.
A–10 Alpha Linux Software (II–B)
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The actual cache eviction policy is implementation-dependent and described in the corres
ing implementation’s hardware reference manual, available at:

ftp.compaq.com/pub/products/alphaCPUdocs

The prefetch instructions and write hints are recognized as prefetches or ignored on imple
tations that do not support them, so it is always safe for a compiler to use them. The
prefetches have no architecturally visible effect, so inserting prefetches never causes
gram error. Because of its more powerful memory system, prefetches on a 21264/21364
more potential benefit than previous Alpha implementations and unnecessary prefetch
less costly.

Always prefetch ahead at least two cache blocks. Prefetch farther ahead if possible, u
doing so requires more than eight offchip references to be in progress at the same time. T
for a loop that referencesn streams, prefetch ahead two blocks or 8/n blocks, whichever is
greater. Note, however, that for short trip count loops, it may be beneficial to reduce
prefetchdistance, so that the prefetched data is likely to be used.

Prefetches to invalid addresses are dismissed by PALcode, so it is safe to prefetch off th
of an array, but it does incur a small (less than 30 cycle) performance penalty. Prefetche
have alignment traps, so align the pointer used to prefetch.

The WH64 instruction sets an aligned 64-byte block to an unknown state. Use WH64 whe
program intends to completely write an aligned 64-byte area of memory. Unlike l
prefetches, the WH64 instruction modifies data, and it is not safe to execute WH64 off the
of an array. Although a conditional branch can guard the WH64 instruction so that it doe
go beyond the end of an array, a better solution is to create a dummy aligned block of 64
of memory on the stack (bitbucket) and use a CMOV instruction to select the bitbucket ad
when nearing the end of the array. For example:

CMPLT R0,R1,R2 # test if there are at least 64 bytes left

CMOVEQ R2,R3,R4 # if not, overwrite r4 with address of bit bucket

WH64 R4

Sections 4.11.8 and 4.11.11 describe the various PREFETCH and WH64 instructi
respectively.

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word (Within Register) Memory Accesses

The instruction sequences given in Chapter 4 for byte-within-register accesses are wors
code. More importantly, they do not reflect the instructions available with the BWX extens
described in Section 4.6 and Appendix D. If the BWX extension instructions are available,
wise to consider them rather than the sequences that follow.

The following sequences are appropriate if the BWX extension instructions are not availab

In the common case of accessing a byte or aligned word field at a known offset from a po
that is expected to be at least longword aligned, the common-case code is much sh
"Expected" means that the code should run fast for a longword-aligned pointer and tra
unaligned. The trap handler may at its option fix up the unaligned reference.
Software ConsiderationsA–11
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For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D roun
down to a multiple of 4 ((D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned wo

LDL R1,D.lw(Rx) ! Traps if unaligned
EXTWL R1,#D.mod,R1 ! Picks up word at byte 0 or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned wo

LDL R1,D.lw(Rx) ! Traps if unaligned
SLL R1,#48-8*D.mod,R1 ! Aligns word at high end of R1
SRA R1,#48,R1 ! SEXT to low end of R1

Note:

The shifts often can be combined with shifts that might surround subsequent arithm
operations (for example, to produce word overflow from the high end of a register).

In the common case, the intended sequence for loading and zero-extending a byte is:

LDL R1,D.lw(Rx) !
EXTBL R1,#D.mod,R1 !

In the common case, the intended sequence for loading and sign-extending a byte is:

LDL R1,D.lw(Rx) !
SLL R1,#56-8*D.mod,R1 !
SRA R1,#56,R1 !

In the common case, the intended sequence for storing an aligned word R5 is:

LDL R1,D.lw(Rx) !
INSWL R5,#D.mod,R3 !
MSKWL R1,#D.mod,R1 !
BIS R3,R1,R1 !
STL R1,D.lw(Rx) !

In the common case, the intended sequence for storing a byte R5 is:

LDL R1,D.lw(Rx) !
INSBL R5,#D.mod,R3 !
MSKBL R1,#D.mod,R1 !
BIS R3,R1,R1 !
STL R1,D.lw(Rx) !

A.4.2 Division

In all implementations, floating-point division is likely to have a substantially longer res
latency than floating-point multiply. In addition, in many implementations multiplies will
pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply by the e
reciprocal, if it is representable without overflow or underflow. If language rules or surrou
ing context allow, multiplication by the reciprocal can closely approximate other divisions
constants.
A–12 Alpha Linux Software (II–B)
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Integer division does not exist as a hardware opcode. Division by a constant can alwa
done via UMULH of another appropriate constant, followed by a right shift. A subroutine
do general quadword division by true variables. The subroutine could test for small divi
(less than about 1000 in absolute value) and for those, do a table lookup on the exact co
and shift count for an UMULH/shift sequence. For the remaining cases, a table looku
about a 1000-entry table and a multiply can give a linear approximation to 1/divisor th
accurate to 16 bits.

Using this approximation, a multiply and a back-multiply and a subtract can generate
16-bit quotient digit plus a 48-bit new partial dividend. Three more such steps can genera
full quotient. Having prior knowledge of the possible sizes of the divisor and dividend, norm
izing away leading bytes of zeros, and performing an early-out test can reduce the av
number of multiplies to about five (compared to a best case of one and a worst case of nin

A.4.3 Byte Swap

When it is necessary to swap all the bytes of a datum, perhaps because the datum origina
a machine of the opposite byte numbering convention, the simplest sequence is to use the
floating-point load instruction to swap words, followed by an integer sequence to swap
pairs of bytes. Assume as shown below that an aligned quadword datum is in memory at
tion X and is to be left in R1 after byte-swapping; temp is an aligned quadword temporary
"." (period) in the comments stands for a byte of zeros. Similar sequences can be used fo
in registers, sometimes doing the byte swaps first and word swap second:

; X = ABCD EFGH
LDG F0,X ; F0 = GHEF CDAB
STT F0,temp
LDQ R1,temp ; R1 = GHEF CDAB
SLL R1,#8,R2 ; R2 = HEFC DAB.
SRL R1,#8,R1 ; R1 = .GHE FCDA
ZAP R2,#55(hex),R2 ; R2 = H.F. D.B.
ZAP R1,#AA(hex),R1 ; R1 = .G.E .C.A
OR R1,R2,R1 ; R1 = HGFE DCBA

For bulk swapping of arrays, this sequence can be usefully unrolled about four times
scheduled, using four different aligned quadword memory temps.

A.4.4 Stylized Code Forms

Using the same stylized code form for a common operation improves thereadability of com-
piler output and increases the likelihood that an implementation will speed up the styl
form.

A.4.4.1 NOP

The universal NOP form is:

UNOP == LDQ_U R31,0(Rx)

In most implementations, UNOP should encounter no operand issue delays, no destin
issue delay, and no functional unit issue delays. (In some implementations, it may encoun
operand issue delay for Rx.) Implementations are free to optimizeUNOP into no action and
zero execution cycles.
Software ConsiderationsA–13
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If the actual instruction is encoded as LDQ_U Rn,0(Rx), wheren is other than 31, and such an
instruction generates a memory-management exception, it is UNPREDICTABLE whe
UNOP would generate the same exception. On most implementations, UNOP does not gene
ate memory management exceptions.

The standard NOP forms are:

NOP == BIS R31,R31,R31
FNOP == CPYS F31,F31,F31

These generate no exceptions. In most implementations, they should encounter no op
issue delays and no destination issue delay. Implementations are free to optimize these
action and zero execution cycles.

A.4.4.2 Clear a Register

The standard clear register forms are:

CLR == BIS R31,R31,Rx
FCLR == CPYS F31,F31,Fx

These generate no exceptions. In most implementations, they should encounter no op
issue delays and no functional unit issue delay.

A.4.4.3 Load Literal

The standard load integer literal (ZEXT 8-bit) form is:

MOV #lit8,Ry == BIS R31, lit8, Ry

The Alpha literal construct in Operate instructions creates a canonical longword consta
values 0..255.

A longword constant stored in an Alpha 64-bit register is in canonical form when b
<63:32>=bit <31>.

A canonical 32-bit literal can usually be generated with one or two instructions, but somet
three instructions are needed. Use the following procedure to determine the offset fields
instructions:

val = <sign-extended, 32-bit value>

low = val <15:0>
tmp1 = val - SEXT(low) ! Account for LDA instruction

high = tmp1 <31:16>
tmp2 = tmp1 - SHIFT_LEFT( SEXT(high,16) )

if tmp2 NE 0 then
! original val was in range 7FFF8000 16..7FFFFFFF 16

extra = 4000 16

tmp1 = tmp1 - 40000000 16

high = tmp1 <31:16>
else

extra = 0
endif
A–14 Alpha Linux Software (II–B)
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The general sequence is:

LDA Rdst, low(R31)
LDAH Rdst, extra(Rdst) ! Omit if extra=0
LDAH Rdst, high(Rdst) ! Omit if high=0

A.4.4.4 Register-to-Register Move

The standard register move forms are:

MOV RX,RY == BIS RX,RX,RY
FMOV FX,FY == CPYS FX,FX,FY

These move forms generate no exceptions. In most implementations, these should encou
functional unit issue delay.

A.4.4.5 Negate

The standard register negate forms are:

NEGz Rx,Ry == SUBz R31,Rx,Ry ! z = L or Q
NEGz Fx,Fy == SUBz F31,Fx,Fy ! z = F G S or T
FNEGz Fx,Fy == CPYSN Fx,Fx,Fy ! z = F G S or T

The integer subtract generates no Integer Overflow trap if Rx contains the largest neg
number (SUBz/V would trap). The floating subtract generates a floating-point exception for a
non-finite value in Fx. The CPYSN form generates no exceptions.

A.4.4.6 NOT

The standard integer register NOT form is:

NOT Rx,Ry == ORNOT R31,Rx,Ry

This generates no exceptions. In most implementations, this should encounter no func
unit issue delay.

A.4.4.7 Booleans

The standard alternative to BIS is:

OR Rx,Ry,Rz == BIS Rx,Ry,Rz

The standard alternative to BIC is:

ANDNOT Rx,Ry,Rz == BIC Rx,Ry,Rz

The standard alternative to EQV is:

XORNOT Rx,Ry,Rz == EQV Rx,Ry,Rz

A.4.5 Exception and Trap Barriers

The EXCB instruction allows software to guarantee that in a pipelined implementation, all
vious instructions have completed any behavior related to exceptions or rounding modes b
any instructions after the EXCB are issued. In particular, all changes to the Floating-point
trol Register (FPCR) are guaranteed to have been made, whether or not there is an asso
exception. Also, all potential floating-point exceptions and integer overflow exceptions
guaranteed to have been taken.
Software ConsiderationsA–15
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The TRAPB instruction guarantees that it and any following instructions do not issue unt
possible preceding traps have been signaled. This does not mean that all preceding instru
have necessarily run to completion (for example, a Load instruction may have passed a
fault checks but not yet delivered data from a cache miss).

EXCB is thus a superset of TRAPB.

A.4.6 Pseudo-Operations (Stylized Code Forms)

This section summarizes the pseudo-operations for the Alpha architecture that may be u
various software components in an Alpha system. Most of these forms are discussed in p
ing sections.

In the context of this section, pseudo-operations all represent a single underlying ma
instruction. Each pseudo-operation represents a particular instruction with either repli
fields (such as FMOV), or hard-coded zero fields. Since the pattern is distinct, th
pseudo-operations can be decoded by instruction decode mechanisms.

In Table A–2, the pseudo-operation codes can be viewed as macros with parameters. The for
mal form is listed in the left column, and the expansion in the code stream is listed in the
column.

Some instruction mnemonics have synonyms. These differ from pseudo-operations in tha
synonym represents the same underlying instruction with no special encoding of ope
fields. As a result, synonyms cannot be distinquished from each other. They are not list
the table. Examples of synonyms are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT.

Table A–2 Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation
in Listing Meaning Actual Instruction Encoding

BR target Branch to target (21-bit signed displace-
ment)

BR R31, target

CLR Rx Clear integer register BIS R31, R31, Rx

FABS Fx, Fy No-exception generic floating absolute
value

CPYS F31, Fx, Fy

FCLR Fx Clear a floating-point register CPYS F31, F31, Fx

FMOV Fx, Fy Floating-point move CPYS Fx, Fx, Fy

FNEG Fx, Fy No-exception generic floating negation CPYSN Fx, Fx, Fy

FNOP Floating-point no-op CPYS F31, F31, F31

MOV Lit, Rx Move 16-bit sign-extended

literal to Rx

LDA Rx,lit(R31)

MOV {Rx/Lit8}, Ry Move Rx/8-bit zero-extended literal to Ry BIS R31,{Rx/Lit8},Ry

MF_FPCR Fx Move from FPCR MF_FPCR Fx, Fx, Fx

MT_FPCR Fx Move to FPCR MT_FPCR Fx, Fx, Fx

NEGF Fx, Fy Negate F_floating SUBF F31, Fx, Fy

NEGF/S Fx, Fy Negate F_floating, semi-precise SUBF/S F31, Fx, Fy
A–16 Alpha Linux Software (II–B)
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A.5 Timing Considerations: Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_C will never comple
because periodic timer interrupts will always occur before the sequence completes. The fo
ing rules describe sequences that will eventually complete in all Alpha implementations:

• At most 40 operate or conditional-branch (not taken) instructions executed in
sequence between LDx_L and STx_C.

• At most two I-stream TB-miss faults. Sequential instruction execution guarantees this.

• No other exceptions triggered during the last execution of the sequence.

NEGG Fx, Fy Negate G_floating SUBG F31, Fx, Fy

NEGG/S Fx, Fy Negate G_floating,

semi-precise

SUBG/S F31, Fx, Fy

NEGL {Rx/Lit8}, Ry Negate longword SUBL R31,{Rx/Lit},Ry

NEGL/V {Rx/Lit8}, Ry Negate longword with

overflow detection

SUBL/V R31, {Rx/Lit}, Ry

NEGQ {Rx/Lit8}, Ry Negate quadword SUBQ R31,{Rx/Lit},Ry

NEGQ/V {Rx/Lit8}, Ry Negate quadword with

overflow detection

SUBQ/V R31, {Rx/Lit}, Ry

NEGS Fx, Fy Negate S_floating SUBS F31, Fx, Fy

NEGS/SU Fx, Fy Negate S_floating, software with under-
flow detection

SUBS/SU F31, Fx, Fy

NEGS/SUI Fx, Fy Negate S_floating, software with under-
flow and inexact result detection

SUBS/SUI F31, Fx, Fy

NEGT Fx, Fy Negate T_floating SUBT F31, Fx, Fy

NEGT/SU Fx, Fy Negate T_floating, software with under-
flow detection

SUBT/SU F31, Fx, Fy

NEGT/SUI Negate T_floating, software with under-
flow and inexact result detection

SUBT/SUI F31,Fx, Fy

NOP Integer no-op BIS R31, R31, R31

NOT {Rx/Lit8}, Ry Logical NOT of Rx/8-bit zero-extended lit-
eral storing results in Ry

ORNOT R31, {Rx/Lit}, Ry

SEXTL {Rx/Lit8}, Ry Longword sign-extension of Rx storing
results in Ry

ADDL R31, {Rx/Lit}, Ry

UNOP Universal NOP for both integer and float-
ing-point code

LDQ_U R31,0(Rx)

Table A–2 Decodable Pseudo-Operations (Stylized Code Forms) (Continued)

Pseudo-Operation
in Listing Meaning Actual Instruction Encoding
Software ConsiderationsA–17
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Implementation Note:

On all expected implementations, this allows for about 50µsec of execution time, even
with 100 percent cache misses.This should satisfy any requirement for a 1-msec tim
interrupt rate.
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Appendix B

IEEE Floating-Point Conformance

A subset of IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standa
754-1985) is provided in the Alpha floating-point instructions. This appendix describes ho
construct a complete IEEE implementation.

The order of presentation parallels the order of the IEEE specification.

B.1 Alpha Choices for IEEE Options

Alpha supports IEEE single, double, and optionally (in software) extended double form
There is no hardware support for the optional extended double format.

Alpha hardware supports normal and chopped IEEE rounding modes. IEEE plus infinity
minus infinity rounding modes can be implemented in hardware or software.

Alpha hardware does not support optional IEEE software trap enable/disable modes. S
following discussion about software support.

Alpha hardware supports add, subtract, multiply, divide, convert between floating form
convert between floating and integer formats, compare, and square root. Software routine
port remainder, round to integer in floating-point format, and convert binary to/from decima

In the Alpha architecture, copying without change of format is not considered an opera
(LDx, CPYSx, and STx do not check for non-finite numbers; an operation would.) Compi
may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alpha choice is that the accuracy provided by conversions between decimal string
binary floating-point numbers will meet or exceed IEEE standard requirements. It is im
mentation dependent whether the software binary/decimal conversions beyond 9 or 17
treat any excess digits as zeros.

Overflow and underflow, NaNs, and infinities encountered during software binary to dec
conversion return strings that specify the conditions.

Alpha hardware supports comparisons of same-format numbers. Software supports com
sons of different-format numbers.

In the Alpha architecture, results are true-false in response to a predicate.

Alpha hardware supports the required six predicates and the optional unordered predicat
other 19 optional predicates can be constructed from sequences of two comparisons a
branches.
IEEE Floating-Point ConformanceB–1
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Alpha hardware supports infinity arithmetic with the compare instructions (CMPTyy). Whe
/S qualifier is included, Alpha hardware may optionally support infinity arithmetic when inf
ity operands are encountered and, together with overflow disable (OVFD) and division by
disable (DZED), when infinity is to be generated from finite operands. Otherwise, Alpha h
ware supports infinity arithmetic by trapping. That is the case when an infinity operan
encountered and when an infinity is to be created from finite operands by overflow or divi
by zero. An OS completion handler (interposed between the hardware and the IEEE use
vides correct infinity arithmetic.

When a /S qualifier is included, Alpha hardware may optionally support NaNs and inv
operations, controlled by the INVD option. Otherwise, Alpha hardware supports NaNs
invalid operations by trapping when a NaN operand is encountered and when a NaN is
created. An OS completion handler (interposed between the hardware and the IEEE use
vides correct Signaling and Quiet NaN behavior.

In the Alpha architecture, Quiet NaNs do not afford retrospective diagnostic information.

In the Alpha architecture, copying a Signaling NaN without a change of format does not s
an invalid exception (LDx, CPYSx, and STx do not check for non-finite numbers). Compi
may generate ADDx F31,Fx,Fy to get the opposite effect.

Alpha hardware fully supports negative zero operands and follows the IEEE rules for cre
negative zero results except for underflow. When a /S qualifier is included, Alpha hardw
may optionally support underflow and denormalized numbers, controlled by the UNFD op
Otherwise, Alpha hardware supports underflow and denormalized numbers by trapping w
denormalized operand is encountered, when a denormalized result is created, and wh
underflow occurs. An OS completion handler (interposed between the hardware and the
user) provides correct denormalized and underflow arithmetic.

Except for the optional trap disable bits in the FPCR, Alpha hardware does not supply I
exception trap behavior; the hardware traps are a superset of the IEEE-required condition
OS completion handler (interposed between the hardware and the IEEE user) provides c
IEEE exception behavior.

In the Alpha architecture, tininess is detected by hardware after rounding, and loss of acc
is detected by software as an inexact result.

In the Alpha architecture, user signal handlers are supported by compilers and an OS co
tion handler (interposed between the hardware and the IEEE user), as described in th
section.

B.2 Alpha Support for OS Completion Handlers

Alpha floating-point trap behavior is statically controlled by the /S, /U, and /I mode qualifi
on floating-point instructions. Changing these options usually requires recompiling. Ins
tions with any valid qualifier combination that includes the /S qualifier can be dynamic
controlled by the optional trap disable bits and denormal control bits in the FPCR.

Each Alpha implementation may choose how to distribute support for the completion m
(/S, /SU, /SV, /SUI, and /SVI), between hardware and software. An implementation may m
mize hardware complexity by trapping to implementation software for support of except
B–2 Alpha Linux Software (II–B)
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and non-finites. An implementation may choose increased floating-point performance a
cost of increased hardware complexity by providing hardware support for exceptions
non-finites.

However completion mode support is distributed, application software on any system
meets the Alpha architecture specification will see consistent floating-point semantics be
Alpha implementation software provides support for any floating-point feature that is
directly supported by the hardware.

Each Alpha operating system must include an OS completion handler that does software
pletion of instructions that have any valid qualifier combination that includes the /S quali
and that finishes the computation of any floating-point operation that is not completed b
hardware. The OS completion handler is responsible for providing the result specified by th
architecture. The handler either continues execution of the application program or signa
exception to the application.

If the exception summary parameter of an arithmetic trap indicates that an instruction re
ing software completion caused the trap, the operating system must finish the operation
OS completion handler uses the register write mask parameter to ignore instructions in th
shadow and to locate the trigger instruction of the arithmetic trap. The handler then use
trigger instruction input register values to compute the result in the output register an
record any appropriate signal status. The handler then continues execution with the instr
following the trigger instruction, unless the application has requested execution of an opt
signal handler.

It is recommended that the OS completion handler report an enabled IEEE exception
user application as a fault, rather than as a trap. When reported as a fault, the report
points to the trigger instruction, rather than after the trigger instruction. Regardless of wh
an enabled fault occurs, it is recommended that the completion trap handler set the result
ter and status flags to the IEEE standard nontrapping results, as defined in the IEEE Sta
in Section 4.7.10. That behavior makes it possible for the user application to continue fr
fault by stepping over the trigger instruction.

The Floating-Point Control Register (FPCR) contains several trap disable bits and deno
control bits. Implementation of these bits in the FPCR is optional. A system that inclu
these bits may choose to complete computations involving non-finite values without the a
tance of software completion. Operating systems use these FPCR bits to enable har
completion of instructions with any valid qualifier combination that includes /S in those ca
where the operating system does not require a trap to do exception signaling.

To get the optional full IEEE user trap handler behavior, an OS completion handler mu
provided that implements the exception status flags, dynamic user trap handler disabling
dler saving and restoring, default behavior for disabled user trap handlers, and linkage
allow a user handler to return a substitute result. OS completion handlers can us
FP_Control quadword, along with the floating-point control register (FPCR), to provide v
ous levels of IEEE-compliant behavior.

OS completion handlers provide two options for special handling of denormal numbe
instructions that are compiled with any valid qualifier combination that includes the /S qu
fier. These options are controlled by bits defined by implementation software in the IE
Floating-Point Control (FP_C) Quadword.
IEEE Floating-Point ConformanceB–3
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• The first option maps all denormal results to a true zero value. That option is usefu
improving the performance of IEEE compliant code that does not need gradual un
flow and for mixing IEEE instructions that both include and do not include the /S qu
ifier.

• A second option treats all denormal input operands as if they were signedzeros. That
option is useful for improving the performance of IEEE compliant code that encoun
spurious denormal values in uninitialized data.

The optional UNDZ and DNZ (denormal control) bits in the FPCR can assist hardwar
improve the performance of these denormal handling options.

B.2.1 IEEE Floating-Point Control (FP_C) Quadword

Operating system implementations provide the following support for an IEEE floating-p
control quadword (FP_C), illustrated in Figure B–1 and described in Table B–1.

Figure B–1 IEEE Floating-Point Control (FP_C) Quadword

• The operating system software completion mechanism maintains the FP_C. Ther
the FP_C affects (and is affected by) onlythose instructions with any valid qualifier
combination that includes the /S qualifier.

• The FP_C quadword is context switched when the operating system switches the t
context. (The FP_C can be placed in a currently switched data structure.)

• Although the operating system can keep the FP_C in a user mode memory loca
user code may not directly access the FP_C.

• Integer overflow (IOV) exceptions are controlled by the INVE enable mask
(FP_C<1>), as allowed by the IEEE standard. Implementation software is respon
for setting the INVS status bit (FP_C<17>) when a CVTTQ or CVTQL instructi
traps into the software completion mechanism for integer overflow .

• At process creation, all trap enable flags in the FP_C are clear. The settings of
FP_C bits, defined in Table B–1 as reserved for implementation software, are de
by operating system software.
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At other events such as forks or thread creation, and at asynchronous routine calls such a
and signals, the operating system controls all assigned FP_C bits and those defined as re
for implementation software.

Table B–1 Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

63–48 Reserved for implementation software.

47–23 Reserved for future architecture definition.

22 Denormal operand status (DNOS)

A floating arithmetic or conversion operation used a denormal operand value. This st
field is left unchanged if the system is treating denormal operand values as if they w
signed zero values. If an operation with a denormal operand causes other exception
appropriate status bits are set.

21 Inexact result status (INES)

A floating arithmetic or conversion operation gave a result that differed from the mathemat-
ically exact result.

20 Underflow status (UNFS)

A floating arithmetic or conversion operation underflowed the destination exponent.

19 Overflow status (OVFS)

A floating arithmetic or conversion operation overflowed the destination exponent.

18 Division by zero status (DZES)

An attempt was made to perform a floating divide operation with a divisor of zero.

17 Invalid operation status (INVS)

An attempt was made to perform a floating arithmetic, conversion, or comparison opera
and one or more of the operand values were illegal.

16–12 Reserved for implementation software.

11–7 Reserved for future architecture definition.

6 Denormal operand exception enable (DNOE)

Initiate an INV exception if a floating arithmetic or conversion operation involves a denor-
mal operand value. This exception does not signal if the system is treating denormal ope
values as if they were signed zero values. If an operation can initiate more than one en
exception, the denormal operand exception has priority.

5 Inexact result enable (INEE)

Initiate an INE exception if the result of a floating arithmetic or conversion operation differs
from the mathematically exact result.

4 Underflow enable (UNFE)

Initiate a UNF exception if a floating arithmetic or conversion operation underflows the d
tination exponent.
IEEE Floating-Point ConformanceB–5
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B.3 Mapping to IEEE Standard

There are five IEEE exceptions, each of which can be "IEEE software trap-enabled" or
abled (the default condition). Implementing the IEEE software trap-enabled mode is opt
in the IEEE standard.

The assumption, therefore, is that the only access to IEEE-specified software trap-en
results will be generated in assembly language code. The following design allows this, buonly
if such assembly language code has TRAPB instructions after each floating-point instruc
and generates the IEEE-specified scaled result in a trap handler by emulating the instru
that was trapped by hardware overflow/underflow detection, using the original operands.

There is a set of detailed IEEE-specified result values, both for operations that are specif
raise IEEE traps and those that do not. This behavior is created on Alpha by four laye
hardware, PALcode, the operating-system completion handler, and the user signal hand
shown in Figure B–2.

Figure B–2: IEEE Trap Handling Behavior

The IEEE-specified trap behavior occursonly with respect to the user signal handler (the la
layer in Figure B–2); any trap-and-fixup behavior in the first three layers is outside the sc
of the IEEE standard.

3 Overflow enable (OVFE)

Initiate an OVF exception if a floating arithmetic or conversion operation overflows the d
tination exponent.

2 Division by zero enable (DZEE)

Initiate a DZE exception if an attempt is made to perform a floating divide operation wit
divisor of zero.

1 Invalid operation enable (INVE)

Initiate an INV exception if an attempt is made to perform a floating arithmetic, conversi
or comparison operation, and one or more of the operand values is illegal.

0 Reserved for implementation software.

Table B–1 Floating-Point Control (FP_C) Quadword Bit Summary (Continued)

Bit Description

Hardware

PALcode

User Signal  Handler

Traps to PALcode

Traps to Operating System

Traps to User IEEE Trap Handler
(IEEE Standard)

  Operating System
B–6 Alpha Linux Software (II–B)
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The IEEE number system is divided into finite and non-finite numbers:

The finites are normal numbers are: –MAX..–MIN, –0, 0, +MIN..+MAX

The non-finites are: Denormals, +/– Infinity, Signaling NaN, Quiet NaN

Alpha hardware must treat minus zero operands and results as special cases, as require
IEEE standard.

If the DNZ (denormal operands to zero) bit in the FPCR is set or if the OS completion handler
is treating denormal operands as zero, then IEEE trap handling is done as if each den
operand had the corresponding signed zero value.

Table B–2 specifies, for the IEEE /S qualifier modes, which layer does each piece of trap
dling. The table describes where the hardware and PALcode can trap to the OS comp
handler. However, for IEEE operations with any valid qualifier combination that includes
/S qualifier, the system may choose not to trap to the OS completion handler, provided tha
applicable exception is disabled by the trap disable bits in the FPCR and the hardwar
PALcode can produce the expected IEEE result as modified by the denormal control bits
FPCR. See Section 4.7 for more detail on the hardware instruction descriptions.

Table B–2 IEEE Floating-Point Trap Handling

Alpha Instructions Hardware 1 PAL-Code

OS
Completion
Handler

User
Signal
Handler

FBEQ FBNE FBLT FBLE FBGT
FBGE

Bits Only – No Exceptions

LDS LDT Bits Only—No Exceptions

STS STT Bits Only—No Exceptions

CPYS CPYSN Bits Only—No Exceptions

FCMOVx Bits Only—No Exceptions

ADDx SUBx INPUT Exceptions:

Denormal operand Trap Trap Supply sum [Denormal Op2]

+/-Inf operand Trap Trap Supply sum –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

+Inf + –Inf Trap Trap Supply QNaN [Invalid Op]

ADDx SUBx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow3] Scale
by bias adjust

Exponent underflow and disabled Supply +0 – – –4

Exponent underflow and enabled Supply +0
and trap

Trap Supply
+/–MIN
denorm
+/–0

[Underflow3]
Scale by bias
adjust
IEEE Floating-Point ConformanceB–7



ADDx SUBx OUTPUT Exceptions, Continued:

Inexact and disabled – – – –

Inexact and enabled Supply sum
and trap

Trap – [Inexact]

MULx INPUT Exceptions:

Denormal operand Trap Trap Supply prod. [Denormal Op2]

+/-Inf operand Trap Trap Supply prod. –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

0 * Inf Trap Trap Supply QNaN [Invalid Op]

MULx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow3] Scale
by bias adjust

Exponent underflow and disabled Supply +0 – – –

Exponent underflow and enabled Supply +0
and Trap

Trap Supply
+/–MIN denorm
+/–0

[Underflow3]
Scale by bias
adjust

Inexact and disabled – – – –

Inexact and enabled Supply prod.
and trap

Trap – [Inexact]

DIVx INPUT Exceptions:
Denormal operand Trap Trap Supply quot. [Denormal Op2]

+/-Inf operand Trap Trap Supply quot. –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

0/0 or Inf/Inf Trap Trap Supply QNaN [Invalid Op]

A/0 Trap Trap Supply
+/– Inf

[Div. Zero]

DIVx OUTPUT Exceptions:

Exponent overflow Trap Trap Supply
+/–Inf
+/– MAX

[Overflow3] Scale
by bias adjust

Exponent underflow and disabled Supply +0 – – –

Exponent underflow and enabled Supply +0
and trap

Trap Supply
+/– MIN
denorm
+/–0

[Underflow3]
Scale by bias
adjust

Inexact and disabled – – – –

Inexact and enabled Supply quot.
and trap

Trap – [Inexact]

Table B–2 IEEE Floating-Point Trap Handling (Continued)

Alpha Instructions Hardware 1 PAL-Code

OS
Completion
Handler

User
Signal
Handler
B–8 Alpha Linux Software (II–B)



CMPTEQ CMPTUN INPUT Exceptions:

Denormal operand Trap Trap Supply (=) [Denormal Op2]

QNaN operand Trap Trap Supply False for
EQ, True for UN

–

SNaN operand Trap Trap Supply
False/ True

[Invalid Op]

CMPTLT CMPTLE INPUT Exceptions:

Denormal operand Trap Trap Supply≤ or < [Denormal Op2]

QNaN operand Trap Trap Supply False [Invalid Op]

SNaN operand Trap Trap Supply False [Invalid Op]

CVTfi INPUT Exceptions:

Denormal operand Trap Trap Supply Cvt [Denormal Op2]

+/-Inf operand Trap Trap Supply 0 [Invalid Op]

QNaN operand Trap Trap Supply 0 –

SNaN operand Trap Trap Supply 0 [Invalid Op]

CVTfi OUTPUT Exceptions:

Inexact and disabled – – – –

Inexact and enabled Supply Cvt
and trap

Trap – [Inexact]

Integer overflow Supply Trunc.
result and trap if
enabled

Trap – [Invalid Op5]

CVTif OUTPUT Exceptions:

Inexact and disabled – – – –

Inexact and enabled Supply Cvt
and trap

Trap – [Inexact]

CVTff INPUT Exceptions:

Denormal operand Trap Trap Supply Cvt [Denormal Op2]

+/-Inf operand Trap Trap Supply Cvt –

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

CVTff OUTPUT Exceptions:

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow3] Scale
by bias adjust

Exponent underflow and disabled Supply +0 – – –

Exponent underflow and enabled Supply +0
and trap

Trap Supply
+/– MIN
denorm
+/–0

[Underflow3]
Scale by bias
adjust

Table B–2 IEEE Floating-Point Trap Handling (Continued)

Alpha Instructions Hardware 1 PAL-Code

OS
Completion
Handler

User
Signal
Handler
IEEE Floating-Point ConformanceB–9
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Other IEEE operations (software subroutines or sequences of instructions) are listed he
completeness:

Remainder
Round float to integer-valued float
Convert binary to/from decimal
Compare, other combinations than the four above

CVTff OUTPUT Exceptions, continued:

Inexact and disabled – – – –

Inexact and enabled Supply Cvt
and trap

Trap – [Inexact]

SQRTx INPUT Exceptions:

Negative nonzero operand Trap Trap Supply QNan [Invalid Op]

+/–0 Supply +/–0 – – –

+ Denormal operand Trap Trap Supply SQRT [Denormal Op2]

– Denormal operand Trap Trap Supply QNaN [Denormal Op/
Invalid Op]

+ Infinity operand Trap Trap Supply +Inf –

– Infinity operand Trap Trap Supply QNaN [Invalid Op]

QNaN operand Trap Trap Supply QNaN –

SNaN operand Trap Trap Supply QNaN [Invalid Op]

SQRTx OUTPUT Exceptions:

Exponent overflow Not possible

Exponent underflow Not possible

Inexact and disabled – – – –

Inexact and enabled Supply SQRT Trap – [Inexact]

1 This column describes the minimum necessary hardware support.
2 [Denormal Op] signals have priority over all other signals.
3 [Overflow] and [Underflow] signals have priority over [Inexact] signals.
4 An implementation could choose instead to trap to PALcode and have the PALcode supply a ze

result on all underflows.
5 An implementation could choose instead to trap to PALcode on extreme values and have the PALco

supply a truncated result on all overflows.

Table B–2 IEEE Floating-Point Trap Handling (Continued)

Alpha Instructions Hardware 1 PAL-Code

OS
Completion
Handler

User
Signal
Handler
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Table B–3 shows the IEEE standard charts. In the charts, the second column is the resul
the user signal handler is disabled; the third column is the result when that handler is ena
The OS completion handler supplies the IEEE default that is specified in the second col
The contents of the Alpha registers contain sufficient information for an enabled user ha
to compute the value in the third column.

Table B–3 IEEE Standard Charts

Exception
User Signal Handler
Disabled (IEEE Default)

User Signal Handler
Enabled (Optional)

Invalid Operation

(1) Input signaling NaN Quiet NaN

(2) Mag. subtract Inf. Quiet NaN

(3) 0 * Inf. Quiet NaN

(4) 0/0 or Inf/Inf Quiet NaN

(5) x REM 0 or Inf REM y Quiet NaN

(6) SQRT(negative non-zero) Quiet NaN

(7) Cvt to int(ovfl) Low-order bits

(8) Cvt to int(Inf, NaN) 0

(9) Compare unordered Quiet NaN

Division by Zero

x/0, x finite <>0 +/–Inf

Overflow

Round nearest +/–Inf. Res/2**192 or 1536

Round to zero +/–MAX Res/2**192 or 1536

Round to –Inf +MAX/–Inf Res/2**192 or 1536

Round to +Inf +Inf/–MAX Res/2**192 or 1536

Underflow

Underflow 0/denorm Res*2**192 or 1536

Inexact

Inexact Rounded Res
IEEE Floating-Point ConformanceB–11
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Appendix C

Instruction Summary

This appendix summarizes all instructions and opcodes in the Alpha architecture. All va
are in hexadecimal radix.

C.1 Common Architecture Instruction Summary

This section summarizes all common Alpha instructions. Table C–1 describes the conte
the Format and Opcode columns in Table C–2.

Table C–1 Instruction Format and Opcode Notation

Instruction Format
Format
Symbol

Opcode
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field.

Floating- point F-P oo.fff oo is the 6-bit opcode field.

fff is the 11-bit function code field.

Memory Mem oo oo is the 6-bit opcode field.

Memory/ func code Mfc oo.ffff oo is the 6-bit opcode field.

ffff is the 16-bit function code in the displacemen
field.

Memory/ branch Mbr oo.h oo is the 6-bit opcode field.

h is the high-order two bits of the displacement field

Operate Opr oo.ff oo is the 6-bit opcode field.

ff is the 7-bit function code field.

PALcode Pcd oo oo is the 6-bit opcode field; the particular PALcode
instruction is specified in the 26-bit function code
field.
Instruction SummaryC–1



AX
Table C–2 shows qualifiers for operate format instructions. Qualifiers for IEEE and V
floating-point instructions are shown in Sections C.2 and C.3, respectively.

Table C–2 Common Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating

ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword

ADDL/V 10.40
ADDQ Opr 10.20 Add quadword

ADDQ/V 10.60
ADDS F-P 16.080 Add S_floating

ADDT F-P 16.0A0 Add T_floating
AMASK Opr 11.61 Architecture mask

AND Opr 11.00 Logical product
BEQ Bra 39 Branch if= zero

BGE Bra 3E Branch if≥ zero
BGT Bra 3F Branch if > zero

BIC Opr 11.08 Bit clear
BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set

BLE Bra 3B Branch if≤ zero
BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if≠ zero

BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine

CALL_PAL Pcd 00 Trap to PALcode
CMOVEQ Opr 11.24 CMOVE if= zero

CMOVGE Opr 11.46 CMOVE if≥ zero
CMOVGT Opr 11.66 CMOVE if > zero

CMOVLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set

CMOVLE Opr 11.64 CMOVE if≤ zero
CMOVLT Opr 11.44 CMOVE if < zero

CMOVNE Opr 11.26 CMOVE if ≠ zero

CMPBGE Opr 10.0F Compare byte
CMPEQ Opr 10.2D Compare signed quadword equal

CMPGEQ F-P 15.0A5 Compare G_floating equal
CMPGLE F-P 15.0A7 Compare G_floating less than or equal

CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal

CMPLT Opr 10.4D Compare signed quadword less than
C–2 Alpha Linux Software (II–B)



CMPTEQ F-P 16.0A5 Compare T_floating equal

CMPTLE F-P 16.0A7 Compare T_floating less than or equal
CMPTLT F-P 16.0A6 Compare T_floating less than

CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal

CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent
CPYSN F-P 17.021 Copy sign negate

CTLZ Opr 1C.32 Count leading zero
CTPOP Opr 1C.30 Count population

CTTZ Opr 1C.33 Count trailing zero
CVTDG F-P 15.09E Convert D_floating to G_floating

CVTGD F-P 15.0AD Convert G_floating to D_floating
CVTGF F-P 15.0AC Convert G_floating to F_floating

CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword

CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating

CVTQL F-P 17.030 Convert quadword to longword
CVTQS F-P 16.0BC Convert quadword to S_floating

CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S_floating to T_floating

CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T_floating to S_floating

DIVF F-P 15.083 Divide F_floating
DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S_floating
DIVT F-P 16.0A3 Divide T_floating

ECB Mfc 18.E800 Evict cache block
EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier
EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high
EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high
EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high
EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if= zero

Table C–2 Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
Instruction SummaryC–3



FBGE Bra 36 Floating branch if≥ zero

FBGT Bra 37 Floating branch if > zero
FBLE Bra 33 Floating branch if≤ zero

FBLT Bra 32 Floating branch if < zero
FBNE Bra 35 Floating branch if≠ zero
FCMOVEQ F-P 17.02A FCMOVE if= zero

FCMOVGE F-P 17.02D FCMOVE if≥ zero
FCMOVGT F-P 17.02F FCMOVE if > zero

FCMOVLE F-P 17.02E FCMOVE if≤ zero
FCMOVLT F-P 17.02C FCMOVE if < zero

FCMOVNE F-P 17.02B FCMOVE if ≠ zero

FETCH Mfc 18.8000 Prefetch data
FETCH_M Mfc 18.A000 Prefetch data, modify intent

FTOIS F-P 1C.78 Floating to integer move, S_floating
FTOIT F-P 1C.70 Floating to integer move, T_floating

IMPLVER Opr 11.6C Implementation version
INSBL Opr 12.0B Insert byte low

INSLH Opr 12.67 Insert longword high
INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high
INSQL Opr 12.3B Insert quadword low

INSWH Opr 12.57 Insert word high
INSWL Opr 12.1B Insert word low

ITOFF F-P 14.014 Integer to floating move, F_floating
ITOFS F-P 14.004 Integer to floating move, S_floating

ITOFT F-P 14.024 Integer to floating move, T_floating
JMP Mbr 1A.0 Jump

JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return

LDA Mem 08 Load address
LDAH Mem 09 Load address high

LDBU Mem 0A Load zero-extended byte
LDWU Mem 0C Load zero-extended word

LDF Mem 20 Load F_floating
LDG Mem 21 Load G_floating

LDL Mem 28 Load sign-extended longword
LDL_L Mem 2A Load sign-extended longword locked

LDQ Mem 29 Load quadword
LDQ_L Mem 2B Load quadword locked

LDQ_U Mem 0B Load unaligned quadword

Table C–2 Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
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LDS Mem 22 Load S_floating

LDT Mem 23 Load T_floating
MAXSB8 Opr 1C.3E Vector signed byte maximum

MAXSW4 Opr 1C.3F Vector signed word maximum
MAXUB8 Opr 1C.3C Vector unsigned byte maximum

MAXUW4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Move from FPCR
MINSB8 Opr 1C.38 Vector signed byte minimum

MINSW4 Opr 1C.39 Vector signed word minimum
MINUB8 Opr 1C.3A Vector unsigned byte minimum

MINUW4 Opr 1C.3B Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low

MSKWH Opr 12.52 Mask word high
MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to FPCR
MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating
MULL Opr 13.00 Multiply longword

MULL/V 13.40
MULQ Opr 13.20 Multiply quadword

MULQ/V 13.60
MULS F-P 16.082 Multiply S_floating

MULT F-P 16.0A2 Multiply T_floating
ORNOT Opr 11.28 Logical sum with complement

PERR Opr 1C.31 Pixel error
PKLB Opr 1C.37 Pack longwords to bytes

PKWB Opr 1C.36 Pack words to bytes
PREFETCH Mem 281 Prefetch a cache block

PREFETCH_EN Mem 291 Prefetch a cache block, evict next

PREFETCH_M Mem 221 Prefetch a cache block, modify intent

PREFETCH_MEN Mem 231 Prefetch cache block, modify intent, evict next

RC Mfc 18.E000 Read and clear

RET Mbr 1A.2 Return from subroutine
RPCC Mfc 18.C000 Read process cycle counter

RS Mfc 18.F000 Read and set

Table C–2 Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
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S4ADDL Opr 10.02 Scaled add longword by 4

S4ADDQ Opr 10.22 Scaled add quadword by 4
S4SUBL Opr 10.0B Scaled subtract longword by 4

S4SUBQ Opr 10.2B Scaled subtract quadword by 4
S8ADDL Opr 10.12 Scaled add longword by 8

S8ADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8

S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SEXTB Opr 1C.00 Sign extend byte

SEXTW Opr 1C.01 Sign extend word
SLL Opr 12.39 Shift left logical

SQRTF F-P 14.08A Square root F_floating
SQRTG F-P 14.0AA Square root G_floating

SQRTS F-P 14.08B Square root S_floating
SQRTT F-P 14.0AB Square root T_floating

SRA Opr 12.3C Shift right arithmetic
SRL Opr 12.34 Shift right logical

STB Mem 0E Store byte
STF Mem 24 Store F_floating

STG Mem 25 Store G_floating
STS Mem 26 Store S_floating

STL Mem 2C Store longword
STL_C Mem 2E Store longword conditional

STQ Mem 2D Store quadword
STQ_C Mem 2F Store quadword conditional

STQ_U Mem 0F Store unaligned quadword
STT Mem 27 Store T_floating

STW Mem 0D Store word
SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1 Subtract G_floating
SUBL Opr 10.09 Subtract longword

SUBL/V 10.49
SUBQ Opr 10.29 Subtract quadword

SUBQ/V 10.69
SUBS F-P 16.081 Subtract S_floating

SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier

UMULH Opr 13.30 Unsigned multiply quadword high
UNPKBL Opr 1C.35 Unpack bytes to longwords

UNPKBW Opr 1C.34 Unpack bytes to words

Table C–2 Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
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C.2 IEEE Floating-Point Instructions

Table C–3 lists the hexadecimal value of the 11-bit function code field for the IEEE flo
ing-point instructions, with and without qualifiers. The opcode for the following instruction
1616, except for SQRTS and SQRTT, which are opcode 1416.

WH64 Mfc 18.F800 Write hint — 64 bytes

WH64EN Mfc 18.FC00 Write hint — 64 bytes, evict next
WMB Mfc 18.4400 Write memory barrier

XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes

ZAPNOT Opr 12.31 Zero bytes not

1 PREFETCHx instructions share opcodes with the corresponding load instructions. The PREFETCH
instructions are distinguished by, in each case, the Fa or Ra operand set to 31.

Table C–3 IEEE Floating-Point Instruction Function Codes

None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0
ADDT 0A0 020 060 0E0 1A0 120 160 1E0

CMPTEQ 0A5
CMPTLT 0A6

CMPTLE 0A7
CMPTUN 0A4

CVTQS 0BC 03C 07C 0FC
CVTQT 0BE 03E 07E 0FE

CVTST See below
CVTTQ See below

CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3

DIVT 0A3 023 063 0E3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2

MULT 0A2 022 062 0E2 1A2 122 162 1E2
SQRTS 08B 00B 04B 0CB 18B 10B 14B 1CB

SQRTT 0AB 02B 06B 0EB 1AB 12B 16B 1EB
SUBS 081 001 041 0C1 181 101 141 1C1

SUBT 0A1 021 061 0E1 1A1 121 161 1E1

Table C–2 Common Architecture Instructions (Continued)

Mnemonic Format Opcode Description
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Programming Note:

To use CMPTxx with software completion trap handling, specify the /SU IEEE trap mo
even though an underflow trap is not possible. To use CVTQS or CVTQT with softw
completion trap handling, specify the /SUI IEEE trap mode, even though an underflow
is not possible.

/SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0

ADDT 5A0 520 560 5E0 7A0 720 760 7E0
CMPTEQ 5A5

CMPTLT 5A6
CMPTLE 5A7

CMPTUN 5A4
CVTQS 7BC 73C 77C 7FC

CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC

DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3

MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2

SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB
SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB

SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1

None /S

CVTST 2AC 6AC

None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F

/D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F

Table C–3 IEEE Floating-Point Instruction Function Codes (Continued)
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C.3 VAX Floating-Point Instructions

Table C–4 lists the hexadecimal value of the 11-bit function code field for the VAX flo
ing-point instructions. The opcode for the following instructions is 1516, except for SQRTF
and SQRTG, which are opcode 1416.

C.4 Independent Floating-Point Instructions

Table C–5 lists the hexadecimal value of the 11-bit function code field for the floating-p
instructions that are not directly tied to IEEE or VAX floating point. The opcode for the f
lowing instructions is 1716.

Table C–4 VAX Floating-Point Instruction Function Codes

None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500

CVTDG 09E 01E 19E 11E 49E 41E 59E 51E
ADDG 0A0 020 1A0 120 4A0 420 5A0 520

CMPGEQ 0A5 4A5
CMPGLT 0A6 4A6

CMPGLE 0A7 4A7
CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C

CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D
CVTGQ See below

CVTQF 0BC 03C
CVTQG 0BE 03E

DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523

MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522

SQRTF 08A 00A 18A 10A 48A 40A 58A 50A
SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A

SUBF 081 001 181 101 481 401 581 501
SUBG 0A1 021 1A1 121 4A1 421 5A1 521

None /C /V /VC /S /SC /SV /SVC

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F

Table C–5: Independent Floating-Point Instruction Function Codes

None /V /SV

CPYS 020

CPYSE 022
CPYSN 021
Instruction SummaryC–9
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C.5 Opcode Summary

Table C–6 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the table,
column headings that appear over the instructions have a granularity of 816. The rows beneath

the leftmost column supply the individual hex number to resolve that granularity.

If an instruction column has a 0 (zero) in the right (low) hex digit, replace that 0 with the n
ber to the left of the backslash in the leftmost column on the instruction’s row. If an instruc
column has an 8 in the right (low) hexadecimal digit, replace that 8 with the number to
right of the backslash in the leftmost column.

For example, the third row (2/A) under the 10 column contains the symbol INTS*, repres
ing all the integer shift instructions. The opcode for those instructions would then be16

because the 0 in 10 is replaced by the 2 in the leftmost column. Likewise, the third row under
the 18 column contains the symbol JSR*, representing all jump instructions. The opcod
those instructions is 1A because the 8 in the heading is replaced by the number to the righ
the backslash in the leftmost column.

The instruction format is listed under the instruction symbol. The symbols in Table C–6
explained in Table C–7.

CVTLQ 010

CVTQL 030 130 530
FCMOVEQ 02A

FCMOVGE 02D
FCMOVGT 02F

FCMOVLE 02E
FCMOVLT 02C

MF_FPCR 025
MT_FPCR 024

Table C–6: Opcode Summary

00 08 10 18 20 28 30 38

0/8 PAL*

(pal)

LDA
(mem)

INTA*

(op)

MISC*
(mem)

LDF
(mem)

LDL
(mem)

BR

(br)

BLBC

(br)

1/9 Res LDAH

(mem)

INTL*

(op)

\PAL\ LDG
(mem)

LDQ
(mem)

FBEQ
(br)

BEQ

(br)

2/A Res LDBU

(mem)

INTS*

(op)

JSR*
(mem)

LDS
(mem)

LDL_L
(mem)

FBLT

(br)

BLT

(br)

3/B Res LDQ_U

(mem)

INTM*

(op)

\PAL\ LDT
(mem)

LDQ_L
(mem)

FBLE
(br)

BLE

(br)

Table C–5: Independent Floating-Point Instruction Function Codes (Continued)

None /V /SV
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4/C Res LDWU

(mem)

ITFP* FPTI* STF
(mem)

STL
(mem)

BSR

(br)

BLBS

(br)

5/D Res STW

(mem)

FLTV*

(op)

\PAL\ STG

(mem)

STQ

(mem)

FBNE

(br)

BNE

(br)

6/E Res STB

(mem)

FLTI*

(op)

\PAL\ STS

(mem)

STL_C

(mem)

FBGE

(br)

BGE

(br)

7/F Res STQ_U
(mem)

FLTL*

(op)

\PAL\ STT

(mem)

STQ_C

(mem)

FBGT

(br)

BGT

(br)

Table C–7: Key to Opcode Summary

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes
FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes
FPTI* Floating-point to integer register move opcodes

INTA* Integer arithmetic instruction opcodes
INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes
INTS* Integer shift instruction opcodes

ITFP* Integer to floating-point register move opcodes
JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes
PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Compaq

Table C–6: Opcode Summary (Continued)

00 08 10 18 20 28 30 38
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C.6 Common Architecture Opcodes in Numerical Order

Table C–8 lists the common architecture opcodes in numerical order.

Table C–8 Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

00 CALL_PAL 01 OPC01 02 OPC02

03 OPC03 04 OPC04 05 OPC05
06 OPC06 07 OPC07 08 LDA

09 LDAH 0A LDBU 0B LDQ_U
0C LDWU 0D STW 0E STB

0F STQ_U 10.00 ADDL 10.02 S4ADDL
10.09 SUBL 10.0B S4SUBL 10.0F CMPBGE

10.12 S8ADDL 10.1B S8SUBL 10.1D CMPULT
10.20 ADDQ 10.22 S4ADDQ 10.29 SUBQ

10.2B S4SUBQ 10.2D CMPEQ 10.32 S8ADDQ
10.3B S8SUBQ 10.3D CMPULE 10.40 ADDL/V

10.49 SUBL/V 10.4D CMPLT 10.60 ADDQ/V
10.69 SUBQ/V 10.6D CMPLE 11.00 AND

11.08 BIC 11.14 CMOVLBS 11.16 CMOVLBC
11.20 BIS 11.24 CMOVEQ 11.26 CMOVNE

11.28 ORNOT 11.40 XOR 11.44 CMOVLT
11.46 CMOVGE 11.48 EQV 11.61 AMASK

11.64 CMOVLE 11.66 CMOVGT 11.6C IMPLVER
12.02 MSKBL 12.06 EXTBL 12.0B INSBL

12.12 MSKWL 12.16 EXTWL 12.1B INSWL
12.22 MSKLL 12.26 EXTLL 12.2B INSLL

12.30 ZAP 12.31 ZAPNOT 12.32 MSKQL
12.34 SRL 12.36 EXTQL 12.39 SLL

12.3B INSQL 12.3C SRA 12.52 MSKWH
12.57 INSWH 12.5A EXTWH 12.62 MSKLH

12.67 INSLH 12.6A EXTLH 12.72 MSKQH
12.77 INSQH 12.7A EXTQH 13.00 MULL

13.20 MULQ 13.30 UMULH 13.40 MULL/V
13.60 MULQ/V 14.004 ITOFS 14.00A SQRTF/C

14.00B SQRTS/C 14.014 ITOFF 14.024 ITOFT
14.02A SQRTG/C 14.02B SQRTT/C 14.04B SQRTS/M

14.06B SQRTT/M 14.08A SQRTF 14.08B SQRTS
14.0AA SQRTG 14.0AB SQRTT 14.0CB SQRTS/D

14.0EB SQRTT/D 14.10A SQRTF/UC 14.10B SQRTS/UC
14.12A SQRTG/UC 14.12B SQRTT/UC 14.14B SQRTS/UM

14.16B SQRTT/UM 14.18A SQRTF/U 14.18B SQRTS/U
14.1AA SQRTG/U 14.1AB SQRTT/U 14.1CB SQRTS/UD
C–12 Alpha Linux Software (II–B)



14.1EB SQRTT/UD 14.40A SQRTF/SC 14.42A SQRTG/SC

14.48A SQRTF/S 14.4AA SQRTG/S 14.50A SQRTF/SUC
14.50B SQRTS/SUC 14.52A SQRTG/SUC 14.52B SQRTT/SUC

14.54B SQRTS/SUM 14.56B SQRTT/SUM 14.58A SQRTF/SU
14.58B SQRTS/SU 14.5AA SQRTG/SU 14.5AB SQRTT/SU

14.5CB SQRTS/SUD 14.5EB SQRTT/SUD 14.70B SQRTS/SUIC
14.72B SQRTT/SUIC 14.74B SQRTS/SUIM 14.76B SQRTT/SUIM

14.78B SQRTS/SUI 14.7AB SQRTT/SUI 14.7CB SQRTS/SUID
14.7EB SQRTT/SUID 15.000 ADDF/C 15.001 SUBF/C

15.002 MULF/C 15.003 DIVF/C 15.01E CVTDG/C
15.020 ADDG/C 15.021 SUBG/C 15.022 MULG/C

15.023 DIVG/C 15.02C CVTGF/C 15.02D CVTGD/C
15.02F CVTGQ/C 15.03C CVTQF/C 15.03E CVTQG/C

15.080 ADDF 15.081 SUBF 15.082 MULF
15.083 DIVF 15.09E CVTDG 15.0A0 ADDG

15.0A1 SUBG 15.0A2 MULG 15.0A3 DIVG
15.0A5 CMPGEQ 15.0A6 CMPGLT 15.0A7 CMPGLE

15.0AC CVTGF 15.0AD CVTGD 15.0AF CVTGQ
15.0BC CVTQF 15.0BE CVTQG 15.100 ADDF/UC

15.101 SUBF/UC 15.102 MULF/UC 15.103 DIVF/UC
15.11E CVTDG/UC 15.120 ADDG/UC 15.121 SUBG/UC

15.122 MULG/UC 15.123 DIVG/UC 15.12C CVTGF/UC
15.12D CVTGD/UC 15.12F CVTGQ/VC 15.180 ADDF/U

15.181 SUBF/U 15.182 MULF/U 15.183 DIVF/U
15.19E CVTDG/U 15.1A0 ADDG/U 15.1A1 SUBG/U

15.1A2 MULG/U 15.1A3 DIVG/U 15.1AC CVTGF/U
15.1AD CVTGD/U 15.1AF CVTGQ/V 15.400 ADDF/SC

15.401 SUBF/SC 15.402 MULF/SC 15.403 DIVF/SC
15.41E CVTDG/SC 15.420 ADDG/SC 15.421 SUBG/SC

15.422 MULG/SC 15.423 DIVG/SC 15.42C CVTGF/SC
15.42D CVTGD/SC 15.42F CVTGQ/SC 15.480 ADDF/S

15.481 SUBF/S 15.482 MULF/S 15.483 DIVF/S
15.49E CVTDG/S 15.4A0 ADDG/S 15.4A1 SUBG/S

15.4A2 MULG/S 15.4A3 DIVG/S 15.4A5 CMPGEQ/S
15.4A6 CMPGLT/S 15.4A7 CMPGLE/S 15.4AC CVTGF/S

15.4AD CVTGD/S 15.4AF CVTGQ/S 15.500 ADDF/SUC
15.501 SUBF/SUC 15.502 MULF/SUC 15.503 DIVF/SUC

15.51E CVTDG/SUC 15.520 ADDG/SUC 15.521 SUBG/SUC
15.522 MULG/SUC 15.523 DIVG/SUC 15.52C CVTGF/SUC

15.52D CVTGD/SUC 15.52F CVTGQ/SVC 15.580 ADDF/SU
15.581 SUBF/SU 15.582 MULF/SU 15.583 DIVF/SU

Table C–8 Common Architecture Opcodes in Numerical Order (Continued)
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15.59E CVTDG/SU 15.5A0 ADDG/SU 15.5A1 SUBG/SU

15.5A2 MULG/SU 15.5A3 DIVG/SU 15.5AC CVTGF/SU
15.5AD CVTGD/SU 15.5AF CVTGQ/SV 16.000 ADDS/C

16.001 SUBS/C 16.002 MULS/C 16.003 DIVS/C
16.020 ADDT/C 16.021 SUBT/C 16.022 MULT/C

16.023 DIVT/C 16.02C CVTTS/C 16.02F CVTTQ/C
16.03C CVTQS/C 16.03E CVTQT/C 16.040 ADDS/M

16.041 SUBS/M 16.042 MULS/M 16.043 DIVS/M
16.060 ADDT/M 16.061 SUBT/M 16.062 MULT/M

16.063 DIVT/M 16.06C CVTTS/M 16.06F CVTTQ/M
16.07C CVTQS/M 16.07E CVTQT/M 16.080 ADDS

16.081 SUBS 16.082 MULS 16.083 DIVS
16.0A0 ADDT 16.0A1 SUBT 16.0A2 MULT

16.0A3 DIVT 16.0A4 CMPTUN 16.0A5 CMPTEQ
16.0A6 CMPTLT 16.0A7 CMPTLE 16.0AC CVTTS

16.0AF CVTTQ 16.0BC CVTQS 16.0BE CVTQT
16.0C0 ADDS/D 16.0C1 SUBS/D 16.0C2 MULS/D

16.0C3 DIVS/D 16.0E0 ADDT/D 16.0E1 SUBT/D
16.0E2 MULT/D 16.0E3 DIVT/D 16.0EC CVTTS/D

16.0EF CVTTQ/D 16.0FC CVTQS/D 16.0FE CVTQT/D
16.100 ADDS/UC 16.101 SUBS/UC 16.102 MULS/UC

16.103 DIVS/UC 16.120 ADDT/UC 16.121 SUBT/UC
16.122 MULT/UC 16.123 DIVT/UC 16.12C CVTTS/UC

16.12F CVTTQ/VC 16.140 ADDS/UM 16.141 SUBS/UM
16.142 MULS/UM 16.143 DIVS/UM 16.160 ADDT/UM

16.161 SUBT/UM 16.162 MULT/UM 16.163 DIVT/UM
16.16C CVTTS/UM 16.16F CVTTQ/VM 16.180 ADDS/U

16.181 SUBS/U 16.182 MULS/U 16.183 DIVS/U
16.1A0 ADDT/U 16.1A1 SUBT/U 16.1A2 MULT/U

16.1A3 DIVT/U 16.1AC CVTTS/U 16.1AF CVTTQ/V
16.1C0 ADDS/UD 16.1C1 SUBS/UD 16.1C2 MULS/UD

16.1C3 DIVS/UD 16.1E0 ADDT/UD 16.1E1 SUBT/UD
16.1E2 MULT/UD 16.1E3 DIVT/UD 16.1EC CVTTS/UD

16.1EF CVTTQ/VD 16.2AC CVTST 16.500 ADDS/SUC
16.501 SUBS/SUC 16.502 MULS/SUC 16.503 DIVS/SUC

16.520 ADDT/SUC 16.521 SUBT/SUC 16.522 MULT/SUC
16.523 DIVT/SUC 16.52C CVTTS/SUC 16.52F CVTTQ/SVC

16.540 ADDS/SUM 16.541 SUBS/SUM 16.542 MULS/SUM
16.543 DIVS/SUM 16.560 ADDT/SUM 16.561 SUBT/SUM

16.562 MULT/SUM 16.563 DIVT/SUM 16.56C CVTTS/SUM
16.56F CVTTQ/SVM 16.580 ADDS/SU 16.581 SUBS/SU

Table C–8 Common Architecture Opcodes in Numerical Order (Continued)
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16.582 MULS/SU 16.583 DIVS/SU 16.5A0 ADDT/SU

16.5A1 SUBT/SU 16.5A2 MULT/SU 16.5A3 DIVT/SU
16.5A4 CMPTUN/SU 16.5A5 CMPTEQ/SU 16.5A6 CMPTLT/SU

16.5A7 CMPTLE/SU 16.5AC CVTTS/SU 16.5AF CVTTQ/SV
16.5C0 ADDS/SUD 16.5C1 SUBS/SUD 16.5C2 MULS/SUD

16.5C3 DIVS/SUD 16.5E0 ADDT/SUD 16.5E1 SUBT/SUD
16.5E2 MULT/SUD 16.5E3 DIVT/SUD 16.5EC CVTTS/SUD

16.5EF CVTTQ/SVD 16.6AC CVTST/S 16.700 ADDS/SUIC
16.701 SUBS/SUIC 16.702 MULS/SUIC 16.703 DIVS/SUIC

16.720 ADDT/SUIC 16.721 SUBT/SUIC 16.722 MULT/SUIC
16.723 DIVT/SUIC 16.72C CVTTS/SUIC 16.72F CVTTQ/SVIC

16.73C CVTQS/SUIC 16.73E CVTQT/SUIC 16.740 ADDS/SUIM
16.741 SUBS/SUIM 16.742 MULS/SUIM 16.743 DIVS/SUIM

16.760 ADDT/SUIM 16.761 SUBT/SUIM 16.762 MULT/SUIM
16.763 DIVT/SUIM 16.76C CVTTS/SUIM 16.76F CVTTQ/SVIM

16.77C CVTQS/SUIM 16.77E CVTQT/SUIM 16.780 ADDS/SUI
16.781 SUBS/SUI 16.782 MULS/SUI 16.783 DIVS/SUI

16.7A0 ADDT/SUI 16.7A1 SUBT/SUI 16.7A2 MULT/SUI
16.7A3 DIVT/SUI 16.7AC CVTTS/SUI 16.7AF CVTTQ/SVI

16.7BC CVTQS/SUI 16.7BE CVTQT/SUI 16.7C0 ADDS/SUID
16.7C1 SUBS/SUID 16.7C2 MULS/SUID 16.7C3 DIVS/SUID

16.7E0 ADDT/SUID 16.7E1 SUBT/SUID 16.7E2 MULT/SUID
16.7E3 DIVT/SUID 16.7EC CVTTS/SUID 16.7EF CVTTQ/SVID

16.7FC CVTQS/SUID 16.7FE CVTQT/SUID 17.010 CVTLQ
17.020 CPYS 17.021 CPYSN 17.022 CPYSE

17.024 MT_FPCR 17.025 MF_FPCR 17.02A FCMOVEQ
17.02B FCMOVNE 17.02C FCMOVLT 17.02D FCMOVGE

17.02E FCMOVLE 17.02F FCMOVGT 17.030 CVTQL
17.130 CVTQL/V 17.530 CVTQL/SV 18.0000 TRAPB

18.0400 EXCB 18.4000 MB 18.4400 WMB
18.8000 FETCH 18.A000 FETCH_M 18.C000 RPCC

18.E000 RC 18.E800 ECB 18.F000 RS
18.F800 WH64 18.FC00 WH64EN 19 PAL19

1A.0 JMP 1A.1 JSR 1A.2 RET
1A.3 JSR_COROUTINE 1B PAL1B 1C.00 SEXTB

1C.01 SEXTW 1C.30 CTPOP 1C.31 PERR
1C.32 CTLZ 1C.33 CTTZ 1C.34 UNPKBW

1C.35 UNPKBL 1C.36 PKWB 1C.37 PKLB
1C.38 MINSB8 1C.39 MINSW4 1C.3A MINUB8

1C.3B MINUW4 1C.3C MAXUB8 1C.3D MAXUW4
1C.3E MAXSB8 1C.3F MAXSW4 1C.70 FTOIT

Table C–8 Common Architecture Opcodes in Numerical Order (Continued)

Opcode Opcode Opcode
Instruction SummaryC–15



x

C.7 OpenVMS PALcode Instruction Summary

Table C–9 lists the OpenVMS unprivileged PALcode instructions.

1C.78 FTOIS 1D PAL1D 1E PAL1E

1F PAL1F 20 LDF 21 LDG
22 LDS 221 PREFETCH_M 23 LDT

231 PREFETCH_MEN 24 STF 25 STG

26 STS 27 STT 28 LDL

281 PREFETCH 29 LDQ 291 PREFETCH_EN

2A LDL_L 2B LDQ_L 2C STL

2D STQ 2E STL_C 2F STQ_C
30 BR 31 FBEQ 32 FBLT

33 FBLE 34 BSR 35 FBNE
36 FBGE 37 FBGT 38 BLBC

39 BEQ 3A BLT 3B BLE
3C BLBS 3D BNE 3E BGE

3F BGT

1 PREFETCHx instructions share opcodes with the corresponding load instructions. The PREFETCH
instructions are distinguished by, in each case, the Fa or Ra operand set to 31.

Table C–9 OpenVMS Unprivileged PALcode Instructions

Mnemonic Opcode Description

AMOVRM 00.00A1 Atomic move from register to memory
AMOVRR 00.00A0 Atomic move from register to register

BPT 00.0080 Breakpoint
BUGCHK 00.0081 Bugcheck

CHMK 00.0083 Change mode to kernel
CHME 00.0082 Change mode to executive

CHMS 00.0084 Change mode to supervisor
CHMU 00.0085 Change mode to user

CLRFEN 00.00AE Clear floating-point enable
GENTRAP 00.00AA Generate software trap

IMB 00.0086 I-stream memory barrier
INSQHIL 00.0087 Insert into longword queue at head interlocked

INSQHILR 00.00A2 Insert into longword queue at head interlocked resident
INSQHIQ 00.0089 Insert into quadword queue at head interlocked

INSQHIQR 00.00A4 Insert into quadword queue at head interlocked resident
INSQTIL 00.0088 Insert into longword queue at tail interlocked

INSQTILR 00.00A3 Insert into longword queue at tail interlocked resident

Table C–8 Common Architecture Opcodes in Numerical Order (Continued)
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Table C–10 lists the OpenVMS privileged PALcode instructions.

INSQTIQ 00.008A Insert into quadword queue at tail interlocked

INSQTIQR 00.00A5 Insert into quadword queue at tail interlockedresident
INSQUEL 00.008B Insert entry into longword queue

INSQUEL/D 00.008D Insert entry into longword queue deferred
INSQUEQ 00.008C Insert entry into quadword queue

INSQUEQ/D 00.008E Insert entry into quadword queue deferred
PROBER 00.008F Probe for read access

PROBEW 00.0090 Probe for write access
RD_PS 00.0091 Move processor status

READ_UNQ 00.009E Read unique context
REI 00.0092 Return from exception or interrupt

REMQHIL 00.0093 Remove from longword queue at head interlocked
REMQHILR 00.00A6 Remove from longword queue at head interlocked resident

REMQHIQ 00.0095 Remove from quadword queue at head interlocked
REMQHIQR 00.00A8 Remove from quadword queue at head interlocked resident

REMQTIL 00.0094 Remove from longword queue at tail interlocked
REMQTILR 00.00A7 Remove from longword queue at tail interlocked resident

REMQTIQ 00.0096 Remove from quadword queue at tail interlocked
REMQTIQR 00.00A9 Remove from quadword queue at tail interlocked resident

REMQUEL 00.0097 Remove entry from longword queue
REMQUEL/D 00.0099 Remove entry from longword queue deferred

REMQUEQ 00.0098 Remove entry from quadword queue
REMQUEQ/D 00.009A Remove entry from quadword queue deferred

RSCC 00.009D Read system cycle counter
SWASTEN 00.009B Swap AST enable for current mode

WRITE_UNQ 00.009F Write unique context
WR_PS_SW 00.009C Write processor status software field

Table C–10 OpenVMS Privileged PALcode Instructions

Mnemonic Opcode Description

CFLUSH 00.0001 Cache flush
CSERVE 00.0009 Console service

DRAINA 00.0002 Drain aborts
HALT 00.0000 Halt processor

LDQP 00.0003 Load quadword physical
MFPR_ASN 00.0006 Move from processor register ASN

MFPR_ESP 00.001E Move from processor register ESP
MFPR_FEN 00.000B Move from processor register FEN

MFPR_IPL 00.000E Move from processor register IPL

Table C–9 OpenVMS Unprivileged PALcode Instructions (Continued)

Mnemonic Opcode Description
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MFPR_MCES 00.0010 Move from processor register MCES

MFPR_PCBB 00.0012 Move from processor register PCBB
MFPR_PRBR 00.0013 Move from processor register PRBR

MFPR_PTBR 00.0015 Move from processor register PTBR
MFPR_SCBB 00.0016 Move from processor register SCBB

MFPR_SISR 00.0019 Move from processor register SISR
MFPR_SSP 00.0020 Move from processor register SSP

MFPR_SYSPTBR 00.0032 Move from processor register SYSPTBR
MFPR_TBCHK 00.001A Move from processor register TBCHK

MFPR_USP 00.0022 Move from processor register USP
MFPT_VIRBND 00.0030 Move from processor register VIRBND

MFPR_VPTB 00.0029 Move from processor register VPTB
MFPR_WHAMI 00.003F Move from processor register WHAMI

MTPR_ASTEN 00.0026 Move to processor register ASTEN
MTPR_ASTSR 00.0027 Move to processor register ASTSR

MTPR_DATFX 00.002E Move to processor register DATFX
MTPR_ESP 00.001F Move to processor register ESP

MTPR_FEN 00.000B Move to processor register FEN
MTPR_IPIR 00.000D Move to processor register IPRI

MTPR_IPL 00.000E Move to processor register IPL
MTPR_MCES 00.0011 Move to processor register MCES

MTPR_PERFMON 00.002B Move to processor register PERFMON
MTPR_PRBR 00.0014 Move to processor register PRBR

MTPR_SCBB 00.0017 Move to processor register SCBB
MTPR_SIRR 00.0018 Move to processor register SIRR

MTPR_SSP 00.0021 Move to processor register SSP
MTPR_SYSPTBR 00.0033 Move to processor register SYSPTBR

MTPR_TBIA 00.001B Move to processor register TBIA
MTPR_TBIAP 00.001C Move to processor register TBIAP

MTPR_TBIS 00.001D Move to processor register TBIS
MTPR_TBISD 00.0024 Move to processor register TBISD

MTPR_TBISI 00.0025 Move to processor register TBISI
MTPR_USP 00.0023 Move to processor register USP

MTPR_VIRBND 00.0031 Move to processor register VIRBND
MTPR_VPTB 00.002A Move to processor register VPTB

STQP 00.0004 Store quadword physical
SWPCTX 00.0005 Swap privileged context

SWPPAL 00.000A Swap PALcode image
WTINT 00.003E Wait for interrupt

Table C–10 OpenVMS Privileged PALcode Instructions (Continued)
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C.8 Tru64 UNIX PALcode Instruction Summary

Table C–11 lists the Tru64 UNIX unprivileged PALcode instructions.

Table C–12 lists the Tru64 UNIX unprivileged PALcode instructions.

Table C–11 Tru64 UNIX Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap

bugchk 00.0081 Bugcheck
callsys 00.0083 System call

clrfen 00.00AE Clear floating-point enable
gentrap 00.00AA Generate software trap

imb 00.0086 I-stream memory barrier
rdunique 00.009E Read unique value

urti 00.0092 Return from user mode trap
wrunique 00.009F Write unique value

Table C–12 Tru64 UNIX Privileged PALcode Instructions

Mnemonic Opcode Description

cflush 00.0001 Cache flush

cserve 00.0009 Console service
draina 00.0002 Drain aborts

halt 00.0000 Halt the processor
rdmces 00.0010 Read machine checkerror summary register

rdps 00.0036 Read processor status
rdusp 00.003A Read user stack pointer

rdval 00.0032 Read system value
retsys 00.003D Return from system call

rti 00.003F Return from trap or interrupt
swpctx 00.0030 Swap privileged context

swpipl 00.0035 Swap interrupt priority level
swppal 00.000A Swap PALcode image

tbi 00.0033 Translation buffer invalidate
whami 00.003C Who am I

wrasn 00.002E Write ASN
wrent 00.0034 Write system entry address

wrfen 00.002B Write floating-point enable
wripir 00.000D Write interprocessor interrupt request

wrkgp 00.0037 Write kernel global pointer
wrmces 00.0011 Write machine check error summary register

wrperfmon 00.0039 Performance monitoring function
wrusp 00.0038 Write user stack pointer
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C.9 Alpha Linux PALcode Instruction Summary

Table C–13lists the Alpha Linux unprivileged PALcode instructions.

Table C–14 lists the Alpha Linux privileged PALcode instructions.

wrval 00.0031 Write system value

wrsysptb 00.0014 Write system page table base
wrvirbnd 00.0013 Write virtual address boundary

wrvptptr 00.002D Write virtual page table pointer
wtint 00.003E Wait for interrupt

Table C–13 Alpha Linux Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap
bugchk 00.0081 Bugcheck

callsys 00.0083 System call
clrfen 00.00AE Clear floating-point enable

gentrap 00.00AA Generate software trap
imb 00.0086 I-stream memory barrier

rdunique 00.009E Read unique value
wrunique 00.009F Write unique value

Table C–14 Alpha Linux Privileged PALcode Instructions

Mnemonic Opcode Description

cflush 00.0001 Cache flush
cserve 00.0009 Console service

draina 00.0002 Drain aborts
halt 00.0000 Halt the processor

rdmces 00.0010 Read machine checkerror summary register
rdps 00.0036 Read processor status

rdusp 00.003A Read user stack pointer
rdval 00.0032 Read system value

retsys 00.003D Return from system call
rti 00.003F Return from trap or interrupt

swpctx 00.0030 Swap privileged context
swpipl 00.0035 Swap interrupt priority level

swppal 00.000A Swap PALcode image
tbi 00.0033 Translation buffer invalidate

whami 00.003C Who am I
wrent 00.0034 Write system entry address

Table C–12 Tru64 UNIX Privileged PALcode Instructions (Continued)

Mnemonic Opcode Description
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n-spe-
C.10 PALcode Opcodes in Numerical Order

Opcodes 00.003816 through 00.003F16 are reserved for processor implementatio
cific PALcode instructions. All other opcodes are reserved for use by Compaq.

wrfen 00.002B Write floating-point enable

wripir 00.000D Write interprocessor interrupt request
wrkgp 00.0037 Write kernel global pointer

wrmces 00.0011 Write machine check error summary register
wrperfmon 00.0039 Performance monitoring function

wrusp 00.0038 Write user stack pointer
wrval 00.0031 Write system value

wrsysptb 00.0014 Write system page table base
wrvirbnd 00.0013 Write virtual address boundary

wrvptptr 00.002D Write virtual page table pointer
wtint 00.003E Wait for interrupt

Table C–15 PALcode Opcodes in Numerical Order

Opcode 16 Opcode 10 OpenVMS Tru64 UNIX Alpha Linux

00.0000 00.0000 HALT halt halt
00.0001 00.0001 CFLUSH cflush cflush

00.0002 00.0002 DRAINA draina draina
00.0003 00.0003 LDQP — —

00.0004 00.0004 STQP — —
00.0005 00.0005 SWPCTX — —

00.0006 00.0006 MFPR_ASN — —
00.0007 00.0007 MTPR_ASTEN — —

00.0008 00.0008 MTPR_ASTSR — —
00.0009 00.0009 CSERVE cserve cserve

00.000A 00.0010 SWPPAL swppal swppal
00.000B 00.0011 MFPR_FEN — —

00.000C 00.0012 MTPR_FEN — —
00.000D 00.0013 MTPR_IPIR wripir wripir

00.000E 00.0014 MFPR_IPL — —
00.000F 00.0015 MTPR_IPL — —

00.0010 00.0016 MFPR_MCES rdmces rdmces
00.0011 00.0017 MTPR_MCES wrmces wrmces

00.0012 00.0018 MFPR_PCBB — —
00.0013 00.0019 MFPR_PRBR — —

00.0014 00.0020 MTPR_PRBR — —

Table C–14 Alpha Linux Privileged PALcode Instructions (Continued)

Mnemonic Opcode Description
Instruction SummaryC–21



00.0015 00.0021 MFPR_PTBR — —

00.0016 00.0022 MFPR_SCBB — —
00.0017 00.0023 MTPR_SCBB — —

00.0018 00.0024 MTPR_SIRR — —
00.0019 00.0025 MFPR_SISR — —

00.001A 00.0026 MFPR_TBCHK — —
00.001B 00.0027 MTPR_TBIA — —

00.001C 00.0028 MTPR_TBIAP — —
00.001D 00.0029 MTPR_TBIS — —

00.001E 00.0030 MFPR_ESP — —
00.001F 00.0031 MTPR_ESP — —

00.0020 00.0032 MFPR_SSP — —
00.0021 00.0033 MTPR_SSP — —

00.0022 00.0034 MFPR_USP — —
00.0023 00.0035 MTPR_USP — —

00.0024 00.0036 MTPR_TBISD — —
00.0025 00.0037 MTPR_TBISI — —

00.0026 00.0038 MFPR_ASTEN — —
00.0027 00.0039 MFPR_ASTSR — —

00.0029 00.0041 MFPR_VPTB — —
00.002A 00.0042 MTPR_VPTB — —

00.002B 00.0043 MTPR_PERFMON wrfen wrfen
00.002D 00.0045 — wrvptptr wrvptptr

00.002E 00.0046 MTPR_DATFX wrasn —
00.0030 00.0048 — swpctx swpctx

00.0031 00.0049 — wrval wrval

00.0032 00.0050 — rdval rdval

00.0033 00.0051 — tbi tbi
00.0034 00.0052 — wrent wrent

00.0035 00.0053 — swpipl swpipl
00.0036 00.0054 — rdps rdps

00.0037 00.0055 — wrkgp wrkgp
00.0038 00.0056 — wrusp wrusp

00.0039 00.0057 — wrperfmon wrperfmon
00.003A 00.0058 — rdusp rdusp

00.003C 00.0060 — whami whami
00.003D 00.0061 — retsys retsys

00.003E 00.0062 WTINT wtint wtint
00.003F 00.0063 MFPR_WHAMI rti rti

Table C–15 PALcode Opcodes in Numerical Order (Continued)

Opcode 16 Opcode 10 OpenVMS Tru64 UNIX Alpha Linux
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00.0080 00.0128 BPT bpt bpt

00.0081 00.0129 BUGCHK bugchk bugchk
00.0082 00.0130 CHME — —

00.0083 00.0131 CHMK callsys callsys
00.0084 00.0132 CHMS — —

00.0085 00.0133 CHMU — —
00.0086 00.0134 IMB imb imb

00.0087 00.0135 INSQHIL — —
00.0088 00.0136 INSQTIL — —

00.0089 00.0137 INSQHIQ — —
00.008A 00.0138 INSQTIQ — —

00.008B 00.0139 INSQUEL — —
00.008C 00.0140 INSQUEQ — —

00.008D 00.0141 INSQUEL/D — —
00.008E 00.0142 INSQUEQ/D — —

00.008F 00.0143 PROBER — —
00.0090 00.0144 PROBEW — —

00.0091 00.0145 RD_PS — —
00.0092 00.0146 REI urti —

00.0093 00.0147 REMQHIL — —
00.0094 00.0148 REMQTIL — —

00.0095 00.0149 REMQHIQ — —
00.0096 00.0150 REMQTIQ — —

00.0097 00.0151 REMQUEL — —
00.0098 00.0152 REMQUEQ — —

00.0099 00.0153 REMQUEL/D
00.009A 00.0154 REMQUEQ/D — —

00.009B 00.0155 SWASTEN — —
00.009C 00.0156 WR_PS_SW — —

00.009D 00.0157 RSCC — —
00.009E 00.0158 READ_UNQ rdunique rdunique

00.009F 00.0159 WRITE_UNQ wrunique wrunique
00.00A0 00.0160 AMOVRR — —

00.00A1 00.0161 AMOVRM — —
00.00A2 00.0162 INSQHILR — —

00.00A3 00.0163 INSQTILR — —
00.00A4 00.0164 INSQHIQR — —

00.00A5 00.0165 INSQTIQR — —

00.00A6 00.0166 REMQHILR — —

Table C–15 PALcode Opcodes in Numerical Order (Continued)
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tion
C.11 Required PALcode Opcodes

The opcodes listed in Table C–16 are required for all Alpha implementations. The nota
used is oo.ffff, whereoo is the hexadecimal 6-bit opcode andffff is the hexadecimal 26-bit
function code.

C.12 Opcodes Reserved to PALcode

The opcodes listed in Table C–17 are reserved for use in implementing PALcode.

00.00A7 00.0167 REMQTILR — —

00.00A8 00.0168 REMQHIQR — —
00.00A9 00.0169 REMQTIQR —

00.00AA 00.0170 GENTRAP gentrap gentrap
00.00AB 00.0171 — — —

00.00AC 00.0172 — — —
00.00AD 00.0173 — — —

00.00AE 00.0174 CLRFEN clrfen clrfen

Table C–16: Required PALcode Opcodes

Mnemonic Type Opcode

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

Table C–17: Opcodes Reserved for PALcode

Mnemonic Mnemonic Mnemonic

PAL19 19 PAL1B 1B PAL1D 1D

PAL1E 1E PAL1F 1F

Table C–15 PALcode Opcodes in Numerical Order (Continued)

Opcode 16 Opcode 10 OpenVMS Tru64 UNIX Alpha Linux
C–24 Alpha Linux Software (II–B)
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C.13 Opcodes Reserved to Compaq

The opcodes listed in Table C–18 are reserved to Compaq.

Programming Note:

The code points 18.4800 and 18.4C00 are reserved for adding weaker memory b
instructions. Those code points must operate as a Memory Barrier instruction
18.4000) for implementations that precede their definition as weaker memory ba
instructions. Software must use the 18.4000 code point for MB.

C.14 Unused Function Code Behavior

Unused function codes for all opcodes assigned (not reserved) in the Version 5 Alpha arc
ture specification (May 1992) produce UNPREDICTABLE but not UNDEFINED results; th
are not security holes.

Unused function codes for opcodes defined as reserved in the Version 5 Alpha archite
specification produce an illegal instruction trap. Those opcodes are 01, 02, 03, 04, 05, 0
0A, 0C, 0D, 0E, 14, 19, 1B, 1C, 1D, 1E, and 1F. Unused function codes for those opc
reserved to PALcode produce an illegal instruction trap only if not used in the PALc
environment.

Table C–18: Opcodes Reserved for Compaq

Mnemonic Mnemonic Mnemonic

OPC01 01 OPC02 02 OPC03 03

OPC04 04 OPC05 05 OPC06 06

OPC07 07
Instruction SummaryC–25
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C.15 ASCII Character Set

Table C–19 shows the 7-bit ASCII character set and the corresponding hexadecimal val
each character.

Table C–19: ASCII Character Set

Char
Hex
Code Char

Hex
Code Char

Hex
Code Char

Hex
Code

NUL 0 SP 20 @ 40 ‘ 60

SQH 1 ! 21 A 41 a 61
STX 2 " 22 B 42 b 62

ETX 3 # 23 C 43 c 63
EOT 4 $ 24 D 44 d 64

ENQ 5 % 25 E 45 e 65
ACK 6 & 26 F 46 f 66

BEL 7 ' 27 G 47 g 67
BS 8 ( 28 H 48 h 68

HT 9 ) 29 I 49 i 69
LF A * 2A J 4A j 6A

VT B + 2B K 4B k 6B
FF C , 2C L 4C l 6C

CR D - 2D M 4D m 6D
SO E . 2E N 4E n 6E

SI F / 2F O 4F o 6F
DLE 10 0 30 P 50 p 70

DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72

DC3 13 3 33 S 53 s 73
DC4 14 4 34 T 54 t 74

NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 v 76

ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 x 78

EM 19 9 39 Y 59 y 79
SUB 1A : 3A Z 5A z 7A

ESC 1B ; 3B [ 5B { 7B
FS 1C < 3C \ 5C | 7C

GS 1D = 3D ] 5D } 7D
RS 1E > 3E ^ 5E ~ 7E

US 1F ? 3F _ 5F DEL 7F
C–26 Alpha Linux Software (II–B)
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Appendix D

Registered System and Processor Identifiers

This appendix contains a table of the processor type assignments, PALcode implemen
information, and the architecture mask (AMASK) and implementation value (IMPLVE
assignments.

D.1 Processor Type Assignments

The following processor types are defined.

Table D–1: Processor Type Assignments

Major Type Minor Type

1 = EV3

2 = EV4 (21064) 0 = Pass 2 or 2.1

1 = Pass 3 (also EV4s)

3 = Simulation

4 = LCA Family:

LCA4s (21066)

LCA4s embedded (21068)

LCA45 (21066A, 21068A)

0 = Reserved

1 = Pass 1 or 1.1 (21066)

2 = Pass 2 (21066)

3 = Pass 1 or 1.1 (21068)

4 = Pass 2 (21068)

5 = Pass 1 (21066A)

6 = Pass 1 (21068A)

5 = EV5 (21164) 0 = Reserved (Pass 1)

1 = Pass 2, 2.2 (rev BA, CA)

2 = Pass 2.3 (rev DA, EA)
Registered System and Processor IdentifiersD–1



3 = Pass 3

4 = Pass 3.2

5 = Pass 4

6 = EV45 (21064A) 0 = Reserved

1 = Pass 1

2 = Pass 1.1

3 = Pass 2

7 = EV56 (21164A) 0 = Reserved

1 = Pass 1

2 = Pass 2

8 = 21264/EV6 0 = Reserved

1 = Pass 1

2 = Pass 2, 2.1

3 = Pass 2.2

4 = Pass 2.3

5 = Pass 3

6 = Pass 2.4

7 = Pass 2.5

9 = PCA56 (21164PC) 0 = Reserved

1 = Pass 1

10 = PCA57 0 = Reserved

1 = Pass 1

11 = 21264/EV67 0 = Reserved

1 = Pass 1

2 = Pass 2.1

3 = Pass 2.2

4 = Pass 2.1.1

5 = Pass 2.2.1

6 = Pass 2.3 and Pass 2.4

7 = Pass 2.1.2

8 = Pass 2.2.2

9 = Pass 2.2.3 and Pass 2.2.5

Table D–1: Processor Type Assignments (Continued)

Major Type Minor Type
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10 = Pass 2.2.4

11 = Pass 2.5

12 = Pass 2.4.1

13 = Pass 2.5.1

14 = Pass 2.6

12 = 21264/EV68CB 0 = Reserved

1 = Pass 1

2 = Pass 2 and Pass 2.1

3 = Pass 2.2 and Pass 2.3

4 = Pass 3 and Pass 3.1

5 = Pass 2.4

6 = Pass 4

21264/EV68DC 0 = Reserved

1 = Pass 1

2 = Pass 2

3 = Pass 2.3.1

4 = Pass 3 and Pass 3.1

5 = Pass 2.4

6 = Pass 4

13 = 21264/EV68A 0 = Reserved

1 = Pass 1

2 = Pass 2

3 = Pass 2.1 and Pass 2.1A and Pass 3

4 = Pass 2.2

14 = 21264/EV68CX 0 = Reserved

1 = Pass 1

15 = 21364/EV7 0 = Reserved

1 = Pass 1

16 = 21364/EV79 0 = Reserved

1 = Pass 1

17 = 21264/EV69A 0 = Reserved

1 = Pass 1

Table D–1: Processor Type Assignments (Continued)

Major Type Minor Type
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For OpenVMS, Tru64 UNIX, and Alpha Linux, the processor types are stored in the Per-C
Slot Table (SLOT[176]), pointed to by HWRPB[160].

D.2 PALcode Variation Assignments

The PALcode variation assignments are as follows:

D.3 Architecture Mask and Implementation Values

The following bits are defined for the AMASK instruction.

Table D–2: PALcode Variation Assignments

Token PALcode Type Summary

0 Console N/A

1 OpenVMS Section 27.4

2 Tru64 UNIX and Alpha Linux Section 27.4

3–127 Reserved to Compaq

128–255 Reserved to non-Compaq

Table D–3 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)

The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB, SEXTW
STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)

The instructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF, ITOF
ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

2 Support for the count extension (CIX)

The instructions that comprise the CIX extension are CTLZ, CTPOP, and CTTZ.

8 Support for the multimedia extension (MVI)

The instructions that comprise the MVI extension are MAXSB8, MAXSW4, MAXUB8
MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB, PKWB, UNPKBL,
and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC is the same as
instruction PC after the trapping instruction is executed.

10 Not available.

11 Not available.

12 Support for prefetch with modify intent to improve the performance of the first attempt
acquire a lock.
D–4 Alpha Linux Software (II–B)



The following values are defined for the IMPLVER instruction.

Table D–4: IMPLVER Value Assignments

Value Meaning

0 21064 (EV4)

21064A (EV45)

21066A/21068A (LCA45)

1 21164 (EV5)

21164A (EV56)

21164PC (PCA56)

2 21264/EV6

21264/EV67

21264/EV68x

3 21364/EV7

21364/EV79
Registered System and Processor IdentifiersD–5





fic to

truc-

1164

orded

U for
um-

ontrol
and

ctive

dling

nd
nd
ter-
Appendix E

Waivers and Implementation-Dependent

Functionality

This appendix describes waivers to the Alpha architecture and functionality that is speci
particular hardware implementations.

E.1 Waivers

The following waivers have been passed for the Alpha architecture.

E.1.1 21064, 21066, and 21068 IEEE Divide Instruction Violation

The 21064, 21066, and 21068 CPUs violate the architected handling of IEEE divide ins
tions DIVS and DIVT with respect to reporting Inexact Result exceptions.

Note:

The 21064A, 21066A, and 21068A CPUs are compliant and require no waiver. The 2
is also compliant.

As specified by the architecture, floating-point exceptions generated by the CPU are rec
in two places for all IEEE floating-point instructions:

1. If an exception is detected and the corresponding trap is enabled (such as ADD/
underflow), the CPU initiates a trap and records the exception in the exception s
mary register (EXC_SUM).

2. The exceptions are also recorded as flags that can be tested in the floating-point c
register (FPCR). The FPCR can only be accessed with MTPR/MFPR instructions
an explicit MT_FPCR is required to clear the FPCR. The FPCR is updated irrespe
of whether the trap is enabled or not.

The 21064, 21066, and 21068 implementations differ from the above specification in han
the Inexact condition for the IEEE DIVS and DIVT instructions in two ways:

1. The DIVS and DIVT instructions with the /Inexact modifier trap unconditionally a
report the INE exception in the EXC_SUM register (except for NaN, infinity, a
denormal inputs that result in INVs). This allows for a software calculation to de
mine the correct INE status.
Waivers and Implementation-Dependent FunctionalityE–1
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2. The FPCR <INE> bit isneverset by DIVS or DIVT. This is because the 21064, 2106
and 21068 do not include hardware to determine that particular exactness.

E.1.2 21064, 21066, and 21068 Write Buffer Violation

The 21064, 21066, and 21068 CPUs can be made to violate the architecture by, under on
trived case, indefinitely delaying a buffered offchip write.

Note:

The 21064A, 21066A, and 21068A CPUs are compliant and require no waiver. The 2
is also compliant.

The CPUs in violation can send a buffered write offchip when one of the following conditi
is met:

1. The write buffer contains at least two valid entries.

2. The write buffer contains one valid entry and 256 cycles have elapsed since the e
tion of the last write.

3. The write buffer contains an MB or STx_C instruction.

4. A load miss hits an entry in the write buffer.

The write can be delayed indefinitely under condition 2 above, when there is an indef
stream of writes to addresses within the same aligned 32-byte write buffer block.

E.1.3 21264 LDx_L/STx_C with WH64 Violation

The 21264 violates the architected relationship between the LDx_L and STx_C instruc
when an intervening WH64 instruction is executed.

As specified in Section 4.2.4:

If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U, WH64) is executed on
given processor between the LDx_L and the STx_C, the sequence above may alwa
on some implementations; hence, no useful program should do this.

The 21264 varies from that description, with regard to the WH64 instruction, as follows:

If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U) is executed on the gi
processor between the LDx_L and the STx_C, the sequence above may always f
some implementations; hence, no useful program should do this.

If a WH64 memory access is executed on any given 21264 processor between the L
and STx_C, and:

– The WH64 access is to the same aligned 64-byte block that STx_C is accessin
and

– No CALL_PAL REI, rei, or rfe instruction has been executed since the most-rec
LDx_L (ensuring that the sequence cannot occur as the result of unfortunate c
cidences with interrupts)

then, the load-locked/store-conditional sequence may sometimes fail when it w
otherwise succeed and sometimes succeed when it otherwise would fail; hence no
program should do this.
E–2 Alpha Linux Software (II–B)
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E.1.4 21164, 21164A, and 21164PC Operation with RPCC Instruction

The 21164, 21164A, and 21164PC do not fully implement the following specified opera
regarding the Rb operand of the RPCC instruction, as defined in Section 4.11.8:

"RPCC does not read the Processor Cycle Counter (PCC) any earlier than the genera
a result by the nearest preceding instruction that modifies register Rb. If R31 is used a
Rb operand, the PCC need not wait for any preceding computation."

Rather, the waivered CPUs wait only for the issue of all preceding instructions, including
instruction that modifies register Rb; they do not wait for the generation of the result.

For example, the following code reads the processor cycle counter of a waivered CPU wi
waiting for the multiply to generate a result in register R18:

MULQ R16, R17, R18
RPCC R0, R18

However, the following sequence waits for the multiply to complete becaue it waits for the
instruction to issue and the BIS does not issue until the multiply generates a result in re
R18:

MULQ R16, R17, R18
BIS R31, R18, R18
RPCC R0, R18

E.1.5 21264/EV6 Behavior on LDx_L/STx_C Synchronization

Passes 2.3 and 3.2 of the 21264/EV6 can exhibit behavior on LDx_L/STx_C synchroniz
sequences that may be interpreted to be inconsistent with that specified in Sections 4.2
4.2.5. The waivered CPUs behave correctly for LDx_L/STx_C sequences that follow the
guidelines in those sections.

For some ill-formed sequences, that is, code sequences that do not follow the guidelines
fied in those sections, it may be possible for the waivered CPUs to succeed a STx_C
though another processor obtained the lock flag between a LDx_L and the STx_C. This b
ior might occur if there is a taken branch, JSR, or jump between the LDx_L and the STx_C

Consider the following (attempted) synchronization sequence:

start:
LDA R2, 1(R31)
LDQ_L R0, 0(R1)
BEQ R0, doit

lazy:
LDQ R0, 0(R1)
BNE R0, lazy
BR start

doit:
STQ_C R2, 0(R1)
BEQ R2, start
Waivers and Implementation-Dependent FunctionalityE–3
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Section 4.2.4 states that the "sequence above may always fail on some implementations;
no useful program should do this" because there is a taken branch between the LDQ_L a
STQ_C. The waivered CPUs may in some cases succeed the STQ_C. In some cas
waivered CPUs (incorrectly) succeed the STQ_C even though another processor stea
lock.

The following sequence of events might cause this behavior:

1. The block is in the cache and the lock is not set.

2. The LDQ_L issues, returning a value of zero.

3. Another processor writes a one to the lock (via a STQ_C, most likely). This evicts
block containing 0(R1) from the cache.

4. The doit branch mispredicts. The waivered CPU speculatively issues the LDQ on
fall-through path under the doit branch. This load reloads the cache block conta
0(R1) into the cache.

5. The waivered CPU detects the doit branch mispredict and squashes the LDQ o
fall-through path of the doit branch.

6. The STQ_C finds the block containing 0(R1) in the cache and succeeds (incorrectly),
basically because the CPU assumes that if the block is in the cache it must still hav
lock.

If, instead, the code is structured to be compliant with the guidelines, as follows:

start:
LDA R2, 1(R31)
LDQ_L R0, 0(R1)
BNE R0, lazy
STQ_C R2, 0(R1)
BEQ R2, start
BR done

lazy:
LDQ R0, 0(R1)
BNE R0, lazy
BR start

done:

There is no taken-branch between the LDx_L and STx_C. This sequence works correctly
passes of the 21264. The scenario of incorrectly succeeding the STQ_C cannot happen b
(4) cannot happen — branches after a LDQ_L cannot predict taken while the lock is active

E.1.6 21264/EV6 and 21264/EV67 Prefetch and Lock Behavior

For 21264/EV6 and 21264/EV67 processors, a cache block prefetch within a dyna
80-instruction window before a LDx_L can cause the subsequent STx_C to succeed i
rectly if all three instructions reference the same 64-byte cache block. The incorrect oper
cannot occur in subsequent processors. Subsequent processors do not have the waivered
ior and can correctly prefetch locked memory blocks.

The AMASK instruction can be used to test for the waivered condition. On Alpha impleme
tions that are not waivered, AMASK clears feature mask bit 12; for those implementations
are waivered, AMASK does not clear that bit. See Section 5.5.4 for using the AMASK inst
tion and feature mask bit 12 with prefetching locked memory blocks.
E–4 Alpha Linux Software (II–B)



be
cuted.
if the

ple-

ical
ng

an be

w but

ith

it
s are
Implementation Note:

With a waivered processor, the branch based on examining AMASK<12> could
mispredicted and a cache block prefetch described above could be speculatively exe
Such a case does not expose the waivered condition; the condition cannot occur
prefetch isonly a mispredicated path.

E.2 Implementation-Specific Functionality

The following functionality, although a documented part of the Alpha architecture, is im
mented in a manner that is specific to the particular hardware implementation.

E.2.1 Enlarging the Tru64 UNIX kseg Region

When implemented, the kseg region of virtual memory must be able to map all of phys
memory. That requirement is not met on a Tru64 UNIX system with the followi
characteristics:

• An 8KB page size

• A physical address space that is larger than 41 bits

To meet that requirement, in an implementation-dependent manner, the kseg region c
enlarged over the size of the segx regions. No changes are made to the segx or the PTE for-
mats in implementing this enlargement. As a side-effect of the mixed-size regions, a ne
currently unused memory segment, seg2, is created.

For example, a 43-bit segx region and 48-bit kseg region, as implemented for the 21364 w
those characteristics, could have the following address space partitions:

In this example of mixed-size virtual address space, segx addresses are sign-extended from b
<42>, while kseg addresses are sign-extended from bit <47>. In tabular form, the region
as follows:

Single-size 43-bit regions:

seg0<42:41> = 0x, <42> = 0 sign-extended to <63>

kseg<42:41> = 10, <42> = 1 sign-extended to <63>

seg1<42:41> = 11, <42> = 1 sign-extended to <63>

63 56 45 054 4355 4453 4252 41 3651 40 37 34 31 25850 39 36 33 30 14749 38 35 32 2960 59 4858 4757 46

0seg0

D = Do not care, not used for the 21364
P = Physical (and virtual) addresses that are used in kseg on the 21364
V = Virtual address bits that are used

0 0 0 0 00 00 00 00 00 00 00 V0 V0 0 . . .. . .. ... ... .. . ...V
1kseg 1 1 1 1 11 11 01 D1 D1 P1 P1 P1 P1 1 . . .. . .. ... ... .. . ...P
1seg2 1 1 1 1 11 11 11 11 11 11 11 01 V1 1 . . .. . .. ... ... .. . ...V

62 61

1seg1 1 1 1 1 11 11 11 11 11 11 11 11 V1 1 . . .. . .. ... ... .. . ...V
Waivers and Implementation-Dependent FunctionalityE–5
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Mixed-size 48-bit kseg/43-bit segx regions:

seg0<42:41> = 0x, <42> = 0 sign-extended to <63>

kseg<47:46> = 10, <47> = 1 sign-extended to <63>

seg1<42:41> = 11, <42> = 1 sign-extended to <63>, with <41> = 1

seg2<42:41> = 10, <42> = 1 sign-extended to <63>, with <41> = 0

Possible 21364 Virtual Address (seg x) Anomaly

The 21364 implementation of mixed-mode segx virtual addressing is as follows:

1. The hardware checks that bits VA<63:48> are a sign-extension of VA<47> on e
access, and the PALcode checks that bits VA<47:43> are a sign-extension of VA<
after the access incurs a TBMISS.

2. When a TBMISS occurs, the hardware cannot construct the VA of the lowest-level
entry as described in Section 17.6.2 . For performance reasons, the VA that the
ware can construct is used, rather than having the PALcode calculate the VPTE i
TBMISS routine. Only bits <47:43> of this VA can be pre-specified by PALcode.
avoid creating aliases to proper 43-bit segx addresses, PALcode must pre-speci
bits<47:43> so that theycannotbe a proper sign-extension of VA<42>. It is this VA
that is placed in the TB, mapped to the lowest level PTE entry. This entry must exi
the TB to allow virtual access of the PTE. (Note that PALcode access of the resu
virtual address will not fault. Although bits VA<47:43> are not a proper sign-extens
of VA<42>, they are not checked by the hardware.)

It is possible for a kernel-modeaccess to a virtual address that is properly extended fr
VA<47>, but with VA<47:43> not properly sign-extended from VA<42>, to erroneous
match a TB entry for the virtual address of a lowest-level PTE entry. The incorre
sign-extended address will be translated instead of correctly being detected. (The access
be kernel mode because the protection on the PTE in the TB does not allow user-mode ac

E.2.2 Reduced Page Table (RPT) Mode in the 21364

When a TBMISS occurs on a VA in the RPT region, the 21364 calculates the virtual addre
the level 2 PTE (VPTE) as follows:

For performance reasons, it is desirable that a single TB miss flow execute without rega
whether the missing VA is mapped by two levels (RPT) or three levels of page table. It is
ther desirable that a single TB miss flow use the VPTE address as constructed by the 2
rather than calculating it in PALcode.

The double TB miss flow (entered when the VPTE access causes a TB miss) physically
the page tables to translate the VPTE address to the physical page that contains the PT
translation is put in the TB and the VPTE access is retried. Note that the original missing V
never translated by a physical walk of the page tables.

VPTE<63:42> ← SEXT(VPTB<47:42>)
VPTE<41:29> ← SEXT(VA<47:42> & 3016) = 00000000100002
VPTE<28:16> ← SEXT(VA<47:42> & 0F16) = VA<45:42>

VPTE<15:3> ← VA<41:29>
VPTE<02:0> ← 0
E–6 Alpha Linux Software (II–B)
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The same double TB miss flow is entered whether or not the original missing VA reside
the RPT region. The physical walk of the page tables relies on self-map entries in the
table to "back up" one or more levels, so the final PTE obtained is the PTE for the lowest
of page table, mapping the original missing VA. This walk also requires that the index fi
for the intermediate page table levels, while they might be shifted (that is, the original Le
index might become a Level2 index), must be left intact during the transformation from VA
VPTE. However, as shown above, when the original missing VA is in the RPT region,
21364 separates VA<47:42> across two index fields in the VPTE address, which break
indexing mechanism. So, a simple physical walk of the page tables cannot translate this
address.

There are (at least) two remedies to this problem: 1) make the double TB miss
RPT-aware, translating the VPTE address in an alternate manner when the original missin
resides in the RPT region; or 2)create a structure such that the double TB miss flow can c
tinue to do a three-level physical walk without being RPT-aware.

The PALcode assumes the second remedy. The construction of the page table is change
that VA<45:42> is the complete Level1 index into an alternate Level1 page table (the
Level1 page table) that is used only for the RPT region. Because the PALcode never tran
the original missing VA by a physical walk of the page tables, the PTEs in the normal Le
page table, indexed by VA<47:42> = 01xxxx2, can be used for a different purpose as describ
below. Note that with this change, the algorithm in Sections 11.8.3.1 (OpenVMS), 17.6
(Tru64 UNIX), and 22.6.3.1 (Alpha Linux) cannot be used to translate the original miss
VA.

The 21364 produces a VPTE address with Level2 index bits (VPTE<41:29>) of 01002,
which is the index of the first entry in the RPT region of the normal Level1 page table. T
PTE can now be used to map the RPT Level1 page table. The rest of the PTEs in that r
are left unused.

Using page tables constructed in this manner, the double TB miss flow translation of the V
address can proceed whether or not the original missing VA is in the RPT region.

E.2.3 21064/21066/21068 Performance Monitoring

Note:

All functions, arguments, and descriptions in this section apply to the 21064/2106
21066/21066A, and 21068/21068A.

PALcode instructions control the 21064/21066/21068 onchip performance counters. For O
VMS, the instruction is MTPR_PERFMON; for Tru64 UNIX and Alpha Linux, the instructio
is wrperfmon.

The instruction arguments and results are described in the following sections. The scratc
ister usage is operating system specific.

Two onchip counters count events. The bit width of the counters (8, 12, or 16 bits) ca
selected and the event that they count can be switched among a number of available e
One possible event is an "external" event. For example, the processor board can sup
event that causes the counter to increment. In this manner, offchip events can be counted
Waivers and Implementation-Dependent FunctionalityE–7
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The two counters can be switched independently. There is no hardware support for rea
writing, or resetting the counters. The only way to monitor the counters is to enable the
cause an interrupt on overflow.

The performance monitor functions, described in Section E.2.3.2, can provide the follow
depending on implementation:

• Enable the performance counters to interrupt and trap into the performance monit
vector in the operating system.

• Disable the performance counter from interrupting. This does not necessarily mean
the counters will stop counting.

• Select which events will be monitored and set the width of the two counters.

• In the case of OpenVMS, Tru64 UNIX, and Alpha Linux, implementations can cho
to monitor selected processes. If that option is selected, the PME bit in the PCB con
the enabling of the counters. Since the counters cannot be read/written/reset, if
than one process is being monitored, the rounding error may become significant.

E.2.3.1 21064/21066/21068 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular oper
system.

For the OpenVMS Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter caus
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then
patches in the form of an exception (not in the form of an interrupt) to the operating syste
ve c to r i ng to t he S C B p er f o rm a n c e m on i to r e n t r y p o in t th r ou gh S C B B + 6
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode.

Two interrupts are generated if both counters overflow. For each interrupt, the status of
counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the Tru64 UNIX and Alpha Linux Operating Systems

When a counter overflows and interrupt enabling conditions are correct, the counter caus
interrupt to PALcode. The PALcode builds an appropriate stack frame and dispatches
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.

Two interrupts are generated if both counters overflow. For each interrupt, registers a0..a
as follows:

a0 = osfint$c_perf (4)
a1 = scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.
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E.2.3.2 Functions and Arguments for the 21064/21066/21068

The functions execute on a single (the current running) processor only and are describ
Table E–1.

• The OpenVMS MTPR_PERFMON instruction is called with a function code in R16
function-specific argument in R17, and status is returned in R0.

• The Tru64 UNIX and Alpha Linux wrperfmon instruction is called with a function co
in a0, a function specific argument in a1, and status is returned in v0.

Table E–1 21064/21066/21068 Performance Monitoring Functions

Function Register Usage Comments

Enable performance monitoring Enable takes effect at the next IPL change

Tru64 UNIX and Alpha Linux
Input: a0 = 1 Function code

a1 = 0 Argument
Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS

Input: R16 = 1 Function code
R17 = 0 Argument

Output: R0 = 1 Success
R0 = 0 Failure (not generated)

Disable performance monitoring Disable takes effect at the next IPL change

Tru64 UNIX and Alpha Linux

Input: a0 = 0 Function code
a1 = 0 Argument

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS
Input: R16 = 0 Function code

R17 = 0 Argument
Output: R0 = 1 Success

R0 = 0 Failure (not generated)
Waivers and Implementation-Dependent FunctionalityE–9



Select desired events (mux_ctl)

Tru64 UNIX and Alpha Linux

Input: a0 = 2 Function code
a1 = mux_ctl mux_ctl is the exact contents of those fields from the

ICCSR register, in write format, described in Table E–2.

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS
Input: R16 = 2 Function code

R17 = mux_ctl mux_ctl is the exact contents of those fields from the
ICCSR register, in write format, described in Table E–2.

Output: R0 = 1 Success

R0 = 0 Failure (not generated)

Select performance monitoring options

Tru64 UNIX and Alpha Linux
Input: a0 = 3 Function code

a1 = opt Function argumentopt is:
<0> = log all processes if set
<1> = log only selected if set

Output: v0 = 1 Success

v0 = 0 Failure (not generated)

OpenVMS

Input: R16 = 3 Function code
R17 = opt Function argumentopt is:

<0> = log all processes if set
<1> = log only selected if set

Output: R0 = 1 Success
R0 = 0 Failure (not generated)

Table E–1 21064/21066/21068 Performance Monitoring Functions (Continued)

Function Register Usage Comments
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Table E–2 21064/21066/21068 MUX Control Fields in ICCSR Register

Bits Option Description

34:32 PCMUX1 Event selection, counter 1:

11:8 PCMUX0 Event selection, counter 0:

3 PC0 Frequency setting, counter 0:

0 PC1 Frequency setting, counter 1:

Value Description

0 Total D-cache misses

1 Total I-cache misses
2 Cycles of dual issue

3 Branch mispredicts (conditional, JSR, HW_REI)
4 FP operate instructions (not BR, LOAD, STORE)

5 Integer operates (including LDA, LDAH into R0–R30)
6 Total store instructions

7 External events supplied by pin

Value Description

0 Total issues divided by 2

1 Unused
2 Nothing issued, no valid I-stream data

3 Unused
4 All load instructions

5 Unused
6 Nothing issued, resource conflict

7 Unused
8 All branches (conditional, unconditional, JSR, HW_REI)

9 Unused
10 Total cycles

11 Cycles while in PALcode environment
12 Total nonissues divided by 2

13 Unused
14 External event supplied by pin.

15 Unused

Value Description

0 2**16 (65536) events per interrupt

1 2**12 (4096) events per interrupt

Value Description

0 2**12 (4096) events per interrupt

1 2**8 (256) events per interrupt
Waivers and Implementation-Dependent FunctionalityE–11
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E.2.4 21164/21164PC Performance Monitoring

Unless otherwise stated, the term "21164" in this section means implementations of the 2
at all frequencies.

PALcode instructions control the 21164/21164PC onchip performance counters. For O
VMS, the instruction is MTPR_PERFMON; for Tru64 UNIX and Alpha Linux, the instructio
is wrperfmon.

The instruction arguments and results are described in the following sections. The scratc
ister usage is operating system specific.

Three onchip counters count events. Counters 0 and 1 are 16-bit counters; counter 2 is a
counter. Each counter can be individually programmed. Counters can be read and writte
are not required to interrupt. The counters can be collectively restricted according to the
cessor mode.

Processes can be selectively monitored with the PME bit.

E.2.4.1 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular oper
system.

For the OpenVMS Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter caus
interrupt to PALcode. The PALcode builds an appropriate stack frame. The PALcode then
patches in the form of an exception (not in the form of an interrupt) to the operating syste
ve c to r i ng to t he S C B p er f o rm a n c e m on i to r e n t r y p o in t th r ou gh S C B B + 6
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode.

An interrupt is generated for each counter overflow. For each interrupt, the status of
counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt
R4 = 2 if performance counter 2 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the Tru64 UNIX and ALpha Linux Operating Systems

When a counter overflows and interrupt enabling conditions are correct, the counter caus
interrupt to PALcode. The PALcode builds an appropriate stack frame and dispatches
operating system by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.

An interrupt is generated for each counter overflow. For each interrupt, registers a0..a2
follows:

a0 = osfint$c_perf (4)
a1 = scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt
E–12 Alpha Linux Software (II–B)
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E.2.4.2 Functions and Arguments

The functions execute only on a single (the current running) processor and are describ
Table E–3.

The OpenVMS MTPR_PERFMON instruction is called with a function code in R16, a fu
tion-specific argument in R17, and status is returned in R0.

The Tru64 UNIX and Alpha Linux wrperfmon instruction is called with a function code in a
a function specific argument in a1, and status is returned in v0.

Table E–3 Performance Monitoring Functions

Function Register Usage Comments

Enable performance monitoring; do not reset counters

Tru64 UNIX and Alpha Linux

Input: a0 = 1 Function code value
a1 = arg Argument from Table E–4

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS
Input: R16 = 1 Function code value

R17 = arg Argument from Table E–4
Output: R0 = 1 Success

R0 = 0 Failure (not generated)

Enable performance monitoring; start the counters from zero

Tru64 UNIX and Alpha Linux

Input: a0 = 7 Function code value
a1 = arg Argument from Table E–4

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS
Input: R16 = 7 Function code value

R17 = arg Argument from Table E–4
Output: R0 = 1 Success

R0 = 0 Failure (not generated)
Waivers and Implementation-Dependent FunctionalityE–13



Disable performance monitoring; do not reset counters

Tru64 UNIX and Alpha Linux

Input: a0 = 0 Function code value
a1 = arg Argument from Table E–5

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS
Input: R16 = 0 Function code value

R17 = arg Argument from Table E–5
Output: R0 = 1 Success

R0 = 0 Failure (not generated)

Select desired events (MUX_SELECT)

Tru64 UNIX and Alpha Linux
Input: a0 = 2 Function code value

a1 = arg Argument from Table E–6 or E–7
Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS

Input: R16 = 2 Function code value
R17 = arg Argument from Table E–6 or E–7

Output: R0 = 1 Success
R0 = 0 Failure (not generated)

Select Processor Mode options

Tru64 UNIX and Alpha Linux
Input: a0 = 3 Function code value

a1 = arg Argument from Table E–8
Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS

Input: R16 = 3 Function code value
R17 = arg Argument from Table E–8

Output: R0 = 1 Success
R0 = 0 Failure (not generated)

Table E–3 Performance Monitoring Functions (Continued)

Function Register Usage Comments
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Select interrupt frequencies

Tru64 UNIX and Alpha Linux

Input: a0 = 4 Function code value
a1 = arg Argument from Table E–9

Output: v0 = 1 Success
v0 = 0 Failure (not generated)

OpenVMS
Input: R16 = 4 Function code value

R17 = arg Argument from Table E–9
Output: R0 = 1 Success

R0 = 0 Failure (not generated)

Read the counters

Tru64 UNIX and Alpha Linux
Input: a0 = 5 Function code value

a1 = arg Argument from Table E–10
Output: v0 = val Return value from Table E–10

OpenVMS
Input: R16 = 5 Function code value

R17 = arg Argument from Table E–10
Output: R0 = val Return value from Table E–10

Write the counters

Tru64 UNIX and Alpha Linux
Input: a0 = 6 Function code value

a1 = arg Argument from Table E–11
Output: v0 = 1 Success

v0 = 0 Failure (not generated)
OpenVMS

Input: R16 = 6 Function code value
R17 = arg Argument from Table E–11

Output: R0 = 1 Success
R0 = 0 Failure (not generated)

Table E–3 Performance Monitoring Functions (Continued)

Function Register Usage Comments
Waivers and Implementation-Dependent FunctionalityE–15
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Table E–4: 21164/21164PC Enable Counters

Bits Meaning When Set

2 Operate on counter 2

1 Operate on counter 1

0 Operate on counter 0

Table E–5: 21164/21164PC Disable Counters

Bits Meaning When Set

2 Operate on counter 2

1 Operate on counter 1

0 Operate on counter 0

Table E–6 21164 Select Desired Events

Bits Name Meaning

63:32 MBZ

31 PCSEL0 Counter 0 selection:

30:25 MBZ

24:22 CBOX2 CBOX2 event selection (only has meaning when event selection field PCSEL
value <15>; otherwise MBZ). CBOX2 described in Table E–15.

21:19 CBOX1 CBOX1 event selection (only has meaning when event selection field PCSEL
value <15>; otherwise MBZ). CBOX1 described in Table E–14.

18:8 MBZ

7:4 PCSEL1 Counter 1 event selection. PCSEL1 described in Table E–12.

3:0 PCSEL2 Counter 2 event selection. PCSEL2 described in Table E–13.

Table E–7 21164PC Select Desired Events

Bits Name Meaning

63:32 MBZ

31 PCSEL0 Counter 0 selection:

30:14 MBZ

Value Meaning

0 Cycles
1 Issues

Value Meaning

0 Cycles
1 Issues
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Setting any of the "NOT" bits causes the counters to not count when the processor is runn
the specified mode. Under OpenVMS, "NOT_KERNEL" also stops the count in executive
supervisor mode, except as noted below:

Note:

Tru64 UNIX and Alpha Linux counts user mode by using the executive counter; tha
the count for executive mode is returned as the user mode count.

13:11 PM1_MUX PM1_MUX event selection (only has meaning when event selection fie
PCSEL2 is value <15>; otherwise MBZ). PM1_MUX is described in Table E
17.

10:8 PM0_MUX PM0_MUX event selection (only has meaning when event selection fie
PCSEL1 is value <15>; otherwise MBZ). PM0_MUX is described in Table E
16.

7:4 PCSEL1 Counter 1 event selection. PCSEL1 described in Table E–12.

3:0 PCSEL2 Counter 2 event selection. PCSEL2 described in Table E–13.

Table E–8: 21164/21164PC Select Special Options

Bits Meaning

63:31 MBZ

30 Stop count in user mode

29:10 MBZ

9 Stop count in PALmode

8 Stop count in kernel mode

7:1 MBZ

0 Monitor selected processes (when clear monitor all processes)

NOT_BITS Counters Operate Under These Modes When Bits Set:

K U P

0 0 0 K E S U P

0 0 1 K E S U

0 1 0 K E S P

0 1 1 K E S

1 0 0 U P

1 0 1 U

1 1 0 P

1 1 1 E S (here "NOT_KERNEL" stops kernel counter only)

Table E–7 21164PC Select Desired Events

Bits Name Meaning
Waivers and Implementation-Dependent FunctionalityE–17
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Table E–9 contains the selection definitions for each of the three counters. All frequency f
are two-bit fields with the following values defined:

Table E–9: 21164/21164PC Select Desired Frequencies

Bits Meaning When Set

63:10 MBZ

9:8 Counter 0 frequency:

7:6 Counter 1 frequency:

5:4 Counter 2 frequency:

3:0 MBZ

Table E–10: 21164/21164PC Read Counters

Bits Meaning When Returned

63:48 Counter 0 returned value

47:32 Counter 1 returned value

31:30 MBZ

29:16 Counter 2 returned value

15:1 MBZ

0 Set means success; clear means failure

Value Meaning

0 Do not interrupt
1 Unused

2 Low frequency (2**16 (65536) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

Value Meaning

0 Do not interrupt

1 Unused
2 Low frequency (2**16 (65536) events per interrupt)

3 High frequency (2**8 (256) events per interrupt)

Value Meaning

0 Do not interrupt

1 Unused
2 Low frequency (2**14 (16384) events per interrupt)

3 High frequency (2**8 (256) events per interrupt)
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The values in Table E–12 choose the counter 1 (PCSEL1) event selection

Table E–11: 21164/21164PC Write Counters

Bits Meaning

63:48 Counter 0 written value

47:32 Counter 1 written value

31:30 MBZ

29:16 Counter 2 written value

15:0 MBZ

Table E–12: 21164/21164PC Counter 1 (PCSEL1) Event Selection

Value Meaning

0 Nothing issued, pipeline frozen

1 Some but not all issuable instructions issued

2 Nothing issued, pipeline dry

3 Replay traps (ldu, wb/maf, litmus test)

4 Single issue cycles

5 Dual issue cycles

6 Triple issue cycles

7 Quad issue cycles

8 Flow change (all branches, jsr-ret, hw_rei), where:

If PCSEL2 has value 3, flow change is a conditional branch

If PCSEL2 has value 2, flow change is a JSR-RET

9 Integer operate instructions

10 Floating point operate instructions

11 Load instructions

12 Store instructions

13 Instruction cache access

14 Data cache access

15 For the 21164, use CBOX1 event selection in Table E–14.

For the 21164PC, use PM0_MUX event selection in Table E–16.
Waivers and Implementation-Dependent FunctionalityE–19



The values in Table E–13 choose the counter 2 (PCSEL2) event selection:

The values in Table E–14 choose the CBOX1 event selection.

Table E–13: 21164/21164PC Counter 2 (PCSEL2) Event Selection

Value Meaning

0 Long stalls (> 15 cycles)

1 Unused value

2 PC mispredicts

3 Branch mispredicts

4 I-cache misses

5 ITB misses

6 D-cache misses

7 DTB misses

8 Loads merged in MAF

9 LDU replays

10 WB/MAF full replays

11 Event from external pin

12 Cycles

13 Memory barrier instructions

14 LDx/L instructions

15 For the 21164, use CBOX2 event selection in Table E–15.

For the 21164PC, use PM1_MUX event selection in Table E–17.

Table E–14: 21164 CBOX1 Event Selection

Value Meaning

0 S-cache access

1 S-cache read

2 S-cache write

3 S-cache victim

4 Unused value

5 B-cache hit

6 B-cache victim

7 System request
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The values in Table E–15 choose the CBOX2 event selection.

The values in Table E–16 choose the PM0_MUX event selection and perform the chosen
ation in Counter 0.

The values in Table E–17 choose the PM1_MUX event selection and perform the chosen
ation in Counter 1.

Table E–15: 21164 CBOX2 Event Selection

Value Meaning

0 S-cache misses

1 S-cache read misses

2 S-cache write misses

3 S-cache shared writes

4 S-cache writes

5 B-cache misses

6 System invalidates

7 System read requests

Table E–16: 21164PC PM0_MUX Event Selection

Value Meaning

0 B-cache read operations

1 B-cache D read hits

2 B-cache D read fills

3 B-cache write operations

4 Undefined

5 B-cache clean write hits

6 B-cache victims

7 Read miss 2 launched

Table E–17: 21164PC PM1_MUX Event Selection

Value Meaning

0 B-cache D read operations

1 B-cache read hits

2 B-cache read fills

3 B-cache write hits

4 B-cache write fills
Waivers and Implementation-Dependent FunctionalityE–21



pen-
n

h reg-

, and

264.
ounting
relev-
Pass

ating

es an
ow
in the
g to
0

each

es an
ow
g sys-
E.2.5 21264 and 21364 Performance Monitoring

PALcode instructions control the 21264 and 21364 onchip performance counters. For O
VMS, the instruction is MTPR_PERFMON; for Tru64 UNIX and Alpha Linux, the instructio
is wrperfmon.

The instruction arguments and results are described in the following sections. The scratc
ister usage is operating system specific.

Two 20-bit onchip counters count events. Counters can be individually programmed, read
written.

Processes can be selectively monitored with the PME bit.

Supported counting modes differ between Pass 2.3 and Pass 3 (and subsequent) of the 21
Pass 3 and subsequent passes, and the 21364 support the ProfileMe and Aggregate c
modes, while Pass 2.3 supports only Aggregate counting mode. When that distinction is
ent, it is documented. If no distinction is documented, the documentation applies to both
2.3 and Pass 3 (and subsequent) of the 21264 and the 21364.

E.2.5.1 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular oper
system.

For the OpenVMS Operating System

When a counter overflows and interrupt enabling conditions are correct, the counter caus
interrupt to PALcode. (For ProfileMe mode, the interrupt occurs after the ProfileMe wind
closes.) The PALcode builds an appropriate stack frame. The PALcode then dispatches
form of an exception (not in the form of an interrupt) to the operating system by vectorin
th e S C B p e r f o r m a nc e m on i t o r e n t r y po in t th r ou gh S C B B + 65
(HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel mode.

An interrupt is generated for each counter overflow. For each interrupt, the status of
counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the Tru64 UNIX and Alpha Linux Operating Systems

When a counter overflows and interrupt enabling conditions are correct, the counter caus
interrupt to PALcode. (For ProfileMe mode, the interrupt occurs after the ProfileMe wind
closes.) The PALcode builds an appropriate stack frame and dispatches to the operatin
tem by vectoring to the interrupt entry point entINT, at IPL 6, in kernel mode.

5 System read/flush B-cache hits

6 System read/flush B-cache misses

7 Read miss 3 launched

Table E–17: 21164PC PM1_MUX Event Selection (Continued)

Value Meaning
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An interrupt is generated for each counter overflow. For each interrupt, registers a0..a2
follows:

a0 = osfint$c_perf (4)
a1 = scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt

E.2.5.2 Functions and Arguments

The functions execute only on a single (the current running) processor and are describ
Table E–18.

The OpenVMS MTPR_PERFMON instruction is called with a function code in R16, a fu
tion-specific argument in R17, and any output is returned in R0.

The Tru64 UNIX and Alpha Linux wrperfmon instruction is called with a function code in a
a function-specific argument in a1, and any output is returned in v0.

Table E–18 Performance Monitoring Functions

Function Register Usage Comments

Enable performance monitoring

Tru64 UNIX and Alpha Linux

Input: a0 = 1 Function code value
a1 = arg Argument from Table E–19

OpenVMS
Input: R16 = 1 Function code value

R17 = arg Argument from Table E–19

Disable performance monitoring

Tru64 UNIX and Alpha Linux

Input: a0 = 0 Function code value
a1 = arg Argument from Table E–20

OpenVMS
Input: R16 = 0 Function code value

R17 = arg Argument from Table E–20

Select desired events (MUX_SELECT)

Tru64 UNIX and Alpha Linux

Input: a0 = 2 Function code value
a1 = arg Argument from Table E–21

OpenVMS
Input: R16 = 2 Function code value

R17 = arg Argument from Table E–21
Waivers and Implementation-Dependent FunctionalityE–23



Select logging options

Tru64 UNIX and Alpha Linux

Input: a0 = 3 Function code value
a1[0] = 1set = log all processes
a1[0] clear = log only selected processes

OpenVMS
Input: R16 = 3 Function code value

R17[0] set = log all processes
R17[0] clear = log only selected processes

Read the counters

Tru64 UNIX and Alpha Linux

Input: a0 = 5 Function code value
Output: v0 = contents of the counters; see Table E–22

OpenVMS
Input: R16 = 5 Function code value

Output: R0 = contents of the counters; see Table E–22

Write the counters

Tru64 UNIX and Alpha Linux

Input: a0 = 6 Function code value
a1 = arg Argument from Table E–23

OpenVMS
Input: R16 = 6 Function code value

R17 = arg Argument from Table E–23

Enable and write selected counters

Tru64 UNIX and Alpha Linux
Input: a0 = 7 Function code value

a1 = arg Argument from Table
OpenVMS

Input: R16 = 7 Function code value
R17 = arg Argument from Table

Table E–18 Performance Monitoring Functions (Continued)

Function Register Usage Comments
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Read I_STAT values (ProfileMe mode only)

Tru64 UNIX and Alpha Linux

Input: a0 = 8 Function code value
Output: v0 = I_STAT values as shown in Table E–25

OpenVMS
Input: R16 = 8 Function code value

Output: R0 = I_STAT values as shown in Table E–25

Read PMPC (ProfileMe mode only)

Tru64 UNIX and Alpha Linux
Input: a0 = 9 Function code value

Output: v0 = The PC of the last profiled instruction; see Table E–26
OpenVMS

Input: R16 = 9 Function code value
Output: R0 = The PC of the last profiled instruction; see Table E–26

Table E–19 21264 and 21364 Enable Counters

R17/a1 Bits Meaning When Set

1 Set I_CTL[PCT1_EN], which enables counter 1

0 Set I_CTL[PCT0_EN], which enables counter 0

Table E–20 21264 and 21364 Disable Counters

R17/a1 Bits Meaning When Set

1 Clear I_CTL[PCT1_EN], which disables counter 1

0 Clear I_CTL[PCT0_EN], which disables counter 0

Table E–18 Performance Monitoring Functions (Continued)

Function Register Usage Comments
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ge.
Table E–21 21264 and 21364 Select Desired Events

For 21264 to Pass 2.3 1:

R17/a1 Bits Meaning

4

3–2

1 For 21264 Pass 3.0 and subsequent and 21364, see continuation of the table on the next pa

Bit Value Meaning

1 Counter 0 counts retired instructions.

0 Counter 0 counts cycles.

Bit Value Meaning

0000 Counter 1 counts cycles.
0001 Counter 1 counts retired conditional branches.

0010 Counter 1 counts retired branch mispredicts.
0011 Counter 1 counts retired DTB single misses * 2.

0100 Counter 1 counts retired DTB double double misses.
0101 Counter 1 counts retired ITB misses.

0110 Counter 1 counts retired unaligned traps.
0111 Counter 1 counts replay traps.
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For 21264 Pass 3 and Subsequent (Including the 21364):

R17/a1 Bits Meaning

4

3–2 If bit 4 value is 1, enabling ProfileMe mode:

If bit 4 value is 0, enabling Aggregate mode:

Table E–22 21264 and 21364 Read Counters

R0/v0 Bits Meaning When Returned

63–48 Reserved

47–28 Counter 0 returned value

27–26 Reserved

25–6 Counter 1 returned value

5–0 Reserved

Bit Value Meaning

1 Enable ProfileMe mode.

0 Enable Aggregate mode.

Bit Value Meaning

00 Counter 0 counts retired instructions.

Counter 1 counts cycles.

01 Counter 0 counts cycles.

Counter 1 counts cycles of delayed retire pointer advance.
10 Counter 0 counts retired instructions.

Counter 1 counts Bcache misses/long probe latency.
11 Counter 0 counts cycles.

Bit Value Meaning

00 Counter 0 counts retired instructions.

Counter 1 counts cycles.
01 Counter 0 counts cycles.

Counter 1 is not defined.

10 Counter 0 counts retired instructions.

Counter 1 counts Bcache misses/long probe latency.

11 Counter 0 counts cycles.
Waivers and Implementation-Dependent FunctionalityE–27
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Table E–23 21264 and 21364 Write Counters

R17/a1 Bits Meaning

63–48 Reserved

47–28 Counter 0 value to write

27–26 Reserved

25–6 Counter 1 value to write

5–2 Reserved

1 When set, write to Counter 1

0 When set, write to Counter 0

Table E–24 21264 and 21364 Enable and Write Counters

R17/a1 Bits Meaning

63–48 Reserved

47–28 Counter 0 value to write; writing zeroes clears the counter

27–26 Reserved

25–6 Counter 1 value to write; writing zeroes clears the counter

5–2 Reserved

1 When set, enable and write to Counter 1

0 When set, enable and write to Counter 0

Table E–25 21264 and 21364 Read I_STAT Values

R0/v0 Bits Meaning

63–41 Reserved

40 ProfileMe mispredict trap

If bit 39 is set, this bit indicates that the profiled instruction caused a mispredict tr
JSR/JMP/RET/COR or HW_JSR/HW_JMP/HW_RET/HW_COR mispredicts do n
set this bit but can be recognized by the presence of one of these instructions a
PMPC location with bit 39 set. This identification is exact in all cases excepterror con-
dition traps. Hardware corrected Icache parity or Dcache ECCerrors, and machine
check traps can occur on any instruction in the pipeline.

39 ProfileMe trap

When set, indicates that the profiled instruction caused a trap. The trap type fi
PMPC register, and instruction at the PMPC location are needed to distinguish all
types.
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38 ProfileMe load-store order trap

If the profiled instruction caused a replay trap, this bit set indicates that the precise trap
cause was an Mbox load-store order replay trap. If clear, this bit indicates that
replay trap was any one of the following:

• Mbox load-load order

• Mbox load queue full

• Mbox store queue full

• Mbox wrong size trap (such as, STL→ LDQ)

• Mbox Bcache alias (2 physical addresses map to same Bcache line)

• Mbox Dcache alias (2 physical addresses map to same Dcache line)

• Icache parity error

• Dcache ECC error

Table E–25 21264 and 21364 Read I_STAT Values (Continued)

R0/v0 Bits Meaning
Waivers and Implementation-Dependent FunctionalityE–29
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37–34 ProfileMe trap types

If the profiled instruction caused a trap (indicated by bit 39 set), this field indicates
trap type as follows:

Traps due to ITB miss, Istream access violation, or interrupts are not reported in the
trap type field because they do not cause pipeline aborts. Instead, those traps
pipeline redirection and can be distinguished by examining the PMPC value for t
presence of the corresponding PALcode entry offset addresses, shown below. In
cases, the ProfileMe interrupt is normally delivered when exiting the trap PALco
flow and the EXC_ADDR register contains the original PC that encountered the re
rect trap.

Table E–25 21264 and 21364 Read I_STAT Values (Continued)

R0/v0 Bits Meaning

Bit Value Trap Type

15 Reset
14 MT_FPCR

13 Invalid (use PMPC, described below)
12 Arithmetic

11 Invalid (use PMPC, described below)
10 Machine Check

9 Invalid (use PMPC, described below)
8 OPCDEC

7 Dstream Fault
6 DTB Single miss

5 Unaligned Load/Store
4 Floating point disabled

3 DTB Double miss (4 level page tables)
2 DTB Double miss (3 level page tables)

1 Invalid (unused)
0 Replay

PMPC[14:0] Trap

0581 ITB miss

0481 Istream Access Violation
0681 Interrupt
E–30 Alpha Linux Software (II–B)
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33 ProfileMe Icache miss

When set, indicates that the profiled instruction was contained in an aligned 4-inst
tion Icache fetch block that requested a new Icache fill stream.

32–30 ProfileMe counter 0 overcount

When set, indicates a value (0-7) that must be subtracted from the counter 0 resu
obtain an accurate count of the number of instructions retired in the interval beginn
three cycles after the profiled instruction reaches pipeline stage 2 and ending
cycles after the profiled instruction is retired.

29–0 Reserved

Table E–26 21264 and 21364 Read PMPC Value

R0/v0 Bits Meaning

63–2 Address of the profiled instruction

1 Reserved

0 When set, indicates that the PC field contains a physical-mode PALcode address.

Table E–25 21264 and 21364 Read I_STAT Values (Continued)

R0/v0 Bits Meaning
Waivers and Implementation-Dependent FunctionalityE–31
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Appendix F

Windows NT Software

This appendix contains a copy of the Windows NT part of the Rev 6 SRM and it is inclu
for archival purposes only. There is no support for anything in this appendix.

This appendix describes how a particular implementation of the Windows NT Alpha opera
system relates to the Alphaarchitecture.It is important to note the following:

• The interfaces described in this section will change as necessary to suppor
Microsoft Windows NT operating system.

• Effectively, many of the interfaces described in this section are private agreem
between the PALcode and the kernel. Other software should not assume that
interfaces are available.

• In particular, the interfaces in this section must not be used by software developers
are writing device drivers; instead use the portable Windows NT device driver in
faces.

• The only interfaces in this section that may be used by nonsystem software are the b
rdteb, and gentrap PALcode instructions.

F.1 Introduction to Windows NT Alpha Software

The primary goal of the Windows NT Alpha PALcode implementation is total compatibi
with the base operating system design and existing implementations of Windows NT fo
processor architectures.Maintaining compatibility with Windows NT and software portabilit
between versions of Windows NT requires the stipulations mentioned in the introduction t
section. It is important that all software developers read those stipulations.

The PALcode mechanism, coupled with the Windows NT Alpha design, provides binary c
patibility for native system components across different processor implementations.
PALcode also provides a clean abstracted processor model that matches Windows NT re
ments, requires minimal porting effort for new platforms, and provides the best poss
performance while offering those features.

Windows NT Alpha is a 32-bit operating system. Therefore, the PALcode is a 32-bit im
mentation, with, for example, a 32-bit virtual address space. The internal processor reg
are 32 bits, in canonical longword format. The page table entry (PTE) format is also 32
The PALcode manages any required transformation between the 32-bit processor-indep
formats and the 64-bit internal processor.
Windows NT SoftwareF–1
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A Windows NT Alpha PALcode image is processor specific and platform independent. A
gle version of the PALcode (for a particular processor implementation) runs on all syst
The difference between processors is entirely hidden by the PALcode for each implem
tion. Thus, the PALcode interface allows the Windows NT Alpha operating system images
be binary-compatibleacross different processor implementations.

The PALcode image is read from the disk during the boot process, like all other componen
the running operating system. The boot environment PALcode need only support the com
swppal instruction to allow the operating system to load and initialize the PALcode.

Some functions and parameters must be implemented on a per-platform basis. Platform-d
dent functions are implemented in the HAL (hardware abstraction layer), which
system-specific library, loaded and dynamically linked at boot time.

The basic Windows NT Alpha design, therefore, consists of a platform-independent PAL
definition and binary-compatible kernel with system-dependent functions in the HAL.

The PALcode was designed to work smoothly and quickly with the Windows NT Alpha k
nel. For example, the PALcode builds Windows NT Alpha trap frames and passes Wind
NT Alpha status codes. Wherever possible, parameters and return values are passed in
ters between the kernel and the PALcode.

The PALcode was also designed to keep dependencies on the kernel to a minimum. For
ple, only the processor control region and the kernel trap frame definition are shared bet
the PALcode and the Windows NT Alpha kernel.

F.1.1 Overview of System Components

The kernel is a binary-compatible image that can run on any Alpha processor, platform, o
tem. The kernel is binary compatible because of cooperation between it and other sy
components that provide the processor- and system-specific functions. Those cooperating
ponents are the firmware, the OS Loader, the HAL (hardware abstraction layer), an
PALcode.

The firmware and OS Loader are the first components in the boot sequence and are res
ble for establishing the environment in which the kernel, HAL, and PALcode execute.
kernel reads the configuration information provided by the firmware through the OS Lo
and uses the standard interfaces provided by the HAL and the PALcode.

Firmware

The firmware contributes the following components to the boot sequence:

1. Establishes the privileged environment in which the OS Loader executes and the k
begins executing (that is, provides memory management support and the sw
instruction).

2. Provides platform- and configuration-dependent services to the OS loader (such a
services) by using ARC call-back routines.

3. Creates the configuration database: devices, memory size, and so forth.

4. Reads the OS Loader from the disk and executes it.
F–2 Alpha Linux Software (II–B)
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OS Loader

The OS Loader is a linking loader that reads the component operating system images fro
disk, performs necessary relocation, and binds the dynamically linked images together. Th
Loader loads the appropriate HAL and PALcode, based on the configuration information
vided by the firmware.

The OS Loader loads the appropriate boot drivers as read from the operating system con
tion files. The OS Loader also builds the loader parameter block structure by using inform
provided by the firmware. The loader parameter block includes configuration information (
cessor, system, device, and memory configuration) and per-processor data structures.

Once the operating system components are loaded, the OS Loader jumps to the beginn
the kernel to begin execution of the operating system. The OS Loader loads the operatin
tem PALcode on a 64K-byte-aligned address. The kernel activates the operating sy
PALcode by executing the swppal instruction.

Hardware Abstraction Layer (HAL)

The HAL provides the system-specific layer between the kernel and the system hardware
HAL provides interfaces for the following types of functions:

• Interrupt handling, including dispatch and acknowledge

• DMA control

• Timer support

• Low-level I/O support

• Cache coherency

If a processor implementation requires PALcode intervention to support any of those f
t ions , then the PALcode must suppor t those processor-spec i f ic funct ions
system-independent manner.

PALcode

The PALcode is specific to a particular processor implementation and must hide the int
workings of the processor from the kernel. The PALcode for a particular processor
include per-processor functions, but they must be called only by the HAL.
Windows NT SoftwareF–3
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F.1.2 Calling Standard Register Usage

F.1.3 Code Flow Conventions

The code flows are shown as an ordered sequence of instructions. Theinstructions in the
sequence may be reordered as long as the results of the sequence of instructions are not
In particular, if an instructionj is listed subsequent to an instructioni andi writes any data that

is used byj, theni must be executed beforej.

Table F–1 General-Purpose Integer Registers

Register Number Symbolic Name Volatility Description

r0 v0 Volatile Return value register

r1 – r8 t0 – t7 Volatile Temporary registers

r9 – r14 s0 – s5 Nonvolatile Saved registers

r15 s6/fp Nonvolatile Saved register/frame pointer

r16 – r21 a0 – a5 Volatile Argument registers

r22 – r25 t8 – t11 Volatile Temporary registers

r26 ra Volatile Return address register

r27 t12 Volatile Temporary register

r28 at Volatile Assembler temporary register

r29 gp Nonvolatile Global pointer

r30 sp Nonvolatile Stack pointer

r31 zero Constant RAZ / writes ignored

Table F–2 General-Purpose Floating-Point Registers

Register Number Volatility Description

f0 Volatile Return value register (real part)

f1 Volatile Return value register (imaginary part)

f2 – f9 Nonvolatile Saved registers

f10 – f15 Volatile Temporary registers

f16 – f21 Volatile Argument registers

f22 – f30 Volatile Temporary registers

f31 Constant RAZ / writes ignored
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F.2 Processor, Process, Threads, and Registers

This section describes structures and registers that support the processor, process, and
environment.

F.2.1 Processor Status

The processor status register (PSR) defines the processor status. The PSR is shown in
F–1 and described in Tables F–3, F–4, and F–5.

Figure F–1: Processor Status Register

Table F–3 Processor Status Register Fields

Field Type Description

IRQL RW Interrupt request level, in the range 0–7, as described in Table F–4. Any inter
disabled at a lower priority level is also disabled at a higher priority level.

IE RW Interrupt enable:

0 = interrupts disabled
1 = interrupts enabled

A global interrupt enable to turn interrupts on and off without changing the IRQ

MODE RW Processor mode:

0 = kernel mode
1 = user mode

Describes the current processor privilege mode: user (unprivileged) or ke
(privileged). The processor privilege mode defines the instructions that can
executed and the memory protection that is used, as described in Table F–5.

Table F–4 Processor Status Register IRQL Field Summary

IRQL Name Description

0 PASSIVE_LEVEL All interrupts enabled.

1 APC_LEVEL APC software interrupts disabled.

2 DISPATCH_LEVEL Dispatch software interrupts disabled.

3 DEVICE_LEVEL Low-priority device hardware interrupts disabled.

4 DEVICE_HIGH_LEVEL High-priority device hardware interrupts disabled.

5 CLOCK_LEVEL Clock hardware interrupts disabled.

6 IPI_LEVEL Interprocessor hardware interrupts disabled.

7 HIGH_LEVEL All maskable interrupts disabled.

0

IRQL E

5 4 3 2 131

RAZ/IGN
M
O
D
E

I
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F.2.2 Internal Processor Register Summary

The internal processor registers in Table F–6 are defined across all implementations. I
mentation of these registers within the processor is implementation dependent.

Table F–5 Processor Privilege Mode Map

Operation Privileged Unprivileged

Superpage access Yes No

Page protection Access to

all pages

Access to only those pages with the Owne
bit = 1

Privileged PALcode instructions Yes No

Table F–6 Internal Processor Register Summary

Name Initial Value Description

ASN 0 Address space number of owning process of curre
thread

GENERAL_ENTRY 0 General exception class kernel handler address

IKSP 0 Initial kernel stack pointer

INTERRUPT_ENTRY 0 Interrupt exception class kernel handler address

KGP 0 Kernel global pointer

MCES 1

1 The register has an architected initial value. See the register descriptionin Table F–7.

Machine check error summary

MEM_MGMT_ENTRY 0 Memory management exception class kernel hand
address

PAL_BASE 1 PALcode image base address

PANIC_ENTRY 0 Panic exception class kernel handler address

PCR 1 Processor control region base address

PDR 0 Page directory base address

PSR 1 Processor status register

RESTART_ADDRESS 1 Restart execution address

SIRR 0 Software interrupt request register

SYSCALL_ENTRY 0 System service exception class kernel handler addres

TEB 0 Thread environment block base address

THREAD 0 Thread unique value (kernel thread address)
F–6 Alpha Linux Software (II–B)
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F.2.3 Internal Processor Registers

Table F–7 lists and describes the internal processor registers.

Table F–7 Internal Processor Registers

Name Description

ASN Address space number of owning process of current thread

Bits <15:0> of the ASN register contain the address space number for
current process. Bits <31:16> are RAZ.

The ASN is a process tag that is used by the processor to qualify e
virtual translation. When translations are qualified, it is not necessary
the processor to flush all virtual translations for previous processes wh
performing a context swap or process swap. The swpctx and swpproce
instructions provide the ASN.

GENERAL_ENTRY General exception class kernel handler address

The GENERAL_ENTRY register contains the entry address (in 32-bit
superpage format) for the kernel exception handler for the General cla
of exceptions. The wrentry instruction writes GENERAL_ENTRY.

IKSP Initial kernel stack pointer

The IKSP register contains the initial kernel stack address. IKSP poi
to the top of the kernel stack for the currently executing thread. T
rdksp instruction reads IKSP and the swpksp instruction writes IKS
IKSP is also written by swpctx and during system initialization by init
pal.

INTERRUPT_ENTRY Interrupt exception class kernel handler address

The INTERRUPT_ENTRY register contains the entry address (in 32-
superpage format) of the kernel exception handler for the Interrupt cla
of exceptions. The wrentry instruction writes INTERRUPT_ENTRY.

KGP Kernel global pointer

The KGP register contains the kernel global pointer, the gp value. T
PALcode restores the kernel global pointer to the general-purpose re
ter gp whenever dispatching to a kernel exception handler. The init
instruction writes the KGP.

MCES Machine checkerror summary

The MCES register is used to report and control the current state of
machine check handling. The MCES register contains multiple fields th
are described in Section F.4.3. The initial values for the MCES regis
fields DSC, DPC, and DMK are implementation specific, and all oth
fields set to 0. The recommended initial values are DMK = 0, DPC =
and DSC = 1.
Windows NT SoftwareF–7
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MEM_MGMT_ENTRY Memory management exception class

The MEM_MGMT_ENTRY register contains the entry address (i
32-bit superpage format) of the kernel exception handler for the Memo
Management class of exceptions. The wrentry instruction writ
MEM_MGMT_ENTRY.

PAL_BASE PALcode image base address

The PAL_BASE register contains the physical address of the base of
currently active PALcode image. Its initial value is the address of th
PALcode entry point. PAL_BASE controls which PALcode image i
currently active and is written during PALcode initialization. The
PAL_BASE register is illustrated and described in Section F.6.2.

PANIC_ENTRY Panic exception class kernel handler address

The PANIC_ENTRY register contains the entry address (in 32-bit sup
page format) of the kernel exception handler for the Panic class of exc
tions. The wrentry instruction writes PANIC_ENTRY.

PCR Processor control region base address

The PCR register contains the base address (in 32-bit superpage for
of the processor control region page. The processor control region i
page of per-processor data. The PCR is passed as an initialization param-
eter and the rdpcr instruction reads it.

PDR Page directory base address

The PDR register contains the base physical address of the page direc
page. The page directory page contains all of the first-level page ta
entries (the page directory entries or PDEs). As such, the page direc
page defines an address space for a process. The swpctx and swppr
instructions write the PDR when the address space is swapped. The
pal instruction also writes the PDR.

PSR Processor status register

The PSR controls the privilege state and interrupt priority of the proce
sor. The PSR register contains multiple fields that are described in S
tion F.2.1. The initial values for the fields in the PSR are IRQL=7, IE=1
and MODE=0 (kernel).

RESTART_ADDRESS Restart execution address

The RESTART_ADDRESS register contains the address where the p
cessor resumes execution when the PALcode exits. For example, u
entry to each of the PALcode instructions, the RESTART_ADDRES
register contains thevirtual address + 4of that instruction. The initial
value of the RESTART_ADDRESS register is the kernel initializatio
continuation address, passed as a parameter to the initialization routin

Table F–7 Internal Processor Registers (Continued)

Name Description
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F.2.4 Processor Data Areas

The operating system per-processor data structure is the processor control region. The p
sor control region is a one-page (superpage) data structure that stores information that m
specific to a particular architecture. This information is data that is shared between the
code, the HAL, and/or the architecture-specific portions of the kernel. See Section F.3.
information on the superpage.

F.2.4.1 Processor Control Region

The processor control region contains a number of data structures that are of importance
PALcode, including:

• A 3064-byte region that is reserved for the PALcode and is the only per-processor data
region available to the PALcode.

• The interrupt level table (ILT), which maps the interrupt enable masks for each pos
interrupt request level. The PALcode may continually read these masks or may
them once and cache them inside the processor.

• The interrupt dispatch table (IDT), which contains the address of an interrupt han
for each possible interrupt vector.

• The interrupt mask table (IMT), which maps each possible pattern of interrupt requ
to the highest priority interrupt vector and the corresponding synchronization level.

• The panic stack pointer.

• The restart block pointer.

• The firmware restart address.

SIRR Software interrupt request register

The SIRR register indicates requested software interrupts. SIRR conta
multiple fields that are defined in Section F.4.2.7.

SYSCALL_ENTRY System service exception class kernel handler address

The SYSCALL_ENTRY register contains the entry address (in 32-b
superpage format) of the kernel exception handler for the System Serv
class of exceptions. The wrentry instruction writes SYSCALL_ENTRY

TEB Thread environment block base address

The TEB register contains the address of the user thread environm
block. Each swpctx instruction writes the TEB; the rdteb instructio
reads it.

THREAD Thread unique value (kernel thread address)

The THREAD register contains the address of the currently executi
kernel thread structure. Each swpctx instruction writes the THREAD re
ister; the rdthread instruction reads it.

Table F–7 Internal Processor Registers (Continued)

Name Description
Windows NT SoftwareF–9
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The PALcode is responsible for initializing the PALcode base address field and several P
code revision fields within the processor control region.

The rdpcr instruction returns the base address of the processor control region.

F.2.4.2 PALcode Version Control

The PALcode is responsible for writing version information in the processor control reg
The PalMajorVersion, PalMinorVersion, and PalSequenceVersion are provided for ma
nance and debugging. The PALcode writes these fields, but the values are implemen
specific.

The kernel may use the PalMajorSpecification and PalMinorSpecification fields
check-pointing with the PALcode.

The PALcode writes the specification fields with version numbers that correspond to the
sion of the specification to which the PALcode image complies. Minor revisions within
same major revision are backwards compatible. The kernel may read the PalMajorSpec
tion and determine if it is compatible with the version of the PALcode. If the kernel is
compatible (if the PalMajorSpecification is greater than the kernel’s expected PALcode m
specification), the kernel runs down in a controlled manner.

The version agreement between the PALcode and the kernel is a private agreement be
these two system components. No other system component, including the HAL and d
drivers, may depend on any values from those fields.

F.2.4.3 PALcode Alignment Fixup Count

PALcode must maintain a count in the processor control region PalAlignmentFixupCount
of the total number of alignment fixups that the PALcode accomplishes. PalAlignmentFix
Count is an unsigned quadword field that is incremented by one when the PALcode fixes
alignment fault. The field silently overflows to zero.

The kernel may use the PalAlignmentFixupCount field for determining the total numbe
alignment fixups on a system by adding the value in that field for each processor to the
ber of alignment fixups done by the kernel.

F.2.5 Caches and Cache Coherency

Implementations may include caches that are not kept coherent with main memory. The
instruction provides an architected common way to make the instruction execution st
coherent with main memory. The imb instruction guarantees that subsequently exe
instructions are fetched coherently with respect to main memory on only the current proce

User-mode code that directly modifies the instruction stream, either through writes or by D
from an I/O device, must call the appropriate Windows NT API to ensure I-cache cohere
User-mode code that uses standard APIs to modify the instruction stream works as exp
and is handled by the APIs themselves.

F.2.6 Stacks

There are four stacks:

• Kernel stack
F–10 Alpha Linux Software (II–B)
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Each thread is allocated its own pages for a kernel stack. The kernel stack is the
pages of virtual address space below the IKSP for a thread, where the IKSP poin
the byte beyond the top of the two pages. The initial kernel stack pointer (IKSP) po
to the top of the currently active kernel stack for the current thread. Two PALc
instructions provide access to the IKSP: rdksp to read the IKSP and swpks
atomically read the current IKSP and write a new one.

Must remain valid for the currently executing thread. Software must guarantee tha
kernel stack pointer remains 16-byte aligned.

• User Stack

A per-thread stack on which all user-mode components are executed.

• Deferred procedure call (DPC) stack

A processor-wide stack upon which all deferred procedure calls are executed. Mu
remain valid for the lifetime of the system.

• Panic stack

Allows the operating system to remain coherent through a system crash. Must re
valid for the lifetime of the system.

The kernel, DPC, and panic stacks execute in kernel mode; the user stack executes i
mode.

F.2.7 Processes and Threads

Windows NT Alpha is designed as a multithread operating system with multiple threads
cuting within the same process. Each thread has its own processor context, user-mode
and kernel stack. Memory and the address space are shared across all threads in th
process.

The PALcode "knows" nothing about the structure of threads or processes. The PAL
implements the means to swap from one thread context to another and to allow a thre
attach to the address space of another process.

The state to accomplish these operations is passed entirely in registers. The PALcode
tains the THREAD and TEB internal processor registers. They allow threads to query abo
state of the currently executing thread.

The THREAD register, a unique value identifying the current thread, is written when
thread context is swapped. The privileged instruction rdthread reads the THREAD register

The TEB register, a user-accessible pointer to the thread environment block for the new th
is written when thread context is swapped. The unprivileged rdteb instruction reads the
register. Again, the PALcode knows nothing about the structure of the thread environ
block; the PALcode simply maintains the TEB register value when context is switched.

F.2.7.1 Swapping Thread Context to Another Thread

The swpctx instruction swaps the context from one thread to another thread. The follo
parameters are passed to swpctx:

Initial kernel stack pointer
Windows NT SoftwareF–11
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Swpctx must switch to the new kernel stack for the new thread. The initial kernel stack po
is written to the internal processor register IKSP.

THREAD internal processor register (unique thread value)

TEB internal processor register (thread environment block pointer)

These registers are maintained by the kernel and only written during a context switch. Im
itly, the values in these registers for a particular thread cannot change while that thre
executing.

PFN of the directory table base page for the new process

ASN for the new process

ASN_wrap_indicator

The PFN and ASN allow switching to a new process address space. The PFN of the directory
table base page is an overloaded parameter; it is used to indicate if the process need
swapped.

• The PFN is set to a negative value in the kernel if the previous thread and the
thread are in the same process (address space). There is no need to swap the
space if the two threads are in the same process. The values for the ASN paramete
then UNPREDICTABLE.

• If the two threads are in different processes, the PFN is greater than or equal to zer
is used to write the PDR internal processor register. When the PFN is valid (greater
zero), the ASN must also be valid and is used to write the ASN internal processor r
ter.

Swapping to a new process address space involves establishing a new directory pointer
page table base page for the new process and possibly performing translation buffer o
tions. A set ASN_wrap_indicator signals that the PALcode must perform an invalida
operation for each cached translation in the translation buffers and virtual caches that do
have the address space match (ASM) bit set.

F.2.7.2 Swapping Thread Context to Another Process

The swpprocess (swap process) instruction allows a thread to attach to another proce
another address space). Swpprocess requires the PFN of the new directory table base p
the new ASN as input. Swpprocess performs the same address space swapping opera

does swpctx when the PFN of the page directory is valid.
F–12 Alpha Linux Software (II–B)
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F.3 Memory Management

F.3.1 Virtual Address Space

Windows NT Alpha is a 32-bit implementation with a 32-bit virtual address space, as re
sented in Table F–8.

The address map takes advantage of the 32-bit superpage feature of the Alpha architec
the implementation of the 32-bit superpage is not done in hardware, it must be implemen
software (PALcode). The entire 1-GB address space mapped by the 32-bit superpage m
valid at all times for both instruction fetch and data access.

Implementation Note (Hardware):

It is strongly recommended that implementations include a hardware mapping of the 3
superpage for both instruction and data stream.

F.3.2 I/O Space Address Extension

The Windows NT Alpha kernel implementation takes advantage of the architecture’s 6
address space to provide a nonmapped extended address for I/O space. The extended
space uses the 43-bit superpage that is available in the Alpha architecture. The supe
allows kernel mode access to an address space with a predetermined translation. The
those accesses never require page table mapping or cause a translation buffer miss.

Implementation Note:

The extended address space is particularly important to Alpha implementations that d
include the BWX extension, because the bus mapping scheme for those implement
uses a shifted physical address, where the lower address bits are used to determine t
enables. Therefore, the effective page size is smaller. See Appendix D for inform
about the BWX extension.

The extended superpage provides nonmapped access to a 41-bit physical address spa
nonmapped superpage I/O accesses provide Alpha systems with a performance adv
because there is no need to write as many page table entries and to fill as many trans
buffer misses as would be necessary without it. The extended address space is des
because the likely physical address space is 34 bits or more and the 32-bit superpage ca
allow accesses to 30 bits of physical address space. The extended address space is t

Table F–8 Virtual Address Map

Address Range 16 (32 bits) Permission Description

00000000–7FFFFFFF User and Kernel General user address space

80000000–BFFFFFFF Kernel Nonmapped kernel space (32-bit

superpage)

C0000000–C1FFFFFF Kernel Mapped, page table space

C2000000–FFFFFFFF Kernel Mapped, general kernel space
Windows NT SoftwareF–13
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exception to the 32-bit virtual address map shown in Table F–8. The extended address sp
intended for I/O access only and can only be used in kernel mode. The address mapping
extended address space is shown in Table F–9.

F.3.3 Canonical Virtual Address Format

All virtual addresses, with the exception of the large superpage addresses, must be in c
cal longword form. The PALcode must check the faulting virtual addresses in the first l
miss flows and raise an exception if the addresses are not canonical longwords. The ch
required because the processor may generate 64-bit addresses that are not canonic
words, but the common memory management code only knows about 32-bit addresses
cannot necessarily identify or signal the exception to the offending code. The PALcode ca
simply resolve the miss by using only the lower 32 bits. When the faulting instructio
re-executed, it attempts again to access the noncanonical address. If a virtual address f
canonical form test, the PALcode raises a general exception (see Section F.4.1.7).

F.3.4 Page Table Entries

Page table entries (PTEs) provide the translation from virtual addresses to their phy
addresses. The PTE includes the physical address in the form of a page frame number
protection information, and performance hints. The virtual address is related to a page
entry based solely upon the position of the PTE within a set of page tables.

Two methods may be used to traverse the page tables to retrieve the corresponding PT
given virtual address. The first is to view the page tables as a single-level virtually contig
table. The second is to view the page tables as a two-level physical table.

F.3.4.1 Single-Level Virtual Traversal of the Page Tables

For a single-level virtual traversal, a virtual address must be viewed as shown in Figure
where2**N is the implementation page size.

Figure F–2: Virtual Address (Virtual View)

To access the corresponding PTE for a VA (virtual address) using the single-level vi
method, use the following algorithm.

! In the algorithm:
! VIRTUAL_PTE_BASE = C000000016

! PAGE_SHIFT = N
! Clear upper bits in case va is sign-extended:

Table F–9 I/O Address Extension Address Map

Address Range 16 (64 bits) Permission Description

FFFFFC0000000000– FFFFFD-
FFFFFFFFFF

Kernel Nonmapped kernel mode I/O extension

0N31

Virtual Page Number (VPN) Byte offset within page

N-1
F–14 Alpha Linux Software (II–B)
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va ← BYTE_ZAP( va, F0 )
! Get virtual page number:

vpn ← RIGHT_SHIFT( va, PAGE_SHIFT )
! 4 bytes per pte, offset + base:

pte_va ←  VIRTUAL_PTE_BASE + ( vpn * 4)
! Do a virtual load of pte:

pte ← (pte_va)

F.3.4.2 Two-Level Physical Traversal of the Page Tables

The two-level physical method can be used to find the corresponding PTE for a virtual ad
when the virtual access method cannot be used (for example, if the PTE address is not
The key to physically traversing the page tables is the PDR internal processor register
PDR is maintained on a per-process basis whenever process context is swapped. The
the physical address of the page directory page that forms the first level of the page table
first level of the page tables easily fits within a single page. Each entry in the page direc
page is called a PDE (page directory entry). One PDE maps one page of PTEs.

A virtual address must be viewed as shown in Figure F–3 for a two-level, physical travers
the page tables. In Figure F–3, 2**N is the implementation page size, and 2**P is (PTEs
page = page size / 4).

Figure F–3: Virtual Address (Physical View)

The following algorithm uses the two-level physical traversal method to access the corres
ing PTE for a VA (virtual address).

! In the algorithm:
! PDE_SHIFT = N + P
! PAGE_SHIFT = N

! Clear upper bits in case va is sign-extended:
va ←  BYTE_ZAP( va, F0 )

! Get pde number:
pde_index ←RIGHT_SHIFT( va, PDE_SHIFT )

! 4 bytes per pde, index * 4 byte offset:
pde_offset ←  pde_index * 4

! Offset + base:
pde_pa ←  PDR + pde_offset

! Do a physical load of the page directory entry:
pde ← (pde_pa)

! Get PFN of pte page from pde:
pte_pfn ←  pde<PFN>

! Get physical address of pte page:
pte_page ←  LEFT_SHIFT( pte_pfn, PAGE_SHIFT)

! Extract page table index from virtual address:
pte_index ←  va<pti>

! Calculate offset, 4 bytes per pte:
pte_offset ←  pte_index * 4

0N+P31 N+P-1

Page Directory
Index (PDI)

Page Table
Index (PTI)

Byte offset
within page

N N-1
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! Address base + offset:
pte_pa ←  pte_page + pte_offset

! Do a physical load to read the pte:
pte ←  (pte_pa)

Page directory entries are themselves page table entries and so they have the same
There are some implications for DTB implementation because the PDEs establish arecursive
mapping for addresses within the PTE address space. The implications and a description
recursive mapping are described in Section F.3.6.

F.3.4.3 Page Table Entry Summary

The format for a PTE is shown in Figure F–4 and described in Table F–10.

Figure F–4: Page Table Entry

Table F–10 Page Table Entry Fields

Field Description

PFN Page frame number

SFW Reserved for software (operating system)

GH Granularity hints

Optional hint that provides for mapping translations larger than the standard impleme
tion page size. These large pages must be both virtually and physically aligned. Define
translation in terms of a multiple of the page size, where the multiplier equals 8**N, wh
N is the granularity hint value in the range 0–3.

G Global translation hint (address space match)

Optional hint that the indicated translation is global for all processes.

R Reserved

0

G R D O

5 4 3 2 131

PFN V

6

GH

78

S
F
W

9

F–16 Alpha Linux Software (II–B)



isasn
s and

ults
the

data
.

d for
t used
d
d a

. The
ible
the
the

SN.
F.3.5 Translation Buffer Management

As shown in Table F–11, the PALcode provides the dtbis, tbia, tbim, tbimasn, tbis, and tb
instructions to manage the cached virtual translations maintained in the translation buffer
virtual caches.

D Dirty:

0 = page is not dirty
1 = page is dirty

Implemented as the inverse of fault on write (FOW). Serves double duty by causing fa
for the first write to a page. Serves as a write-protect bit and as a marker that allows
operating system to track dirty pages.

O Owner:

0 = kernel access only
1 = user access permitted

Indicates whether user mode is allowed across this page, either for instruction fetch or
access. Kernel mode code has implied access to all pages that have a valid translation

V Valid:

0 = translation not valid
1 = valid translation

Table F–11 Translation Buffer Management Instructions

Instruction Operation

dtbis Invalidates a single data stream translation for a specified address. It is designe
those cases when the operating system can determine that the translation is no
in the instruction stream. Implementations may advantageously use dtbis to avoi
needing to invalidate instruction stream translations in both an instruction TB an
virtual I-cache.

tbia Invalidates all page table translations for both instruction and data stream access
translations invalidated are limited to "page table translations" because it is poss
that an implementation has used fixed TB entries to implement one or more of
required superpages. These fixed translations are considered "hard-wired" by
operating system and must be valid at all times.

tbim Invalidates multiple virtual translations, passed as a parameter, for the current A
Tbim invalidates translations for both instruction and data stream access.

Table F–10 Page Table Entry Fields (Continued)

Field Description
Windows NT SoftwareF–17
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On processors that implement physical, noncoherent instruction caches, instructions that
date I-stream translations must also invalidate instruction cache blocks from the physical
that correspond to the invalidated virtual translations.

F.3.6 Implications of Recursive TB Mapping

Recursive virtual mapping has an implication for data translation buffer implementations:
possible for two identical translations to be written in the DTB during the same miss hand
sequence. If the DTB cannot correctly operate with two identical translations, the PALc
must include additional checks to prevent the condition from occurring.

The page tables can be viewed either as a virtual contiguous single-level table or as a two
table that must be traversed physically. When viewed as a two-level table, the first leve
single page called the page directory page. Each page directory page entry, called a PD
vides the first-level translation so that the TB-fill code can find the page table page
contains the PTE with the translation for the faulted virtual address. All page table page
mapped by a PDE in the page directory page.

The page tables are recursive. The page directory page is a standard page table page a
virtually mapped in the single-level virtual page table. Therefore, there exists one PDE
maps the page directory page. The PDE that maps the page directory page in a two
lookup is also the PTE that maps the page directory page for the single-level virtual map
This special PDE is called the root PTE or RPTE.

Assume that the processor implementation has two data stream TB miss flows — one fo
misses taken in native mode and one for the misses taken in the PALcode environment. F
case when a native-mode virtual access is made to the page directory page, PALcode ta
following flows:

tbimasn Invalidates multiple virtual translations for a specified address space number (A
passed as a parameter. The ASN may or may not be the currently executing thread.
Tbimasn invalidates translations for both instruction and data stream access.

tbis Invalidates a single translation for a specific virtual address, passed as a param
Tbis invalidates the translation for both instruction and data stream access.

tbisasn Invalidates a translation for a single virtual address for a specified address s
number (ASN). The ASN may or may not be for the currently executing threa
Tbisasn invalidates the translation for both instruction and data stream access.

Table F–11 Translation Buffer Management Instructions (Continued)

Instruction Operation
F–18 Alpha Linux Software (II–B)
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Because there is only one PTE, RPTE, that exhibits this behavior, the PALcode can che
faulting PTE address in the second-level fill routine to special case for RPTE. It is preferable
not to slow down even the second-level fill flow. However, this is a processor implementa
decision

F.4 .Exceptions, Interrupts, and Machine Checks

At certain times during the operation of a system, events within the system require the e
tion of software outside the explicit flow of control. When such an exceptional event occur
Alpha processor forces a change in control flow from that indicated by the current instruc
stream. The notification process for such events is an exception, an interrupt, or a ma
check.

Native Miss Flow PALcode Environment Miss Flow

1. {get va for PTE that maps

the faulted va: VA}

2. {get the PTE using its va}

ldl rx, 0(ry)

where ry←va of PTE

3. {ldl rx, 0(ry) from

PALcode environment faulted}

4. {resolve this fault by making the va

of the missed PTE valid}

5. {translation for RPTE is written

into the DTB}

6. {re-execute the load that failed

since the va of the PTE is now valid}

7. load completes, rx← RPTE}

8. {write the translation for the

faulting va, VA, into the DTB}

9. { RPTE is now in the DTB twice}

10. {Re-execute the original native-mode

instruction that faulted when

accessing VA}
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F.4.1 Exceptions

F.4.1.1 Exception Dispatch

When the processor encounters an exception, it traps to PALcode that provides prelim
exception dispatch for the operating system. Some exceptions, such as TB miss, may b
dled entirely by the PALcode without the intervention of the operating system.

The PALcode provides a simple and efficient method of dispatching to the operating sy
for those exceptions that require operating system action. In general, the following opera
characterize exception dispatch:

1. Switch to kernel mode (if in user mode).

2. Allocate a trap frame on the kernel stack.

3. Save the necessary processor state in the trap frame.

4. Prepare arguments to the kernel exception handler using the standard argument
ters where possible.

5. Set the processor state for executing the kernel (establish the stack pointer so it po
the kernel stack, establish the global pointer to point to the kernel global area).

6. Restart execution at the address of the kernel exception handler registered for the
of exception that was encountered.

F.4.1.2 Exception Classes

The PALcode classifies each exception into one of the following categories:

• Memory management exceptions

Memory management exceptions, described in Section F.4.1.5 , are raised for:

– Translation not valid faults: accesses to addresses that do not have a valid tran
tion for the currently executing context

– Access violations: accesses to addresses for which the currently executing con
does not have permission for the access

• System service call exceptions

Although not really exceptions, system service calls are handled as exceptions to
unprivileged code to request andreceive privileged services. System services may be
requested from both unprivileged and privileged modes (user and kernel m
respectively). System service calls are described in Section F.4.1.6.

• General exceptions

The general exception class, described in Section F.4.1.7, is the catchall catego
all of the other exceptions that may be raised by unprivileged code:

– Arithmetic exceptions

– Unaligned memory access

– Illegal instruction execution

– Invalid (non-canonical virtual) address exceptions
F–20 Alpha Linux Software (II–B)



from
anic

turn

state
to set

ser-
rvice

rating

. The
ption
ndary,
ed in

the
e reg-
t is 64
– Software exceptions

– Breakpoints

– Subsetted instruction execution

• Panic exceptions

The panic exception class, described in Section F.4.1.8, is reserved for conditions
which execution cannot reliably be continued. The following general cases of p
exceptions are anticipated:

– Invalid kernel stack (including overflow and underflow)

– Unexpected exceptions from PALcode

F.4.1.3 Returning from Exceptions

The rfe and retsys instructions are provided for returning from exceptions.

The rfe (return from exception or interrupt) instruction allows the operating system to re
from an exception. Rfe may also be used to transition from kernel mode to user-mode startup
code.

The rfe instruction reverses the effect of an exception by restoring the original processor
from the trap frame on the kernel stack. In addition, rfe accepts a parameter that allows it
software interrupt requests for the execution context that is about to be reestablished

Two exception classes do not use rfe to return to the previously executing context: system
vice call and panic exceptions. The retsys instruction is used for returning from system se
call exceptions because a system service call has different semantics with regard to the saved
processor state than the other exceptions.

Panic exceptions do not return because they precipitate a controlled crash of the ope
system.

F.4.1.4 Trap Frames

Trap frames are allocated on the kernel stack for all classes of exceptions in PALcode
PALcode also partially writes the trap frame; the fields written are based upon the exce
being handled. The kernel stack must be guaranteed to remain aligned on a 16-byte bou
as specified in the Windows NT Alpha calling standard. The trap frame itself is guarante
size to be a multiple of 32 bytes. The PALcode may over-align the kernel stack pointer when
allocating the trap frame in order to improve memory throughput, with consideration for
extra memory being consumed. The trap frame is structured so that writes aggregate. Th
ister values stored in the trap frame are 64-bit values. This is required as the register se
bits and may contain 64-bit values (as opposed to canonical longwords).
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Trap frame definitions are shown in Table F–12.

F.4.1.5 Memory Management Exceptions

PALcode recognizes two classes of memory management exceptions: translation not
faults and access violations. Translation not valid faults are detected when a page table
for a virtual address has the valid bit cleared. The invalid page table entry can be either a
or second-level table entry. Access violations are detected by the hardware when the pro
attempts to access a virtual address and that type of access is not permitted according
protection mask in the page table entry that maps the translation for the virtual address.

The PALcode dispatches to the kernel in the same manner for each of these two clas
exceptions, according to the following description:

previousPSR ←  PSR
if ( PSR<Mode> EQ User ) then

PSR<Mode> ←  kernel
tp ← (IKSP - TrapFrameLength)! Establish trap pointer

else
tp ← (sp - TrapFrameLength)! Establish trap pointer

endif
TrIntSp(tp) ←  sp
TrIntFp(tp) ←  fp
TrIntRa(tp) ←  ra
TrIntGp(tp) ←  gp
TrIntA0(tp) ←  a0
TrIntA1(tp) ←  a1
TrIntA2(tp) ←  a2
TrIntA3(tp) ←  a3
TrFir(tp) ←  ExceptionPC
TrPsr(tp) ←  previousPSR
sp ←  tp
RESTART_ADDRESS←  MEM_MGMT_ENTRY
fp ←  sp

Table F–12 Trap Frame Definitions

Symbolic Name Size Description

TrIntSp Quadword Stack pointer register at point of exception

TrPsr Longword Processor status register at point of exception

TrFir Quadword Exception program counter

TrIntA0 Quadword Register a0 at point of exception

TrIntA1 Quadword Register a1 at point of exception

TrIntA2 Quadword Register a2 at point of exception

TrIntA3 Quadword Register a3 at point of exception

TrIntFp Quadword Frame pointer register at point of exception

TrIntGp Quadword Global pointer register at point of exception

TrIntRa Quadword Return address register at point of exception
F–22 Alpha Linux Software (II–B)
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gp ←  KGP
a0 ←  1 if store; 0 if load
a1 ←  faulting virtual address
a2 ←  previousPSR<Mode>
a3 ←  previousPSR

All other general-purpose registers must be preserved across the memory management
tion dispatch.

If the kernel can resolve the fault, it uses the rfe instruction to restart the faulting thread, thus
reissuing the instruction that faulted. Otherwise, the kernel raises the appropriate exceptio

F.4.1.6 System Service Calls

System service calls are initiated from both user and kernel modes via the callsys instru
The privileged retsys instruction returns from a system service back to the caller. The ca
and retsys instructions are described in Sections F.5.2.3 and F.5.1.21, respectively.

F.4.1.7 General Exceptions

General exceptions are those exceptions, other than memory management exceptions a
tem service call exceptions, that can be raised by hardware or software. All general exce
are handled in approximately the same manner in the PALcode and in exactly the same
ner in the lowest level kernel exception dispatch.

The following exceptions are grouped together as general exceptions:

• Arithmetic exceptions

• Unaligned access exceptions

• Illegal instruction exceptions

• Invalid (non-canonical virtual) address exceptions

• Software exceptions

• Breakpoints

• Subsetted IEEE instruction exceptions

A general exception builds a trap frame on the kernel stack and populates the exception
within the trap frame and then dispatches to the kernel general exception entry point. The
mon dispatch for general exceptions is shown in Section F.4.1.7.8.

The differences between each type of exception are the population of the exception reco
the meaning of the faulting instruction field within the trap frame. The values for each spe
exception are detailed in the sections that follow.

F.4.1.7.1 Arithmetic Exceptions

An arithmetic trap occurs at the completion of the operation that caused the exception.
several instructions may be in various stages of execution at any point in time, it is possib
multiple arithmetic traps to occur simultaneously. The intervening instructions (after the
ger instruction) are collectively called thetrap shadow. See Section 4.7.7.3 for information.

The ExceptionPC is written to the TrFir offset of the trap frame. The ExceptionPC written
the trap frame is the virtual address of the first instruction after the trapping instruction
has not yet executed.
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e,

truc-
s that
gister
ence

tions
at the
r was
ween

are
Arithmetic traps write the following information into the exception record of the trap fram
whereer is the exception record pointer:

ErExceptionCode(er) ←  STATUS_ALPHA_ARITHMETIC
ErExceptionInformation<0>(er) ←  FLOATING_REGISTER_MASK
ErExceptionInformation<1>(er) ←  INTEGER_REGISTER_MASK
ErExceptionInformation<2>(er) ←  EXCEPTION_SUMMARY
ErNumberParameters(er) ←  3
ErExceptionFlags(er) ←  0
ErExceptionRecord(er) ←  0

The floating register masks indicate which floating-point registers were destinations of ins
tions that caused an exception. A one in the corresponding position for a register indicate
the register was the destination of an instruction that faulted. A zero indicates that the re
was not the destination of an instruction that faulted. The definition of the correspond
between the floating registers and the bits in the mask is shown in Figure F–5.

Figure F–5: Floating-Point Register Mask (FLOAT_REGISTER_MASK)

The integer register masks indicate which integer registers were destinations of instruc
that caused an exception. A one in the corresponding position for a register indicates th
register was the destination of an instruction that faulted. A zero indicates that the registe
not the destination of an instruction that faulted. The definition of the correspondence bet
the integer registers and the bits in the mask is shown in Figure F–6.

Figure F–6: Integer Register Mask (INTEGER_REGISTER_MASK)

The format of the exception summary register is shown in Figure F–13 and the fields
defined in Table F–14.
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Table F–13 Exception Summary Register (EXCEPTION_SUMMARY)

F.4.1.7.2 Unaligned Access Exceptions

Unaligned access exceptions are reported to and handled by the kernel and are precise.
fore, the address written to the faulting instruction offset of the trap frame is the virtual add
of the load or store instruction that accessed the unaligned address.

The PALcode writes the following information into the exception record of the trap frame
an unaligned access exception, whereer is the exception record pointer.

ErExceptionCode(er) ←  STATUS_DATATYPE_MISALIGNMENT
ErExceptionInformation<0>(er) ←  Faulting opcode
ErExceptionInformation<1>(er) ←  Destination register
ErExceptionInformation<2>(er) ←  Unaligned virtual address
ErNumberParameters(er) ←  3
ErExceptionFlags(er) ←  0
ErExceptionRecord(er) ←  0

F.4.1.7.3 Illegal Instruction Exceptions

PALcode raises the following types of illegal operations as illegal instruction exceptions:

• Attempt to execute an instruction with an opcode reserved to Compaq.

• Attempt to execute an instruction with an unimplemented PALcode function code.

• Attempt to execute a privileged PALcode instruction from user (unprivileged) mode

• Attempt to execute an instruction with an illegal operand.

• Attempt to execute an unimplemented/subsetted instruction.

Table F–14 Exception Summary Register Fields

Field Name Description

RAZ Read as zero.

IOV Integer overflow Result of integer operation overflowed the destination’s precision

INE Inexact result Result of floating operation caused loss of precision.

UNF Underflow Result of floating operation underflowed the destination exponen

OVF Overflow Result of floating operation overflowed the destination exponent.

DZE Division by zero Floating-point divide attempt with a divisor of zero.

INV Invalid operation One or more of the operands of a floating-point operation was
illegal value.

SWC Software completion The exception completion qualifier /S was selected for all of
faulting instructions.

0

N V Z N

5 4 3 2 131

RAZ W

67

F F E V C

U O D S
N
E

O
V

III
Windows NT SoftwareF–25



ly if

s the

for

tual
tation
lation

of the

ption
In the

rx).

or a

ction.
soft-

teger

by the
d by
s an

ermine
Note:

Instructions with illegal operands cause illegal instruction exceptions to be raised on
the processor raises an exception for these operations.

Illegal instruction exceptions are precise; the faulting address written into the trap frame i
virtual address of the instruction that caused the exception.

The PALcode writes the following information into the exception record of the trap frame
an illegal instruction exception, whereer is the exception record pointer.

ErExceptionCode(er) ←  STATUS_ILLEGAL_INSTRUCTION
ErNumberParameters(er) ←  0
ErExceptionFlags(er) ←  0

F.4.1.7.4 Invalid (Non-Canonical Virtual) Address Exceptions

The PALcode raises a general exception if the PALcode detects an invalid faulting vir
address, that is, a faulting virtual address that is not a canonical longword. The implemen
must test for the non-canonical format for both data stream and instruction stream trans
buffer fills.

For data stream faults, the faulting address written to the trap frame is the virtual address
instruction that caused thereference to the invalid address.

Instruction stream invalid addresses present a more difficult problem because the exce
address itself is invalid and cannot be properly interpreted by a 32-bit operating system.
case of instruction stream virtual addresses, the ra (return address) register minus 4 (ra−4) is
written to the faulting address field of the trap frame. The ra register is used because it proba-
bly yields a sane address within the correct program that faulted. Also, the (ra−4) is the most
probable faulting address, as the most likely instruction to have caused the fault is: jsr ra, (

The PALcode writes the following information into the exception record of the trap frame f
non-canonical virtual address fault, whereer is the exception record pointer.

ErExceptionCode(er) ←  STATUS_INVALID_ADDRESS
ErExceptionInformation<0>(er) ←  1 if store; 0 otherwise
ErExceptionInformation<1>(er) ←  invalid va<63..32>
ErExceptionInformation<2>(er) ←  invalid va<31..0>
ErNumberParameters(er) ←  3
ErExceptionFlags(er) ←  0
ErExceptionRecord(er) ←  0

F.4.1.7.5 Software Exceptions

Software may raise exceptions by using the unprivileged gentrap (generate trap) instru
The gentrap instruction is used to raise exceptions recognized (possibly) in user-mode
ware for conditions such as divide by zero. (The Alpha architecture does not provide an in
divide instruction; division is accomplished by specialized divide routines.)

The gentrap instruction takes a single parameter that is preserved but not interpreted
PALcode. The gentrap parameter is written into the exception record where it is interprete
the kernel exception handler. Gentrap uses the STATUS_ALPHA_GENTRAP status a
exception code. The kernel exception dispatcher interprets the gentrap parameter to det
the appropriate Windows NT Alpha status to raise to the currently executing thread.
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The faulting address for a gentrap exception is the virtual address of the executed ge
instruction.

The PALcode writes the following information into the exception record for a gentrap inst
tion, whereer is the exception record pointer:

ErExceptionCode(er) ←  STATUS_ALPHA_GENTRAP
ErExceptionInformation<0>(er) ←  gentrap parameter

(a0<31..0> upon execution of gentrap)
ErExceptionInformation<1>(er) ←  gentrap parameter

(a0<63..32> upon execution of gentrap)
ErNumberParameters(er) ←  2
ErExceptionFlags(er) ←  0
ErExceptionRecord(er) ←  0

F.4.1.7.6 Breakpoints and Debugger Support

There are several breakpoint instructions and each raises a general exception. Several o
breakpoints are implemented to support the kernel debugger and are essentially special s
tine calls. The exact semantics of these calls are not important to the PALcode; all breakp
are handled in the same manner and are distinguished only by the breakpoint type that is
ten into the exception record.

All breakpoints are implemented as unprivileged PALcode instructions, which allows the
nel to decide whether the breakpoint can be taken in the current mode.

Table F–15 lists the breakpoint mnemonics and their corresponding breakpoint types:

The faulting instruction address for all breakpoints is the virtual address of the breakp
instruction.

PALcode completes the exception record for breakpoints as follows, whereer is the exception
record pointer:

ErExceptionCode(er) ←  STATUS_BREAKPOINT
ErExceptionInformation<0>(er) ←  breakpoint type
ErNumberParameters(er) ←  1
ErExceptionFlags(er) ←  0
ErExceptionRecord(er) ←  0

F.4.1.7.7 Subsetted IEEE Instruction Exceptions

Floating-point instructions are always enabled. Therefore, FEN (floating enable) faults ar
supported.

Table F–15: Breakpoint Types

Mnemonic Type Description

bpt USER_BREAKPOINT User breakpoint

kbpt KERNEL_BREAKPOINT Kernel breakpoint

callkd Passed in v0 Call kernel debugger
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Hardware Implementation Note:

Windows NT Alpha requires implementation of IEEE floating-point in each proces
implementation. The PALcode raises an illegal instruction exception for any subse
IEEE floating-point instruction — that is, for any IEEE floating-point instruction n
implemented in hardware.

VAX floating-point format is not supported.

F.4.1.7.8 General Exceptions: Common Operations

The common operations for all general exceptions are as follows.

previousPSR ← PSR
if ( PSR<Mode> EQ User ) then

PSR<Mode> ←  kernel
tp ←  (IKSP - TrapFrameLength)! Establish trap pointer

else
tp ←  (sp - TrapFrameLength) ! Establish trap pointer

endif
TrIntSp(tp) ←  sp
TrIntFp(tp) ←  fp
TrIntGp(tp) ←  gp
TrIntRa(tp) ←  ra
TrIntA0(tp) ←  a0
TrIntA1(tp) ←  a1
TrIntA2(tp) ←  a2
TrIntA3(tp) ←  a3
TrPsr(tp) ←  previousPSR
TrFir(tp) ←  ExceptionPC
sp ←  tp
RESTART_ADDRESS←  GENERAL_ENTRY
fp ←  sp
gp ←  KGP
a0 ←  tp + TrExceptionRecord ! pointer to exception record
a3 ←  previousPSR

All other general-purpose registers must be preserved across the general exception dispa

F.4.1.8 Panic Exceptions

Severe problems produce panic exceptions. Severe problems are not recoverable; the
ing system cannot continue executing normally. Panic exception handling shuts dow
machine in a controlled manner that assists in debugging the problem. With the excepti
hardware errors, panic exceptions are not expected to occur in the production operating system.

The PALcode raises a panic exception to the kernel and describes the condition that caus
panic with a bugcheck code. When the kernel receives a panic exception, it enters the k
debugger if it is enabled.

The classes of panic exceptions are:

• Kernel stack corruption

• Unexpected exceptions in PALcode
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F.4.1.8.1 Kernel Stack Corruption

The PALcode can recognize the following types of kernel stack corruption: invalid ke
stack, kernel stack overflow, and kernel stack underflow. The kernel stack for an exec
thread must always be valid. The PALcode raises a panic exception if the processor
when accessing the kernel stack and the page tables indicate that the kernel stack addres
valid. The PALcode may also check for kernel stack underflow and overflow and raise a p
exception if either condition is detected.

The kernel stack is the two pages of virtual address space below the IKSP for a thread,
the IKSP points to the byte beyond the top of the two pages. When raising a kernel stac
ruption exception, the PALcode sets the bugcheck code to PANIC_STACK_SWITCH.

F.4.1.8.2 Unexpected Exceptions

The PALcode may raise a panic exception when it detects an unexpected condition caus
PALcode. Such unexpected conditions are implementation dependent. It is anticipate
those conditions indicate a bug in the PALcode or that the processor is no longer exec
correctly. The PALcode raises the bugcheck code TRAP_CAUSE_UNKNOWN.

F.4.1.8.3 Panic Exception Trap Frame and Dispatch

The PALcode builds a trap frame for the kernel before it dispatches. The PALcode also fi
the exception record that exists within the trap frame.

The PALcode attempts to maintain all possible register state in order to assist in debuggin

The PALcode performs the following operations when dispatching a panic exception to
kernel:

previousPSR ←  PSR
if ( PSR<Mode> EQ User ) then

PSR<Mode> ←  Kernel
endif
panicStack ←  PcPanicStack(PCR) ! Get the panic stack
tp ← (panicStack - TrapFrameLength)! Allocate trap frame

! on panic stack
TrIntSp(tp) ←  sp
TrIntFp(tp) ←  fp
TrIntGp(tp) ←  gp
TrIntRa(tp) ←  ra
TrIntA0(tp) ←  a0
TrIntA1(tp) ←  a1
TrIntA2(tp) ←  a2
TrIntA3(tp) ←  a3
TrPsr(tp) ←  previousPSR
TrFir(tp) ←  ExceptionPC
sp ←  tp
fp ←  sp
gp ←  KGP
a0 ←  NT bugcheck code
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a1 ←  Exception address
a2, a3, a4 ←  Bugcheck parameters
RestartAddress ←  PANIC_ENTRY

All other general-purpose registers must be preserved across the panic exception dispatc

F.4.2 Interrupts

The PALcode supports two software interrupt levels and an implementation-specific lim
hardware interrupt sources. The Windows NT Alpha PALcode supports eight levels of in
rupt priority known as interrupt request levels (IRQL). The supported IRQLs are numb
0–7.

The platform independence of interrupt dispatch is accomplished via three tables: Inte
Level Table, Interrupt Mask Table, and Interrupt Dispatch Table.

F.4.2.1 Interrupt Level Table (ILT)

The Interrupt Level Table consists of eight entries, indexed 0–7. The index values and
bols for the entries are described in Table F–3. Each table entry corresponds to an IRQL
index within the table. The value of each entry is an enable value that indicates which inte
sources are to be enabled within the processor for the corresponding IRQL. One full long
is reserved for each table entry. The interpretation of the bits within the enable mask is pr
sor specific.

Implementation Note (Software):

The Interrupt Level Table is probably the most important optional set of data that ca
cached within the processor. Implementations should consider implementing a PAL
instruction that causes the ILT to be reread andrecached within the processor. Some
processors may have an effectively hardwired ILT. In such a case, the HAL has
influence over which interrupts are enabled for each IRQL.

F.4.2.2 Interrupt Mask Table (IMT)

The Interrupt Mask Table relates a mask value of requested interrupts to both an interrup
tor and a synchronization IRQL. The table resolves implicit interrupt priorities because
one interrupt vector can be assigned for each request mask. The IMT is divided into
sub-tables as described in Table F–16.

Each entry in the table is a longword that consists of two word values: the interrupt ve
number and the synchronization level. The use of the software portion of the table is st
defined and consistent across all processor implementations.

Table F–16: Interrupt Mask Table (IMT)

Index Range Interrupt Source Description

0–3 Software (2 sources)

4–131 Hardware
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Implementation Note:

In an implementation, the relation between pending interrupts and their interrupt vectors
and synchronization levels may be hardwired. In that case, the IMT is not used an
HAL is not able to influence the setting of priority or assignment of interrupts.

The software entries are used only if no hardware interrupts are pending. The entries m
initialized so that deferred procedure call (DPC) software interrupts are higher priority
asynchronous procedure call (APC) software interrupts. The expected initialization of the
ware portion of the IMT is defined in Table F–17.

The hardware portion of the IMT is designed for flexible use. Each implementation m
define a relationf that defines a mapping of requested and enabled hardware interrupt so
to entries in the IMT. The relationf is implementation specific, butf must be a function in
the mathematical sense (for each input there is a single unambiguous result). All inter
other than software interrupts are considered hardware interrupts. Hardware interrup
include external interrupt signals, performance counter interrupts, and correctable
interrupts.

F.4.2.3 Interrupt Dispatch Table (IDT)

The Interrupt Dispatch Table (IDT) has an entry foreachpossible interrupt vector. The possi
ble interrupt vectors are in the range 0–255. Each entry is a longword pointer, which i
virtual address of the interrupt dispatch routine for the vector that corresponds to the ind
the entry within the table. The PALcode does not read or write the IDT; it is maintained
used entirely by the kernel and HAL.

F.4.2.4 Interrupt Dispatch

Interrupt dispatch within the PALcode goes through the following steps:

! Mask of requested (irr) and enabled (ier) interrupt sources:
irm ←  irr AND ier

! Retrieve value from interrupt mask table:
CASE

Hardware Interrupt Pending :
index = f(irm)
sirql ← (IMT<{index*4}>)<Synchronization IRQL>
vector ← (IMT<{index*4}>)<InterruptVector>

Software Interrupt Pending:
sirql ← (IMT<{irm*4}>)<Synchronization IRQL>
vector ← (IMT<{irm*4}>)<InterruptVector>

Table F–17: Software Entries of the IMT

Index Synchronization Level Vector

0 PASSIVE_LEVEL = 0 Passive release vector

1 APC_LEVEL = 1 APC dispatch vector

2 DISPATCH_LEVEL = 2 DPC dispatch vector

3 DISPATCH_LEVEL = 2 DPC dispatch vector
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ENDCASE
Set processor to sirql IRQL
if ( processor interrupt ) then
{ acknowledge the interrupt }
endif

Once synchronization level has been set and the interrupt service routine has been deter
the PALcode builds a trap frame and dispatches to the kernel interrupt exception handler
ing in the interrupt vector.

In the case of software interrupts:

previousPsr ← PSR
if ( PSR<Mode> EQ User ) then

PSR<Mode> ← Kernel
tp ← (IKSP - TrapFrameLength) ! Establish trap pointer

else
tp ← (sp - TrapFrameLength) ! Establish trap pointer

endif
TrIntSp(tp) ←  sp
TrIntFp(tp) ←  fp
TrIntGp(tp) ←  gp
TrIntA0(tp) ←  a0
TrIntA1(tp) ←  a1
TrIntA2(tp) ←  a2
TrIntA3(tp) ←  a3
TrFir(tp) ←  ExceptionPC
TrPsr(tp) ←  previousPSR
TrIntRa(tp) ←  ra
sp ←  tp
fp ←  sp
gp ←  KGP
a0 ←  interrupt vector
a1 ←  PCR
a2 ←  synchronization IRQL
a3 ←  previousPSR
RestartAddress ←  INTERRUPT_ENTRY

In the case of hardware interrupts:

PreviousPSR ←  PSR
if ( PSR<Mode> EQ User ) then

PSR<Mode> ← Kernel
tp ← (IKSP - TrapFrameLength) ! Establish trap pointer

else
tp ← (sp - TrapFrameLength) ! Establish trap pointer

TrIntSp(tp) ←  sp
TrIntFp(tp) ←  fp
TrIntGp(tp) ←  gp
TrIntA0(tp) ←  a0
TrIntA1(tp) ←  a1
TrIntA2(tp) ←  a2
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TrIntA3(tp) ←  a3
TrFir(tp) ←  ExceptionPC
TrPsr(tp) ←  previousPSR
TrIntRa(tp) ←  ra
sp ← tp
fp ← sp
gp ← KGP
a0 ←  interrupt vector
a1 ←  PCR
a2 ←  synchronization IRQL
a3 ←  previousPSR
RestartAddress ←  INTERRUPT_ENTRY

All other general-purpose register values must be preserved across interrupt dispatch.

The kernel uses the rfe instruction to restart the interrupted code sequence.

F.4.2.5 Interrupt Acknowledge

Interrupts are acknowledged according to their origin. Internal processor interrupts, su
software interrupts and performance counters, are acknowledged by the PALcode. Sy
tem-level interrupts are acknowledged in the native interrupt dispatch routines.

F.4.2.6 Synchronization Functions

The swpirql, di, and ei instructions allow the kernel to affect the processor’s current inter
enable state:

• Swpirql swaps the current interrupt request level (IRQL) of the processor. Swpirql ta
the new IRQL as a parameter and returns the previous IRQL.

• Di disables all interrupts without changing the current IRQL.

• Ei enables interrupts at the currently set IRQL.

Those instructions and the existence of the interrupt enable bit in the PSR are used as a
interrupt enable for all interrupts.

F.4.2.7 Software Interrupt Requests

The PALcode includes the software interrupt request register (SIRR), an architected int
processor register, for controlling software interrupt requests. The PALcode also include
instructions, ssir and csir, to control the state of the SIRR register.

The format of the SIRR is shown in Figure F–7 and the fields are defined in Table F–18.
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Figure F–7: Software Interrupt Request Register

The ssir and csir instructionsaffect the state of software interrupt requests.

The ssir instruction sets software interrupt requests by taking as a parameter the inte
request levels to be set. Setting the appropriate bit in SIRR indicates that the correspo
software interrupt is requested. The csir instruction clears software interrupt requests by t
as a parameter the interrupt request level to be cleared. Clearing the appropriate bit in
indicates that the corresponding software interrupt request has been cleared.

F.4.3 Machine Checks

Machine checks are initiated when the hardware detects a hardware error condition. How
machine checks are not the only way that detected hardware errors are reported. Har
error conditions can be reported from three sources:

• At the pin level. Hardware may choose to signal errors via hardware interrupts. P
code delivers such hardware error interrupts to the kernel as standard interrupts,
they may be hooked by the HAL for system-specific processing. Such interrupts are not
processed by the PALcode as machine checks and are not described in this sectio

• From an implementation-dependent internal error interrupt. It is an implementa
decision whether to deliver such an interrupt as a standard interrupt or as a ma
check. The processing of an interrupt that is delivered as a machine check is desc
in this section.

• At the machine check hardware vector. Hardware errors that are signaled by the pr
sor through a specific machine check hardware vector are considered machine checks
and are described in this section.

The machine check condition may be correctable or uncorrectable. If uncorrectable, the har
ware may choose to retry the operation that returned the error.

The PALcode recognizes the following types of machine checks:

• Correctable errors

• Uncorrectable errors

• Catastrophicerrors

Table F–18: Software Interrupt Request Register Fields

Field Type Description

DPC RW DPC software interrupt requested

APC RW APC software interrupt requested

0
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C
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F.4.3.1 Correctable Errors

Processor correctable errors are data errors that are detected by the processor and can
ably corrected. System correctable errors are detected and corrected by the system har
incorrect data is not read into the processor.

Correctable errors are maskable by the MCES internal processor register (Figure F–8
recommended that correctable errors be disabled during PALcode initialization and s
quently be explicitly enabled by the HAL. Correctable errors are delivered from the PALc
to allow the HAL to log the errors. The PALcode builds a logout frame with per-proces
information that assists the HAL in logging theerror.

F.4.3.2 Uncorrectable Errors

Uncorrectable errors from the processor are detected by the processor and exhibit data
that cannot be reliably corrected. Actual processor uncorrectable errors are defined by th
cessor implementation. Uncorrectable errors from the system are detected but not correc
the system hardware.

Although uncorrectable errors are likely also to be unrecoverable, a mechanism exists
exception record to allow one or more retries when appropriate. The HAL controls the
count. For example, a parity error in the I-cache, although uncorrectable, may disappea
an operation retry.

The machine check exception is raised to the HAL to allow per-platform error handl
Uncorrectable errors are delivered immediately upon detection. The PALcode creates a l
frame with per-processor information to assist the HAL in handling the error condition.

F.4.3.3 Machine Check Error Handling

The general model for machine check handling has the following flow:

1. The PALcode corrects the error, if possible.

2. The PALcode sets the machine to a known state from which restart is possible.

3. The PALcode builds a logout frame describing the detected error.

4. The PALcode sets processor IRQL appropriately (see below).

5. The PALcode dispatches a general exception to the kernel.

6. In the case of a catastrophic error, PALcode returns control to the firmware
described in Section F.4.3.4.

The machine check error summary (MCES) register, Figure F–8, indicates and contro
current state of the machine check handler for the processor. Table F–19 describes the
register.
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Figure F–8: Machine Check Error Summary

All machine checks (correctable and uncorrectable) are maskable via the DMK bit in
MCES register. This bit is provided only for debugging systems.

The initial value in MCES is implementation specific but, wherever possible, PALco
attempts to preserve the state of machine check enables from the previous PALcode en
ment during initialization.

PALcode writes the exception record with the following values for a machine check, wheer
is the exception record pointer.

ErExceptionCode(er) ←   DATA_BUS_ERROR
ErExceptionInformation<0>(er) ←   machine check type
ErExceptionInformation<1>(er) ←   pointer to logout frame
ErNumberParameters(er) ←   2
ErExceptionFlags(er) ←   0
ErExceptionRecord(er) ←   0

The two-bit mask that shows the machine check type is shown in Table F–20.

The virtual address of the logout frame is a 32-bit superpage address, and the logout fram
a per-processor format.

Table F–19: Machine Check Error Summary Fields

Field Type Description

DMK RW Disable all machine checks

DSC RW Disable system correctable error reporting

DPC RW Disable processor correctable error reporting

PCE RW Processor correctable error reported

SCE RW System correctable error reported

MCK RW Machine check (uncorrectable) reported (see Section F.4.3.4)

Table F–20: Machine Check Types

Machine Check Type Mask Value (Bits 0:1)

Uncorrectable with no retries 00

Correctable 01

Uncorrectable with retries 10

Reserved 11

0

D
S
C

D
P
C

P
C
E

S
C
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The draina instruction, when coupled with appropriate implementation-specific native c
can allow software to force completion of all previously executed instructions, such tha
previous instructions cannot cause machine checks to be signaled while any instructions
quent to the draina are executed.

F.4.3.4 Catastrophic Errors

Although particular catastrophic conditions are specific to the processor implementation,
conditions indicate that the machine is left in a state where execution cannot be rel
restarted. They also indicate that the hardware cannot be trusted to execute properly or th
of data within the system cannot be determined.

An example of a catastrophic condition is a machine check taken while machine check
dling is in progress, as indicated by a set MCK bit in the MCES register. Taking a mac
check while in the PALcode environment is also considered catastrophic. In those cases
trol is returned to the firmware as follows:

1. Further machine check acknowledgement is turned off and a logout frame is gene

2. The restart block is verified:

– If the restart block is good, the current state in the restart block is saved, the pr
ous state is restored, and control is returned to the firmware at the restart addre

– If the restart block is bad, the alternate path is used to re-execute the previous
code image at its entry address. See Section F.6.2.1

F.5 .PALcode Instruction Descriptions

The PALcode instructions generally follow the Windows NT Alpha calling standard. Ar
ments are passed in the argument (a0–a5) registers and return values are returned in th
(v0) register. The PALcode instructions also incorporate the following conventions into t
own calling standard:

• Unless specific temporary registers are required, only the argument registers a0–
considered volatile.

• Generally, all parameters are passed in registers.

The argument registers are used as volatile registers because often they contain param
the PALcode instructions. In strict adherence to the calling standard, the temporary reg
t0–t12 could also be considered volatile in the PALcode instructions, but they are not.
temporary registers are not considered necessarily volatile because PALcode instruction
erally do not need more free registers. Further, it is convenient in assembly language,
which the PALcode instructions are most frequently called, to be able to assume that te
rary registers are preserved across the PALcode instruction.

All parameters to the PALcode instructions are passed in registers. If the number of par
ters exceeds the available number of argument registers, additional temporary registe
used as arguments. This precludes the need for callers to build an appropriate stack fra
PALcode instructions with more than six parameters.
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The RESTART_ADDRESS register indicates the next execution address when the PAL
exits. Upon entry to each of the PALcode instructions, the RESTART_ADDRESS regist
considered to contain the address of the instruction immediately following the PALc
instructions.

A range of privileged PALcode instructions is reserved for processor-implementation-spe
PALcode instructions that allow specialized communication between the HAL and
PALcode.

Note: TheOperationpart of the PALcode instruction descriptions is shown as a
ordered sequence of instructions. The instructions in the sequence may
reordered as long as the results of the sequence of instructions are not
altered. In particular, if aninstructionj is listed subsequent to an instruction
i and i writes any data that is used byj, then i must be executed beforej.

F.5.1 Privileged PALcode Instructions

Table F–21 summarizes the privileged PALcode instructions.

Table F–21: Privileged PALcode Instruction Summary

Mnemonic Description

csir Clear software interrupt request

dalnfix Disable alignment fixups

di Disable interrupts

draina Drain aborts

dtbis Data translation buffer invalidate single

ealnfix Enable alignment fixups

ei Enable interrupts

halt Halt the processor

initpal Initialize the PALcode

initpcr Initialize PCR data

rdcounters Read PALcode event counters

rdirql Read current IRQL

rdksp Read initial kernel stack

rdmces Read machine check error summary

rdpcr Read processor control region address

rdpsr Read processor status register

rdstate Read internal processor state

rdthread Read the current thread value

reboot Transfer to console or previous PALcode environment
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restart Restart the processor

retsys Return from system service call

rfe Return from exception

ssir Set software interrupt request

swpctx Swap privileged thread context

swpirql Swap IRQL

swpksp Swap initial kernel stack

swppal Swap PALcode

swpprocess Swap privileged process context

tbia Translation buffer invalidate all

tbim Translation buffer invalidate multiple

tbimasn Translation buffer invalidate multiple for ASN

tbis Translation buffer invalidate single

tbisasn Translation buffer invalidate for single ASN

wrentry Write system entry

wrmces Write machine check error summary

wrperfmon Write performance monitoring values

Table F–21: Privileged PALcode Instruction Summary (Continued)

Mnemonic Description
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F.5.1.1 Clear Software Interrupt Request

Format:

Operation:
{ a0 = Software interrupt requests to clear }

if ( PSR<Mode> EQ User ) then
{ Initiate illegal instruction exception }

endif
if ( a0<1> E Q 1 ) then

SIRR<DPC> ← 0
endif
if ( a0<0> E Q 1 ) then

SIRR<APC> ← 0
endif

GPR State Change:

IPR State Change:

Exceptions:

Description:

The csir instruction clears the specified bit in the SIRR internal processor register, depe
on the contents of a0. See Section F.4.2.7.

csir ! PALcode format

a0–a5 are UNPREDICTABLE

SIRR ← 0 according to a0

Illegal Instruction

Machine Checks
F–40 Alpha Linux Software (II–B)



ent
ssor,
cep-

r.
F.5.1.2 Disable Alignment Fixups

Format:

Operation:
if ( PSR<Mode> EQ User ) then

{ Initiate illegal instruction exception }
endif
{ Implementation-specific state is set to generate alignment fault }
{ exceptions and to prevent alignment fault fixups by the PALcode }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The dalnfix instruction disables alignment fault fixups in PALcode and generates alignm
fault exceptions whenever an alignment fault occurs. After dalnfix is executed on a proce
all alignment faults on that processor are not fixed-up by PALcode and alignment fault ex
tions are dispatched to the kernel until the ealnfix instruction is executed on that processo

dalnfix ! PALcode format

None

None

Illegal Instruction

Machine Checks
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F.5.1.3 Disable All Interrupts

Format:

Operation:
if ( PSR<Mode> EQ User ) then

{ Initiate illegal instruction exception }
endif
PSR<IE> ← 0

GPR State Change:

IPR State Change:

Exceptions:

Description:

The di instruction disables all interrupts by clearing the interrupt enable bit (IE) in the P
internal processor register. The IRQL field is unaffected. Interrupts may be re-enabled vi
ei instruction.

di ! PALcode format

None

PSR<IE> ← 0

Illegal Instruction

Machine Checks
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F.5.1.4 Drain All Aborts Including Machine Checks

Format:

Operation:
if ( PSR<Mode> EQ User ) then

{ Initiate illegal instruction exception }
endif
{ Implementation-specific drain }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The draina instruction facilitates the draining of all aborts, including machine checks, from
current processor. When coupled with the appropriate implementation-specific native c
draina can help guarantee that no abort is signaled for an instruction issued before the
while any instruction issued subsequent to the draina is executing.

draina ! PALcode format

None

None

Illegal Instruction
Machine Checks
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F.5.1.5 Data Translation Buffer Invalidate Single

Format:

Operation:
{ a0 = Virtual address of translation to invalidate }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Invalidate all translations in the data stream for the }
{ virtual address in a0 }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The dtbis instruction invalidates a single data stream translation. The translation for the v
address in a0 must be invalidated in all data translation buffers and in all virtual data cache

dtbis ! PALcode format

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks
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F.5.1.6 Enable Alignment Fixups

Format:

Operation:
if ( PSR<Mode> EQ User ) then

{ Initiate illegal instruction exception }
endif
{ Implementation-specific state is set to fix up alignment fault }
{ by the PALcode }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The ealnfix instruction enables alignment fault fixups in PALcode and prevents alignment
exceptions. After ealnfix is executed on a processor, all alignment faults on that process
fixed-up by PALcode and no alignment fault exceptions are dispatched to the kernel unt
dalnfix instruction is executed on that processor.

The default state is disabled alignment fixups in PALcode.

ealnfix ! PALcode format

None

None

Illegal Instruction
Machine Checks
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F.5.1.7 Enable Interrupts

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
PSR<IE> ← 1

GPR State Change:

IPR State Change:

Exceptions:

Description:

The ei instruction sets the interrupt enable (IE) bit in the PSR internal processor register
enabling those interrupts that are at the appropriate level for the current IRQL field in the P

ei ! PALcode format

None

PSR<IE> ← 1

Illegal Instruction

Machine Checks
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F.5.1.8 Halt the Operating System by Trapping to Illegal Instruction

Format:

Operation:
{ Initiate illegal instruction exception }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The halt instruction forces an illegal instruction exception. See the reboot instruction, Se
F.5.1.19, for transferring control to the console or previous PALcode environment.

halt ! PALcode format

See Section F.4.1.7.3 for illegal instruction exception handling.

See Section F.4.1.7.3 for illegal instruction exception handling.

Illegal Instruction
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F.5.1.9 Initialize PALcode Data Structures with Operating System Values

Format:

Operation:
{ a0 = Page directory entry (PDE) page, superpage 32 address }
{ a1 = Initial thread value }
{ a2 = Initial TEB value }
{ gp = Kernel global pointer }
{ sp = Initial kernel stack pointer }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
PDR ← (a0 BIC 80000000 16 )

THREAD ← a1
TEB ← a2
IKSP ← sp
KGP ← gp
PcPalBaseAddress(PCR) ← PAL_BASE
PcPalMajorVersion(PCR) ← PalMajorVersion
PcPalMinorVersion(PCR) ← PalMinorVersion
PcPalSequenceVersion(PCR) ← PalSequenceVersion
PcPalMajorSpecification(PCR) ← PalMajorSpecification
PcPalMinorSpecification(PCR) ← PalMinorSpecification
v0 ← PAL_BASE

GPR State Change:

IPR State Change:

Exceptions:

initpal ! PALcode format

v0 ← PAL_BASE

a0–a5 are UNPREDICTABLE.

PDR ← a0

THREAD ← a1

TEB ← a2

IKSP ← sp

KGP ← gp

Illegal Instruction
Machine Checks
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Description:

The initpal instruction is called early in the kernel initialization sequence to establish IPR
ues for the initial thread PDR, THREAD, TEB, and IKSP. The IPR value KGP persists for
life of the system. In addition, initpal writes the PALcode version information into the PCR.

On return from the initpal instruction, the return value register, v0, contains the PAL_BA
register, the base address in 32-bit superpage (kseg0) format.
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F.5.1.10 Initialize Processor Control Region Data

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }

endif

{ Cache portions of Interrupt Level Table and Processor Control Region }
{ data in implementation-dependent manner }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The initpcr instruction caches process-specific information, including parts of the Inter
Level Table (ILT), for use by the PALcode. See Section F.6.1.4 for information on the ILT.

initpcr ! PALcode format

a0–a4 are UNPREDICTABLE

None

Illegal Instruction
Machine Checks
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F.5.1.11 Read the Software Event Counters

Format:

Operation:
{ a0 = Pointer to 32-bit superpage address of counter record buffer. }
{ Address must be quadword aligned }
{ a1 = Length of buffer in bytes }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Dump event counter values to the counter record }
v0 ← status

GPR State Change:

IPR State Change:

Exceptions:

Description:

For debug PALcode (see Section F.5.3), rdcounters causes that PALcode to write the s
its internal software event counters into an implementation-specific counter record point
by the address passed in the a0 register. For production PALcode, rdcounters returns a
value of zero, indicating that it is not implemented in the current PALcode image.

On return from rdcounters, v0 contains the status as follows:

rdcounters ! PALcode format

v0 ← status

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks

If v0 = 0 Interface is not implemented.

If v0 ≤ a1 v0 is length of data returned.
If v0 > a1 No data is returned and v0 is length of processor implementatio

counterrecord.
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F.5.1.12 Read the Current IRQL from the PSR

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
v0 ← PSR<IRQL>

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdirql instruction returns in v0 the contents of the interrupt request level (IRQL) field
the PSR internal processor register.

rdirql ! PALcode format

v0 ← <IRQL>

None

Illegal Instruction

Machine Checks
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F.5.1.13 Read Initial Kernel Stack Pointer for the Current Thread

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
v0 ← IKSP

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdksp instruction returns in v0 the contents of the IKSP (initial kernel stack pointer) in
nal processor register for the currently executing thread.

rdksp ! PALcode format

v0 ← <IKSP>

None

Illegal Instruction

Machine Checks
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F.5.1.14 Read the Machine Check Error Summary Register

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
v0 ← MCES

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdmces instruction returns in v0 the contents of the machine check error summary (M
internal processor register.

rdmces ! PALcode format

v0 ← MCES

none

Illegal Instruction

Machine Checks
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F.5.1.15 Read the Processor Control Region Base Address

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
v0 ← PCR

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdpcr instruction returns in v0 the contents of the PCR internal processor register (the
address value of the processor control region).

rdpcr ! PALcode format

v0 ← PCR

None

Illegal Instruction

Machine Checks
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F.5.1.16 Read the Current Processor Status Register (PSR)

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
v0 ← PSR

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdpsr instruction returns in v0 the contents of the current PSR (Processor Status Re
internal processor register.

rdpsr ! PALcode format

v0 ← PSR

None

Illegal Instruction

Machine Checks
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F.5.1.17 Read the Current Internal Processor State

Format:

Operation:
{ a0 = Pointer to 32-bit superpage address of state record buffer. }
{ Address must be quadword aligned }
{ a1 = Length of buffer in bytes }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Dump internal processor state record to processor state buffer }
v0 ← status

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdstate instruction writes the internal processor state to the internal processor state
pointed to by the address passed in the a0 register. The form and content of the internal p
sor state buffer are implementation specific.

On return from the rdstate instruction, the return value register, v0, contains the stat
follows:

rdstate ! PALcode format

v0 ← status

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks

If v0 = 0 Interface is not implemented.

If v0 ≤ a1 v0 is length of data returned.
If v0 > a1 No data is returned and v0 is length of processor implementatio

counterrecord.
Windows NT SoftwareF–57



ister
F.5.1.18 Read the Thread Value for the Current Thread

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
v0 ← THREAD

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdthread instruction returns in v0 the contents of the THREAD internal processor reg
(for the currently executing thread).

rdthread ! PALcode format

v0 ← THREAD

None

Illegal Instruction

Machine Checks
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F.5.1.19 Reboot — Transfer to Console Firmware

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
RestartBlockPointer ← PcRestartBlock(PCR )
{ If cannot verify restart block, restart previous PALcode }
{ Save general register state in saved state area }
{ Save internal processor register state in saved state area, }
{ includes PAL_BASE }
{ Save implementation-specific data in saved state area }
{ Set the saved state length in restart block }
{ Compute and store Checksum for restart block }
{ Restore previous privileged state }
PAL_BASE ← previous_PAL_BASE.
RESTART_ADDRESS← PcFirmwareRestartAddress(PCR)

GPR State Change:

IPR State Change:

Exceptions:

Description:

The reboot instruction stops the operating system from executing and returns execution
boot environment. Reboot is responsible for completing the ARC Restart Block before re
ing to the boot environment. The PALcode must accomplish two tasks to restore the
environment: re-establish the boot environment PALcode and restart execution in the
environment at the Firmware Restart Address.

reboot ! PALcode format

All registers are UNPREDICTABLE.

PAL_BASE ← previous_PAL_BASE

RESTART_ADDRESS← PcFirmwareRestartAddress(PCR)

All other registers are UNPREDICTABLE.

Illegal Instruction

Machine Checks
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F.5.1.20 Restart the Operating System from the Restart Block

Format:

Operation:
{ a0 = Pointer to ARC restart block with Alpha saved state area }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Verify restart block }
{ if invalid then return to caller }
RestartBlockPointer ← PcRestartBlock(PCR)
{ Restore general register state from saved state area }
{ Restore internal processor register state from saved state area, }
{ Restore implementation-specific data from saved state area }
RESTART_ADDRESS← RbRestartAddress(RestartBlockPointer)

GPR State Change:

IPR State Change:

Exceptions:

Description:

The restart instruction restores saved processor state and resumes execution of the op
system.

restart ! PALcode format

All registers are UNPREDICTABLE.

RESTART_ADDRESS← RbRestartAddress(RestartBlockPointer)

All other registers are UNPREDICTABLE.

Illegal Instruction
Machine Checks
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F.5.1.21 Return from System Service Call Exception

Format:

Operation:
{ a0 = Previous PSR }
{ a1 = New software interrupt requests }
{ fp = Pointer to trap frame }
{ v0 = Return status from system service }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
if ( a1<1> E Q 1 ) then

SIRR<DPC> ← 1
endif
if ( a1<0> E Q 1 ) then

SIRR<APC> ← 1
endif
TrapFrame ← fp
ra ← TrIntRa(TrapFrame)
gp ← TrIntGp(TrapFrame)
fp ← TrIntFp(TrapFrame)
sp ← TrIntSp(TrapFrame)
RESTART_ADDRESS← TrFir(TrapFrame)
PSR ← a0
{ Clear lock_flag register }
{ Clear intr_flag register }

GPR State Change:

IPR State Change:

retsys ! PALcode format

ra ← TrIntRa(TrapFrame)

gp ← TrIntGp(TrapFrame)

fp ← TrIntFp(TrapFrame)

sp ← TrIntSp(TrapFrame)

at, t0–t12, a –a5 are UNPREDICTABLE

PSR ← a0

RESTART_ADDRESS← TrFir(TrapFrame)

SIRR ← a1<1…0>
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Exceptions:

Description:

The retsys instruction returns from a system service call exception by unwinding the
frame, clearing the lock_flag and intr_flag (interrupt flag) registers, and returning to the c
stream that was executing when the original exception was initiated. Retsys must return
native code stream; it is illegal for retsys to return to the PALcode environment and that
be guaranteed not to happen. In addition, retsys accepts a parameter to set software in
requests that became pending while the exception was handled.

Retsys is similar to the rfe instruction, with the following exceptions:

1. Retsys need not restore the argument registers a0–a3 from the trap frame.

2. Retsys need not preserve volatile register state.

3. Retsys returns to the address in the ra register at the point of the callsys rather th
faulting instruction address (the ra was written to the faulting instruction addres
callsys).

Illegal Instruction
Machine Checks

Invalid Kernel Stack
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F.5.1.22 Return from Exception or Interrupt

Format:

Operation:
{ a0 = Previous PSR }
{ a1 = New software interrupt requests }
{ fp = Pointer to trap frame }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
if ( a1<1> E Q 1 ) then

SIRR<DPC> ← 1
endif
if ( a1<0> E Q 1 ) then

SIRR<APC> ← 1
endif

PSR ← a0
TrapFrame ← fp
a0 ← TrIntA0(TrapFrame)
a1 ← TrIntA1(TrapFrame)
a2 ← TrIntA2(TrapFrame)
a3 ← TrIntA3(TrapFrame)
ra ← TrIntRa(TrapFrame)
gp ← TrIntGp(TrapFrame)
fp ← TrIntFp(TrapFrame)
sp ← TrIntSp(TrapFrame)
RESTART_ADDRESS← TrFir(TrapFrame)

{ Clear lock_flag register }

GPR State Change:

rfe ! PALcode format

a0 ← TrIntA0(TrapFrame)

a1 ← TrIntA1(TrapFrame)

a2 ← TrIntA2(TrapFrame)

a3 ← TrIntA3(TrapFrame)

ra ← TrIntRa(TrapFrame)

gp ← TrIntGp(TrapFrame)

fp ← TrIntFp(TrapFrame)

sp ← TrIntSp(TrapFrame)
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IPR State Change:

Exceptions:

Description:

The rfe instruction returns from exceptions or interrupts by unwinding the trap frame, clea
the lock_flag register, and returning to the code stream that was executing when the or
exception or interrupt was initiated. Rfe must return to the native code stream; it isillegal for
rfe to return to the PALcode environment and that must be guaranteed not to happen. In
tion, rfe accepts a parameter to set software interrupt requests that became pending wh
event was handled.

PSR ← a0

RESTART_ADDRESS← TrFir(TrapFrame)

SIRR ← a1<1…0>

Illegal Instruction
Machine Checks

Invalid Kernel Stack
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SIRR
F.5.1.23 Set Software Interrupt Request

Format:

Operation:
{ a0 = Software interrupt requests to set }

if ( PSR<MODE> EQ User ) then
{Initiate illegal instruction exception }

endif
if ( a0<1> E Q 1 ) then

SIRR<DPC> ← 1
endif
if ( a0<0> E Q 1 ) then

SIRR<APC> ← 1
endif

GPR State Change:

IPR State Change:

Exceptions:

Description:

The ssir instruction sets software interrupt requests by setting the appropriate bits in the
internal processor register. See Section F.4.2.7.

ssir ! PALcode format

a –a5 are UNPREDICTABLE.

SIRR ← a0<1…0>

Illegal Instruction

Machine Checks
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F.5.1.24 Swap Thread Context

Format:

Operation:
{ a0 = New initial kernel stack va }
{ a1 = New thread address }
{ a2 = New thread environment block pointer }
{ a3 = New address space page frame number (PFN) }
{ or a negative number }
{ a4 = ASN }
{ a5 = ASN_wrap_indicator }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
IKSP ← a0
THREAD ← a1
TEB ← a2
ASN_wrap_indicator ← a5
if ( a3 GE 0 ) then ! swap address space

temp ← SHIFT_LEFT( a3, PAGE_SHIFT )
PDR ← temp
ASN ← a4
if ( ASN_wrap_indicator NE 0 ) then

{ invalidate all translations and virtual cache blocks }
{ for which ASM EQ 0 }

endif
endif

{ Where: }
{ 2**PAGE_SHIFT = implementation page size }

GPR State Change:

IPR State Change:

swpctx ! PALcode format

a0 a5 are UNPREDICTABLE

IKSP ← a0

THREAD ← a1

TEB ← a2

PDR ← a3 (possibly)

ASN ← a4 (possibly)
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Exceptions:

Description:

The swpctx instruction swaps the privileged portions of thread context. Thread conte
swapped by establishing the new IKSP, THREAD, and TEB internal processor register va

Swpctx may also swap the address space (or process) for the new thread. If the new threa
the same process (address space) as the previous thread, the kernel passes a negative
the page frame number (PFN) in the page directory page, indicating that the address spac
not be switched. If the PFN is zero or a positive number, it is used to swap the address s
just as if swpprocess had been executed.

Illegal Instruction
Machine Checks
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F.5.1.25 Swap the Current IRQL (Interrupt Request Level)

Format:

Operation:
{ a0 = New IRQL }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
v0 ← PSR<IRQL>
PSR<IRQL> ← a0

GPR State Change:

IPR State Change:

Exceptions:

Description:

The swpirql instruction swaps the current IRQL field in the PSR internal processor registe
the specified new IRQL, setting the processor so that only interrupts permitted by the
IRQL are enabled. Swpirql updates the IRQL field and returns in v0 the previous IRQL.

swpirql ! PALcode format

v0 ← PSR<IRQL>

a0–a5 are UNPREDICTABLE.

PSR<IRQL> ← a0

Illegal Instruction
Machine Checks
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F.5.1.26 Swap the Initial Kernel Stack Pointer (IKSP) for the Current Thread

Format:

Operation:
{ a0 = New IKSP }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
v0 ← IKSP
IKSP ← a0

GPR State Change:

IPR State Change:

Exceptions:

Description:

The swpksp instruction returns in v0 the value of the previous IKSP internal processor reg
and writes a new IKSP for the currently executing thread.

swpksp ! PALcode format

v0 ← IKSP

a0–a5 are UNPREDICTABLE.

IKSP ← a0

Illegal Instruction
Machine Checks
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F.5.1.27 Swap the Currently Executing PALcode

Format:

Operation:
{ a0 = Physical base address of new PALcode }
{ a1-a5 = Arguments to the new PALcode environment }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ load processor-dependent parameters }
{ jump to address in a0 as a physical address in }
{ the PALcode environment }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The swppal instruction swaps the currently executing PALcode by transferring to the
address of the new PALcode image (provided in a0) in the PALcode environment.

swppal ! PALcode format

at and t0–t12 are UNPREDICTABLE or contain processor-dependent parameters

None

Illegal Instruction

Machine Checks
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F.5.1.28 Swap Process Context (Swap Address Space)

Format:

Operation:
{ a0 = Page frame number (PFN) of new PDR }
{ a1 = Address space number (ASN) of new process }
{ a2 = Address space number wrap indicator (ASN_wrap_indicator): }
{ zerp = no wrap }
{ nonzero = wrap }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
temp ← SHIFT_LEFT( a0, PAGE_SHIFT )
PDR ← temp
ASN ← a1
if ( ASN_wrap_indicator N E 0 ) then

{ Invalidate all translations and virtual cache blocks }
{ for which ASM EQ 0 }

endif

{ Where: }
{ 2**PAGE_SHIFT = implementation page size }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The swpprocess instruction swaps the privileged process context by changing the addres
for the currently executing thread. The address space change is accomplished by establi
new PDR and ASN. If the ASN_wrap_indicator passed in a2 is nonzero, swpprocess c
invalidation of all translation buffer entries and virtual cache blocks that have a clear add
space match (ASM) bit.

swpprocess ! PALcode format

a0–a5 are UNPREDICTABLE..

PDR ← a0

ASN ← a1

Illegal Instruction
Machine Checks
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F.5.1.29 Translation Buffer Invalidate All

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif
{ Invalidate all translations and virtual cache blocks }
{ within the processor }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The tbia instruction invalidates all translations and virtual cache blocks within the processo

tbia ! PALcode format

a –a5 are UNPREDICTABLE.

None

Illegal Instruction

Machine Checks
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F.5.1.30 Translation Buffer Invalidate Multiple

Format:

Operation:
{ a0 = Pointer to array of virtual addresses to invalidate }
{ a1 = Number of virtual addresses to invalidate }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Invalidate translations for virtual addresses pointed to in a0 for }
{ the number of entries in a1. Invalidate in all translation }
{ buffers and all virtual caches }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The tbim instruction invalidates multiple virtual translations for the current ASN. The tran
tions for the virtual address must be invalidated in all processor translation buffers and v
caches.

tbim ! PALcode format

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks
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F.5.1.31 Translation Buffer Invalidate Multiple for ASN

Format:

Operation:
{ a0 = Pointer to array of virtual addresss to invalidate }
{ a1 = Number of virtual addesses to invalidate }
{ a2 = Address space number (ASN) }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Invalidate translations for the virtual addresses in the array }
{ pointed to in a0, for the number of entries in a1, that match the }
{ ASN in a2. Invalidate in all translation buffers and virtual caches }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The tbimasn instruction invalidates multiple virtual translations for a specified ASN. The tr
lations for the virtual addresses must be invalidated in all processor translation buffers
virtual caches.

tbimasn ! PALcode format

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks
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F.5.1.32 Translation Buffer Invalidate Single

Format:

Operation:
{ a0 = Virtual address of translation to invalidate }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Invalidate all translations for the virtual address in a0, }
{ invalidate in all translation buffers and all virtual caches }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The tbis instruction invalidates a single virtual translation. The translation for the passed
tual address must be invalidated in all processor translation buffers and virtual caches.

tbis ! PALcode format

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks
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F.5.1.33 Translation Buffer Invalidate Single for ASN

Format:

Operation:
{ a0 = Virtual address of translation to invalidate }
{ a1 = Address space number (ASN) }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
{ Invalidate the translation for the virtual address in a0 }
{ that matches the ASN in a1. The translation must be invalidated }
{ in all translation buffers and virtual caches }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The tbisasn instruction invalidates a single virtual translation for a specified address s
number. The translation for the passed virtual address must be invalidated in all proc
translation buffers and virtual caches.

tbisasn ! PALcode format

a0–a5 are UNPREDICTABLE.

None

Illegal Instruction
Machine Checks
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F.5.1.34 Write Kernel Exception Entry Routine

Format:

Operation:
{ a0 = Address of exception entry routine, 32-bit }
{ superpage address }
{ a1 = Exception class value }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
case a1 begin

0:
PANIC_ENTRY ← a0
break;

1:
MEM_MGMT_ENTRY← a0
break;

2:
INTERRUPT_ENTRY ← a0
break;

3:
SYSCALL_ENTRY ← a0
break;

4:
GENERAL_ENTRY← a0
break;

otherwise:
{ Initiate panic exception }

endcase;

GPR State Change:

IPR State Change:

Exceptions:

wrentry ! PALcode format

a0–a5 are UNPREDICTABLE.

*_ENTRY ← a0

Illegal Instruction
Machine Checks

Panic Exception
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Description:

The wrentry instruction provides the registry of exception handling routines for the excep
classes. The address in a0 is registered for the exception class corresponding to the exc
class value in a1. The kernel must use wrentry to register an exception handler for each
exception classes. The relationship between the exception classes and class values is sh
Table F–22.

Table F–22: Exception Class Values

Exception Class Value

Panic exceptions 0

Memory management exceptions 1

Interrupt exceptions 2

System service call exceptions 3

General exceptions 4
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F.5.1.35 Write the Machine Check Error Summary Register

Format:

Operation:
{a0 = New values for the machine check error }
{ summary (MCES) register. }

if ( PSR<MODE> EQ User ) then
{ Initiate illegal instruction exception }

endif
v0 ← MCES
MCES<DMK> ← a0<5>
MCES<DSC> ← a0<4>
MCES<DPC> ← a0<3>
if ( a0<2> E Q 1 ) then

MCES<PCE> ← 0
endif
if ( a0<1> E Q 1 ) then

MCES<SCE> ← 0
endif
if( a0<0> EQ 1 ) then

MCES<MCK> ← 0
endif

GPR State Change:

IPR State Change:

Exceptions:

Description:

The wrmces instruction writes new values for the MCES internal processor register and re
in v0 the previous values of that register.

wrmces ! PALcode format

v0 ← previous MCES

MCES ← a0

Illegal Instruction
Machine Checks
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F.5.1.36 Write Performance Counter Interrupt Control Information

Format:

Operation:
if ( PSR<MODE> EQ User ) then

{ Initiate illegal instruction exception }
endif

{ a0 - a5 contain implementation-specific input values }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The wrperfmon instruction controls any performance monitoring mechanisms in the proc
and PALcode. The wrperfmon instruction arguments and actions are chip dependent, and
defined for an implementation, are described in Appendix E.

wrperfmon ! PALcode format

v0 ← implementation-dependent value

a0–a5 are UNPREDICTABLE

None

Illegal Instruction

Machine Checks
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F.5.2 Unprivileged PALcode Instructions

Table F–23: Unprivileged PALcode Instruction Summary

Mnemonic Description

bpt Breakpoint trap

callkd Call kernel debugger

callsys Call system service

gentrap Generate trap

imb Instruction memory barrier

kbpt Kernel breakpoint trap

rdteb Read thread environment block pointer
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F.5.2.1 Breakpoint Trap (Standard User-Mode Breakpoint)

Format:

Operation:
See Sections F.4.1.7.8 and F.4.1.7.6

GPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.6

IPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.6

Exceptions:

Description:

The bpt instruct ion raises a breakpoint general exception to the kernel , set ti
USER_BREAKPOINT breakpoint type.

bpt ! PALcode format

Machine Checks

Kernel Stack Invalid
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F.5.2.2 Call Kernel Debugger

Format:

Operation:
{v0 = Type of breakpoint }
See Sections F.4.1.7.8 and F.4.1.7.6

GPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.6

IPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.6

Exceptions:

Description:

The callkd instruction raises a breakpoint general exception to the kernel, setting the b
point type with the value supplied in v0. The callkd instruction implements special calls to
kernel debugger.

callkd ! PALcode format

Machine Checks

Kernel Stack Invalid
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F.5.2.3 System Service Call

Format:

Operation:
{ v0 = System service code }
{ a0-a5 = System call arguments }
previousPSR ← PSR
if( PSR<MODE> EQ UserMode ) then

PSR<MODE> ← KernelMode
tp ← (IKSP - TrapFrameLength) ! Establish trap pointer

else
tp ← (sp - TrapFrameLength) ! Establish trap pointer

endif
TrIntSp(tp) ← sp
TrIntFp(tp) ← fp
TrIntRa(tp) ← ra
TrIntGp(tp) ← gp
TrFir(tp) ← ra
TrPsr(tp) ← previousPSR
gp ← KGP
sp ← tp
fp ← tp
t0 ← previousPSR<MODE>
t1 ← THREAD
RESTART_ADDRESS← SYSCALL_ENTRY

GPR State Change:

IPR State Change:

Exceptions:

callsys ! PALcode format

fp ← tp

gp ← KGP

sp ← tp

t0 ← PSR

t1 ← THREAD

at and t0–t12 are UNPREDICTABLE

PSR<MODE>← KernelMode

RESTART_ADDRESS← SYSCALL_ENTRY

Machine Checks
Kernel Stack Invalid
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Description:

The callsys instruction raises a system service call exception to the kernel. The system s
call has the software semantics of a standard procedure call. That is, arguments are pa
argument registers and on the stack, volatile registers are considered free, and nonvolati
isters must be preserved across the call. In addition to the standard calling sequence, ca
passed the number of the desired system service in the return value register v0. Callsy
not interpret this value, but rather passes it directly to the operating system.

Callsys switches to kernel mode if necessary, builds a trap frame on the kernel stack, an
enters the kernel at the kernel system service exception handler. See Section F.4.1.6.

The argument registers must be preserved through the instruction. Standard control inf
tion, such as the previous PSR, is stored in the trap frame. Callsys then restarts execution
kernel system service call exception entry, passing the previous mode as a parameter in
register, and the current thread as a parameter in the t1 register.
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F.5.2.4 Generate a Trap

Format:

Operation:
{ a0 = Trap number that identifies exception }

See Sections F.4.1.7.8 and F.4.1.7.5

GPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.5

IPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.5

Exceptions:

Description:

The gentrap instruction generates a software general exception to the current thread. The
exception code is generated from a trap number that is specified as an input parameter
trap is used to raise software-detected exceptions such as bound check errors or ov
conditions.

gentrap ! PALcode format

Machine Checks
Kernel Stack Invalid
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F.5.2.5 Instruction Memory Barrier

Format:

Operation:
{ From within kernel mode, make processor }
{ instruction stream coherent with main memory }

GPR State Change:

IPR State Change:

Exceptions:

Description:

The imb instruction may only be called from kernel mode and guarantees that all subse
instruction stream fetches are coherent with respect to main memory on the current proc
Imb must be issued before executing code in memory that has been modified (either by
from the processor or DMA from an I/O processor). See Section 6.7.3.

User-mode software must not use the imb instruction, but rather use the appropriate Win
NT interface to make the I-cache coherent.

imb ! PALcode format

None

None

Machine Checks
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F.5.2.6 Kernel Breakpoint Trap

Format:

Operation:
See Sections F.4.1.7.8 and F.4.1.7.6

GPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.6

IPR State Change:
See Sections F.4.1.7.8 and F.4.1.7.6

Exceptions:

Description:

The kbpt instruction raises a breakpoint general exception to the kernel, setti
KERNEL_BREAKPOINT breakpoint type.

kbpt ! PALcode format

Machine Checks

Kernel Stack Invalid
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F.5.2.7 Read Thread Environment Block Pointer

Format:

Operation:
v0 ← TEB

GPR State Change:

IPR State Change:

Exceptions:

Description:

The rdteb instruction returns in v0 the contents of the TEB internal processor register fo
currently executing thread (the base address of the thread environment block). See S
F.2.7.

F.5.3 Debug PALcode and Free PALcode

The debug PALcode is a functional superset of the production PALcode, which is specifi
this document. The debug PALcode includes extra counters for performance evaluatio
additional sanity checks. An unacceptable performance loss would occur if these features
implemented in production PALcode. Therefore, the debug PALcode is used in the labor
only.

The debug PALcode contains the following additionalfeatures:

• Kernel stack underflow/overflow checking

• Special I/O address checking

• Event counters

F.5.3.1 Kernel Stack Checking

The debug PALcode checks for kernel stack underflow and overflow whenever it alloca
trap frame and the previous mode was kernel mode. Two pages of kernel stack are allo
for each thread.

• Underflow occurs when the thread’s kernel mode stack pointer (SP) is greater tha
initial kernel stack pointer (IKSP).

rdteb ! PALcode format

v0 ← TEB

None

Machine Checks
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• Overflow is detected whenever the SP would be less than (IKSP - 2 * PAGE_SIZE

Kernel stack underflow and overflow are indicated with a panic exception, described in
tion F.4.1.8.

Implementation Note:

Alpha implementations that do not include the BWX extension (described in Appendix
cannot provide direct access to I/O space addresses (as would Intel-based sys
Instead, those Alpha implementations provide access to I/O space by allowing the sta
device drivers to use address handles, provided by the HAL, that may be treate
standard I/O virtual addresses for all operations except the I/O accesses. The I/O ac
must be performed by specialized routines in the HAL that are able to convert the ad
handles to the actual virtual addresses used for the I/O space accesses.

By convention, the HAL uses the range of numbers A000000016 through BFFFFFFF16 to
represent these address handles whenever possible. This range of numbers falls in
upper half of the 32-bit superpage address range. The debug PALcode disables the
superpage in hardware and provides support for the lower half of the 32-bit superpa
PALcode (the range of addresses 8000000016 through 9FFFFFFF16). Addresses in the

range A000000016 through BFFFFFFF16 are treated as standard addresses and, since
are not mapped, cause memory management faults (translation not valid). This supp
the PALcode allows easy and precise trapping of device driver code that attempts to a
I/O addresses directly, without using the intended access routines provided by the HA

Note:

Physical system memory is limited to 512M bytes when running with the debug PALco

F.5.3.2 Event Counters

The debug PALcode provides software counters to count significant events within the P
code. The PALcode also provides the privileged rdcounters instruction to allow kernel-m
code to read the counters. The counted events are implementation specific but must inclu
following: a separate counter for each of the different PALcode instructions, TB miss counts,
and interrupt counts. The format of the data returned by rdcounters is also implementation
cific. However, all counters must be 64-bit counters.

F.6 Initialization and Firmware Transitions

This section describes the four phases of PALcode environment initialization and the P
code functions that provide the transition between the operating system and the firmware.

F.6.1 Initialization

From the perspective of the PALcode environment there are four phases of initialization:

1. Internal system-specific processor state is established before the PALcode runs.

2. PALcode initializes the internal processor state.

3. The kernel uses PALcode initialization callback instructions to prepare the PALcod
handle exceptions.
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4. Interrupt tables are initialized so that standard interrupt support can be used.

F.6.1.1 Pre-PALcode Initialization

Firmware must set the processor and system to a known good state before the PALcode
point is called. The firmware must initialize any internal processor registers that contain
tem-specific parameters such as timing or memory size information. This is necessary be
the PALcode is entirely independent of the system. The firmware must ensure that all ca
are coherent with main memory before calling the PALcode and that the memory system
been fully initialized.

Hardware Implementation Note:

If system configuration information is written to write-only IPRs, those configuration IP
cannot have any control bits that need to be written by the platform-independent oper
system PALcode. If such bits were written in that manner, the firmware would have to
the configuration information in internal processor state on a per-implementation basis.
Hardware designers should consider allowing configuration registers to beread as well as
written to allow the platform-independent layer to have visibility to the full intern
processor state.

F.6.1.2 PALcode Initialization

The PALcode is entered at the first instruction at the base of the PALcode image. PALco
called with the page frame number (PFN) of the PCR as a parameter in a1. All other argu
registers must be preserved across PALcode initialization and are considered parameters
operating system and are not interpreted by the PALcode. That is, the PALcode is fr
destroy volatile general-purpose integer and floating-point registers, but must preserve the
volatile register state across the call. Register volatility is listed in Section F.1.2. The PAL
must accomplish the following initialization:

1. Deassert all interrupt requests and disable all interrupt enables (this includes soft
hardware and asynchronous trap interrupts).

2. Set the processor status register (PSR) such that interrupts are enabled, interrupt request
level is set to high level (7), and the mode is kernel.

3. Invalidate all virtual translation buffers.

4. Establish all required superpage mapping: 32-bit I-stream and D-stream, and 4
D-stream mapping.

5. Set the previous_PAL_BASE register to the previous value of the PAL_BASE regis

6. Set the PAL_BASE register to the base address of the PALcode image.

7. Set the interrupt level table so that no interrupts are enabled for all interrupt levels.

8. Initialize all architected internal processor registers to their specified initialization
ues.

9. Begin any required implementation-specific initialization, such as unlocking error
isters.

When the PALcode has completed its initialization, it resumes execution at the address p
in the ra (return address) register.
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F.6.1.3 Kernel Callback Initialization of PALcode

The kernel uses the initpal and wrentry instructions to call back into the PALcode with the
tialization values that allow exceptions to be handled properly between the PALcode an
kernel.

The kernel uses initpal to establish system-permanent context and per-thread context f
initialization thread. The system-permanent context passed to initpal is the kernel g
pointer (KGP), which is passed via the gp register.

The initialization thread data passed in initpal are the page directory page, the initial k
stack pointer, and the initialization thread address. The page directory page and thread a
are passed as standard parameters; the kernel stack pointer is passed in the sp register.
pal instruction also initializes the PALcode information section of the processor control reg

The kernel uses wrentry to register the kernel exception entry points with the PALcode.
wrentry instruction is called once for each kernel exception entry point. Each call include
exception entry point address and the number of the exception class it handles.

F.6.1.4 Interrupt Table Initialization

The interrupt table values in the processor control region are system specific and so are n
tialized until HAL initialization. Until these tables are initialized, the PALcode uses interr
tables that are initialized such that all interrupts are disabled. An implementation may ch
to cach some portion of the interrupt tables within the processor. After the operating sy
has established the interrupt tables, an implementation may use the initpcr instruction to
some part of those tables.

F.6.2 Firmware Interfaces

The firmware PALcode environment is decoupled from the operating system PALcode.
reboot/restart and swppal instructions permit the transition between the operating syste
the firmware PALcode context.

F.6.2.1 Reboot Instruction – Transition to Firmware PALcode Context

The reboot instruction performs a controlled transition to the firmware PALcode cont
Reboot essentially follows the semantics for a return to the ARC (Advanced RISC Com
ing) firmware environment, with the addition of Alpha support for switching to the firmwa
PALcode. The reboot function accomplishes the following tasks:

1. Retrieves the restart block pointer from the processor control region.

The restart block is expected to be initialized by the firmware. The pointer to
restart block is passed by the firmware through the OS Loader to the kernel in
loader parameter block. The kernel writes the restart block pointer into the proce
control region during startup. The restart block pointer must be a 32-bit superp
address.

The firmware environment is responsible for allocating memory for the entire res
block, including the saved state area that is specific to the Alpha architecture.
firmware is also responsible for initializing the restart block, as specified by ARC.

2. Verifies the restart block and if invalid, initiates alternate restart.

The PALcode verifies the restart block by ensuring that the restart block signatu
F–92 Alpha Linux Software (II–B)



block

to the
the

base
are

code

ll 32

d so
used

rom
ion,

ntrol
the

ntrol

ith

ed.
valid and that the restart block and saved state area lengths are of sufficient size to
contain the state the PALcode saves. If the PALcode determines that the restart
is not valid, an alternate restart is initiated.

The alternate restart allows the PALcode to restore the previous PALcode base
PAL_BASE register and to transfer control to the previous PALcode base in
PALcode environment.

Figure F–9 shows the structure of the PAL_BASE register.

Figure F–9: PAL_BASE Internal Processor Register

The hardware vectors into the appropriate PALcode handlers as offsets from the
in the PAL_BASE register. The offsets for each handler and the type of handler
implementation specific, except for the reset vector. The reset vector is the PAL
initialization vector and must begin at offset 0 within the PALcode image.

Explicitly, PAL_BASE contains the value<PA_BITS..K>, where PA_BITS is the
physical address bits for the implementation, and2**K is the minimum PALcode byte
alignment for the implementation.

Note that the OS Loader uses 64K-byte boundaries, so the maximum value forK is 16.
The minimum value forK is N, where 2**N = implementation page size.

3. Saves the general register state in the restart block.

The saved general register state includes all 32 integer registers and a
floating-point registers. In addition, the floating-point control register is also saved.

4. Saves the architected internal processor register state in the restart block.

The internal processor register state is stored in itsarchitected format so that it may be
interpreted in the firmware environment. In addition, remaining space is allocate
that the total size of the restart block is 2040 bytes. The additional space can be
for per-implementation data.

5. Saves the RESTART_ADDRESS in the restart block.

The RESTART_ADDRESS is stored in the saved state area to allow return f
reboot via the restart instruction. The HAL is responsible for populating the Vers
Revision, and RestartAddress fields of the restart block header.

6. Retrieves the firmware restart address from the processor control region.

The firmware restart address is the address to which the PALcode transfers co
upon completion of the reboot. The firmware restart address is passed from
firmware through the OS Loader to the kernel and stored in the processor co
region as is the restart block pointer. The firmware restart address isread from the
processor control region and written to the RESTART_ADDRESS register w
implementation-specific (but well-defined) interpretation.

7. Restores the PALcode base from the previous PALcode base.

The PALcode captures the previous PALcode environment when it is first initializ

K-1..0PA_BITS..K31

ADDR RAZ
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The PALcode base address is read from the PAL_BASE register and written to
previous_PAL_BASE register. When the processor executes the reboot functio
restores the previous PALcode environment by writing the value in
previous_PAL_BASE register to the PAL_BASE register.

Hardware Implementation Note:

Several restrictions are imposed on the hardware design to support this mod
switching PALcode environments:

A. The currently active PALcode must be settable by writing the base address
the PALcode image to an internal processor register.

B. No implementation can require, for the base of the PALcode, an alignment
greater than 64K bytes or less than the implementation page size.

C. The internal processor register used to set the base of the PALcode must b
readable for each bit that is writeable.

8. Completes the restart block by updating the boot status and the checksum.

9. Restarts execution at the firmware restart address passing a pointer to the restart
in the a0 register.

The restart instruction is provided to reverse the work done by a reboot instruction and a
the processor to restart execution. The restart function performs the inverse of the task
were performed in the reboot.

F.6.2.2 Reboot and Restart Tasks and Sequence

The tasks and sequence required for performing a reboot and restart are described below

1. Firmware allocates restart block, initializing signature, length, ID fields, and the poi
to next restart block. Restart block pointer and firmware restart address are pass
the kernel.

2. HAL populates the Version and Revision fields during HAL initialization.

3. Some external event triggers a halt, a reboot, or a power-fail.

4. The appropriate HAL routine populates the RestartAddress field of the restart b
with the address of the HAL restart routine.

5. The HAL executes the reboot instruction.

6. The PALcode saves processor state, including the RESTART_ADDRESS registe
address in the HAL of the instruction after the reboot instruction).

7. The PALcode transfers to the firmware environment.

8. The firmware initializes a restart by calling the HAL restart routine (via the addres
the restart block header).

9. The HAL uses the swppal instruction to restore the operating system PALcode env
ment.

10. The HAL uses the restart instruction to restore complete processor state.

11. The PALcode restores state and then returns execution to the instruction after the
instruction in the HAL.

12. The HAL completes the restart.
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F.6.2.3 Swppal Instruction – Transition to Any PALcode Environment

The swppal instruction is a flexible interface that allows kernel code to transition to any P
code environment, as contrasted with reboot, which limits the caller to transition to
previous PALcode environment.
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F.7 Windows NT Alpha Instruction Summary
Table F–24: Windows NT Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap

callkd 00.00AD Call kernel debugger

callsys 00.0083 Call system service

gentrap 00.00AA Generate trap

imb 00.0086 Instruction memory barrier

kbpt 00.00AC Kernel breakpoint trap

rdteb 00.00AB Read TEB internal processor register

Table F–25: Windows NT Alpha Privileged PALcode Instructions

Mnemonic Opcode Description

csir 00.000D Clear software interrupt request

di 00.0008 Disable interrupts

draina 00.0002 Drain aborts

dtbis 00.0016 Data translation buffer invalidate single

ei 00.0009 Enable interrupts

halt 00.0000 Trap to illegal instruction

initpal 00.0004 Initialize the PALcode

rdcounters 00.0030 Read PALcode event counters

rdirql 00.0007 Read current IRQL

rdksp 00.0018 Read initial kernel stack

rdmces 00.0012 Read machine check error summary

rdpcr 00.001C Read PCR (processor control registers)

rdpsr 00.001A Read processor status register

rdstate 00.0031 Read internal processor state

rdthread 00.001E Read the current thread value

reboot 00.0002 Transfer to console firmware

restart 00.0001 Restart the processor

retsys 00.000F Return from system service call

rfe 00.000E Return from exception

ssir 00.000C Set software interrupt request

swpctx 00.0010 Swap privileged thread context
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Opcodes 00.003816 through 00.003F16 are reserved for processor implementation-specific PA
instructions. All other opcodes are reserved for use by Compaq.

swpirql 00.0006 Swap IRQL

swpksp 00.0019 Swap initial kernel stack

swppal 00.000A Swap PALcode

swpprocess 00.0011 Swap privileged process context

tbia 00.0014 Translation buffer invalidate all

tbis 00.0015 Translation buffer invalidate single

tbisasn 00.0017 Translation buffer invalidate single ASN

wrentry 00.0005 Write system entry

wrmces 00.0013 Write machine check error summary

wrperfmon 00.0020 Write performance monitoring values

Table F–25: Windows NT Alpha Privileged PALcode Instructions (Continued)

Mnemonic Opcode Description
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Aborts, forcing, 6–5 (I)

Absolute longword queue, 10–20 (II-A)

Absolute quadword queue, 10–23 (II-A)

Access control violation (ACV) fault, 11–15 (II-A),
14–10 (II-A)

memory protection, 11–8 (II-A)
precedence, 11–16 (II-A)
service routine entry point, 14–25 (II-A)

Access violation fault, 17–13 (II-B), 22–13 (II-C),
F–22

ACCESS(x,y) operator, 3–6 (I)

Add instructions
add longword, 4–26 (I)
add quadword, 4–28 (I)
add scaled longword, 4–27 (I)
add scaled quadword, 4–29 (I)
See also Floating-point operate

ADDF instruction, 4–109 (I)

ADDG instruction, 4–109 (I)

ADDL instruction, 4–26 (I)

ADDQ instruction, 4–28 (I)

Address space, F–13

Address space match (ASM)
bit in PTE, 11–5 (II-A), 17–5 (II-B), 22–5

(II-C), F–16
context switching and, F–12, F–71
TBIAP register uses, 13–26 (II-A)
virtual cache coherency, 5–4 (I)

Address space number (ASN) register, 13–4 (II-A),
F–7

context switching and, F–12
defined, 15–2 (II-B), 20–2 (II-C)
described, 17–12 (II-B), 22–12 (II-C)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
PALcode switching and, 27–8 (III)
privileged context, 10–90 (II-A)
process context and, 18–1 (II-B), 23–1 (II-C)
processor initialization and, 27–23 (III)
range supported, 11–14 (II-A)
TBCHK register uses, 13–24 (II-A)
TBIS register uses, 13–27 (II-A)
translation buffers and, 11–13 (II-A)
virtual cache coherency, 5–4 (I)

Address translation
algorithm to perform, 11–9 (II-A), 11–12

(II-A) , 17–11 (II-B), 22–11 (II-C)
page frame number (PFN), 11–8 (II-A)
page table structure, 11–8 (II-A), F–14
performance enhancements, 11–10 (II-A),

11–13 (II-A), 17–12 (II-B), 22–12
(II-C), E–6

physical, 17–7 (II-B), 22–7 (II-C)
translation buffers and, 11–13 (II-A)

Index Entries are keyed with the following suffixes:

Suffix Location
(I) Common architecture

(II-A) OpenVMS
(II-B) Tru64 UNIX

(II-C) Alpha Linux
(III) Console interface

None The specified appendix.
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virtual, 17–9 (II-B), 22–9 (II-C)
virtual address segment fields, 11–8 (II-A)

ADDS instruction, 4–110 (I)

ADDT instruction, 4–110 (I)

AFTER, defined for memory access, 5–13 (I)

Aligned byte/word memory accesses, A–11

ALIGNED data objects, 1–8 (I)

Alignment
atomic byte, 5–3 (I)
atomic longword, 5–2 (I)
atomic quadword, 5–2 (I)
D_floating, 2–5 (I)
data alignment trap, 14–14 (II-A)
data considerations, A–5
double-width data paths, A–1
F_floating, 2–4 (I)
G_floating, 2–5 (I)
instruction, A–2
longword, 2–2 (I)
longword integer, 2–11 (I)
memory accesses, A–11
program counter (PC), 14–6 (II-A)
quadword, 2–3 (I)
quadword integer, 2–11 (I)
S_floating, 2–8 (I)
stack, 14–29 (II-A)
T_floating, 2–9 (I)
unaligned data and, 14–26 (II-A)
X_floating, 2–9 (I)

Alpha architecture
addressing, 2–1 (I)
overview, 1–1 (I)
porting operating systems to, 1–1 (I)
programming implications, 5–1 (I)
registers, 3–1 (I)
security, 1–6 (I)
See also Conventions

Alpha finite number, 4–64 (I)

Alpha Linux PALcode, instruction summary, C–20

Alpha privileged architecture library. See PALcode

AMASK (architecture mask) instruction, 4–133 (I)

arithmetic trap completion and, 4–73 (I)
bit assignments, D–4

AMOVRM (PALcode) instruction, 10–74 (II-A)

AMOVRR (PALcode) instruction, 10–74 (II-A)

AND instruction, 4–43 (I)

AND operator, 3–7 (I)

APC_LEVEL, IRQL table index name, F–5

ARC Restart Block, F–59

Architecture extensions, AMASK and, 4–133 (I)

ARITH_RIGHT_SHIFT(x,y) operator, 3–7 (I)

Arithmetic exceptions, F–23
See also Arithmetic traps

Arithmetic instructions, 4–25 (I)
See also specific arithmetic instructions

Arithmetic left shift instruction, 4–42 (I)

Arithmetic trap completion, 4–73 (I)

AMASK instruction and, 4–73 (I)

Arithmetic trap entry (entArith) register, 15–2

(II-B), 19–4 (II-B), 20–2 (II-C), 24–4 (II-C)

Arithmetic traps, F–23

completion, 4–73 (I)
concurrent with data alignment, 14–14 (II-A)
denormal operand exception disabling, 4–82 (I)
denormal operand exception enabling, B–5
denormal operand status of, B–5
described, 14–11 (II-A)
disabling, 4–79 (I)
division by zero, 4–78 (I), 4–81 (I), 14–13

(II-A) , 19–6 (II-B), 24–6 (II-C), F–25
division by zero, disabling, 4–82 (I)
division by zero, enabling, B–6
division by zero, status of, B–5
dynamic rounding mode, 4–81 (I)
enabling, B–4
F31 as destination, 14–11 (II-A)
inexact result, 4–78 (I), 4–81 (I), 14–13 (II-A),

19–5 (II-B), 24–5 (II-C), F–25
inexact result, disabling, 4–81 (I)
inexact result, enabling, B–5
inexact result, status of, B–5
integer overflow, 4–79 (I), 4–81 (I), 14–14

(II-A) , 19–5 (II-B), 24–5 (II-C), F–25
integer overflow, disabling, B–4
integer overflow, enabling, B–4
invalid operation, 4–77 (I), 4–81 (I), 14–13

(II-A) , 19–6 (II-B), 24–6 (II-C), F–25
invalid operation, disabling, 4–82 (I)
invalid operation, enabling, B–6
invalid operation, status of, B–5
overflow, 4–78 (I), 4–81 (I), 14–13 (II-A),

19–5 (II-B), 24–5 (II-C), F–25
overflow, disabling, 4–82 (I)
overflow, enabling, B–6
overflow, status of, B–5
program counter (PC) value, 14–13 (II-A)
programming implications for, 5–29 (I)
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R31 as destination, 14–11 (II-A)
recorded for software, 14–12 (II-A)
registers, when affected by, 14–13 (II-A)
REI instruction with, 14–9 (II-A)
service routine entry point, 14–25 (II-A)
system entry for, 19–4 (II-B), 24–4 (II-C)
TRAPB instruction with, 4–147 (I)
underflow, 4–81 (I), 14–13 (II-A), 19–5 (II-B),

24–5 (II-C), F–25
underflow, enabling, B–5
underflow, status of, B–5

ASCII character set, C–26

ASN_wrap_indicator, F–12

AST enable (ASTEN) register
changing access modes in, 12–4 (II-A)
described, 13–5 (II-A)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
in initial HWPCB, 27–25 (III)
interrupt arbitration, 14–32 (II-A)
operation (with ASTs), 12–4 (II-A)
privileged context, 10–90 (II-A)
processor initialization and, 27–23 (III)
SWASTEN instruction with, 10–18 (II-A)

AST summary (ASTSR) register
described, 13–7 (II-A)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
indicates pending ASTs, 12–4 (II-A)
interrupt arbitration, 14–32 (II-A)
privileged context, 10–90 (II-A)
processor initialization and, 27–23 (III)

Asynchronous procedure call (APC)
SIRR register field for, F–34

Asynchronous system traps (AST)
ASTEN/ASTSR registers with, 12–3 (II-A)
initiating, 12–4 (II-A)
interrupt, defined, 14–18 (II-A)
PS register and, 12–4 (II-A)
service routine entry point, 14–26 (II-A)

Atomic access, 5–3 (I)

Atomic move operations, 10–73 (II-A)

Atomic operations
load-locked and store conditional, using, 5–7 (I)
longword datum, accessing, 5–2 (I)
low-contention prefetching, 5–8 (I)
page table entry, modifying, 11–6 (II-A)
quadword datum, accessing, 5–2 (I)
shared data structures, updating, 5–7 (I)

Atomic sequences, A–17

AUTO_ACTION environment variable, 26–26 (III)

cold bootstrap, 27–9 (III)
error halts, 27–34 (III)
overriding, 27–31 (III)
state transitions and, 27–1 (III)
system restarts, 27–32 (III)

B
BB_WATCH

powerfail interrupts, 27–32 (III)
power-up initialization, 27–4 (III)
primary console switching, 27–35 (III)
primary-eligible (PE) bit and, 27–47 (III)
requirements, 27–46 (III)

BEFORE, defined for memory access, 5–13 (I)

BEQ instruction, 4–21 (I)

BGE instruction, 4–21 (I)

BGT instruction, 4–21 (I)

BIC instruction, 4–43 (I)

Big-endian addressing, 2–12 (I)

byte operation examples, 4–55 (I)
byte swapping for, A–13
extract byte with, 4–52 (I)
insert byte with, 4–56 (I)
load F_floating with, 4–91 (I)
load long/quad locked with, 4–9 (I)
load S_floating with, 4–93 (I)
mask byte with, 4–58 (I)
store byte/word with, 4–16 (I)
store F_floating with, 4–95 (I)
store long/quad conditional with, 4–13 (I)
store long/quad with, 4–16 (I)
store S_floating with, 4–97 (I)

Big-endian data types, X_floating, 2–10 (I)

BIS instruction, 4–43 (I)

BITMAP_CHECKSUM
distributed memory cluster descriptor field,

27–16 (III)
static memory cluster descriptor field, 27–12

(III)
BITMAP_PA

distributed memory cluster descriptor field,
27–16 (III)

static memory cluster descriptor field, 27–12
(III)

BITMAP_VA
static memory cluster descriptor field, 27–12

(III)

BLBC instruction, 4–21 (I)
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BLBS instruction, 4–21 (I)

BLE instruction, 4–21 (I)

BLT instruction, 4–21 (I)

BNE instruction, 4–21 (I)

Boolean instructions, 4–42 (I)

logical functions, 4–43 (I)

Boolean stylized code forms, A–15

Boot block on disk, 27–40 (III)

Boot environment, restoring, F–59

Boot sequence, establishing, F–2

BOOT_DEV environment variable, 26–26 (III)

loading system software and, 27–22 (III)

BOOT_FILE environment variable, 26–26 (III),
27–42 (III)

loading system software and, 27–23 (III)

BOOT_OSFLAGS environment variable, 26–27
(III)

loading system software and, 27–23 (III)

BOOT_RESET environment variable, 26–27 (III)

cold bootstrap, 27–9 (III)
overriding, 27–31 (III)
system initialization, 27–3 (III)
warm bootstrap, 27–25 (III)

BOOTDEF_DEV environment variable, 26–26 (III)

loading system software and, 27–22 (III)
BOOTED_DEV environment variable

loading system software and, 27–22 (III)

BOOTED_FILE environment variable, 26–27 (III)

loading system software and, 27–23 (III)

BOOTED_OSFLAGS environment variable, 26–27
(III)

loading system software and, 27–23 (III)

BOOTP-UDP/IP network protocol, 27–45 (III)

Bootstrap address space
regions, 27–17 (III)

Bootstrap-in-progress (BIP) flag
failed bootstrap and, 27–21 (III)
multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–23 (III)
power-up initialization and, 27–4 (III)
processor initialization and, 27–23 (III)
secondary console and, 27–30 (III)
state transitions and, 27–1 (III)

Bootstrapping, 27–1 (III)

adding processor while running system, 27–30

(III)
address space at cold, 27–17 (III)
boot block in ROM, 27–44 (III)
boot block on disk, 27–40 (III)
cold in uniprocessor environment, 27–8 (III)
control to system software, 27–24 (III)
disk, from, 27–40 (III)
failure of, 27–21 (III)
implementation considerations, 27–47 (III)
loading page table space at cold, 27–18 (III)
loading primary image, 27–39 (III)
loading system software, 27–22 (III)
magtape, from, 27–42 (III)
MOP-based network, from, 27–45 (III)
multiprocessor, 27–27 (III)
PALcode loading at cold, 27–17 (III)
processor initialization, 27–23 (III)
request from system software, 27–31 (III)
ROM, from, 27–44 (III)
state flags with, 27–21 (III)
system, 27–3 (III)
unconditional, 27–31 (III)
warm, 27–25 (III)

BPT (PALcode) instruction, 10–4 (II-A)

required recognition of, 6–4 (I)
service routine entry point, 14–26 (II-A)
trap information, 14–15 (II-A)

bpt (PALcode) instruction, 16–2 (II-B), 21–2 (II-C),
F–82

required recognition of, 6–4 (I)

BR instruction, 4–22 (I)

lock_flag with, 4–10 (I)

Branch instructions, 4–19 (I)

backward conditional, 4–21 (I)
conditional branch, 4–21 (I)
floating-point, summarized, 4–99 (I)
format of, 3–11 (I)
forward conditional, 4–21 (I)
opcodes and format summarized, C–1
unconditional branch, 4–22 (I)
See also Control instructions

Branch prediction model, 4–19 (I)

Branch prediction stack,with BSR instruction, 4–22
(I)

Breakpoint exceptions, F–27

initiating, 10–4 (II-A)

Breakpoint trap, initiating, 16–2 (II-B), 21–2 (II-C)

BSR instruction, 4–22 (I)

lock_flag with, 4–10 (I)

Bugcheck exception, initiating, 10–5 (II-A)
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BUGCHK (PALcode) instruction, 10–5 (II-A)

required recognition of, 6–4 (I)
service routine entry point, 14–26 (II-A)
trap information, 14–15 (II-A)

bugchk (PALcode) instruction, 16–3 (II-B), 21–3
(II-C)

required recognition of, 6–4 (I)

Byte data type, 2–1 (I)

atomic access of, 5–3 (I)

Byte manipulation, 1–2 (I)

Byte manipulation instructions, 4–48 (I)

Byte swapping, A–13

Byte_within_page field, 11–2 (II-A), 17–2 (II-B),
22–2 (II-C)

BYTE_ZAP(x,y) operator, 3–7 (I)

C
/C qualifier

IEEE chopped rounding, 4–68 (I)
VAX chopped rounding, 4–68 (I)

Cache blocks, virtual
invalidating all, F–72
invalidating multiple, F–73
invalidating single, F–75

Cache coherency, F–10

barrier instructions for, 5–25 (I)
defined, 5–2 (I)
HAL interface for, F–3
multiprocessor environment and, 5–6 (I)

Caches
design considerations, A–2
flushing physical page from, 10–82 (II-A),

16–11 (II-B), 21–10 (II-C)
I-stream considerations, A–5
MB and IMB instructions with, 5–25 (I)
powerfail/recovery and, 5–5 (I)
requirements for, 5–4 (I)
translation buffer conflicts, A–7

CALL_PAL (call privileged architecture library)
instruction, 4–135 (I)

CALL_PAL instruction
lock_flag with, 4–10 (I)

callkd (PALcode) instruction, F–83

callsys (PALcode) instruction, 16–4 (II-B), 21–4

(II-C), F–84

entSys with, 19–9 (II-B), 24–9 (II-C)
stack frames for, 19–3 (II-B), 24–3 (II-C)

CASE operator, 3–7 (I)

Catastrophic errors, F–37

Causal loops, 5–15 (I)

CFLUSH (PALcode) instruction, 10–82 (II-A)

ECB compared with, 4–138 (I)
powerfail and, 14–20 (II-A)

cflush (PALcode) instruction, 16–11 (II-B), 21–10
(II-C)

Changed datum, 5–6 (I)

CHAR_SET environment variable, 26–28 (III)

Characters
getting from console, 26–34 (III)
writing to console terminal, 26–36 (III)

Charged process cycles register, 10–90 (II-A)

HWPCB and, 12–2 (II-A)
PCC register and, 12–3 (II-A)
process context and, 18–1 (II-B), 23–1 (II-C)

CHECKSUM
distributed memory cluster descriptor field,

27–15 (III)
HWRPB field, 26–9 (III)
memory data descriptor table field, 27–11 (III)
multiprocessor boot and, 27–27 (III)
null memory cluster descriptor field, 27–13 (III)

CHME (PALcode) instruction, 10–6 (II-A)

service routine entry point, 14–26 (II-A)
trap initiation, 14–16 (II-A)

CHMK (PALcode) instruction, 10–7 (II-A)

service routine entry point, 14–26 (II-A)
trap initiation, 14–16 (II-A)

CHMS (PALcode) instruction, 10–8 (II-A)

service routine entry point, 14–26 (II-A)
trap initiation, 14–16 (II-A)

CHMU (PALcode) instruction, 10–9 (II-A)

service routine entry point, 14–26 (II-A)
trap initiation, 14–16 (II-A)

Clear a register, A–14

Clock. See BB_WATCH

CLOCK_HIGH, IRQL table index name, F–5

CLOSE device routine, 26–50 (III)

CLRFEN (PALcode) instruction, 10–10 (II-A)

clrfen (PALcode) instruction, 16–5 (II-B), 21–5
(II-C)

CLUSTER
memory data descriptor table field, 27–12 (III)

CLUSTERS
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memory data descriptor table field, 27–12 (III)
null memory cluster descriptor field, 27–13 (III)

Clusters, memory, 27–9 (III)

CMOVEQ instruction, 4–44 (I)

CMOVGE instruction, 4–44 (I)

CMOVGT instruction, 4–44 (I)

CMOVLBC instruction, 4–44 (I)

CMOVLE instruction, 4–44 (I)

CMOVLT instruction, 4–44 (I)

CMOVNE instruction, 4–44 (I)

CMPBGE instruction, 4–50 (I)

endian considerations with, 2–12 (I)

CMPEQ instruction, 4–30 (I)

CMPGEQ instruction, 4–111 (I)

CMPGLE instruction, 4–111 (I)

CMPGLT instruction, 4–111 (I)

CMPLE instruction, 4–30 (I)

CMPLT instruction, 4–30 (I)

CMPTEQ instruction, 4–112 (I)

CMPTLE instruction, 4–112 (I)

CMPTLT instruction, 4–112 (I)

CMPTUN instruction, 4–112 (I)

CMPULE instruction, 4–31 (I)

CMPULT instruction, 4–31 (I)

Code forms, stylized, A–13

boolean, A–15
clear register, A–14
load literal, A–14
negate, A–15
NOP, A–13
NOT, A–15
register-to-register move, A–15

Code scheduling
IMPLVER instruction with, 4–141 (I)

Code sequences, A–11

CODEC, 4–154 (I)

Coherency
cache, 5–2 (I)
memory, 5–1 (I)

Compare instructions
compare integer signed, 4–30 (I)
compare integer unsigned, 4–31 (I)
See also Floating-point operate

Conditional move instructions, 4–44 (I)
See also Floating-point operate

CONFIG block, in HWRPB, 26–10 (III)

CONFIG offset, HWRPB field for, 26–8 (III)

CONFIG. See Configuration data block

Configuration data block, 26–23 (III)

Console
character sets, 26–29 (III)
closing terminal, 26–45 (III)
console I/O mode, 27–3 (III)
data log length, 26–21 (III)
data log physical address, 26–21 (III)
data structure linkage, 26–69 (III)
data structures loading at cold boot, 27–17 (III)
definition, 25–1 (III)
detached, 25–2 (III)
detached implementations of, 27–49 (III)
embedded, 25–2 (III)
embedded implementation of, 27–47 (III)
environment variables, required, 26–26 (III)
error halt and recovery, 27–34 (III)
forcing entry to I/O mode, 27–39 (III)
HWRPB with, 26–1 (III)
implementation registry, 25–3 (III)
implementations, 25–2 (III)
inter-console communications buffer, 26–77

(III)
internationalization, 25–4 (III)
interprocessor communications for, 26–75 (III)
ISO Latin-1 support with, 25–4 (III)
loading PALcode, 27–17 (III)
loading system software, 27–22 (III)
lock mechanisms, 25–2 (III)
major state transitions, 27–2 (III)
messages for, 25–4 (III)
miscellaneous routines, 26–63 (III)
multiprocessor boot, 27–27 (III)
multiprocessor implementation of, 27–48 (III)
opening terminal, 26–44 (III)
presentation layer, 25–3 (III)
processor state flags, 27–21 (III)
program I/O mode, 27–3 (III)
remapping routines, 26–71 (III)
requirements for, 25–2 (III)
resetting, 26–38 (III)
RESTORE_TERM routine, 27–37 (III), 27–39

(III)
SAVE_TERM routine, 27–37 (III), 27–38 (III)
secondary at multiprocessor boot, 27–29 (III)
security for, 25–4 (III)
sending commands to secondary, 26–77 (III)
sending messages to primary, 26–78 (III)
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switching primary processors, 26–63 (III)
system restarts and, 27–31 (III)
warm bootstrap and, 27–25 (III)

Console callback routine block, in HWRPB, 26–10
(III)

Console callback routines, 26–29 (III)

cold boot and, 27–17 (III)
CTB describes, 26–73 (III)
data structures for, 26–68 (III)
fixing up the virtual address, 26–64 (III)
HWRPB field for, 26–8 (III)
remapping, 26–71 (III)
summary of, 26–30 (III)
system software invoking, 26–30 (III)

Console data log length, 26–21 (III)

Console data log physical address, 26–21 (III)

Console environment variables
loading system software and, 27–22 (III)
See also Environment variables

Console firmware, transferring to, F–59

Console I/O mode, 27–3 (III)

forcing entry to, 27–39 (III)

Console initialization mode, 27–3 (III)

Console interface, 26–1 (III)

Console overview, 7–1 (I)

Console routine block (CRB), 26–68 (III)

console callback routines with, 26–68 (III)
initializing, 26–71 (III)
offset, HWRPB field for, 26–8 (III)
structure of, 26–69 (III)

Console terminal block (CTB)
console callback routines with, 26–68 (III)
described, 26–32 (III), 26–73 (III)
HWRPB fields for, 26–8 (III)
structure of, 26–74 (III)

Console terminal routines, 26–32 (III)

CONSOLE, system variation field, 26–13 (III)

CONSOLE_CLOSE console terminal routine,
26–45 (III)

CONSOLE_OPEN console terminal routine, 26–44
(III)

Context switching
between address spaces, F–71
defined, 12–1 (II-A)
hardware, 12–1 (II-A)
initiating, 10–90 (II-A)
PDR register with, F–15

raising IPL while, 12–4 (II-A)
software, 12–2 (II-A)
thread, F–66
thread to process, F–12
thread to thread, F–11
See also Hardware

Context valid (CV) flag
multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–22 (III)
processor initialization and, 27–23 (III)

Control instructions, 4–19 (I)

Conventions
code examples, 1–9 (I)
code flows, F–4
extents, 1–8 (I)
figures, 1–9 (I)
instruction format, 3–9 (I)
notation, 3–9 (I)
numbering, 1–6 (I)
ranges, 1–8 (I)

Corrected error interrupts, logout area for, 14–23
(II-A)

Count instructions
Count leading zero, 4–32 (I)
Count population, 4–33 (I)
Count trailing zero, 4–34 (I)

CPU ID, HWRPB field for primary, 26–6 (III)

multiprocessor booting and, 27–27 (III)

CPU slot offset, HWRPB field for, 26–7 (III)

CPYS instruction, 4–104 (I)

CPYSE instruction, 4–104 (I)

CPYSN instruction, 4–104 (I)

CSERVE (PALcode) instruction, 10–83 (II-A)

required recognition of, 6–4 (I)

cserve (PALcode) instruction, 16–12 (II-B), 21–11
(II-C)

required recognition of, 6–4 (I)

csir (PALcode) instruction, F–40

clears software interrupts, F–34

CTB table, in HWRPB, 26–10 (III)

CTB. See Console terminal block

CTLZ instruction, 4–32 (I)

CTPOP instruction, 4–33 (I)

CTTZ instruction, 4–34 (I)

Current mode field, in PS register, 14–6 (II-A)

Current PALcode, 27–5 (III)
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Current PC, 14–2 (II-A)

CVTDG instruction, 4–115 (I)

CVTGD instruction, 4–115 (I)

CVTGF instruction, 4–115 (I)

CVTGQ instruction, 4–113 (I)

CVTLQ instruction, 4–105 (I)

CVTQF instruction, 4–114 (I)

CVTQG instruction, 4–114 (I)

CVTQL instruction, 4–105 (I)

FP_C quadword with, B–4

CVTQS instruction, 4–117 (I)

CVTQT instruction, 4–117 (I)

CVTST instruction, 4–119 (I)

CVTTQ instruction, 4–116 (I)

FP_C quadword with, B–4

CVTTS instruction, 4–118 (I)

Cycle counter frequency
HWRPB field for, 26–7 (III)
per-CPU slot field, 26–21 (III)

D
/D qualifier

IEEE dynamic rounding, 4–68 (I)

D_floating data type, 2–5 (I)

alignment of, 2–5 (I)
mapping, 2–5 (I)
restricted, 2–5 (I)

dalnfix (PALcode) instruction, F–41, F–45

Data alignment, A–5

Data alignment trap (DAT) register
privileged context, 10–90 (II-A)

Data alignment traps, 14–14 (II-A)

concurrent with arithmetic, 14–14 (II-A)
fixup (DAT) bit, in HWPCB, 12–2 (II-A)
fixup (DATFX) register, 13–9 (II-A)
registers used, 14–14 (II-A)
service routine entry point, 14–26 (II-A)
system entry for, 19–9 (II-B), 24–9 (II-C)

Data caches
ECB instruction with, 4–136 (I)
WH64x instruction with, 4–148 (I)

Data format, overview, 1–3 (I)

Data sets, buffering large, 26–21 (III)

Data sharing (multiprocessor), A–6

pretching with, 5–8 (I)
synchonization requirement, 5–6 (I)

Data stream considerations, A–5

Data stream translation buffer (DTB), 26–13 (III)

Data structures, shared, 5–6 (I)

Data types
byte, 2–1 (I)
IEEE floating-point, 2–6 (I)
longword, 2–2 (I)
longword integer, 2–10 (I)
quadword, 2–2 (I)
quadword integer, 2–11 (I)
unsupported in hardware, 2–11 (I)
VAX floating-point, 2–3 (I)
word, 2–1 (I)

DATA_BUS_ERROR code, F–36

Deferred procedure call (DPC)
SIRR register field for, F–34
stack for, F–11

Denormal, 4–65 (I)

Denormal operand exception disable, 4–82 (I)

Denormal operand exception enable (DNOE)
FP_C quadword bit, B–5

Denormal operand status (DNOS)
FP_C quadword bit, B–5

Denormal operands to zero, 4–82 (I)

Depends order (DP), 5–15 (I)

Detached console, 25–2 (III)

DEVICE ID, CTB field for, 26–74 (III)

DEVICE TYPE, CTB field for, 26–74 (III)

DEVICE_HIGH_LEVEL, IRQL table index name,
F–5

DEVICE_LEVEL, IRQL table index name, F–5

Device-specific data (DSD), 26–75 (III)

di (PALcode) instruction, F–42

Dirty pages, tracking, F–17

Dirty zero, 4–65 (I)

Disk bootstrap image, 27–40 (III)

DISPATCH console routine, 26–31 (III)

DISPATCH procedure, 26–70 (III)

DISPATCH, CRB fields for, 26–70 (III)

DISPATCH_LEVEL, IRQL table index name, F–5
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Distributed memory cluster descriptor table, 27–12
(III)

fields, 27–15 (III)
format, 27–15 (III)
linking, 27–17 (III)

DIV operator, 3–7 (I)

DIVF instruction, 4–120 (I)

DIVG instruction, 4–120 (I)

Division
integer, A–12
performance impact of, A–12

Division by zero bit, exception summary register,
F–25

Division by zero enable (DZEE)
FP_C quadword bit, B–6

Division by zero status (DZES)
FP_C quadword bit, B–5

Division by zero trap, 14–13 (II-A), 19–6 (II-B),
24–6 (II-C), F–25

DIVS instruction, 4–121 (I)

DIVT instruction, 4–121 (I)

DMA control, HAL interface for, F–3

DMK bit, machine check error summary register,
F–36

DNOD bit. See Denormal operand exception disable

DNZ. See Denormal operands to zero

DP. See Depends order

DPC bit, machine check error summary register,
13–14 (II-A), 19–8 (II-B), 24–8 (II-C),

F–36

DRAINA (PALcode) instruction
required, 6–4 (I)

draina (PALcode) instruction, F–43

machine checks and, F–36
required, 6–4 (I)

DSC bit, machine check error summary register,
13–14 (II-A), 19–8 (II-B), 24–8 (II-C),

F–36

DSD LENGTH, CTB field for, 26–75 (III)

DSD, CTB field for, 26–75 (III)

DSRDB block, in HWRPB, 26–10 (III)

DSRDB offset, HWRPB field for, 26–9 (III)

DSRDB structure, 26–24 (III)

DTB. See data stream translation buffer

dtbis (PALcode) instruction, F–17, F–44

DUMP_DEV environment variable, 26–27 (III)

DYN bit. See Arithmetic traps, dynamic rounding
mode

Dynamic system recognition data block. See DSRD

DZE bit
exception summary parameter, 14–12 (II-A)
exception summary register, 19–6 (II-B), 24–6

(II-C), F–25
See also Arithmetic traps, division by zero

DZED bit. See Trap disable bits, division by zero

E

ealnfix (PALcode) instruction, F–45

ECB (Evict data cache block) instruction, 4–136 (I)

CFLUSH (PALcode) instruction with, 4–138 (I)

ei (PALcode) instruction, F–46

as synchronization function, F–33

Embedded console, 25–2 (III)

ENABLE_AUDIT environment variable, 26–27

(III) , 27–40 (III)

entArith. See Arithmetic trap entry

entIF. See Instruction fault entry

entInt. See Interrupt entry

entMM. See Memory management fault entry

ENTRY, CRB field for, 26–70 (III)

entSys. See System call entry

entUna. See Unaligned access fault

Environment variables, 26–24 (III)

getting, 26–60 (III)
power-up initialization and, 27–4 (III)
processor initialization and, 27–23 (III)
resetting, 26–59 (III)
routines described, 26–57 (III)
saving, 26–61 (III)
setting, 26–58 (III)

EQV instruction, 4–43 (I)

Error halt and recovery, 27–34 (III)

Error messages
console, 25–4 (III)

Errors
correctable, F–35
correctable processor, 19–8 (II-B), 24–8 (II-C)
correctable system, 19–8 (II-B), 24–8 (II-C)
uncorrectable, F–35
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EXCB (exception barrier) instruction, 4–138 (I),
A–15

FPCR and, 4–84 (I)

Exception classes, F–20

registry of handling routines for, F–77
values for, F–78

Exception dispatch, F–20

Exception handlers, B–2

TRAPB instruction with, 4–147 (I)

Exception handling routines, registery for, F–77

Exception register write mask, 19–6 (II-B), 24–6
(II-C)

Exception service routines
entry point, 14–24 (II-A)
introduced, 14–8 (II-A)

Exception summary parameter, 14–12 (II-A)

Exception summary register, 19–2 (II-B), 19–4

(II-B) , 24–2 (II-C), 24–4 (II-C), F–25

EXCEPTION_SUMMARY, F–25

Exceptional events, 14–1 (II-A)

ExceptionPC address, F–23

Exceptions
actions, summarized, 14–2 (II-A)
arithmetic, F–23
breakpoint, F–27
defined, 14–1 (II-A), 19–1 (II-B), 24–1 (II-C)
F31 with, 3–2 (I)
general class common dispatch, F–28
general class of, F–23
illegal instruction, F–25
initializing entry points, F–92
initiated before interrupts, 14–16 (II-A)
initiated by PALcode, 14–29 (II-A)
introduced, 14–8 (II-A)
invalid address, F–26
memory management class, F–22
precise IEEE-format arithmetic, 4–69 (I)
precise VAX-format arithmetic, 4–68 (I)
processor state transitions, 14–34 (II-A)
R31 with, 3–1 (I)
returning from, F–21, F–63
software, F–26
stack frames for, 14–7 (II-A), 19–3 (II-B), 24–3

(II-C)
subsetted IEEE, F–27
system service calls, F–23
trap frames with, F–21
trapping modes, 4–70 (I)

unaligned access, F–25
See also Arithmetic traps

Executive read enable (ERE), bit in PTE, 11–4
(II-A)

Executive stack pointer (ESP) register, 13–10 (II-A)

HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
internal processor register, 13–1 (II-A)

Executive write enable (EWE), bit in PTE, 11–4
(II-A)

EXTBL instruction, 4–52 (I)

Extended VA size, HWRPB field for, 26–6 (III)

EXTLH instruction, 4–52 (I)

EXTLL instruction, 4–52 (I)

EXTQH instruction, 4–52 (I)

EXTQL instruction, 4–52 (I)

Extract byte instructions, 4–52 (I)

big-endian support with, 2–13 (I)

EXTWH instruction, 4–52 (I)

EXTWL instruction, 4–52 (I)

F

F_floating data type, 2–3 (I)

alignment of, 2–4 (I)
compared to IEEE S_floating, 2–7 (I)
MAX/MIN , 4–66 (I)
unaligned data and, 14–26 (II-A)

F31 as destination register, 3–2 (I)

Fault on execute (FOE), 11–15 (II-A), 14–11 (II-A),
17–14 (II-B), 22–14 (II-C)

bit in PTE, 11–5 (II-A), 17–5 (II-B), 22–5
(II-C)

service routine entry point, 14–25 (II-A)
software usage of, 14–11 (II-A)

Fault on read (FOR), 11–15 (II-A), 14–10 (II-A),
17–14 (II-B), 22–14 (II-C)

bit in PTE, 11–6 (II-A), 17–6 (II-B), 22–6
(II-C)

service routine entry point, 14–25 (II-A)
software usage of, 14–10 (II-A)

Fault on write (FOW), 11–15 (II-A), 14–10 (II-A),
17–14 (II-B), 22–14 (II-C)

bit in PTE, 11–6 (II-A), 17–6 (II-B), 22–6
(II-C), F–17

service routine entry point, 14–25 (II-A)
software usage of, 14–11 (II-A)
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Faults, 14–9 (II-A), F–22

access control violation, 14–10 (II-A)
defined, 14–8 (II-A), 19–1 (II-B), 24–1 (II-C)
fault on execute, 14–11 (II-A), 17–13 (II-B),

22–13 (II-C)
fault on read, 14–10 (II-A), 17–13 (II-B), 22–13

(II-C)
fault on write, 14–10 (II-A), 17–13 (II-B),

22–13 (II-C)
floating-point disabled, 14–10 (II-A)
memory management, 17–13 (II-B), 22–13

(II-C)
MM flag, 14–9 (II-A)
program counter (PC) value, 14–8 (II-A)
REI instruction with, 14–8 (II-A)
translation not valid, 14–10 (II-A)

FBEQ instruction, 4–100 (I)

FBGE instruction, 4–100 (I)

FBGT instruction, 4–100 (I)

FBLE instruction, 4–100 (I)

FBLT instruction, 4–100 (I)

FBNE instruction, 4–100 (I)

FCMOVEQ instruction, 4–106 (I)

FCMOVGE instruction, 4–106 (I)

FCMOVGT instruction, 4–106 (I)

FCMOVLE instruction, 4–106 (I)

FCMOVLT instruction, 4–106 (I)

FCMOVNE instruction, 4–106 (I)

FEN. See Floating-point enable

FETCH (prefetch data) instruction, 4–139 (I)

FETCH_M (prefetch data, modify intent) instruction,
4–139 (I)

Field replaceable unit (FRU)
memory clusters with, 27–12 (III)
offset, HWRPB field for, 26–8 (III)
table description, 26–23 (III)

Finite number, Alpha, contrasted with VAX, 4–64
(I)

Firmware components, F–2

Firmware restart, F–9

Firmware restart address, F–93

FIXUP console routine, 26–64 (III)

PALcode switching and, 27–7 (III)
procedure descriptor for, 26–70 (III)
using, 26–71 (III)

FLOAT_REGISTER_MASK, F–24

Floating-point branch instructions, 4–99 (I)

Floating-point computational models, 4–68 (I)

Floating-point control quadword, B–4

Floating-point control register (FPCR)
accessing, 4–82 (I)
bit descriptions, 4–80 (I)
EXCB instruction with, A–15
instructions to read/write, 4–108 (I)
operate instructions that use, 4–101 (I)
processor initialization and, 4–83 (I)
saving and restoring, 4–83 (I)
trap disable bits in, 4–79 (I)

Floating-point convert instructions, 3–13 (I)

Fa field requirements, 3–13 (I)

Floating-point disabled fault, 14–10 (II-A)

service routine entry point, 14–25 (II-A)

Floating-point division, performance impact of,
A–12

Floating-point enable (FEN) register
clearing, 10–10 (II-A)
defined, 15–3 (II-B), 20–3 (II-C)
described, 13–11 (II-A)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
PALcode switching and, 27–8 (III)
privileged context, 10–90 (II-A)
process context and, 18–1 (II-B), 23–1 (II-C)
processor initialization and, 27–23 (III)

Floating-point format, number representation
(encodings), 4–66 (I)

Floating-point instructions
branch, 4–99 (I)
faults, 4–63 (I)
function field format, 4–84 (I)
introduced, 4–63 (I)
memory format, 4–90 (I)
opcodes and format summarized, C–1
operate, 4–101 (I)
rounding modes, 4–67 (I)
terminology, 4–64 (I)
trapping modes, 4–70 (I)
traps, 4–63 (I)

Floating-point load instructions, 4–90 (I)

load F_floating, 4–91 (I)
load G_floating, 4–92 (I)
load S_floating, 4–93 (I)
load T_floating, 4–94 (I)
non-finite values and, 4–90 (I)
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Floating-point operate instructions, 4–101 (I)

add (IEEE), 4–110 (I)
add (VAX), 4–109 (I)
compare (IEEE), 4–112 (I)
compare (VAX), 4–111 (I)
conditional move, 4–106 (I)
convert IEEE floating to integer, 4–116 (I)
convert integer to IEEE floating, 4–117 (I)
convert integer to integer, 4–105 (I)
convert integer to VAX floating, 4–114 (I)
convert S_floating to T_floating, 4–118 (I)
convert T_floating to S_floating, 4–119 (I)
convert VAX floating to integer, 4–113 (I)
convert VAX floating to VAX floating, 4–115

(I)
copy sign, 4–104 (I)
divide (IEEE), 4–121 (I)
divide (VAX), 4–120 (I)
format of, 3–12 (I)
integer moves, from, 4–124 (I)
integer moves, to, 4–122 (I)
move from/to FPCR, 4–108 (I)
multiply (IEEE), 4–127 (I)
multiply (VAX) , 4–126 (I)
subtract (IEEE), 4–131 (I)
subtract (VAX), 4–130 (I)
unused function codes with, 3–12 (I)

Floating-point registers, 3–2 (I)

PALcode switching and, 27–8 (III)
See also Registers

Floating-point single-precision operations, 4–63 (I)

Floating-point store instructions, 4–90 (I)

non-finite values and, 4–90 (I)
store F_floating, 4–95 (I)
store G_floating, 4–96 (I)
store S_floating, 4–97 (I)
store T_floating, 4–98 (I)

Floating-point support
floating-point control (FP_C) quadword, B–4
IEEE, 2–6 (I)
IEEE standard 754-1985, 4–89 (I)
instruction overview, 4–63 (I)
longword integer, 2–10 (I)
operate instructions, 4–101 (I)
optional, 4–2 (I)
quadword integer, 2–11 (I)
rounding modes, 4–67 (I)
single-precision operations, 4–63 (I)
trap modes, 4–70 (I)
VAX , 2–3 (I)

Floating-point to integer move, 3–13 (I), 4–122 (I)

Floating-point trapping modes, 4–70 (I)
See also Arithmetic traps

FNOP code form, A–13

FOE. See Fault on execute

FOR. See Fault on read

FOW. See Fault on write

FP. See Frame pointer

FP_C quadword, B–4

FPCR. See Floating-point control register

Frame pointer (FP) register, linkage for, 15–1 (II-B),
20–1 (II-C)

FRU. See Field replaceable unit

FTOIS instruction, 4–122 (I)

FTOIT instruction, 4–122 (I)

Function codes
IEEE floating-point, C–7
independent floating-point, C–9
numerical order listing, C–12
VAX floating-point, C–9
See also Opcodes

G

G_floating data type, 2–4 (I)

alignment of, 2–5 (I)
mapping, 2–4 (I)
MAX/MIN , 4–66 (I)
unaligned data and, 14–26 (II-A)

General class exceptions, F–23

common dispatch of, F–28
General exception address (GENERAL_ENTRY)

register, F–7

GENTRAP (PALcode) instruction, 10–11 (II-A)

required recognition of, 6–4 (I)
trap information, 14–15 (II-A)

gentrap (PALcode) instruction, 16–6 (II-B), 21–6

(II-C), F–86

raises software exceptions, F–26
required recognition of, 6–4 (I)

GET_ENV variable routine, 26–60 (III)

GETC terminal routine, 26–34 (III)

ISO Latin-1 support and, 25–4 (III)
GH. See Granularity hint

Global pointer (GP) register, linkage for, 15–1

(II-B), 20–1 (II-C)

Global translation hint, F–16
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Granularity hint (GH)
bits in PTE, F–16
block in HWRPB, 26–13 (III)
fields in, 26–14 (III)

GRAPHICS, system variation field, 26–12 (III)

H

HAL (Hardware abstraction layer), F–3

HALT (PALcode) instruction
required, 6–6 (I)
state transitions and, 27–1 (III)

halt (PALcode) instruction, F–47

required, 6–6 (I)
writes PAL_BASE register, F–8
See also reboot (PALcode) instruction

Halt PCBB register, per-CPU slot field for, 26–18
(III)

Halt processor, per-CPU slot fields for, 26–18 (III)

Halt requested, per-CPU state flag, 26–22 (III)

multiprocessor booting and, 27–27 (III)
Hardware abstraction layer

interfaces for, F–3

Hardware context, 18–1 (II-B), 23–1 (II-C)

Hardware errors, when unrecoverable, F–28

Hardware interrupts, F–31

interprocessor, 14–19 (II-A)
interval clock, 14–19 (II-A)
powerfail, 14–20 (II-A)
servicing, 19–7 (II-B), 24–7 (II-C)

Hardware nonprivileged context, 12–2 (II-A)

Hardware privileged context, 12–2 (II-A)

switching, 12–2 (II-A)
Hardware privileged context block (HPCB)

process unique value in, 10–78 (II-A)
swapping ownership of, 10–90 (II-A)

Hardware privileged context block (HWPCB)
cold booting and, 27–25 (III)
format, 12–2 (II-A)
original built by HWRPB, 12–4 (II-A)
PCBB register, 13–16 (II-A)
specified by PCBB, 12–2 (II-A)
warm booting and, 27–26 (III)
writing to, 12–3 (II-A)

Hardware restart parameter block (HWRPB), 26–1
(III)

cold boot and, 27–9 (III)
discontiguous data structures, 26–2 (III)

fields for, 26–6 (III)
interval clock interrupt, 14–19 (II-A)
loading at cold boot, 27–17 (III)
logout area, 14–23 (II-A)
overview of, 26–2 (III)
size field in, 26–6 (III)
structure of, 26–4 (III)

HIGH_LEVEL, IRQL table index name, F–5

HWPCB. See Hardware privileged context block

HWRPB. See Hardware restart parameter block

I

I/O access, nonmapped, F–13

I/O device interrupts, 14–19 (II-A)

I/O device registers, at power-up initialization, 27–4
(III)

I/O devices
device-specific operations for, 26–51 (III)
generic, closing for access, 26–50 (III)
generic, opening for access, 26–48 (III)
generic, reading from, 26–53 (III)
generic, routines for, 26–46 (III)
generic, writing to, 26–55 (III)
required implementation support for, 26–48

(III)
service routine entry points, 14–28 (II-A)

I/O devices, DMA
MB and WMB with, 5–23 (I)
reliably communicating with processor, 5–27

(I)
shared memory locations with, 5–11 (I)

I/O interface overview, 8–1 (I)

I/O support, HAL interface for, F–3

IEEE floating-point
exception handlers, B–2
floating-point control (FP_C) quadword, B–4
format, 2–6 (I)
FPCR (floating-point control register), 4–80 (I)
function field format, 4–85 (I)
hardware support, B–1
high-performance arithmetic, 4–69 (I)
inexact exceptions, 4–69 (I)
NaN, 2–6 (I)
options, B–1
precise exceptions, 4–72 (I)
S_floating, 2–6 (I)
standard charts, B–11
standard, mapping to, B–6
standards compliance, 4–69 (I)
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T_floating, 2–8 (I)
trap handling, B–6
X_floating, 2–9 (I)
See also Floating-point instructions

IEEE floating-point control quadword, B–4

IEEE floating-point instructions
add, 4–110 (I)
compare, 4–112 (I)
convert from integer, 4–117 (I)
convert S_floating to T_floating, 4–118 (I)
convert T_floating to S_floating, 4–119 (I)
convert to integer, 4–116 (I)
divide, 4–121 (I)
function codes for, C–7
integer moves, from, 4–124 (I)
multiply, 4–127 (I)
operate, 4–101 (I)
register moves, to, 4–122 (I)
square root, 4–129 (I)
subtract, 4–131 (I)

IEEE standard, 4–89 (I)

conformance to, B–1
mapping to, B–6

IEEE trapping modes, 4–72 (I)

/SU, 4–72 (I)
/SUI, 4–73 (I)
/SV, 4–72 (I)
/SVI, 4–73 (I)
/U, 4–72 (I)
/V, 4–72 (I)
default mode, 4–72 (I)
precise, 4–72 (I)
summary, 4–73 (I)

IEEE, subsetted instruction exception, F–27

IEEE-compliant arithmetic, 4–69 (I)

IGN (ignore), 1–9 (I)

IKSP register. See Kernel stack pointer, initial

Illegal instruction exceptions, F–25

Illegal instruction trap, 14–15 (II-A)

service routine entry point, 14–26 (II-A)

Illegal operand trap, service routine entry point,
14–26 (II-A)

Illegal PALcode operand trap, 14–15 (II-A)

IMB (PALcode) instruction, 5–24 (I)

required, 6–7 (I)
virtual I-cache coherency, 5–5 (I)

imb (PALcode) instruction, F–87

required, 6–7 (I)

IMB, HWPCB bit, 12–3 (II-A)

IMB, PCB bit, 18–3 (II-B), 23–3 (II-C)

IMP (implementation dependent), 1–9 (I)

IMP_DATA_PA
memory data descriptor table field, 27–12 (III)
null memory cluster descriptor field, 27–13 (III)

IMPLVER (Implementation version) instruction,
4–141 (I)

value assignments, D–5

Independent floating-point function codes, C–9

INE bit
exception summary parameter, 14–12 (II-A)
exception summary register, 19–5 (II-B), 24–5

(II-C), F–25
See also Arithmetic traps, inexact result

INED bit. See Trap disable bits, inexact result trap

Inexact result bit, exception summary register, F–25

Inexact result enable (INEE)
FP_C quadword bit, B–5

Inexact result status (INES)
FP_C quadword bit, B–5

Inexact result trap, 14–13 (II-A), 19–5 (II-B), 24–5

(II-C), F–25

Infinity, 4–65 (I)

conversion to integer, 4–89 (I)

Initialization, PALcode environment, F–91

initpal (PALcode) instruction, F–48, F–50

initialization and, F–92
reads PAL_BASE register, F–8
writes KGP register, F–7
writes PCR register, F–8
writes PDR register, F–8

initpcr (PALcode) instruction, F–50

INSBL instruction, 4–56 (I)

Insert byte instructions, 4–56 (I)

big-endian support with, 2–13 (I)
Insert into queue PALcode instructions

longword, 10–45 (II-A)
longword at head interlocked, 10–29 (II-A)
longword at head interlocked resident, 10–31

(II-A)
longword at tail interlocked, 10–37 (II-A)
longword at tail interlocked resident, 10–39

(II-A)
quadword, 10–47 (II-A)
quadword at head interlocked, 10–33 (II-A)
quadword at head interlocked resident, 10–35
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(II-A)
quadword at tail interlocked, 10–41 (II-A)
quadword at tail interlocked resident, 10–43

(II-A)

INSLH instruction, 4–56 (I)

INSLL instruction, 4–56 (I)

INSQH instruction, 4–56 (I)

INSQHIL (PALcode) instruction, 10–29 (II-A)

INSQHILR (PALcode) instruction, 10–31 (II-A)

INSQHIQ (PALcode) instruction, 10–33 (II-A)

INSQHIQR (PALcode) instruction, 10–35 (II-A)

INSQL instruction, 4–56 (I)

INSQTIL (PALcode) instruction, 10–37 (II-A)

INSQTILR (PALcode) instruction, 10–39 (II-A)

INSQTIQ (PALcode) instruction, 10–41 (II-A)

INSQTIQR (PALcode) instruction, 10–43 (II-A)

INSQUEL (PALcode) instruction, 10–45 (II-A)

INSQUEL/D (PALcode) instruction, 10–45 (II-A)

INSQUEQ (PALcode) instruction, 10–47 (II-A)

INSQUEQ/D (PALcode) instruction, 10–47 (II-A)

Instances of system software, 27–12 (III)

Instruction encodings
common architecture, C–2
numerical order, C–12
opcodes and format summarized, C–1

Instruction fault entry (entIF) register, 15–2 (II-B),
19–4 (II-B), 19–6 (II-B), 20–2 (II-C), 24–4

(II-C), 24–7 (II-C)

Instruction fault, system entry for, 19–4 (II-B), 24–4
(II-C)

Instruction fetches (memory), 5–12 (I)

Instruction formats
branch, 3–11 (I)
conventions, 3–9 (I)
floating-point convert, 3–13 (I)
floating-point operate, 3–12 (I)
floating-point to integer move, 3–13 (I)
illegal trap, 14–15 (II-A)
memory, 3–10 (I)
memory jump, 3–10 (I)
operand values, 3–9 (I)
operators, 3–6 (I)
overview, 1–3 (I)
PALcode, 3–13 (I)
registers, 3–1 (I)

Instruction set
access type field, 3–5 (I)
Boolean, 4–42 (I)
branch, 4–19 (I)
byte manipulate, 4–48 (I)
conditional move (integer), 4–44 (I)
data type field, 3–6 (I)
floating-point subsetting, 4–2 (I)
integer arithmetic, 4–25 (I)
introduced, 1–6 (I)
jump, 4–19 (I)
load memory integer, 4–4 (I)
miscellaneous, 4–132 (I)
multimedia, 4–154 (I)
name field, 3–5 (I)
opcode qualifiers, 4–3 (I)
operand notation, 3–4 (I)
overview, 4–1 (I)
shift, arithmetic, 4–47 (I)
software emulation rules, 4–2 (I)
store memory integer, 4–4 (I)
VAX compatibility, 4–152 (I)
See also Floating-point instructions

Instruction stream translation buffer (ITB), 26–13
(III)

Instruction stream. See I-stream

Instructions, overview, 1–4 (I)

INSWH instruction, 4–56 (I)

INSWL instruction, 4–56 (I)

Integer division, A–12

Integer overflow bit, exception summary register,
F–25

Integer overflow trap, 14–14 (II-A), 19–5 (II-B),
24–5 (II-C), F–25

Integer registers
defined, 3–1 (I)
PALcode switching and, 27–8 (III)
R31 restrictions, 3–1 (I)
See also Registers

INTEGER_REGISTER_MASK, F–24

Internal processor registers (IPR)
address space number, 13–4 (II-A), F–7
AST enable, 13–5 (II-A)
AST summary, 13–7 (II-A)
CALL_PAL MFPR with, 13–1 (II-A)
CALL_PAL MTPR with, 13–1 (II-A)
data alignment trap fixup, 13–9 (II-A)
defined, 9–1 (II-A)
executive stack pointer, 13–10 (II-A)
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)

floating-point enable, 13–11 (II-A)
general exception address, F–7
interprocessor interrupt request, 13–12 (II-A)
interrupt exception address, F–7
interrupt priority level, 13–13 (II-A)
kernel global pointer, F–7
kernel mode with, 13–1 (II-A)
kernel stack pointer (IKSP), initial, F–7
machine check error summary, 13–14 (II-A)
machine check error summary (MCES) register,

F–7
memory management exception, F–8
MFPR instruction with, 10–85 (II-A)
MTPR instruction with, 10–86 (II-A)
page directory base, F–8
page table base, 13–18 (II-A)
PALcode image base address, F–8
panic exception, F–8
performance monitoring, 13–15 (II-A)
privileged context block base, 13–16 (II-A)
process control region base, F–8
processor base, 13–17 (II-A)
processor status, F–8
restart execution address, F–8
returning state of, F–57
software interrupt request, 13–20 (II-A), F–9
software interrupt summary, 13–21 (II-A)
summarized, 13–2 (II-A), F–6
supervisor stack pointer, 13–22 (II-A)
system control block base, 13–19 (II-A)
system page table base, 13–23 (II-A)
system service exception address, F–9
thread environment block base, F–9
thread unique value, F–9
translation buffer check, 13–24 (II-A)
translation buffer invalidate all, 13–25 (II-A)
translation buffer invalidate all process, 13–26

(II-A)
translation buffer invalidate single, 13–27

(II-A)
user stack pointer, 13–28 (II-A)
virtual address boundary, 13–29 (II-A)
virtual page base, 13–30 (II-A)
Who-Am-I, 13–31 (II-A)

Interprocessor console communications, 26–75 (III)

Interprocessor interrupt, 14–19 (II-A)

generating, 16–29 (II-B), 21–28 (II-C)
protocol for, 14–19 (II-A)
service routine entry point, 14–27 (II-A)

Interprocessor interrupt request (IPIR) register
described, 13–12 (II-A)
protocol for, 14–19 (II-A)

Interrupt acknowledge, F–33

Interrupt dispatch
example, F–31
table (IDT), F–31

Interrupt enable mask, F–30

Interrupt entry (entInt) register, 15–2 (II-B), 19–4

(II-B), 19–7 (II-B), 20–2 (II-C), 24–4

(II-C), 24–7 (II-C)

Interrupt exception address (INTERRUPT_ENTRY
register, F–7

Interrupt handling
HAL interface for, F–3

Interrupt level table (ILT), F–30

index values/names for, F–5

Interrupt mask table (IMT), F–30

Interrupt pending (IP) field, in PS register, 14–6
(II-A)

Interrupt priority level (IPL), 14–6 (II-A)

events associated with, 14–17 (II-A)
field in PS register, 14–5 (II-A)
hardware levels, 14–6 (II-A)
kernel mode software with, 14–17 (II-A)
operation of, 14–16 (II-A)
PALcode switching and, 27–8 (III)
processor initialization and, 27–24 (III)
PS with, 19–2 (II-B), 24–2 (II-C)
recording pending software (SISR register),

13–21 (II-A)
requesting software (SIRR register), 13–20

(II-A)
service routine entry points, 14–27 (II-A)
software interrupts, 14–18 (II-A)
software levels, 14–6 (II-A)
See also Interrupt priority level (IPL) register

Interrupt priority level (IPL) register
described, 13–13 (II-A)
interrupt arbitration, 14–32 (II-A)
See also Interrupt priority level (IPL)

Interrupt request levels (IRQL)
ILT table for, F–30
PSR and, F–5
PSR and di instruction, F–42
swapping, F–68

Interrupt service routines
entry point, 14–24 (II-A)
in each process, 14–17 (II-A)
introduced, 14–16 (II-A)

Interrupt tables (IDT, ILT, IMT), F–9
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Interrupt tables at initialization, F–92

Interrupt trap frame, building, F–32

Interrupt vectors,mask table for, F–30

Interrupts, F–30

actions, summarize, 14–2 (II-A)
disabling, F–42
enabling, F–46
hardware arbitration, 14–32 (II-A)
I/O device, 14–19 (II-A)
initiated by PALcode, 14–29 (II-A)
initiation, 14–17 (II-A)
instruction completion, 14–16 (II-A)
interprocessor, 14–19 (II-A)
introduced, 14–16 (II-A)
PALcode arbitration, 14–32 (II-A)
passive release, 14–19 (II-A)
powerfail, 14–20 (II-A)
processor state transitions, 14–34 (II-A)
processor status register and, F–5
program counter value, 14–2 (II-A)
returning from, F–63
software, 14–17 (II-A)
software requests for, F–33
sources for, 19–2 (II-B), 24–2 (II-C)
stack frames for, 14–7 (II-A), 19–3 (II-B), 24–3

(II-C)
system entry for, 19–4 (II-B), 24–4 (II-C)

Interval clock interrupt, 14–19 (II-A)

HWRPB field for, 26–7 (III)
service routine entry point, 14–27 (II-A)

intr_flag register, 15–3 (II-B), 20–3 (II-C)

cleared by retsys, F–62
cleared by rfe, F–64

INV bit
exception summary parameter, 14–12 (II-A)
exception summary register, 19–6 (II-B), 24–6

(II-C), F–25
See also Arithmetic traps, invalid operation

Invalid address exceptions, F–26

Invalid operation bit, exception summary register,
F–25

Invalid operation enable (INVE)
FP_C quadword bit, B–6

Invalid operation status (INVS)
FP_C quadword bit, B–5

Invalid operation trap, 14–13 (II-A), 19–6 (II-B),
24–6 (II-C), F–25

INVD bit. See Trap disable bits, invalid operation

IOCTL console device routine, 26–51 (III)

IOV bit
exception summary parameter, 14–12 (II-A)
exception summary register, 19–5 (II-B), 24–5

(II-C), F–25
See also Arithmetic traps, integer overflow

IPI_LEVEL, IRQL table index name, F–5

IPL. See Interrupt priority level

IPR. See Internal processor registers (IPR)

IPR_KSP (internal processor register kernel stack
pointer), 13–1 (II-A)

IRQL
See Interrupt request levels
See also rdirql and swpirql

ISO Latin-1 support, 25–4 (III)

PROCESS_KEYCODE and, 26–42 (III)
I-stream

coherency of, 6–7 (I)
design considerations, A–2
modifying physical, 5–5 (I)
modifying virtual, 5–5 (I)
PALcode with, 6–2 (I)
with caches, 5–5 (I)

ITB. See Instruction stream translation buffer

ITOFF instruction, 4–124 (I)

ITOFS instruction, 4–124 (I)

ITOFT instruction, 4–124 (I)

J

JMP instruction, 4–23 (I)

JSR instruction, 4–23 (I)

JSR_COROUTINE instruction, 4–23 (I)

Jump instructions, 4–19 (I), 4–23 (I)

branch prediction logic, 4–23 (I)
coroutine linkage, 4–24 (I)
lock_flag with, 4–10 (I)
return from subroutine, 4–23 (I)
unconditional long jump, 4–24 (I)
See also Control instructions

K

kbpt (PALcode) instruction, F–88

Kernel global pointer (KGP) register, 15–3 (II-B),
20–3 (II-C), F–7

initialization, F–92
initializing, F–48

Kernel read enable (KRE)
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access control violation (ACV) fault and, 11–16
(II-A)

bit in PTE, 11–4 (II-A), 17–4 (II-B), 22–4
(II-C)

Kernel stack, F–10

under/overflow detection, F–89

Kernel stack pointer (IKSP), initial, F–7

context switching and, F–11, F–67
initializing, F–48
returning contents of, F–53
swapping to current, F–69
trap frames and, F–21

Kernel stack pointer (KSP) register
defined, 15–3 (II-B), 20–3 (II-C)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
PALcode switching and, 27–8 (III)
process context and, 18–1 (II-B), 23–1 (II-C)
processor initialization and, 27–24 (III)

Kernel stack, PALcode access to, 14–28 (II-A)

Kernel stack, when corrupted, F–29

Kernel write enable (KWE)
bit in PTE, 11–4 (II-A), 17–4 (II-B), 22–4

(II-C)

KERNEL_BREAKPOINT breakpoint type, F–27

Keycode, translating, 26–42 (III)

KGP. See Kernel global pointer

Kseg
format of, 17–2 (II-B), 22–2 (II-C)
mapping of, 17–1 (II-B), 22–1 (II-C)
physical space with, 17–3 (II-B), 22–3 (II-C)
virtual address format, 17–3 (II-B)

KSP. See Kernel stack pointer

L

LANGUAGE environment variable, 26–28 (III)

Languages, supported by console, 26–28 (III)

LDA instruction, 4–5 (I)

LDAH instruction, 4–5 (I)

LDBU instruction, 4–6 (I)

big-endian support with, 2–13 (I)

LDF instruction, 4–91 (I)

big-endian support with, 2–13 (I)
unaligned data and, 14–26 (II-A)

LDG instruction, 4–92 (I)

unaligned data and, 14–26 (II-A)

LDL instruction, 4–6 (I)

big-endian support with, 2–13 (I)
unaligned data and, 14–26 (II-A)

LDL_L instruction, 4–9 (I)

big-endian support with, 2–13 (I)
processor lock register/flag and, 4–10 (I)
restrictions, 4–10 (I)
STx_C instruction and, 4–9 (I)

LDQ instruction, 4–6 (I)

unaligned data and, 14–26 (II-A)

LDQ_L instruction, 4–9 (I)

processor lock register/flag and, 4–10 (I)
restrictions, 4–10 (I)
STx_C instruction and, 4–10 (I)
unaligned data and, 14–26 (II-A)

LDQ_U instruction, 4–8 (I)

LDQP (PALcode) instruction, 10–84 (II-A)

LDS instruction, 4–93 (I)

big-endian support with, 2–13 (I)
FPCR and, 4–84 (I)
unaligned data and, 14–26 (II-A)

LDT instruction, 4–94 (I)

unaligned data and, 14–26 (II-A)

LDWU instruction, 4–6 (I)

big-endian support with, 2–13 (I)

LEFT_SHIFT(x,y) operator, 3–7 (I)

lg operator, 3–7 (I)

LICENSE environment variable, 26–27 (III)

Literals, operand notation, 3–5 (I)

Litmus tests, shared data veracity, 5–17 (I)

Load instructions
emulation of, 4–2 (I)
FETCH instruction, 4–139 (I)
Load address, 4–5 (I)
Load address high, 4–5 (I)
load byte, 4–6 (I)
load longword, 4–6 (I)
load quadword, 4–6 (I)
load quadword locked, 4–10 (I)
load sign-extended longword locked, 4–9 (I)
load unaligned quadword, 4–8 (I)
load word, 4–6 (I)
multiprocessor environment, 5–6 (I)
serialization, 4–142 (I)
unaligned data and, 14–26 (II-A)
See also Floating-point load instructions

Load literal, A–14
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Load memory integer instructions, 4–4 (I)

LOAD_LOCKED operator, 3–7 (I)

Load-locked, defined, 5–16 (I)

Location, 5–11 (I)

Location access constraints, 5–14 (I)

Lock flag, per-processor
defined, 3–2 (I)
load locked instructions and, 4–10 (I)
when cleared, 4–10 (I)

Lock registers, per-processor
defined, 3–2 (I)
load locked instructions and, 4–10 (I)
STx_C and, 4–10 (I)

Lock variables, with WMB instruction, 4–151 (I)

lock_flag register, 4–10 (I), 15–3 (II-B), 20–3 (II-C)

cleared by retsys, F–62
cleared by rfe, F–64

Logical instructions. See Boolean instructions

Logout area, 14–23 (II-A)

length, per-CPU slot field for, 26–18 (III)
physical address, per-CPU slot field for, 26–18

(III)

Longword data type, 2–2 (I)

alignment of, 2–11 (I)
atomic access of, 5–2 (I)

LSB (least significant bit), defined for floating-point,
4–65 (I)

M

/M qualifier, IEEE minus infinity, 4–68 (I)

Machine check error handling, F–35

Machine check error summary (MCES) register
defined, 15–3 (II-B), 20–3 (II-C)
described, 13–14 (II-A), F–7
format of, F–35
PALcode switching and, 27–8 (III)
processor initialization and, 27–24 (III)
reading, 16–13 (II-B), 21–12 (II-C)
returning contents of, F–54
structure of, 19–7 (II-B), 24–7 (II-C)
using, 14–22 (II-A)
writing, 16–31 (II-B), 21–30 (II-C), F–79

Machine checks, 14–21 (II-A)

actions, summarized, 14–2 (II-A)
catastrophic conditions with, F–37
classes of, F–34
disabling during debug, F–36

initiated by PALcode, 14–29 (II-A)
interrupt entry for, 19–7 (II-B), 24–7 (II-C)
logout area, 14–23 (II-A)
masking, 14–21 (II-A)
no disabling of, 14–21 (II-A)
one per error, 14–22 (II-A)
processor correctable, 14–21 (II-A)
program counter (PC) value, 14–21 (II-A)
REI instruction with, 14–22 (II-A)
retry flag, 14–22 (II-A)
service routine entry points, 14–27 (II-A)
sources for, F–34
stack frames for, 14–7 (II-A)
system correctable, 14–21 (II-A)
type codes, F–36
unrecoverable reported, F–36

Machine checks service routines
entry point, 14–24 (II-A)

Magtape bootstrap image
ANSI format, 27–42 (III)
boot blocked, 27–43 (III)

Major modes, 27–3 (III)

Major state transitions, 27–2 (III)

console rules for, 27–2 (III)

Major states, 27–1 (III)

MAP_F function, 2–3 (I)

MAP_S function, 2–7 (I)

MAP_x operator, 3–7 (I)

Mask byte instructions, 4–58 (I)

big-endian support with, 2–13 (I)

Masking, machine checks with, 14–21 (II-A)

MAX, defined for floating-point, 4–66 (I)

maxCPU, 15–2 (II-B), 20–2 (II-C)

Maximum ASN value, HWRPB field for, 26–6 (III)

MAXS(x,y) operator, 3–7 (I)

MAXSB8 instruction, 4–155 (I)

MAXSW4 instruction, 4–155 (I)

MAXU(x,y) operator, 3–8 (I)

MAXUB8 instruction, 4–155 (I)

MAXUW4 instruction, 4–155 (I)

MB (Memory barrier) instruction, 4–142 (I)

DMA I/O and, 5–23 (I)
LDx_L/STx_C and, 4–15 (I)
multiprocessor D-stream and, 5–22 (I)
multiprocessors only, 4–142 (I)
shared data structures and, 5–9 (I)
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WMB campared to, 4–151 (I)
See also IMB, WMB

MBZ (must be zero), 1–8 (I)

MCES. See Machine check error summary

MCK bit, machine check error summary register,
13–14 (II-A), F–36

MEMC. See Memory cluster descriptor

MEMDSC. See Memory data descriptor table

Memory access
aligned byte/word, A–11
coherency of, 5–1 (I)
granularity of, 5–2 (I)
width of, 5–3 (I)
WMB instruction and, 4–150 (I)

Memory alignment, requirement for, 5–2 (I)

Memory barrier instructions. See MB, IMB
(PALcode), and WMB instructions

Memory barriers, 5–22 (I)

Memory cluster descriptor, 27–9 (III)

distributed format, 27–15 (III)
distributed linking, 27–17 (III)
passing to system software, 27–10 (III)
static, 27–10 (III)
static fields, 27–12 (III)
static format, 27–11 (III)

Memory clusters, 27–9 (III)

distributed, 27–12 (III)
static, 27–10 (III)

Memory data descriptor (MEMDSC) table
distributed memory clusters and, 27–10 (III)
fields, 27–11 (III)
format, 27–11 (III)
null memory cluster field, 27–13 (III)
offset, HWRPB field for, 26–8 (III)
static memory clusters and, 27–10 (III)
warm booting and, 27–26 (III)

Memory format instructions
opcodes and format summarized, C–1

Memory instruction format, 3–10 (I)

Memory jump instruction format, 3–10 (I)

Memory management
address translation, 11–8 (II-A)
control of, 11–3 (II-A), 17–3 (II-B), 22–3 (II-C)
faults, 11–15 (II-A), 14–9 (II-A), 17–13 (II-B),

22–13 (II-C)
interrupts and, 14–17 (II-A)
introduced, 11–1 (II-A)
multiprocessors and, 11–6 (II-A)

page frame number (PFN), 11–6 (II-A)
page table entry (PTE), 11–3 (II-A)
process context and, 12–1 (II-A)
protection, 11–7 (II-A)
protection code, 11–7 (II-A)
PTE modified by software, 11–6 (II-A)
support in PALcode, 6–2 (I)
translation buffers and, 11–13 (II-A)
unrecoverable error, 14–21 (II-A)
See also Address translation

Memory management exception
(MEM_MGMT_ENTRY) register, F–8

Memory management fault entry (entMM) register,
15–2 (II-B), 19–4 (II-B), 19–8 (II-B),

20–2 (II-C), 24–4 (II-C), 24–8 (II-C)

Memory management faults
registers used, 14–9 (II-A)
system entry for, 19–4 (II-B), 24–4 (II-C)
types, 17–13 (II-B), 22–13 (II-C)
unaligned data, 14–14 (II-A)

Memory prefetch registers
defined, 3–3 (I)

Memory protection, 17–6 (II-B), 22–6 (II-C)

Memory sizing at cold boot, 27–9 (III)

Memory testing at cold boot, 27–9 (III)

Memory-like behavior, 5–3 (I)

MF_FPCR instruction, 4–108 (I)

MFPR_IPR_name (PALcode) instruction, 10–85
(II-A)

MIN, defined for floating-point, 4–66 (I)

MINS(x,y) operator, 3–8 (I)

MINSB8 instruction, 4–155 (I)

MINSW4 instruction, 4–155 (I)

MINU(x,y) operator, 3–8 (I)

MINUB8 instruction, 4–155 (I)

MINUW4 instruction, 4–155 (I)

MIP bit, machine check error summary register,
19–8 (II-B), 24–8 (II-C)

Miscellaneous instructions, 4–132 (I)

MMCSR code, 17–13 (II-B), 22–13 (II-C)

Modify intent, prefetch with, A–10

MOP-based network bootstrapping, 27–45 (III)

Move instructions (conditional). See Conditional
move instructions
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Move, register-to-register, A–15

MPCAP, system variation field, 26–13 (III)

MSKBL instruction, 4–58 (I)

MSKLH instruction, 4–58 (I)

MSKLL instruction, 4–58 (I)

MSKQL instruction, 4–58 (I)

MSKWH instruction, 4–58 (I)

MSKWL instruction, 4–58 (I)

MT_FPCR instruction, 4–108 (I)

synchronization requirement, 4–83 (I)

MTPR_IPR_name (PALcode) instruction, 10–86
(II-A)

MULF instruction, 4–126 (I)

MULG instruction, 4–126 (I)

MULL instruction, 4–35 (I)

MULQ and, 4–35 (I)

MULQ instruction, 4–36 (I)

MULL and, 4–35 (I)
UMULH and, 4–36 (I)

MULS instruction, 4–127 (I)

MULT instruction, 4–127 (I)

Multimedia instructions, 4–154 (I)

Multiple instruction issue, A–3

Multiply instructions
multiply longword, 4–35 (I)
multiply quadword, 4–36 (I)
multiply unsigned quadward high, 4–37 (I)
See also Floating-point operate

Multiprocessor bootstrapping, 27–27 (III)

Multiprocessor environment
booting, 27–27 (III)
cache coherency in, 5–6 (I)
console requirements, 26–25 (III)
context switching, 5–24 (I)
interprocessor interrupt, 14–19 (II-A)
I-stream reliability, 5–24 (I)
MB and WMB with, 5–23 (I)
memory faults, 14–10 (II-A)
memory management in, 11–6 (II-A)
move operations in, 10–73 (II-A)
no implied barriers, 5–22 (I)
read/write ordering, 5–10 (I)
serialization requirements in, 4–142 (I)
shared data, 5–6 (I), A–6

Multithread implementation, 10–78 (II-A)

N
NaN (Not-a-Number)

conversion to integer, 4–89 (I)
copying, generating, propogating, 4–89 (I)
copying, generating, propograting, 4–89 (I)
defined, 2–6 (I)
quiet, 4–65 (I)
signaling, 4–65 (I)

NATURALLY ALIGNED data objects, 1–8 (I)

Negate stylized code form, A–15

Network bootstrapping, 27–45 (III)

New PALcode, 27–5 (III)

Next PC, 14–2 (II-A)

Non-finite number, 4–65 (I)

Nonmapped address space, F–13

Nonmemory-like behavior, 5–3 (I)

NOP, universal (UNOP), A–13

Normal prefetch, A–10

NOT instruction, 4–43 (I)

NOT operator, 3–8 (I)

NOT stylized code form, A–15

O
OFFSET

distributed memory cluster descriptor field,
27–15 (III)

Opcode qualifiers
default values, 4–3 (I)
notation, 4–3 (I)
See also specific qualifiers

Opcodes
Alpha Linux PALcode, C–20
common architecture, C–2
numerical order listing, C–12
OpenVMS PALcode, C–16
reserved, C–25
summary, C–10
Tru64 UNIX PALcode, C–19
unused function codes for, C–25
See also Function codes

opDec, 15–2 (II-B), 20–2 (II-C)

OPEN device routine, 26–48 (III)

determines WRITE characteristics, 26–56 (III)

OpenVMS PALcode instructions (list), 10–1 (II-A)

OpenVMS PALcode, instruction summary, C–16
Index–21



Operand expressions, 3–4 (I)

Operand notation, 3–4 (I)

Operand values, 3–4 (I)

Operate instruction format
unused function codes with, 3–11 (I)

Operate instructions
convert with integer overflow, 4–79 (I)
opcodes and format summarized, C–1

Operator halted (OH) flag, 27–39 (III)

multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–22 (III)

Operators, instruction format, 3–6 (I)

Optimization. See Performance optimizations

OR operator, 3–8 (I)

ORNOT instruction, 4–43 (I)

OS Loader, F–3

Overflow bit, exception summary register, F–25

Overflow enable (OVFE)
FP_C quadword bit, B–6

Overflow status (OVFS)
FP_C quadword bit, B–5

Overflow trap, 14–13 (II-A), 19–5 (II-B), 24–5

(II-C), F–25

Overlap
location access constraints, 5–14 (I)
processor issue constraints, 5–13 (I)
visibility , 5–14 (I)

OVF bit
exception summary parameter, 14–12 (II-A)
exception summary register, 19–5 (II-B), 24–5

(II-C), F–25
See also Arithmetic traps, overflow

OVFD bit. See Trap disable bits, overflow disable

P

Pack to bytes instructions, 4–158 (I)

Page directory base (PDR) register, F–8

context switching and, F–71
initializing, F–48
maps PTEs, F–15

Page directory entry (PDE), F–15

Page frame number (PFN)
address translation and, 11–8 (II-A)
bits in PTE, 11–4 (II-A), 17–4 (II-B), 22–4

(II-C), F–14, F–16

context switching and, F–12, F–67
determining validation, 11–6 (II-A)
finding for SCB, 13–19 (II-A)
hardware context switching and, 12–2 (II-A)
physical address translation and, 17–7 (II-B),

22–7 (II-C)
PTBR register, 13–18 (II-A)
when a PDR, F–15

Page size, HWRPB field for, 26–6 (III)

Page sizes, 17–2 (II-B), 22–2 (II-C)

Page table base (PTBR) register, 13–18 (II-A)

address translation and, 11–8 (II-A)
defined, 15–4 (II-B), 20–4 (II-C)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
PALcode switching and, 27–8 (III)
physical address translation and, 17–7 (II-B),

22–7 (II-C)
privileged context, 10–90 (II-A)
process context and, 18–1 (II-B), 23–1 (II-C)
processor initialization and, 27–24 (III)
SYSPTBR and, 11–11 (II-A)

Page table entry (PTE)
after software changes, 11–13 (II-A), 17–6

(II-B), 22–6 (II-C)
atomic modification of, 11–6 (II-A)
calculating at cold boot, 27–20 (III)
changing and managing, 17–6 (II-B), 22–6

(II-C)
format of, 11–3 (II-A), 17–3 (II-B), 22–3

(II-C), F–16
modified by software, 11–6 (II-A)
multiprocessors and, 11–6 (II-A)
page frame number (PFN) with, F–14
page protection, 11–7 (II-A)
virtual access of, 17–9 (II-B), 22–9 (II-C)

Page table space
loading at cold boot, 27–18 (III)

Page tables
calculating base, 27–20 (III)
initial mapping at cold boot, 27–20 (III)
physical traversal algorithm, F–15
traversing, F–14

PAGES
distributed memory cluster descriptor field,

27–15 (III)
null memory cluster descriptor field, 27–14 (III)
static memory cluster descriptor field, 27–12

(III)
Pages

collecting statistics on, 14–10 (II-A)
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r

individual protection of, 11–7 (II-A)
max address size from, 11–3 (II-A)
possible sizes for, 11–2 (II-A)
size range of, 17–1 (II-B), 22–1 (II-C)
virtual address space from, 11–2 (II-A)

PAGES, CRB field for, 26–70 (III)

pageSize, 15–2 (II-B), 20–2 (II-C)

PALcode
access to kernel stack, 14–28 (II-A)
Alpha Linux support for, 24–9 (II-C)
argument registers used, F–37
barriers with, 5–22 (I)
CALL_PAL instruction, 4–135 (I)
compared to hardware instructions, 6–1 (I)
current defined, 27–5 (III)
debugging, F–89
event counters during debug, F–90
identifying the image, 27–5 (III)
illegal operand trap, 14–15 (II-A)
implementation-specific, 6–2 (I)
initial processor context for, F–92
initialization of, 27–4 (III)
initializing environment for, F–90
instead of microcode, 6–1 (I)
instruction format, 3–13 (I)
internal software registers, F–51
kernel activates, F–3
loading, 27–4 (III)
loading at multiprocessor boot, 27–28 (III)
memory management requirements, 11–3

(II-A)
new defined, 27–5 (III)
OpenVMS, defined for, 10–1 (II-A)
OS Loader and, F–3
overview, 6–1 (I)
processor state transitions, 14–34 (II-A)
queue data type support, 10–20 (II-A)
recognized instructions, 6–4 (I)
replacing, 6–3 (I)
required, 6–2 (I)
required instructions, 6–4 (I)
running environment, 6–2 (I)
special functions function support, 6–2 (I)
swapping currently executing, F–70
switching, 16–22 (II-B), 21–21 (II-C), 27–5

(III)
switching at multiprocessor boot, 27–28 (III)
Tru64 UNIX support for, 19–9 (II-B)
unexpected exceptions in, F–29
variants at loading, 27–4 (III)
variants at multiprocessor boot, 27–28 (III)
variants at processor initialization, 27–24 (III)
version control, F–10

See also Queues, support for

PALcode available, per-CPU slot field for, 26–20
(III)

PALcode image base address (PAL_BASE) registe,
F–8

from initpal, F–48
previous, F–93
structure of, F–93

PALcode instructions
Alpha Linux privileged (list), 21–9 (II-C)
Alpha Linux unprivileged (list), 21–1 (II-C)
opcodes and format summarized, C–1
OpenVMS (list), 10–1 (II-A)
OpenVMS privileged (list), 10–81 (II-A)
OpenVMS unprivileged (list), 10–3 (II-A)
required, C–24
required privileged, 6–4 (I)
required unprivileged, 6–4 (I)
reserved, function codes for, C–24
Tru64 UNIX privileged (list), 16–10 (II-B)
Tru64 UNIX unprivileged (list), 16–1 (II-B)
VAX compatibility, 10–73 (II-A)
Windows NT Alpha privileged (list), F–38
Windows NT Alpha unprivileged (list), F–81

PALcode instructions, Alpha Linux privileged
cache flush, 21–10 (II-C)
console service, 21–11 (II-C)
performance monitoring function, 21–31 (II-C)
read machine check error summary, 21–12

(II-C)
read processor status, 21–13 (II-C)
read system value, 21–15 (II-C)
read user stack pointer, 21–14 (II-C)
return from system call, 21–16 (II-C)
return from trap, fault, or interrupt, 21–17 (II-C)
swap IPL, 21–20 (II-C)
swap PALcode image, 21–21 (II-C)
swap process context, 21–18 (II-C)
TB (translation buffer) invalidate, 21–23 (II-C)
wait for interrupt, 21–37 (II-C)
who am I, 21–24 (II-C)
write ASN, 21–25 (II-C)
write floating-point enable, 21–27 (II-C)
write interprocessor interrupt request, 21–28

(II-C)
write kernel global pointer, 21–29 (II-C)
write machine check error summary, 21–30

(II-C)
write system entry address, 21–26 (II-C)
write system page table base, 21–32 (II-C)
write system value, 21–34 (II-C)
write user stack pointer, 21–33 (II-C)
write virtual address boundary, 21–35 (II-C)
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write virtual page table pointer, 21–36 (II-C)
PALcode instructions, Alpha Linux unprivileged

breakpoint, 21–2 (II-C)
bugcheck, 21–3 (II-C)
clear floating-point enable, 21–5 (II-C)
generate trap, 21–6 (II-C)
read unique value, 21–7 (II-C)
system call, 21–4 (II-C)
write unique value, 21–8 (II-C)

PALcode instructions, OpenVMS privileged
cache flush, 10–82 (II-A)
console service, 10–83 (II-A)
load quadword physical, 10–84 (II-A)
move from processor register, 10–85 (II-A)
move to processor register, 10–86 (II-A)
store quadword physical, 10–87 (II-A)
swap PALcode image, 10–91 (II-A)
swap privileged context, 10–88 (II-A)

PALcode instructions, OpenVMS unprivileged
breakpoint, 10–4 (II-A)
bugcheck, 10–5 (II-A)
change to executive mode, 10–6 (II-A)
change to kernel mode, 10–7 (II-A)
change to supervisor mode, 10–8 (II-A)
change to user mode, 10–9 (II-A)
clear floating-point trap, 10–10 (II-A)
generate software trap, 10–11 (II-A)
insert into queue (list), 10–28 (II-A)
probe for read access, 10–12 (II-A)
probe for write access, 10–12 (II-A)
read processor status, 10–13 (II-A)
read system cycle counter, 10–16 (II-A)
read unique context, 10–79 (II-A)
return from exception or interrupt, 10–14 (II-A)
swap AST enable, 10–18 (II-A)
thread, 10–78 (II-A)
write PS software field, 10–19 (II-A)
write unique context, 10–80 (II-A)

PALcode instructions, Tru64 UNIX privileged
cache flush, 16–11 (II-B)
console service, 16–12 (II-B)
performance monitoring function, 16–32 (II-B)
read machine check error summary, 16–13

(II-B)
read processor status, 16–14 (II-B)
read system value, 16–16 (II-B)
read user stack pointer, 16–15 (II-B)
return from system call, 16–17 (II-B)
return from trap, fault, or interrupt, 16–18 (II-B)
swap IPL, 16–21 (II-B)
swap PALcode image, 16–22 (II-B)
swap process context, 16–19 (II-B)

TB (translation buffer) invalidate, 16–24 (II-B)
wait for interrupt, 16–38 (II-B)
who am I, 16–25 (II-B)
write ASN, 16–26 (II-B)
write floating-point enable, 16–28 (II-B)
write interprocessor interrupt request, 16–29

(II-B)
write kernel global pointer, 16–30 (II-B)
write machine check error summary, 16–31

(II-B)
write system entry address, 16–27 (II-B)
write system page table base, 16–33 (II-B)
write system value, 16–35 (II-B)
write user stack pointer, 16–34 (II-B)
write virtual address boundary, 16–36 (II-B)
write virtual page table pointer, 16–37 (II-B)

PALcode instructions, Tru64 UNIX unprivileged
breakpoint, 16–2 (II-B)
bugcheck, 16–3 (II-B)
clear floating-point enable, 16–5 (II-B)
generate trap, 16–6 (II-B)
read unique value, 16–7 (II-B)
system call, 16–4 (II-B)
write unique value, 16–8 (II-B), 16–9 (II-B)

PALcode instructions, Windows NT Alpha privileged
clear software interrupt request, F–40
data TB invalidate single, F–44
disable alignment fixups, F–41, F–45
disable all interrupts, F–42
drain all aborts, F–43
enable alignment fixups, F–45
enable interrupts, F–46
halt operating system, F–47
initialize PALcode data structures, F–48, F–50
initialize processor control region data, F–50
read current IRQL, F–52
read initial kernel stack pointer, F–53
read internal processor state, F–57
read machine check error summary register,

F–54
read processor (PSR) status register, F–56
read processor control region base address,

F–55
read software event counters, F–51
read thread value, F–58
restart operating system, F–60
return from exception or interrupt, F–63
return from system service call exception, F–61
set software interrupt request, F–65
swap current IRQL, F–68
swap current PALcode, F–70
swap initial kernel stack pointer, F–69
swap process context, F–71
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swap thread context, F–66
transfer to console firmware, F–59
translation buffer invalidate all, F–72
translation buffer invalidate multiple, F–73
translation buffer invalidate multiple for ASN,

F–74
translation buffer invalidate single, F–75
translation buffer invalidate single for ASN,

F–76
write kernel exception entry routine, F–77
write machine check error summary register,

F–79
write performance monitor, F–80

PALcode instructions, Windows NT Alpha
unprivileged

breakpoint trap, F–82
call kernel debugger, F–83
generate a trap, F–86
instruction memory barrier, F–87
kernel breakpoint trap, F–88
read TEB pointer, F–89
system service call, F–84

PALcode loaded (PL) flag, 27–4 (III)

multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–22 (III)

PALcode loading at bootstrap, 27–17 (III)

PALcode memory space
length of, 26–16 (III)
PALcode loading and, 27–4 (III)
physical address of, 26–17 (III)

PALcode memory valid (PMV) flag
multiprocessor booting and, 27–27 (III)
PALcode loading and, 27–4 (III)
per-CPU state contains, 26–22 (III)

PALcode revision, per-CPU slot field for, 26–17
(III)

PALcode switching and, 27–6 (III)
PALcode scratch space

length of, 26–17 (III)
PALcode loading and, 27–4 (III)
physical address of, 26–17 (III)

PALcode scratch value
HWPCB, initial and, 27–25 (III)

PALcode swapping, 10–91 (II-A)

PALcode valid (PV) flag
multiprocessor booting and, 27–27 (III)
PALcode loading and, 27–4 (III)
per-CPU state contains, 26–22 (III)

PALcode variation 2, 27–7 (III)

PALcode variation assignments, D–4

Panic exception (PANIC_ENTRY) register, F–8

Panic exceptions, F–28

kernel stack under/overflow, F–89
trap from and dispatch for, F–29

Panic stack, F–11

Panic stack pointer, F–9

PANIC_STACK_SWITCH code, F–29

Passive release interrupts, 14–19 (II-A)

entry point, 14–27 (II-A)

PASSIVE_LEVEL, IRQL table index name, F–5

PC halted, per-CPU slot fields for, 26–18 (III)

PC. See Program counter

PCB. See Process control block

PCBB. See Process control block base

PCC_CNT, 3–3 (I), 4–145 (I)

PCC_OFF, 3–3 (I), 4–145 (I)

PCE bit, machine check error summary register,
13–14 (II-A), 19–8 (II-B), 24–8 (II-C),

F–36

Per-CPU slots
block for, 26–9 (III)
fields for, 26–16 (III)
HWRPB in, 26–14 (III)
number, HWRPB field for, 26–7 (III)
PALcode switching and, 27–7 (III)
size, HWRPB field for, 26–7 (III)
state flags at multiprocessor boot, 27–27 (III)
state flags in, 26–22 (III)

Performance monitor interrupt entry point, 14–27
(II-A)

Performance monitoring, E–7, E–12, E–22

Performance monitoring enable (PME) bit
defined, 15–4 (II-B), 20–4 (II-C)
HWPCB and, 12–2 (II-A)
privileged context, 10–90 (II-A)
process context and, 18–1 (II-B), 23–1 (II-C)

Performance monitoring register (PERFMON),
13–15 (II-A)

writing, 16–32 (II-B), 21–31 (II-C)
Performance optimizations

branch prediction, A–3
code sequences, A–11
data stream, A–5
for I-streams, A–2
instruction alignment, A–2
instruction scheduling, A–5
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I-stream density, A–5
multiple instruction issue, A–3
shared data, A–6

Performance tuning
IMPLVER instruction with, 4–141 (I)

PERR (Pixel error) instruction, 4–157 (I)

PFN
distributed memory cluster descriptor field,

27–15 (III)
null memory cluster descriptor field, 27–13 (III)
static memory cluster descriptor field, 27–12

(III)
See also Page frame number

Physical address size, HWRPB field for, 26–6 (III)

Physical address space, 11–3 (II-A), 17–3 (II-B),
22–3 (II-C), F–14

described, 5–1 (I)

Physical address translation, 11–9 (II-A), 11–12

(II-A) , 17–7 (II-B), 17–11 (II-B), 22–7

(II-C), 22–11 (II-C), F–14

PHYSICAL_ADDRESS operator, 3–8 (I)

Pipelined implementations, using EXCB instruction
with, 4–138 (I)

Pixel error instruction, 4–157 (I)

PKLB (Pack longwords to bytes) instruction, 4–158
(I)

PKWB (Pack words to bytes) instruction, 4–158 (I)

PME. See Performance monitoring enable

PMI bus, uncorrected protocol errors, 14–21 (II-A)

Powerfail and recovery
multiprocessor type of, 27–33 (III)
split type of, 27–34 (III)
uniprocessor type of, 27–32 (III)
united type of, 27–33 (III)

Powerfail interrupt, 14–20 (II-A)

service routine entry point, 14–27 (II-A)
Powerfail restart (PR) flag

powerfail and recovery, 27–33 (III)

POWERFAIL RESTART, system variation field,
26–12 (III)

Powerfail, CFLUSH PALcode instruction with,
14–20 (II-A)

POWERFAIL, system variation field, 26–13 (III)

Power-up initialization, 27–3 (III)

Precise exceptions

VAX format arithmetic, 4–68 (I)

Prefetch data (FETCHx instructions), 4–139 (I)

PREFETCH instruction, 4–143 (I)

Prefetch memory data (PREFETCHx instructions),
4–143 (I)

PREFETCH_EN instruction, 4–143 (I)

PREFETCH_M instruction, 4–143 (I)

data and locks with, 5–8 (I)
lock_flag with, 4–10 (I)

PREFETCH_MEN instruction, 4–143 (I)

lock_flag with, 4–10 (I)

Pre-PALcode initialization, F–91

Primary bootstrap image
format of, 27–39 (III)
loading at cold, 27–18 (III)

Primary processor
definition of, 25–1 (III)
modes for, 27–3 (III)
multiprocessor booting and, 27–27 (III)
running at multiprocessor boot, 27–29 (III)
switching from, 27–35 (III)

Primary-eligible (PE) bit
BB_WATCH, 27–47 (III)
console switching and, 27–35 (III)
multiprocessor booting and, 27–27 (III)

PRIORITY_ENCODE operator, 3–8 (I)

PRIVATE_MCDS
null memory cluster descriptor field, 27–14 (III)

Privileged Architecture Library. See PALcode

Privileged context, 10–90 (II-A)

Privileged context block base (PCBB) register,
13–16 (II-A)

PALcode switching and, 27–8 (III)
processor initialization and, 27–24 (III)

Privileges, processor, F–6

PROBER (PALcode) instruction, 10–12 (II-A)

PROBEW (PALcode) instruction, 10–12 (II-A)

Process, 12–1 (II-A)

context switching the, 12–4 (II-A)

Process context, 18–1 (II-B), 23–1 (II-C)

saved in PCB, 18–2 (II-B), 23–2 (II-C)

Process control block (PCB), 18–2 (II-B), 23–2
(II-C)

structure, 18–2 (II-B), 23–2 (II-C)

Process control block (PCB) register, 15–3 (II-B),
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20–3 (II-C)

Process control block base (PCBB) register, 15–3

(II-B) , 20–3 (II-C)

Process control region base (PCR) register, F–8

Process unique value (unique) register, 15–4 (II-B),
20–4 (II-C)

process context and, 18–1 (II-B), 23–1 (II-C)

PROCESS_KEYCODE console terminal routine,
26–42 (III)

Processor
adding to running system, 27–30 (III)
states and modes, 27–1 (III)

Processor access modes, memory management,
11–7 (II-A)

Processor available (PA) flag
multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–23 (III)

Processor base (PRBR) register, 13–17 (II-A)

Processor communication, 5–15 (I)

Processor control block (PRCB)
initialization, F–92

Processor control region, F–9

interrupt tables with, F–9
Processor control region base (PCR) register

initialization, F–92
initializing, F–48
returning contents of, F–55

Processor correctable errors, F–35

reporting, F–36

Processor cycle counter (PCC) register, 3–3 (I)

Alpha Linux, 20–3 (II-C)
HWPCB, initial and, 27–25 (III)
OpenVMS, 9–2 (II-A)
RPCC instruction with, 4–145 (I)
system cycle counter with, 10–16 (II-A)
Tru64 UNIX, 15–3 (II-B)
See also Charged process cycles

Processor data areas, F–9

Processor hardware interrupt, service routine entry
points, 14–27 (II-A)

Processor initialization, 27–23 (III)

Processor issue constraints, 5–13 (I)

Processor issue sequence, 5–12 (I)

Processor modes, 11–1 (II-A), 27–3 (III), F–5

AST pending state, 13–7 (II-A)
change to executive, 10–6 (II-A)

change to kernel, 10–7 (II-A)
change to supervisor, 10–8 (II-A)
change to user, 10–9 (II-A)
controlling memory access, 11–7 (II-A)
enabling reads, 11–4 (II-A)
enabling writes, 11–4 (II-A)
page access with, 11–2 (II-A)
PALcode state transitions, 14–34 (II-A)

Processor number, reading, 13–31 (II-A)

Processor present (PP) flag
multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–22 (III)

Processor stacks, 14–7 (II-A)

Processor state transitions, 14–34 (II-A)

Processor state, defined, 14–4 (II-A)

Processor state, internal, initialized, F–91

Processor status (PS) register
bit meanings for, 19–2 (II-B), 24–2 (II-C)
bit summary, 14–5 (II-A)
bootstrap values in, 14–6 (II-A)
current, 14–5 (II-A)
defined, 9–1 (II-A), 15–4 (II-B), 20–4 (II-C)
explicit reading/writing of, 14–5 (II-A)
PALcode switching and, 27–8 (III)
process context and, 18–1 (II-B), 23–1 (II-C)
processor initialization and, 27–24 (III)
processor state and, 14–4 (II-A)
saved on stack, 14–5 (II-A)
saved on stack frame, 14–7 (II-A)
WR_PS_SW instruction, 10–19 (II-A)

Processor status (PSR) register, F–5, F–8

returning contents of, F–56

Processor type assignments, D–1

Processor uncorrectable errors, F–35

Processor unique value, 27–8 (III)

Processor unique value (unique) register
HWPCB, initial and, 27–25 (III)
PALcode switching and, 27–8 (III)

Processor, per-CPU slot field for
halt, 26–18 (III)
revision, 26–18 (III)
serial number, 26–18 (III)
software compatibility, 26–20 (III)
type, 26–17 (III)
variation, 26–18 (III)

Processors, switching primary, 26–63 (III)

Program counter (PC) register, 3–1 (I)

alignment, 14–6 (II-A)
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arithmetic traps and, 14–13 (II-A), 19–1 (II-B),
24–1 (II-C)

current PC defined, 14–2 (II-A)
defined, 15–3 (II-B), 20–3 (II-C)
EXCB instruction and, 4–138 (I)
explicit reading of, 14–6 (II-A)
faults and, 14–8 (II-A)
interrupts and, 14–2 (II-A)
machine checks and, 14–21 (II-A)
PALcode switching and, 27–8 (III)
process context and, 18–1 (II-B), 23–1 (II-C)
processor state and, 14–4 (II-A)
saved on stack frame, 14–7 (II-A)
synchronous traps and, 14–14 (II-A)

Program I/O mode, 27–3 (III)

Protection code, 11–7 (II-A), 17–7 (II-B), 22–7
(II-C)

Protection modes, 14–7 (II-A)

PS. See Processor status

PS<SP_ALIGN> field, 10–13 (II-A)

Pseudo-ops, A–16

PSR. See Processor status register

PSWITCH console routine, 26–63 (III), 27–36 (III)

PTBR. See Page table base

PTE. See Page table entry

PUTS console terminal routine, 26–36 (III)

Q

Quadword data type, 2–2 (I)

alignment of, 2–3 (I), 2–11 (I)
atomic access of, 5–2 (I)
integer floating-point format, 2–11 (I)
loading in physical memory, 10–84 (II-A)
storing to physical memory, 10–87 (II-A)
T_floating with, 2–11 (I)

Queues, support for
absolute longword, 10–20 (II-A)
absolute quadword, 10–23 (II-A)
PALcode instructions (list), 10–28 (II-A)
self-relative longword, 10–20 (II-A)
self-relative quadword, 10–24 (II-A)

R
R31

arithmetic traps and, 14–11 (II-A)
destination register, 3–1 (I)
restrictions, 3–1 (I)

RAZ (read as zero), 1–8 (I)

RC (read and clear) instruction, 4–153 (I)

RD_PS (PALcode) instruction, 10–13 (II-A)

rdcounters (PALcode) instruction, F–51

rdirql (PALcode) instruction, F–52

rdksp (PALcode) instruction, F–53

reads IKSP register, F–7
reads kernel stack, F–10

rdmces (PALcode) instruction, 16–13 (II-B), 21–12

(II-C), F–54

rdpcr (PALcode) instruction, F–55

reads PCR register, F–8

rdps (PALcode) instruction, 16–14 (II-B), 21–13
(II-C)

rdpsr (PALcode) instruction, F–56

rdstate (PALcode) instruction, F–57

rdteb (PALcode) instruction, F–89

reads TEB register, F–9

rdthread (PALcode) instruction, F–58

reads THREAD register, F–9
RDUNIQUE (PALcode) instruction

required recognition of, 6–4 (I)

rdunique (PALcode) instruction, 16–7 (II-B), 21–7
(II-C)

rdusp (PALcode) instruction, 16–15 (II-B), 21–14
(II-C)

rdval (PALcode) instruction, 16–16 (II-B), 21–15
(II-C)

READ device routine, 26–53 (III)

Read/write ordering (multiprocessor), 5–10 (I)

determining requirements, 5–10 (I)
hardware implications for, 5–28 (I)
memory location defined, 5–11 (I)

READ_UNQ (PALcode) instruction, 10–79 (II-A)

Reason-for-halt code, power-up initialization, 27–4
(III)

reboot (PALcode) instruction, F–59

operation of, F–92
tasks and sequence for, F–94

Reduced page table (RPT) mode, 22–10 (II-C)

ACV fault with, 17–14 (II-B)
physical access for PTE, 11–12 (II-A), 17–10

(II-B), 22–10 (II-C)
requirements for, 11–11 (II-A), 17–10 (II-B),
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22–10 (II-C)
virtual access for PTE, 11–13 (II-A), 17–12

(II-B) , 22–12 (II-C)

Reduced page table mode, 11–11 (II-A), 17–10
(II-B)

Regions in physical address space, 5–1 (I)

Regions, bootstrap address space, 27–17 (III)

Register mask, floating-point and integer, F–24

Register write mask, with arithmetic traps, 14–13
(II-A)

Registers, 3–1 (I)

Alpha Linux usage, 20–1 (II-C)
floating-point, 3–2 (I)
integer, 3–1 (I)
IPRs as, 13–1 (II-A)
lock, 3–2 (I)
memory prefetch, 3–3 (I)
OpenVMS usage of, 9–1 (II-A)
optional, 3–3 (I)
processor cycle counter, 3–3 (I)
program counter (PC), 3–1 (I)
Tru64 UNIX usage, 15–1 (II-B)
value when unused, 3–9 (I)
VAX compatibility, 3–3 (I)
Windows NT Alpha usage of, F–4
See also specific registers

Register-to-register move, A–15

REI (PALcode) instruction, 10–14 (II-A)

arithmetic traps, 14–9 (II-A)
faults, 14–8 (II-A)
interrupt arbitration, 14–33 (II-A)
interrupts, 14–2 (II-A)
machine checks, 14–22 (II-A)
synchronous traps, 14–14 (II-A)

Relational Operators, 3–8 (I)

Remove from queue PALcode instructions
longword, 10–69 (II-A)
longword at head interlocked, 10–49 (II-A)
longword at head interlocked resident, 10–52

(II-A)
longword at tail interlocked, 10–59 (II-A)
longword at tail interlocked resident, 10–62

(II-A)
quadword, 10–71 (II-A)
quadword at head interlocked, 10–54 (II-A)
quadword at head interlocked resident, 10–57

(II-A)
quadword at tail interlocked, 10–64 (II-A)
quadword at tail interlocked resident, 10–67

(II-A)

REMQHIL (PALcode) instruction, 10–49 (II-A)

REMQHILR (PALcode) instruction, 10–52 (II-A)

REMQHIQ (PALcode) instruction, 10–54 (II-A)

REMQHIQR (PALcode) instruction, 10–57 (II-A)

REMQTIL (PALcode) instruction, 10–59 (II-A)

REMQTILR (PALcode) instruction, 10–62 (II-A)

REMQTIQ (PALcode) instruction, 10–64 (II-A)

REMQTIQR (PALcode) instruction, 10–67 (II-A)

REMQUEL (PALcode) instruction, 10–69 (II-A)

REMQUEL/D (PALcode) instruction, 10–69 (II-A)

REMQUEQ (PALcode) instruction, 10–71 (II-A)

REMQUEQ/D (PALcode) instruction, 10–71 (II-A)

Representable result, 4–65 (I)

Reserved instructions, opcodes for, C–25

Reserved operand, 4–65 (I)

RESET_ENV variable routine, 26–59 (III)

RESET_TERM console terminal routine, 26–38
(III)

restart (PALcode) instruction, F–60

tasks and sequence for, F–94
Restart block

with catastrophic errors, F–37

Restart block pointer, F–9, F–92

Restart execution address (RESTART_ADDRESS)
register, F–8

PALcode exit and, F–37

RESTART RTN VA, HWRPB field for, 26–9 (III)

RESTART value, HWRPB field for, 26–9 (III)

Restart-capable (RC) flag
failed bootstrap and, 27–21 (III)
multiprocessor booting and, 27–27 (III)
per-CPU state contains, 26–23 (III)
processor initialization and, 27–23 (III)
secondary console and, 27–30 (III)
state transitions and, 27–1 (III)

RESTORE_TERM console routine, 27–37 (III),
27–39 (III)

RESTORE_TERM RTN VA, HWRPB field for,
26–8 (III)

RESTORE_TERM value, HWRPB field for, 26–9
(III)

Result latency, A–5
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RET instruction, 4–23 (I)

retsys (PALcode) instruction, 16–17 (II-B), 21–16

(II-C), F–61

PS with, 19–2 (II-B), 24–2 (II-C)
use of, F–21

Revision, HWRPB field for, 26–6 (III)

rfe (PALcode) instruction, F–63

compared to retsys, F–61
use of, F–21

RIGHT_SHIFT(x,y) operator, 3–8 (I)

ROM boot block structure, 27–44 (III)

ROM bootstrapping, 27–44 (III)

Rounding modes. See Floating-point rounding modes

RPCC (read processor cycle counter) instruction,
4–145 (I)

RSCC instruction with, 10–17 (II-A)
RPT. See Reduced page table mode

RS (read and set) instruction, 4–153 (I)

RSCC (PALcode) instruction, 10–16 (II-A)

RPCC instruction with, 10–17 (II-A)

rti (PALcode) instruction, 16–18 (II-B), 21–17
(II-C)

exceptions with, 19–1 (II-B), 24–1 (II-C)
PS with, 19–2 (II-B), 24–2 (II-C)

RX BUFFER, inter-console communications buffer
field, 26–77 (III)

RX/TX extension block, 26–12 (III), 26–76 (III)

offset in HWRPB, 26–10 (III)
RX/TX EXTENT

mapping, 26–75 (III)
system variation field, 26–12 (III)

RXLEN, inter-console communications buffer field,
26–77 (III)

RXRDY flag, 26–75 (III)

mapping, 26–76 (III)
multiprocessor booting and, 27–27 (III)

RXTX buffer area, 26–77 (III)

per-CPU slot field for, 26–19 (III)

S
/S qualifier

arithmetic trap completion, 4–73 (I)
compare instructions and, B–2
floating-point control quadword and, B–4
FPCR as control for, B–2

NaNs and invalid ops with, B–2
software completion (SWC) and, 14–12 (II-A),

19–6 (II-B), 24–6 (II-C)
underflow and denorm numbers with, B–2
VAX trapping mode, 4–70 (I)

S_floating data type
alignment of, 2–8 (I)
compared to F_floating, 2–7 (I)
exceptions, 2–7 (I)
mapping, 2–7 (I)
MAX/MIN , 4–66 (I)
NaN with T_floating convert, 4–89 (I)
operations, 4–63 (I)
unaligned data and, 14–26 (II-A)

S4ADDL instruction, 4–27 (I)

S4ADDQ instruction, 4–29 (I)

S4SUBL instruction, 4–39 (I)

S4SUBQ instruction, 4–41 (I)

S8ADDL instruction, 4–27 (I)

S8ADDQ instruction, 4–29 (I)

S8SUBL instruction, 4–39 (I)

S8SUBQ instruction, 4–41 (I)

SAVE_ENV variable routine, 26–61 (III)

SAVE_TERM console routine, 27–37 (III), 27–38
(III)

SAVE_TERM RTN VA, HWRPB field for, 26–8
(III)

SAVE_TERM value, HWRPB field for, 26–8 (III)

SBZ (should be zero), 1–8 (I)

SCC. See System cycle counter

SCE bit, machine check error summary register,
13–14 (II-A), 19–8 (II-B), 24–8 (II-C),

F–36

Secondary processors
definition of, 25–1 (III)
modes for, 27–3 (III)
multiprocessor booting and, 27–28 (III)

Security holes, 1–6 (I)

UNPREDICTABLE results and, 1–8 (I)
Seg0

mapping of, 17–1 (II-B), 22–1 (II-C)
virtual format, 17–2 (II-B)

Seg1
mapping of, 17–1 (II-B), 22–1 (II-C)
virtual format, 17–2 (II-B)
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Self-relative longword queue, 10–20 (II-A)

Self-relative quadword queue, 10–24 (II-A)

Sequential read/write, A–9

Serialization, MB instruction with, 4–142 (I)

SET_ENV variable routine, 26–58 (III)

SET_TERM_CTL terminal console routine, 26–41
(III)

SET_TERM_INT console terminal routine, 26–39
(III)

SEXT(x) operator, 3–8 (I)

Shared data (multiprocessor), A–6

changed vs. updated datum, 5–6 (I)
Shared data structures

atomic update, 5–7 (I)
memory barrier (MB) instruction with, 5–9 (I)
ordering considerations, 5–9 (I)

Shared memory
accessing, 5–12 (I)
defined, 5–11 (I)

SHARED_MCDS
null memory cluster descriptor field, 27–14 (III)

Shift arithmetic instructions, 4–47 (I)

Sign extend instructions, 4–61 (I)

Single-precision floating-point, 4–63 (I)

SLL instruction, 4–46 (I)

Software (SW) field, in PS register, 14–6 (II-A)

Software completion bit, exception summary register,
14–13 (II-A), 19–6 (II-B), 24–6 (II-C),

F–25

Software considerations, A–1
See also Performance optimizations

Software exceptions, F–26

Software interrupt request (SIRR) register, F–9

clearing, F–40
described, 13–20 (II-A)
format for, F–33
interrupt arbitration, 14–32 (II-A), 14–33 (II-A)
protocol for, 14–18 (II-A)
See also Software interrupts

Software interrupt summary (SISR) register
described, 13–21 (II-A)
processor initialization and, 27–24 (III)
protocol for, 14–18 (II-A)

Software interrupts, 14–17 (II-A)

asynchronous system traps (AST), 14–18 (II-A)

protocol between summary and request, 14–18
(II-A)

recording pending state of, 13–21 (II-A)
request (SIRR) register, 14–18 (II-A)
requesting, 13–20 (II-A), F–33
requests after exception handling, F–61, F–63
service routine entry points, 14–27 (II-A)
setting, F–65
summary (SISR) register, 14–17 (II-A)
supported levels of, 13–20 (II-A)

Software page coloring caches, 26–21 (III)

Software traps, generating, 10–11 (II-A)

SP. See Stack pointer

SQRTF instruction, 4–128 (I)

SQRTG instruction, 4–128 (I)

SQRTS instruction, 4–129 (I)

SQRTT instruction, 4–129 (I)

Square root instructions
IEEE, 4–129 (I)
VAX , 4–128 (I)

SRA instruction, 4–47 (I)

SRL instruction, 4–46 (I)

ssir (PALcode) instruction, F–65

sets software interrupts, F–34

Stack alignment, 14–29 (II-A)

Stack alignment (SP_ALIGN), field in saved PS,
14–5 (II-A)

Stack frames, 14–7 (II-A), 19–3 (II-B), 24–3 (II-C)

Stack pointer (SP) register
defined, 9–1 (II-A), 15–4 (II-B), 20–4 (II-C)
linkage for, 15–1 (II-B), 20–1 (II-C)

State flags, per-CPU slot field for, 26–16 (III)

Static memory cluster descriptor, 27–10 (III), 27–11
(III)

STATUS_ALPHA_ARITHMETIC code, F–24

STATUS_ALPHA_GENTRAP code, F–26

STATUS_BREAKPOINT code, F–27

STATUS_DATATYPE_MISALIGNMENT code,
F–25

STATUS_ILLEGAL_INSTRUCTION code, F–25

STATUS_INVALID_ADDRESS code, F–26

STB instruction, 4–16 (I)

big-endian support with, 2–13 (I)

STF instruction, 4–95 (I)
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big-endian support with, 2–13 (I)
unaligned data and, 14–26 (II-A)

STG instruction, 4–96 (I)

unaligned data and, 14–26 (II-A)

STL instruction, 4–16 (I)

big-endian support with, 2–13 (I)
unaligned data and, 14–26 (II-A)

STL_C instruction, 4–13 (I)

big-endian support with, 2–13 (I)
guaranteed ordering with LDL_L, 4–15 (I)
LDx_L instruction and, 4–13 (I)
processor lock register/flag and, 4–14 (I)
unaligned data and, 14–26 (II-A)

Storage, defined, 5–15 (I)

Store instructions
emulation of, 4–2 (I)
FETCH instruction, 4–139 (I)
multiprocessor environment, 5–6 (I)
serialization, 4–142 (I)
store byte, 4–16 (I)
store longword, 4–16 (I)
store longword conditional, 4–13 (I)
store quadword, 4–16 (I)
store quadword conditional, 4–13 (I)
store word, 4–16 (I)
STQ_U, 4–18 (I)
unaligned data and, 14–26 (II-A)
See also Floating-point store instructions

Store memory integer instructions, 4–4 (I)

STORE_CONDITIONAL operator, 3–8 (I)

Store-conditional, defined, 5–16 (I)

STQ instruction, 4–16 (I)

unaligned data and, 14–26 (II-A)

STQ_C instruction, 4–13 (I)

guaranteed ordering with LDQ_L, 4–15 (I)
LDx_L instruction and, 4–14 (I)
processor lock register/flag and, 4–14 (I)
unaligned data and, 14–26 (II-A)

STQ_U instruction, 4–18 (I)

STQP (PALcode) instruction, 10–87 (II-A)

STS instruction, 4–97 (I)

big-endian support with, 2–13 (I)
FPCR and, 4–84 (I)
unaligned data and, 14–26 (II-A)

STT instruction, 4–98 (I)

unaligned data and, 14–26 (II-A)

STW instruction, 4–16 (I)

big-endian support with, 2–13 (I)
/SU qualifier

floating-point control quadword and, B–4
FPCR as control for, B–2
IEEE trapping mode, 4–72 (I)
VAX trapping mode, 4–71 (I)

SUBF instruction, 4–130 (I)

SUBG instruction, 4–130 (I)

SUBL instruction, 4–38 (I)

SUBQ instruction, 4–40 (I)

SUBS instruction, 4–131 (I)

SUBT instruction, 4–131 (I)

Subtract instructions
subtract longword, 4–38 (I)
subtract quadword, 4–40 (I)
subtract scaled longword, 4–39 (I)
subtract scaled quadword, 4–41 (I)
See also Floating-point operate

/SUI qualifier
floating-point control quadword and, B–4
FPCR as control for, B–2
IEEE trapping mode, 4–73 (I)

SUM bit. See Summary bit

Summary bit, in FPCR, 4–81 (I)

Superpage address space, F–13

Supervisor read enable (SRE), bit in PTE, 11–4
(II-A)

Supervisor stack pointer (SSP) register, 13–22 (II-A)

HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
internal processor register, 13–1 (II-A)

Supervisor write enable (SWE), bit in PTE, 11–4
(II-A)

/SV qualifier
floating-point control quadword and, B–4
FPCR as control for, B–2
IEEE trapping mode, 4–72 (I)
VAX trapping mode, 4–71 (I)

/SVI qualifier
floating-point control quadword and, B–4
FPCR as control for, B–2
IEEE trapping mode, 4–73 (I)

SWASTEN (PALcode) instruction, 10–18 (II-A)

ASTEN register and, 13–6 (II-A)
interrupt arbitration, 14–34 (II-A)

SWC bit
exception summary parameter, 14–12 (II-A)
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exception summary register, 19–2 (II-B), 19–6
(II-B) , 24–2 (II-C), 24–6 (II-C), F–25

SWPCTX (PALcode) instruction, 10–88 (II-A)

ASTSR register and, 13–8 (II-A)

swpctx (PALcode) instruction, 16–19 (II-B), 21–18

(II-C), F–66

ASNs with, 17–12 (II-B), 22–12 (II-C)
PCB with, 18–2 (II-B), 23–2 (II-C)
PDR register with, F–8
writes IKSP register, F–7
writes TEB register, F–9
writes THREAD register, F–9

swpipl (PALcode) instruction, 16–21 (II-B), 21–20
(II-C)

PS with, 19–2 (II-B), 24–2 (II-C)

swpirql (PALcode) instruction, F–68

as synchronization function, F–33

swpksp (PALcode) instruction, F–69

reads kernel stack, F–10
writes IKSP register, F–7

SWPPAL (PALcode) instruction, 10–91 (II-A)

PALcode switching and, 27–6 (III)
required recognition of, 6–4 (I)

swppal (PALcode) instruction, 16–22 (II-B), 21–21

(II-C), F–70, F–95

firmware contributes, F–2
required recognition of, 6–4 (I)

swpprocess (PALcode) instruction, F–71

writes PDR register, F–8

Synchronization levels, interrupt, F–31

Synchronous traps, 14–9 (II-A), 19–2 (II-B), 24–2
(II-C)

data alignment, 14–14 (II-A)
defined, 14–9 (II-A)
program counter (PC) value, 14–14 (II-A)
REI instruction with, 14–14 (II-A)

System call entry (entSys) register, 15–3 (II-B),
19–4 (II-B), 19–9 (II-B), 20–3 (II-C), 24–4

(II-C), 24–9 (II-C)

System control block (SCB)
arithmetic trap entry points, 14–25 (II-A)
fault entry points, 14–25 (II-A)
finding PFN, 13–19 (II-A)
memory management faults and, 11–16 (II-A)
saved on stack frame, 14–7 (II-A)
structure of, 14–24 (II-A)

System control block base (SCBB) register, 13–19
(II-A)

specifies PFN, 14–24 (II-A)

System correctable errors, F–35

reporting, F–36

System crash, requesting, 27–35 (III)

System cycle counter (SCC) register
processor initialization and, 27–24 (III)
reading, 10–16 (II-A)

System entry addresses, 19–4 (II-B), 24–4 (II-C)

System initialization, 27–3 (III)

System page table base (SYSPTBR) register, 13–23
(II-A)

PTBR and, 11–11 (II-A)
using, 11–11 (II-A)

System page table base (SYSPTR) register
reduced page table mode with, 11–12 (II-A),

17–11 (II-B), 22–11 (II-C)

System restarts, 27–31 (III)

error halt and recovery, 27–34 (III)
forcing console I/O mode, 27–39 (III)
powerfail and recovery (multiprocessor), 27–33

(III)
powerfail and recovery (split), 27–34 (III)
powerfail and recovery (uniprocessor), 27–32

(III)
powerfail and recovery (united), 27–33 (III)
primary switching, 27–35 (III)
requesting a crash, 27–35 (III)
RESTORE_TERM routine, 27–37 (III), 27–39

(III)
restoring terminal state, 27–37 (III)
SAVE_TERM routine, 27–37 (III), 27–38 (III)
saving terminal state, 27–37 (III)

System serial number, HWRPB field for, 26–6 (III)

System service call exceptions, F–23

returning from, F–61
System service exception address

(SYSCALL_ENTRY) register, F–9

System type specific (STS), system variation field,
26–12 (III)

System uncorrectable errors, F–35

System value (sysvalue) register, 15–4 (II-B), 20–4
(II-C)

PALcode switching and, 27–8 (III)
System variation field (HWRPB)

bit summary, 26–12 (III)
System, HWRPB field for

revision code, 26–7 (III), 26–11 (III)
serial number, 26–11 (III)
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type, 26–6 (III), 26–12 (III)
variation, 26–7 (III), 26–12 (III)

Sysvalue. See System value

T
T_floating data type

alignment of, 2–9 (I)
exceptions, 2–8 (I)
format, 2–8 (I)
MAX/MIN , 4–66 (I)
NaN with S_floating convert, 4–89 (I)
unaligned data and, 14–26 (II-A)

Tape. See Magtape

TB hint offset, HWRPB field for, 26–7 (III)

TB miss MB (NOMB), PTE bit, 11–5 (II-A), 17–4

(II-B) , 22–4 (II-C)

TB. See Translation buffer

TBB. See Translation buffer hint block

tbi (PALcode) instruction, 16–24 (II-B), 21–23
(II-C)

ASN with, 16–24 (II-B)
TBs with, 17–12 (II-B), 22–12 (II-C)

tbia (PALcode) instruction, F–17, F–72

tbim (PALcode) instruction, F–17, F–18, F–73

tbimasn (PALcode) instruction, F–18, F–74

tbis (PALcode) instruction, F–18, F–75

tbisasn (PALcode) instruction, F–18, F–76

Temporary PALcode registers, F–37

Terminal console
setting controls, 26–41 (III)

Terminals
setting interrupts for, 26–39 (III)

TEST(x,cond) operator, 3–9 (I)

TESTED_PAGES
distributed memory cluster descriptor field,

27–15 (III)
static memory cluster descriptor field, 27–12

(III)

Thread environment block base (TEB) register, F–9

context switching and, F–12, F–67
initializing, F–48
returning contents of, F–89

Thread unique value (THREAD) register, F–9

context switching and, F–12, F–67
initializing, F–48
returning contents of, F–58

Timeliness of location access, 5–17 (I)

Timer support, HAL interface fpr, F–3

Timing considerations, atomic sequences, A–17

Translation
physical, 17–7 (II-B), 22–7 (II-C)
virtual, 17–9 (II-B), 22–9 (II-C)

Translation buffer (TB), 17–12 (II-B), 22–12 (II-C)

ASNs with, 11–13 (II-A), 13–26 (II-A), 16–24
(II-B), 21–23 (II-C)

context switching and, F–12
fault on execute, 14–11 (II-A)
fault on read, 14–10 (II-A)
fault on write, 14–11 (II-A)
invalid PTEs and, 11–14 (II-A)
invalidate all, F–72
invalidate multiple, F–73
invalidate single, F–75
invalidate single data, F–44
management of, F–17
recursion in, F–18

Translation buffer check (TBCHK) register
described, 13–24 (II-A)
translation buffer and, 11–14 (II-A)

Translation buffer hint block (TBB), 26–9 (III),
26–13 (III)

Translation buffer invalidate all (TBIA) register
described, 13–25 (II-A)
translation buffer and, 11–14 (II-A)

Translation buffer invalidate all process (TBIAP)
register

described, 13–26 (II-A)
translation buffer and, 11–14 (II-A)

Translation buffer invalidate single (TBIS) register,
13–27 (II-A)

Translation buffer miss memory barrier (NOMB)
bit in PTE, 11–5 (II-A), 17–4 (II-B), 22–4

(II-C)

Translation not valid (TNV) fault, 11–16 (II-A),
14–10 (II-A), 17–13 (II-B), 22–13 (II-C),
F–22

service routine entry point, 14–25 (II-A)

Trap disable bits, 4–79 (I)

denormal operand exception, 4–82 (I)
division by zero, 4–82 (I)
DZED with DZE arithmetic trap, 4–78 (I)
DZED with INV arithmetic trap, 4–77 (I)
IEEE compliance and, B–3
inexact result, 4–81 (I)
invalid operation, 4–82 (I)
Index–34



overflow disable, 4–82 (I)
unimplemented, 4–79 (I)

Trap enable bits, B–4

Trap frames and offsets, F–21

Trap handler, with non-finite arithmetic operands,
4–74 (I)

Trap handling, IEEE floating-point, B–6

Trap modes
floating-point, 4–70 (I)

Trap shadow, 19–2 (II-B), 24–2 (II-C)

defined for floating-point, 4–65 (I)
programming implications for, 5–29 (I)
rules for, 4–74 (I)

TRAP_CAUSE_UNKNOWN code, F–29

TRAPB (trap barrier) instruction, A–15

described, 4–147 (I)
FPCR and, 4–84 (I)

Trapping modes, floating-point, 4–70 (I)

Traps. See Arithmetic traps

TrFir trap frame offset
from ExceptionPC address, F–23

Trigger instruction, 19–2 (II-B), 24–2 (II-C)

Tru64 UNIX PALcode, instruction summary, C–19

True result, 4–65 (I)

True zero, 4–66 (I)

TTY_DEV environment variable, 26–28 (III)

CTB and, 26–73 (III)
TX BUFFER, inter-console communications buffer

field, 26–77 (III)

TXLEN, inter-console communications buffer field,
26–77 (III)

TXRDY flag, 26–75 (III)

mapping, 26–76 (III)
multiprocessor booting and, 27–27 (III)

U
/U qualifier

IEEE trapping mode, 4–72 (I)
VAX trapping mode, 4–70 (I)

UMULH instruction, 4–37 (I)

MULQ and, 4–36 (I)

Unaligned access exceptions, F–25

Unaligned access fault
system entry for, 19–4 (II-B), 24–4 (II-C)

UNALIGNED data objects, 1–8 (I)

Unaligned fault entry (entUna) register, 15–3 (II-B),
19–9 (II-B), 20–3 (II-C), 24–9 (II-C)

Unconditional long jump, 4–24 (I)

UNDEFINED operations, 1–7 (I)

Underflow bit, exception summary register, F–25

Underflow enable (UNFE)
FP_C quadword bit, B–5

Underflow status (UNFS)
FP_C quadword bit, B–5

Underflow trap, 14–13 (II-A), 19–5 (II-B), 24–5

(II-C), F–25

UNF bit
exception summary parameter, 14–12 (II-A)
exception summary register, 19–5 (II-B), 24–5

(II-C), F–25
Unique

process unique value, 15–4 (II-B), 20–4 (II-C)
See also Processor unique value

UNOP code form, A–13

UNORDERED memory references, 5–10 (I)

Unpack to bytes instructions, 4–159 (I)

UNPKBL (Unpack bytes to longwords) instruction,
4–159 (I)

UNPKBW (Unpack bytes to words) instruction,
4–159 (I)

UNPREDICTABLE results, 1–7 (I)

Updated datum, 5–6 (I)

USAGE
distributed memory cluster descriptor field,

27–16 (III)
static memory cluster descriptor field, 27–12

(III)
User read enable (URE)

bit in PTE, 11–4 (II-A), 17–4 (II-B), 22–4
(II-C)

User stack, F–11

User stack pointer (USP) register, 13–28 (II-A)

defined, 15–4 (II-B), 20–4 (II-C)
HWPCB and, 12–2 (II-A)
HWPCB, initial and, 27–25 (III)
internal processor register, 13–1 (II-A)
process context and, 18–1 (II-B), 23–1 (II-C)

User write enable (UWE)
bit in PTE, 11–4 (II-A), 17–4 (II-B), 22–4

(II-C)
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USER_BREAKPOINT breakpoint type, F–27

USP. See User stack pointer

V
/V qualifier

IEEE trapping mode, 4–72 (I)
VAX trapping mode, 4–70 (I)

Valid (V)
bit in PTE, 11–6 (II-A), 17–6 (II-B), 22–6

(II-C), F–17

Validation, HWRPB field for, 26–6 (III)

vaSize, 15–2 (II-B), 20–2 (II-C)

VAX compatibility instructions, restrictions for,
4–152 (I)

VAX compatibility register, 3–3 (I)

VAX floating-point
computational models, 4–68 (I)
D_floating, 2–5 (I)
F_floating, 2–3 (I)
G_floating, 2–4 (I)
high-performance arithmetic, 4–68 (I)
reserved operand, 4–65 (I)
See also Floating-point instructions

VAX floating-point instructions
add, 4–109 (I)
compare, 4–111 (I)
convert from integer, 4–114 (I)
convert to integer, 4–113 (I)
convert VAX floating format, 4–115 (I)
divide, 4–120 (I)
function codes for, C–9
function field format, 4–87 (I)
integer move, from, 4–124 (I)
multiply, 4–126 (I)
operate, 4–101 (I)
square root instructions, 4–128 (I)
subtract, 4–130 (I)

VAX rounding modes, 4–67 (I)

VAX trapping modes, 4–70 (I)

/S, 4–70 (I)
/SU, 4–71 (I)
/SV, 4–71 (I)
/U, 4–70 (I)
/V, 4–70 (I)
default mode, 4–70 (I)
precise, 4–70 (I)
summary, 4–71 (I)

Vector instructions

byte and word maximum, 4–155 (I)
byte and word minimum, 4–155 (I)

Virtual address boundary (VIRBND) register, 13–29
(II-A)

PALcode switching and, 27–8 (III)
reduced page table mode with, 11–12 (II-A),

17–11 (II-B), 22–11 (II-C)
support for, 26–12 (III)
using, 11–11 (II-A)

Virtual address format, 11–2 (II-A)

Virtual address space, 11–1 (II-A), 11–2 (II-A),
17–1 (II-B), 22–1 (II-C), F–13

minimum and maximum, 11–2 (II-A)
page size with, 11–2 (II-A)

Virtual address translation, 11–10 (II-A), 11–13

(II-A) , 17–9 (II-B), 17–12 (II-B), 22–9

(II-C), 22–12 (II-C), E–6, F–14

Virtual addresses
format of, F–14
non-canonical at fault, F–26
physical view of, F–15
virtual view of, F–14

Virtual cache blocks
invalidating all, F–72
invalidating multiple, F–73
invalidating single, F–75

Virtual D-cache, 5–4 (I)

Virtual format, 22–2 (II-C)

Virtual I-cache, 5–4 (I)

maintaining coherency of, 5–5 (I)

Virtual machine monitor (VMM), bit in PS register,
14–5 (II-A)

Virtual memory regions, initial, 27–19 (III)

Virtual page table base (VPTB)
HWRPB field for, 26–7 (III)
PALcode switching and, 27–7 (III)

Virtual page table base (VPTB) register, 13–30
(II-A)

Virtual page table pointer (VPTPTR), 15–5 (II-B),
20–5 (II-C)

Visibility, defined, 5–14 (I)

VPTB. See Virtual page table base

VPTPTR. See Virtual page table pointer
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W

Waivers, E–1

Warm bootstrapping, 27–25 (III)

Watchpoints
fault on read, 14–10 (II-A)
fault on write, 14–11 (II-A)

WH64 instruction, 4–148 (I), A–11

lock_flag with, 4–10 (I)

WH64EN instruction, 4–148 (I)

lock_flag with, 4–10 (I)

whami (PALcode) instruction, 16–25 (II-B), 21–24
(II-C)

whami, current processor number, 15–5 (II-B), 20–5
(II-C)

Who-Am-I (WHAMI) register, 13–31 (II-A)

PALcode switching and, 27–8 (III)
processor initialization and, 27–24 (III)

WMB (Write memory barrier) instruction, 4–150 (I)

atomic operations with, 5–8 (I)
MB compared to, 4–151 (I)
shared data structures and, 5–10 (I)

Word data type, 2–1 (I)

atomic access of, 5–3 (I)

WR_PS_SW (PALcode) instruction, 10–19 (II-A)

wrasn (PALcode) instruction, 16–26 (II-B), 21–25
(II-C)

wrent (PALcode) instruction, 16–27 (II-B), 21–26
(II-C)

wrentry (PALcode) instruction, F–77

initialization and, F–92
writes GENERAL_ENTRY register, F–7
writes INTERRUPT_ENTRY register, F–7
writes MEM_MGMT_ENTRY register, F–8
writes PANIC_ENTRY register, F–8
writes SYSCALL_ENTRY register, F–9

wrfen (PALcode) instruction, 16–28 (II-B), 21–27
(II-C)

wripir (PALcode) instruction, 16–29 (II-B), 21–28
(II-C)

Write buffers, requirements for, 5–4 (I)

WRITE device routine, 26–55 (III)

characteristics determined by OPEN, 26–56
(III)

WRITE_UNQ (PALcode) instruction, 10–80 (II-A)

Write-back caches, requirements for, 5–4 (I)

wrkgp (PALcode) instruction, 16–30 (II-B), 21–29
(II-C)

wrmces (PALcode) instruction, 16–31 (II-B), 21–30

(II-C), F–79

wrperfmon (PALcode) instruction, 16–32 (II-B),
21–31 (II-C), F–80

wrsysptb (PALcode) instruction, 16–33 (II-B),
21–32 (II-C)

wrunique (PALcode) instruction, 16–8 (II-B), 16–9

(II-B), 21–8 (II-C)

required recognition of, 6–4 (I)

wrusp (PALcode) instruction, 16–34 (II-B), 21–33
(II-C)

wrval (PALcode) instruction, 16–35 (II-B), 21–34
(II-C)

wrvirbnd (PALcode) instruction, 16–36 (II-B),
21–35 (II-C)

wrvptptr (PALcode) instruction, 16–37 (II-B),
21–36 (II-C)

WTINT (PALcode) instruction, 10–93 (II-A)

wtint (PALcode) instruction, 16–38 (II-B), 21–37
(II-C)

X

x MOD y operator, 3–8 (I)

X_floating data type, 2–9 (I)

alignment of, 2–9 (I)
big-endian format, 2–10 (I)
MAX/MIN , 4–66 (I)

XOR instruction, 4–43 (I)

XOR operator, 3–9 (I)

Y

YUV coordinates, interleaved, 4–154 (I)

Z

ZAP instruction, 4–62 (I)

ZAPNOT instruction, 4–62 (I)

Zero byte instructions, 4–62 (I)

ZEXT(x)operator, 3–9 (I)
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Instruction Index

A
ADDF 4–109 (I)
ADDG 4–109 (I)
ADDL 4–26 (I)
ADDQ 4–28 (I)
ADDS 4–110 (I)
ADDT 4–110 (I)
AMASK 4–133 (I)
AMOVRM 10–74 (II-A)
AMOVRR 10–74 (II-A)
AND 4–43 (I)

B

BEQ 4–21 (I)
BGE 4–21 (I)
BGT 4–21 (I)
BIC 4–43 (I)
BIS 4–43 (I)
BLBC 4–21 (I)
BLBS 4–21 (I)
BLE 4–21 (I)
BLT 4–21 (I)
BNE 4–21 (I)
BPT 10–4 (II-A)
bpt 16–2 (II-B), 21–2 (II-C), F–82
BR 4–22 (I)

BSR 4–22 (I)
BUGCHK 10–5 (II-A)
bugchk 16–3 (II-B), 21–3 (II-C)

C

CALL_PAL 4–135 (I)
callkd F–83
callsys 16–4 (II-B), 21–4 (II-C), F–84
CFLUSH 10–82 (II-A)
cflush 16–11 (II-B), 21–10 (II-C)
CHME 10–6 (II-A)
CHMK 10–7 (II-A)
CHMS 10–8 (II-A)
CHMU 10–9 (II-A)
CLRFEN 10–10 (II-A)
clrfen 16–5 (II-B), 21–5 (II-C)
CMOVEQ 4–44 (I)
CMOVGE 4–44 (I)
CMOVGT 4–44 (I)
CMOVLBC 4–44 (I)
CMOVLBS 4–44 (I)
CMOVLE 4–44 (I)
CMOVNE 4–44 (I)
CMPBGE 4–50 (I)
CMPEQ 4–30 (I)
CMPGEQ 4–111 (I)
CMPGLE 4–111 (I)

Index entries are keyed with the following suffixes:

Suffix Location
(I) Common Architecture
(II-A) OpenVMS PALcode

(II-B) Tru64 UNIX PALcode
(II-C) Alpha Linux PALcode

F– Windows NT Alpha
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CMPGLT 4–111 (I)
CMPLE 4–30 (I)
CMPLT 4–30 (I)
CMPTEQ 4–112 (I)
CMPTLE 4–112 (I)
CMPTLT 4–112 (I)
CMPTUN 4–112 (I)
CMPULE 4–31 (I)
CMPULT 4–31 (I)
CPYS 4–104 (I)
CPYSE 4–104 (I)
CPYSN 4–104 (I)
CSERVE 10–83 (II-A)
cserve 16–12 (II-B), 21–11 (II-C)
csir F–40
CTLZ 4–32 (I)
CTPOP 4–33 (I)
CTTZ 4–34 (I)
CVTDG 4–115 (I)
CVTGD 4–115 (I)
CVTGF 4–115 (I)
CVTGQ 4–113 (I)
CVTLQ 4–105 (I)
CVTQF 4–114 (I)
CVTQG 4–114 (I)
CVTQL 4–105 (I)
CVTQS 4–117 (I)
CVTQT 4–117 (I)
CVTST 4–118 (I)
CVTTQ 4–116 (I)
CVTTS 4–119 (I)

D
dalnfix F–41
di F–42
DIVF 4–120 (I)
DIVG 4–120 (I)
DIVS 4–121 (I)
DIVT 4–121 (I)
draina F–43
dtbis F–44

E
ealnfix F–45
ECB 4–136 (I)

ei F–46
EQV 4–43 (I)
EXCB 4–138 (I)
EXTBL 4–52 (I)
EXTLH 4–52 (I)
EXTLL 4–52 (I)
EXTQH 4–52 (I)
EXTQL 4–52 (I)
EXTWH 4–52 (I)
EXTWL 4–52 (I)

F
FBEQ 4–100 (I)
FBGE 4–100 (I)
FBGT 4–100 (I)
FBLE 4–100 (I)
FBLT 4–100 (I)
FBNE 4–100 (I)
FCMOVEQ 4–106 (I)
FCMOVGE 4–106 (I)
FCMOVGT 4–106 (I)
FCMOVLE 4–106 (I)
FCMOVLT 4–106 (I)
FCMOVNE 4–106 (I)
FETCH 4–139 (I)
FETCH_M 4–139 (I)
FTOIS 4–122 (I)
FTOIT 4–122 (I)

G

GENTRAP 10–11 (II-A)
gentrap 16–6 (II-B), 21–6 (II-C), F–86

H
halt F–47

I

imb F–87
IMPLVER 4–141 (I)
initpal F–48
initpcr F–50
INSBL 4–56 (I)
INSLH 4–56 (I)
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INSLL 4–56 (I)
INSQH 4–56 (I)
INSQHIL 10–29 (II-A)
INSQHILR 10–31 (II-A)
INSQHIQ 10–33 (II-A)
INSQHIQR 10–35 (II-A)
INSQL 4–56 (I)
INSQTIL 10–37 (II-A)
INSQTILR 10–39 (II-A)
INSQTIQ 10–41 (II-A)
INSQTIQR 10–43 (II-A)
INSQUEL 10–45 (II-A)
INSQUEQ 10–47 (II-A)
INSWH 4–56 (I)
INSWL 4–56 (I)
ITOFF 4–124 (I)
ITOFS 4–124 (I)
ITOFT 4–124 (I)

J
JMP 4–23 (I)
JSR 4–23 (I)
JSW_COROUTINE 4–23 (I)

K
kbpt F–88

L
LD_L 4–9 (I)
LDA 4–5 (I)
LDAH 4–5 (I)
LDBU 4–6 (I)
LDF 4–91 (I)
LDG 4–92 (I)
LDL 4–6 (I)
LDQ 4–6 (I)
LDQ_L 4–9 (I)
LDQ_U 4–8 (I)
LDQP 10–84 (II-A)
LDS 4–93 (I)
LDT 4–94 (I)
LDWU 4–6 (I)

M
MAXSB8 4–155 (I)
MAXSW4 4–155 (I)
MAXUB8 4–155 (I)
MAXUW4 4–155 (I)
MB 4–142 (I)
MF_FPCR 4–108 (I)
MFPR_IPR_name 10–85 (II-A)
MINSB8 4–155 (I)
MINSW4 4–155 (I)
MINUB8 4–155 (I)
MINUW4 4–155 (I)
MSKBL 4–58 (I)
MSKLH 4–58 (I)
MSKLL 4–58 (I)
MSKQH 4–58 (I)
MSKQL 4–58 (I)
MSKWH 4–58 (I)
MSKWL 4–58 (I)
MT_FPCR 4–108 (I)
MTPR_IPR_name 10–86 (II-A)
MULF 4–126 (I)
MULG 4–126 (I)
MULL 4–35 (I)
MULQ 4–36 (I)
MULS 4–127 (I)
MULT 4–127 (I)

O
ORNOT 4–43 (I)

P
PERR 4–157 (I)
PKLB 4–158 (I)
PKLW 4–158 (I)
PREFETCH 4–143 (I)
PREFETCH_EN 4–143 (I)
PREFETCH_M 4–143 (I)
PRFETCH_MEN 4–143 (I)
PROBE 10–12 (II-A)

R
RC 4–153 (I)
RD_PS 10–13 (II-A)
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rdcounters F–51
rdirql F–52
rdksp F–53
rdmces 16–13 (II-B), 21–12 (II-C), F–54
rdpcr F–55
rdps 16–14 (II-B), 21–13 (II-C)
rdpsr F–56
rdstate F–57
rdteb F–89
rdthread F–58
rdunique 16–7 (II-B), 21–7 (II-C)
rdusp 16–15 (II-B), 21–14 (II-C)
rdval 16–16 (II-B), 21–15 (II-C)
READ_UNQ 10–79 (II-A)
reboot F–59
REI 10–14 (II-A)
REMQHIL 10–49 (II-A)
REMQHILR 10–52 (II-A)
REMQHIQ 10–54 (II-A)
REMQHIQR 10–57 (II-A)
REMQTIL 10–59 (II-A)
REMQTILR 10–62 (II-A)
REMQTIQ 10–64 (II-A)
REMQTIQR 10–67 (II-A)
REMQUEL 10–69 (II-A)
REMQUEQ 10–71 (II-A)
restart F–60
RET 4–23 (I)
retsys 16–17 (II-B), 21–16 (II-C), F–61
rfe F–63
RPCC 4–145 (I)
RS 4–153 (I)
RSCC 10–16 (II-A)
rti 16–18 (II-B), 21–17 (II-C)

S
S4ADDL 4–27 (I)
S4ADDQ 4–29 (I)
S4SUBL 4–39 (I)
S4SUBQ 4–41 (I)
S8ADDL 4–27 (I)
S8ADDQ 4–29 (I)
S8SUBL 4–39 (I)
S8SUBQ 4–41 (I)
SEXTB 4–61 (I)

SEXTW 4–61 (I)
SLL 4–46 (I)
SQRTF 4–128 (I)
SQRTG 4–128 (I)
SQRTS 4–129 (I)
SQRTT 4–129 (I)
SRA 4–47 (I)
SRL 4–46 (I)
ssir F–65
STB 4–16 (I)
STF 4–95 (I)
STG 4–96 (I)
STL 4–16 (I)
STL_C 4–13 (I)
STQ 4–16 (I)
STQ_C 4–13 (I)
STQ_U 4–18 (I)
STQP 10–87 (II-A)
STS 4–97 (I)
STT 4–98 (I)
STW 4–16 (I)
SUBF 4–130 (I)
SUBG 4–130 (I)
SUBL 4–38 (I)
SUBQ 4–40 (I)
SUBS 4–131 (I)
SUBT 4–131 (I)
SWASTEN 10–18 (II-A)
swpctx 16–19 (II-B), 21–18 (II-C), F–66
swpipl 16–21 (II-B), 21–20 (II-C)
swpirql F–68
swpksp F–69
SWPPAL 10–91 (II-A)
swppal 16–22 (II-B), 21–21 (II-C), F–70
swpprocess F–71

T

tbi 16–24 (II-B), 21–23 (II-C)
tbia F–72
tbim F–73
tbimasn F–74
tbis F–75
tbisasn F–76
TRAPB 4–147 (I)
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U
UMULH 4–37 (I)
UNPKBL 4–159 (I)
UNPKBW 4–159 (I)
urti 16–8 (II-B)

W
WH64 4–148 (I)
WH64EN 4–148 (I)
whami 16–25 (II-B), 21–24 (II-C)
WMB 4–150 (I)
WR_PS_SW 10–19 (II-A)
wrasn 16–26 (II-B), 21–25 (II-C)
wrent 16–27 (II-B), 21–26 (II-C)
wrentry F–77
wrfen 16–28 (II-B), 21–27 (II-C)
wripir 16–29 (II-B), 21–28 (II-C)
WRITE_UNQ 10–80 (II-A)
wrkgp 16–30 (II-B), 21–29 (II-C)
wrmces 16–31 (II-B), 21–30 (II-C), F–79
wrperfmon 16–32 (II-B), 21–31 (II-C), F–80
wrsysptb 16–33 (II-B), 21–32 (II-C)
wrunique 16–9 (II-B), 21–8 (II-C)
wrusp 16–34 (II-B), 21–33 (II-C)
wrval 16–35 (II-B), 21–34 (II-C)
wrvirbnd 16–36 (II-B), 21–35 (II-C)
wrvptptr 16–37 (II-B), 21–36 (II-C)
WTINT 10–93 (II-A)
wtint 16–38 (II-B), 21–37 (II-C)

X
XOR 4–43 (I)

Z
ZAP 4–62 (I)
ZAPNOT 4–62 (I)
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